JP2011252212A - Method for forming processing of 6000 series aluminum alloy material, and forming processed product - Google Patents

Method for forming processing of 6000 series aluminum alloy material, and forming processed product Download PDF

Info

Publication number
JP2011252212A
JP2011252212A JP2010127675A JP2010127675A JP2011252212A JP 2011252212 A JP2011252212 A JP 2011252212A JP 2010127675 A JP2010127675 A JP 2010127675A JP 2010127675 A JP2010127675 A JP 2010127675A JP 2011252212 A JP2011252212 A JP 2011252212A
Authority
JP
Japan
Prior art keywords
aluminum alloy
alloy material
less
forming
series aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010127675A
Other languages
Japanese (ja)
Inventor
Hidetoshi Uchida
秀俊 内田
Mineo Asano
峰生 浅野
Keita Fukawa
啓太 布川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP2010127675A priority Critical patent/JP2011252212A/en
Publication of JP2011252212A publication Critical patent/JP2011252212A/en
Pending legal-status Critical Current

Links

Landscapes

  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for forming processing of a 6000 series aluminum alloy material, which can form a more complex shaped molding product, and after artificial aging, obtain a high strengthened molding product having a proof strength of 250 MPa or more.SOLUTION: There is provided the method for forming processing of a 6000 series aluminum alloy material that includes, by mass%, 0.3-4.0% Si, 0.3-2.0% Mg, 2.0% or less Cu, 1.5% or less Mn, 1.5% or less Fe, 2.0% or less Zn, 0.50% or less Cr, 0.50% or less Zr, 0.50% or less Ti, 0.50% or less V, and the balance aluminum with inevitable impurities. The method includes the steps of: performing a solution treatment of the aluminum alloy material; forming processing the material in a die after the solution treatment; and performing a quenching treatment of the material following the forming processing by cooling the material in the die to a temperature of 250°C or less.

Description

本願発明は、例えば自動車のボディシートあるいは各種筐体等のように高強度が要求される成形加工品を成形するための6000系アルミニウム合金板材や、バンパーやステハンビームなどの自動車部品、二輪車用フレームのように押出管または押出形材に曲げや拡縮を加えて成形加工品を成形するための6000系アルミニウム合金押出材などの6000系アルミニウム合金材の成形加工方法、および該成形加工方法により成形された成形加工品に関する。なお、ここで、成形加工とは、プレス成形、ハイドロフォーミング(液圧成形)、バルジ成形、超塑性成形(熱間ブロー成形)など、金型によって三次元に加工を行うもの全てを意味する。   The present invention relates to a 6000 series aluminum alloy plate material for molding a molded product requiring high strength such as a body sheet or various housings of automobiles, automobile parts such as bumpers and stehan beams, and frames for motorcycles. 6000-series aluminum alloy material such as 6000-series aluminum alloy extruded material for forming a molded product by bending or expanding / reducing the extruded tube or extruded shape as described above, and the molding method. Related to molded products. Here, the molding processing means all of three-dimensional processing by a mold, such as press molding, hydroforming (hydraulic molding), bulge molding, superplastic molding (hot blow molding).

近年、環境保護のための省エネルギー対策として、例えば自動車ではボディシート、ならびに各種筺体等の部材において、従来の強度を確保して且つ軽量化を達するために、上記部材の素材について、鋼板に替えて、例えば6000系アルミニウム合金板材の使用が進んでいる。   In recent years, as an energy-saving measure for environmental protection, for example, in automobiles, in order to secure the conventional strength and achieve weight reduction in members such as body seats and various housings, the materials of the above members are replaced with steel plates. For example, the use of a 6000 series aluminum alloy sheet is in progress.

しかしながら、上記部材の素材として使用される6000系アルミニウム合金板材は、鋼板に比べ成形加工性が劣るため複雑形状への加工が困難であり、成形加工性の観点から中強度の6000系アルミニウム合金板材が成形加工時において使用される。そのため、溶体化処理、焼入れ処理後の室温時効(自然時効)処理材で成形加工が行われており、高強度を得るためには塗装焼付硬化もしくは、さらに強度が必要な場合は200℃前後の温度を加える熱処理、すなわち人工時効が必要となる。   However, the 6000 series aluminum alloy sheet used as the material of the above member is inferior in formability compared to the steel sheet, so that it is difficult to process into a complicated shape. From the viewpoint of formability, the medium strength 6000 series aluminum alloy sheet Is used during molding. Therefore, molding processing is performed with a room temperature aging (natural aging) treatment material after solution treatment and quenching treatment, and in order to obtain high strength, paint bake hardening or about 200 ° C. when further strength is required Heat treatment for applying temperature, that is, artificial aging is required.

最終の必要強度が高いほど、室温時効処理材を用いる成形加工時にも耐力が高い材料が必要となり、そのため、成形加工時のスプリングバックが大きくなって寸法精度が低下し部品の組み立て工程でのトラブルの原因となるとともに成形加工性も劣化する。   The higher the final required strength, the higher the strength required for molding using room temperature aging treatment material, and the larger the springback during molding, the lower the dimensional accuracy and the trouble in the parts assembly process. As well as this, the moldability also deteriorates.

特開2000−96175号公報JP 2000-96175 A

本発明は、上記従来の問題を解消するためになされたものであり、その目的は、冷間成形加工性には限界があるが、焼入れ性に優れた高強度の6000系アルミニウム合金材において、より複雑形状に成形することができ、人工時効後(塗装焼付け処理後)において250MPa以上の耐力を有する高強度の成形品を得ることを可能とする6000系アルミニウム合金材の成形加工方法、および該成形加工方法により成形された成形加工品を提供することにある。   The present invention was made in order to solve the above-mentioned conventional problems, and its purpose is limited in cold formability, but in a high-strength 6000 series aluminum alloy material excellent in hardenability, 6000 series aluminum alloy material molding method that can be molded into a more complex shape, and can obtain a high-strength molded product having a yield strength of 250 MPa or more after artificial aging (after paint baking), and The object is to provide a molded product molded by the molding method.

上記の目的を達成するための請求項1による6000系アルミニウム合金材の成形加工方法は、質量%で、Si:0.3%以上4.0%以下、Mg:0.3%以上2.0%以下、Cu:2.0%以下、Mn:1.5%以下、Fe:1.5%以下、Zn:2.0%以下、Cr:0.50%以下、Zr:0.50%以下、Ti:0.50%以下、V:0.50%以下を含有し、残部がアルミニウムおよび不可避的不純物からなる6000系アルミニウム合金材を成形加工する方法であって、該アルミニウム合金材を溶体化処理する工程と、溶体化処理後、金型内で成形加工を行う工程と、成形加工に続いて金型内で250℃以下の温度まで冷却して焼入れ処理する工程を含むことを特徴とする。以下、合金成分値は質量%で示す。   The forming method of the 6000 series aluminum alloy material according to claim 1 for achieving the above object is, in mass%, Si: 0.3% to 4.0%, Mg: 0.3% to 2.0%. % Or less, Cu: 2.0% or less, Mn: 1.5% or less, Fe: 1.5% or less, Zn: 2.0% or less, Cr: 0.50% or less, Zr: 0.50% or less , Ti: 0.50% or less, V: 0.50% or less, a method of forming a 6000 series aluminum alloy material, the balance being aluminum and inevitable impurities, in which the aluminum alloy material is solutionized A step of processing, a step of performing molding in the mold after solution treatment, and a step of quenching by cooling to a temperature of 250 ° C. or less in the mold following the molding. . Hereinafter, alloy component values are expressed in mass%.

請求項2による6000系アルミニウム合金材の成形加工方法は、請求項1記載の6000系アルミニウム合金材を溶体化処理する工程と、溶体化処理後、250℃以下の温度まで冷却して焼入れ処理する工程と、焼入れ処理後、120時間以内に金型内で成形加工を行う工程を含むことを特徴とする。   The method for forming a 6000 series aluminum alloy material according to claim 2 includes a step of solution-treating the 6000 series aluminum alloy material according to claim 1 and, after the solution treatment, cooling to a temperature of 250 ° C. or lower and quenching treatment. And a step of performing molding in a mold within 120 hours after the quenching treatment.

請求項3による6000系アルミニウム合金材の成形加工方法は、請求項1記載の6000系アルミニウム合金材を溶体化処理する工程と、溶体化処理後、加熱をした金型内で成形加工を行う工程と、成形加工後、金型から離型して250℃以下の温度まで冷却して焼入れ処理する工程を含むことを特徴とする。   The method for forming a 6000 series aluminum alloy material according to claim 3 includes a step of solution-treating the 6000 series aluminum alloy material according to claim 1 and a step of forming the mold in a heated mold after the solution treatment. And after the molding process, the mold is released from the mold, cooled to a temperature of 250 ° C. or lower, and quenched.

請求項4による6000系アルミニウム合金材の成形加工方法は、請求項1または2において、400℃以上融点未満の温度で溶体化処理することを特徴とする。   According to a fourth aspect of the present invention, there is provided a method for forming a 6000 series aluminum alloy material according to the first or second aspect, wherein the solution treatment is performed at a temperature of 400 ° C. or higher and lower than the melting point.

請求項5による6000系アルミニウム合金材の成形加工方法は、請求項3において、400℃以上融点未満の温度で溶体化処理し、350℃以上融点未満の温度に加熱した金型内で成形加工を行うことを特徴とする。   The method for forming a 6000 series aluminum alloy material according to claim 5 is the method according to claim 3, wherein the solution is formed at a temperature of 400 ° C. or higher and lower than the melting point, and is heated in a mold heated to a temperature of 350 ° C. or higher and lower than the melting point. It is characterized by performing.

請求項6による6000系アルミニウム合金材の成形加工方法は、請求項1〜5のいずれかにおいて、前記焼入れ処理において、400℃から250℃までの冷却速度を2℃/秒以上とすることを特徴とする。   The method for forming a 6000 series aluminum alloy material according to claim 6 is the method according to any one of claims 1 to 5, wherein, in the quenching process, a cooling rate from 400 ° C to 250 ° C is set to 2 ° C / second or more. And

請求項7による6000系アルミニウム合金材の成形加工方法は、請求項1〜6のいずれかにおいて、前記溶体化処理を金型内で行うことを特徴とする。   According to a seventh aspect of the present invention, there is provided a method for forming a 6000 series aluminum alloy material according to any one of the first to sixth aspects, wherein the solution treatment is performed in a mold.

請求項8による6000系アルミニウム合金材の成形加工方法は、請求項1〜7のいずれかにおいて、前記6000系アルミニウム合金材が圧延材であり、該圧延材の熱間圧延は開始温度を350℃以上として行われたものであることを特徴とする。   The method for forming a 6000 series aluminum alloy material according to claim 8 is the method according to any one of claims 1 to 7, wherein the 6000 series aluminum alloy material is a rolled material, and the hot rolling of the rolled material has a start temperature of 350 ° C. It is what was performed as mentioned above.

請求項9による6000系アルミニウム合金材の成形加工方法は、請求項1〜7のいずれかにおいて、前記6000系アルミニウム合金材が押出材であり、該押出材の熱間押出は開始温度を350℃以上として行われたものであることを特徴とする。   The method for forming a 6000 series aluminum alloy material according to claim 9 is the method according to any one of claims 1 to 7, wherein the 6000 series aluminum alloy material is an extruded material, and hot extrusion of the extruded material has a start temperature of 350 ° C. It is what was performed as mentioned above.

本発明による成形加工品は、請求項1〜9のいずれかに記載の6000系アルミニウム合金材の成形加工方法により成形されたことを特徴とする。   The molded product according to the present invention is characterized by being molded by the 6000 series aluminum alloy material molding method according to any one of claims 1 to 9.

本発明によれば、より複雑形状に成形することができ、人工時効後(塗装焼付け処理後)において250MPa以上の耐力を有する高強度の成形品を得ることを可能とする6000系アルミニウム合金材の成形加工方法、および該成形加工方法により成形された成形加工品が提供される。   According to the present invention, a 6000 series aluminum alloy material that can be molded into a more complex shape and can obtain a high-strength molded product having a yield strength of 250 MPa or more after artificial aging (after paint baking). A molding method and a molded product molded by the molding method are provided.

本発明における合金成分の意義および限定理由について説明する。
Si:
Siは強度を向上させるよう機能する。好ましい含有量は0.3%以上4.0%以下の範囲であり、0.3%未満では強度が十分でなく、4.0%を超えると成形加工性が著しく劣化する。より好ましい含有範囲は0.6%以上2.0%以下であり、さらに好ましい含有範囲は0.7%以上1.4%以下である。
The significance and reasons for limitation of the alloy components in the present invention will be described.
Si:
Si functions to improve strength. The preferred content is in the range of 0.3% to 4.0%. If it is less than 0.3%, the strength is not sufficient, and if it exceeds 4.0%, the moldability is remarkably deteriorated. A more preferable content range is 0.6% or more and 2.0% or less, and a more preferable content range is 0.7% or more and 1.4% or less.

Mg:
MgはSiと共存して強度を向上させるよう機能する。好ましい含有量は0.3%以上2.0%以下の範囲であり、0.3%未満では強度が十分でなく、2.0%を超えると成形加工性が著しく劣化するとともに焼入れ性が劣化する。より好ましい含有範囲は0.4%以上1.2%以下であり、さらに好ましい含有範囲は0.6%以上1.0%以下である。
Mg:
Mg functions together with Si to improve strength. The preferred content is in the range of 0.3% to 2.0%. If the content is less than 0.3%, the strength is not sufficient. To do. A more preferable content range is 0.4% or more and 1.2% or less, and a more preferable content range is 0.6% or more and 1.0% or less.

Cu:
CuはSi、Mgとともに強度の向上に寄与する。好ましい含有量は2.0%以下の範囲であり、含有量が多いほど高強度が得られるが、2.0%を超えて含有すると、成形加工性が著しく劣化するとともに耐食性が劣化する。Cuのより好ましい含有範囲は1.5%以下であり、成形加工性を考慮すると0.6%以上1.2%以下の範囲が好ましい。
Cu:
Cu contributes to strength improvement together with Si and Mg. The preferable content is in the range of 2.0% or less, and the higher the content, the higher the strength can be obtained. However, when the content exceeds 2.0%, the moldability is remarkably deteriorated and the corrosion resistance is deteriorated. A more preferable content range of Cu is 1.5% or less, and a range of 0.6% or more and 1.2% or less is preferable in consideration of molding processability.

Mn:
Mnは結晶粒を微細化して強度を向上させる。好ましい含有量は1.5%以下の範囲であり、1.5%を超えると鋳塊割れが発生し易くなる。より好ましい含有範囲は0.2%以上1.0%以下である。
Mn:
Mn refines crystal grains and improves strength. The preferred content is in the range of 1.5% or less, and if it exceeds 1.5%, ingot cracking tends to occur. A more preferable content range is 0.2% or more and 1.0% or less.

Fe:
Feは不純物として含有され易く、許容量が高いほどリサイクル性に優れるが、その含有率は1.5%を超えると成形加工性が劣化し、また製造時に割れ生じ易くなる。そのため、Feの含有量は1.5%以下の範囲が好ましく、より好ましい含有範囲は0.5%以下である。また、Feの含有量が0.03%未満では、高価な高純度アルミニウム地金を使用する必要があり、コストアップを招くため、0.03%以上とするのが望ましい。
Fe:
Fe is likely to be contained as an impurity, and the higher the allowable amount, the better the recyclability. However, if the content exceeds 1.5%, the moldability deteriorates, and cracks are likely to occur during production. Therefore, the content of Fe is preferably in the range of 1.5% or less, and the more preferable content range is 0.5% or less. In addition, if the Fe content is less than 0.03%, it is necessary to use an expensive high-purity aluminum ingot, which increases the cost.

Zn:
Znは材料特性に大きな影響を与えないが、許容量が多いほどリサイクル性に優れる。その含有量が2.0%を超えると耐食性が劣化するため、2.0%以下とするのが好ましい。さらに好ましい含有範囲は0.5%以下である。
Zn:
Zn does not significantly affect the material properties, but the greater the allowable amount, the better the recyclability. If the content exceeds 2.0%, the corrosion resistance deteriorates, so the content is preferably 2.0% or less. A more preferable content range is 0.5% or less.

Cr、Zr、Ti、V:
Cr、Zr、TiおよびVは結晶粒を微細化して強度の向上に寄与する。好ましい含有量は、それぞれ0.50%以下の範囲であり、それぞれ0.50%を超えると、鋳塊割れや熱間割れが発生し易くなるとともに粗大な金属間化合物が生成し易くなり成形加工性が劣化する。Cr、Zr、TiおよびVのより好ましい含有範囲は、それぞれ0.30%以下であり、さらに好ましい含有範囲は、それぞれ0.20%以下である。
Cr, Zr, Ti, V:
Cr, Zr, Ti and V contribute to the improvement of strength by refining crystal grains. Preferable contents are each in the range of 0.50% or less, and when each exceeds 0.50%, ingot cracking and hot cracking are likely to occur and a coarse intermetallic compound is likely to be formed, and molding processing is performed. Deteriorates. The more preferable content ranges of Cr, Zr, Ti, and V are each 0.30% or less, and the more preferable content ranges are each 0.20% or less.

本発明の第1の特徴とする工程は、上記組成の6000系アルミニウム合金材を成形加工する方法であり、該アルミニウム合金材を溶体化処理する工程と、溶体化処理後、金型内で成形加工を行う工程と、成形加工に続いて金型内で250℃以下の温度まで冷却して焼入れ処理する工程を含むものである。   The first characteristic step of the present invention is a method of forming a 6000 series aluminum alloy material having the above composition, a step of solution-treating the aluminum alloy material, and forming in a mold after the solution treatment. It includes a step of performing processing and a step of quenching by cooling to a temperature of 250 ° C. or lower in the mold following the molding process.

250℃を超える温度で焼入れ処理を完了すると、焼入れが不十分となり、成形加工性が劣化するとともにその後の人工時効で十分な強度を得ることが困難となる。   When the quenching process is completed at a temperature exceeding 250 ° C., quenching becomes insufficient, the moldability deteriorates, and it becomes difficult to obtain sufficient strength by subsequent artificial aging.

本発明の第2の特徴とする工程は、前記6000系アルミニウム合金材を溶体化処理し、250℃以下の温度まで冷却して焼入れ処理し、焼入れ処理後、120時間以内に金型内で成形加工を行うものである。焼入れ後、成形加工までの時間が120時間を超えると、自然時効により強度が高くなり過ぎ、成形加工が困難となる。2時間以内に成形加工を行うのがより好ましい。   The process characterized by the second feature of the present invention is that the 6000 series aluminum alloy material is solution treated, cooled to a temperature of 250 ° C. or lower, quenched, and molded in a mold within 120 hours after quenching. Processing is performed. If the time until quenching after quenching exceeds 120 hours, the strength becomes too high due to natural aging, making the molding difficult. More preferably, the molding process is performed within 2 hours.

本発明の第3の特徴とする工程は、前記6000系アルミニウム合金材を溶体化処理し、加熱をした金型内で成形加工を行った後、金型から離型して250℃以下の温度まで冷却して焼入れ処理するものである。この場合の焼入れは、成形加工で用いる金型とは異なる金型内で行ってもよいし、金型から離型してエアブローなどの強制空冷やミスト冷却を行ってもよく、焼入れ効果が得られるあらゆる手段が好適に採用される。   According to a third feature of the present invention, the 6000 series aluminum alloy material is subjected to a solution treatment, molded in a heated mold, and then released from the mold to a temperature of 250 ° C. or lower. It is cooled to a quenching process. The quenching in this case may be performed in a mold different from the mold used in the molding process, or may be released from the mold and subjected to forced air cooling such as air blow or mist cooling to obtain a quenching effect. Any means that can be used is preferably employed.

溶体化処理条件は、450℃以上融点未満の温度で行うことが望ましい。溶体化処理温度が450℃未満では、強度を十分得ることができない。さらに好ましい溶体化処理温度は500℃以上である。また、溶体化処理時間は、溶体化の効果が得られれば、溶体化処理温度に応じて適宜設定できる。例えば融点近くであれば1秒であっても溶体化の効果は得られるが、敢えて溶体化処理温度範囲全てを満足する時間を設定するとすれば、5秒以上、600秒以下が採用される。5秒未満では十分な強度を得難く、600秒を超えると製造コストが上昇する。   The solution treatment conditions are preferably 450 ° C. or higher and lower than the melting point. If the solution treatment temperature is less than 450 ° C., sufficient strength cannot be obtained. A more preferable solution treatment temperature is 500 ° C. or higher. The solution treatment time can be appropriately set according to the solution treatment temperature as long as the effect of solution treatment is obtained. For example, if it is close to the melting point, the effect of solution treatment can be obtained even if it is 1 second, but if a time that satisfies the entire solution treatment temperature range is set, 5 seconds or more and 600 seconds or less are adopted. If it is less than 5 seconds, it is difficult to obtain sufficient strength, and if it exceeds 600 seconds, the production cost increases.

また、溶体化処理を複数回行った後に成形加工することもできる。例えば、1回目の溶体化処理を行った材料を室温まで冷却した後に2回目の溶体化処理を行うことにより、2回目の保持時間を短時間としても必要強度、成形加工性が得られ易くなる。この場合、溶体化処理後の冷却については、前記本発明の第1の特徴とする工程においては、成形加工中の冷却速度のみ規定し、第2の特徴とする工程においては、成形加工直前の冷却速度のみを規定し、第3の特徴とする工程においては、成型加工後の冷却速度のみを規定すれば必要性能を得ることができる。   Moreover, it can also shape | mold after performing a solution treatment in multiple times. For example, by cooling the material subjected to the first solution treatment to room temperature and then performing the second solution treatment, the required strength and moldability can be easily obtained even if the second holding time is short. . In this case, regarding the cooling after the solution treatment, only the cooling rate during the molding process is defined in the process characterized by the first feature of the present invention, and in the process characterized by the second characteristic, If only the cooling rate is defined and only the cooling rate after the molding process is defined in the third feature step, the required performance can be obtained.

本発明の第3の特徴とする工程における金型の加熱温度は、400℃以上、該6000系アルミニウム合金材の融点未満の温度で行うのが好ましい。400℃未満の場合には、成形加工中に固溶元素の析出が起こり、成形加工性が劣化するとともに成形加工後の強度が低下する。   The heating temperature of the mold in the third characteristic step of the present invention is preferably 400 ° C. or higher and lower than the melting point of the 6000 series aluminum alloy material. When the temperature is lower than 400 ° C., solid solution elements are precipitated during the molding process, and the molding processability is deteriorated and the strength after the molding process is lowered.

焼入れにおいては、450℃から250℃までの冷却速度を5℃/秒以上の急速冷却とすることが望ましい。この温度範囲での冷却速度が5℃/秒未満では強度が低下するおそれがある。さらに望ましい冷却速度は20℃/秒以上である。   In quenching, it is desirable that the cooling rate from 450 ° C. to 250 ° C. is a rapid cooling of 5 ° C./second or more. If the cooling rate in this temperature range is less than 5 ° C./second, the strength may decrease. A more desirable cooling rate is 20 ° C./second or more.

次に、本発明のアルミニウム合金材の、溶体化処理に至るまでの望ましい製造方法について説明する。製造方法としては、主として、鋳造、均質化処理、熱間加工、冷間加工の工程が採用される。板材の場合には、熱間加工は熱間圧延、冷間加工は冷間圧延が一般に適用されるが、冷間圧延は必ずしも必要ではない。押出材の場合には、熱間加工は押出、冷間加工は抽伸が一般に適用される。抽伸を省き、押出のままで溶体化処理されることもできる。なお、上記の製造方法は一実施態様であり、これに限定されない。   Next, the desirable manufacturing method until the solution treatment of the aluminum alloy material of the present invention will be described. As the manufacturing method, mainly casting, homogenization treatment, hot working, and cold working steps are employed. In the case of a plate material, hot rolling is generally used for hot working, and cold rolling is generally used for cold working, but cold rolling is not necessarily required. In the case of an extruded material, extrusion is generally used for hot working, and drawing is generally used for cold working. Drawing can be omitted and solution treatment can be performed as it is extruded. In addition, said manufacturing method is one embodiment, It is not limited to this.

具体的に説明すると、DC鋳造法により造塊を行い、均質化熱処理は400℃以上融点未満の温度で2時間以上100時間以下の条件で行うのが好ましい。均質化熱処理の温度は400℃未満もしくは2時間未満では成形加工性が劣化する。また均質化熱処理の時間が100時間を超えると製造コストが著しく上昇するおそれがある。   Specifically, it is preferable that ingots are formed by a DC casting method, and the homogenization heat treatment is performed at a temperature of 400 ° C. or higher and lower than the melting point for 2 hours to 100 hours. If the temperature of the homogenization heat treatment is less than 400 ° C. or less than 2 hours, the moldability deteriorates. Further, if the time for the homogenization heat treatment exceeds 100 hours, the production cost may be remarkably increased.

熱間加工は、開始温度を350℃以上融点未満とするのが好ましい。熱間加工の開始温度が350℃未満では変形荷重の増大により加工時間を多大に要することとなり製造コストが上昇するおそれがある。   In the hot working, it is preferable that the starting temperature is 350 ° C. or higher and lower than the melting point. If the hot working start temperature is less than 350 ° C., the deformation load increases, which requires a lot of processing time, which may increase the manufacturing cost.

熱間加工後、冷間加工前、あるいは、冷間加工の途中で中間焼鈍を行ってもよい。中間焼鈍を行う場合には、中間焼鈍以降の冷間加工率は30〜80%とするのが好ましい、中間焼鈍を行わない場合には、熱間加工以降の冷間加工率を30〜80%とするのが好ましい。冷間加工率は高くなるほど結晶粒微細化の効果により強度が上昇するが、冷間加工による製造コストの上昇を招くおそれがある。   Intermediate annealing may be performed after hot working, before cold working, or in the middle of cold working. When intermediate annealing is performed, the cold working rate after intermediate annealing is preferably 30 to 80%. When intermediate annealing is not performed, the cold working rate after hot working is 30 to 80%. Is preferable. The higher the cold working rate, the higher the strength due to the effect of crystal grain refinement, but there is a risk of increasing the manufacturing cost by cold working.

前記本発明の第1、第2および第3の特徴とする工程により製造された成形品は、人工時効後の耐力が250MPa以上の高強度をそなえたものとなる。   The molded article produced by the processes characterized by the first, second and third features of the present invention has a high strength with a yield strength of 250 MPa or more after artificial aging.

本発明による6000系アルミニウム合金材の成形加工方法によれば、例えば自動車のボディシート、あるいは各種筐体等の部材、ならびにバンパーやステハンビーム等の自動車部品、二輪車用フレーム等の製造において、6000系アルミニウム合金材を簡易且つ確実に成形し、適用することができ、必要となる強度を確保し、軽量化を達成することができる。従って、環境保護に対して省エネルギーの観点から大きく貢献することができる。   According to the method of forming a 6000 series aluminum alloy material according to the present invention, for example, in the production of automobile body seats, various casing members, automobile parts such as bumpers and stehan beams, motorcycle frames, etc., the 6000 series An aluminum alloy material can be easily and reliably formed and applied, and the required strength can be ensured and weight reduction can be achieved. Therefore, it can greatly contribute to environmental protection from the viewpoint of energy saving.

以下、本願発明の実施例を比較例と対比して説明し、その効果を実証する。なお、これらの実施例は、本願発明の一実施態様を示すためのものであり、本発明はこれらに限定されない。   Examples of the present invention will be described below in comparison with comparative examples to demonstrate the effects. In addition, these Examples are for showing one embodiment of the present invention, and the present invention is not limited to these.

実施例1、比較例1
表1に示す組成を有するアルミニウム合金(E1〜E12)およびアルミニウム合金(C1〜C10)をDC鋳造により造塊し、520℃で10時間均質化熱処理を行った。次に、500℃で熱間圧延を開始し板厚4mmまで熱間圧延を行った後、350℃で2時間の中間焼鈍を施して室温まで炉内冷却を行い、その後、冷間圧延を行い、板厚1.5mmとした。得られた冷間圧延材を板幅200mm、長さ250mm(板厚1.5mm)に切断して成形加工に供するためのアルミニウム合金板材(試験材)とした。なお、表1において、本発明の条件を外れたものには下線を付した。
Example 1 and Comparative Example 1
Aluminum alloys (E1 to E12) and aluminum alloys (C1 to C10) having the compositions shown in Table 1 were agglomerated by DC casting and subjected to homogenization heat treatment at 520 ° C. for 10 hours. Next, hot rolling is started at 500 ° C. and hot rolling is performed to a plate thickness of 4 mm, followed by intermediate annealing at 350 ° C. for 2 hours to cool the furnace to room temperature, and then cold rolling is performed. The plate thickness was 1.5 mm. The obtained cold-rolled material was cut into a plate width of 200 mm and a length of 250 mm (plate thickness of 1.5 mm) to obtain an aluminum alloy plate material (test material) for use in forming processing. In Table 1, those outside the conditions of the present invention are underlined.

得られた試験材(アルミニウム合金板材)について、以下の成形加工を行い、成形加工性、機械的性質を評価した。
予めアルミニウム合金板材に離型剤を塗布した上で、アルミニウム合金板材を上型と下型からなるアイロン加熱装置に装着して、540℃の温度に急速加熱して60秒間保持する溶体化処理を行った後、50℃とした金型を構成する上型と下型との間に挟持固定してプレス成形と同時に、同じ金型内で急速に冷却して焼入れ処理し、底面を有する断面コ字形状のプレス成形品を作製した。
The obtained test material (aluminum alloy plate material) was subjected to the following forming process, and the forming processability and mechanical properties were evaluated.
After applying a release agent to the aluminum alloy sheet in advance, the aluminum alloy sheet is mounted on an iron heating device composed of an upper mold and a lower mold, and is rapidly heated to a temperature of 540 ° C. and held for 60 seconds. After being performed, it is sandwiched and fixed between the upper mold and the lower mold constituting the mold set to 50 ° C., and simultaneously with press molding, it is rapidly cooled and quenched in the same mold, and a cross-sectional core having a bottom surface is obtained. A letter-shaped press-molded product was produced.

得られたプレス成形品について、割れ発生の有無を観察すると共に、プレス成形品の底面よりJIS Z2241、JIS5号試験片を採取して機械的性質(塗装焼付け処理前)を測定し、該試験片を、プレス成形後、1週間室温時効した後、170℃の温度で8時間の人工時効処理を行い、機械的性質(塗装焼付け処理後)を測定した。結果を表2に示す。   The obtained press-formed product was observed for occurrence of cracks, and JIS Z2241 and JIS No. 5 test pieces were collected from the bottom surface of the press-formed product to measure mechanical properties (before paint baking treatment). After press molding, after aging for 1 week at room temperature, an artificial aging treatment was performed at a temperature of 170 ° C. for 8 hours, and the mechanical properties (after paint baking treatment) were measured. The results are shown in Table 2.

Figure 2011252212
Figure 2011252212

Figure 2011252212
Figure 2011252212

表2に示すように、本発明に従う試験材1〜12はいずれも、プレス成形品に割れが発生することのない良好な成形加工性を示し、塗装焼付け処理前においても200MPaに近い耐力、塗装焼付け処理後においては300MPaを超える耐力を示す高強度をそなえていることが確認された   As shown in Table 2, all of the test materials 1 to 12 according to the present invention exhibit good moldability without causing cracks in the press-molded product, and the proof stress close to 200 MPa even before the coating baking process, After baking, it was confirmed that it had high strength with a yield strength exceeding 300 MPa.

これに対して、試験材13はSiの含有量が多いため、成形加工性が劣っている。試験材14はMgの含有量が多いため焼入れ性がわるく、機械的性質が劣っている。試験材15はCuの含有量が多いため、成形加工性が劣っている。試験材16はMnの含有量が多いため鋳塊割れが発生し、試験材17はFeの含有量が多いため製造工程で割れが生じ、いずれも試験材(アルミニウム合金板材)を製造することができなかった。   On the other hand, since the test material 13 has a large Si content, the moldability is inferior. Since the test material 14 has a high Mg content, the hardenability is poor and the mechanical properties are inferior. Since the test material 15 has a high Cu content, the moldability is inferior. Since the test material 16 has a high Mn content, ingot cracking occurs, and since the test material 17 has a high Fe content, cracks occur in the manufacturing process, both of which produce test materials (aluminum alloy plate materials). could not.

試験材18はZnの含有量が多く、耐食性が劣るものであり、成形加工で割れも生じた。試験材19、20および21はそれぞれCr、ZrおよびTiの含有量が多いため、いずれも成形加工性が劣っている。試験材22はMgの含有量が少ないため、強度が低くなった。   The test material 18 had a large content of Zn and was inferior in corrosion resistance, and cracking occurred in the molding process. Since each of the test materials 19, 20, and 21 has a large content of Cr, Zr, and Ti, all of them have poor moldability. Since the test material 22 had a low Mg content, the strength was low.

実施例2、比較例2
実施例1で造塊したアルミニウム合金E1の鋳塊を用い、この鋳塊を520℃で10時間均質化熱処理した後、表3に示す熱間圧延開始温度で熱間圧延を開始し板厚4mmまで熱間圧延を行い、370℃で1時間の中間焼鈍を施して室温まで炉内冷却を行い、その後、冷間圧延を行い、板厚1.5mmとした。得られた冷間圧延材を板幅200mm、長さ250mm(板厚1.5mm)に切断して成形加工に供するためのアルミニウム合金板材(試験材)とした。なお、表3において、本発明の条件を外れたものには下線を付した。
Example 2 and Comparative Example 2
Using the ingot of the aluminum alloy E1 formed in Example 1, this ingot was subjected to homogenization heat treatment at 520 ° C. for 10 hours, and then hot rolling was started at the hot rolling start temperature shown in Table 3, and the plate thickness was 4 mm. The steel sheet was hot-rolled to an intermediate annealing temperature of 370 ° C. for 1 hour, cooled in the furnace to room temperature, and then cold-rolled to a thickness of 1.5 mm. The obtained cold-rolled material was cut into a plate width of 200 mm and a length of 250 mm (plate thickness of 1.5 mm) to obtain an aluminum alloy plate material (test material) for use in forming processing. In Table 3, those outside the conditions of the present invention are underlined.

Figure 2011252212
Figure 2011252212

得られた試験材(アルミニウム合金板材)について、以下の成形加工を行い、成形加工性、機械的性質を評価した。
アルミニウム合金板材(試験材)について、540℃の温度に急速加熱して60秒間保持する溶体化処理、溶体化処理後、冷却速度50℃/sで室温まで冷却する焼入れ処理を行い、焼入れ処理後10分経過した後、室温の金型を構成する上型と下型との間に挟持固定し、低粘度潤滑油を用いてプレス成形して、長方形形状の底面を有する断面コ字形状のプレス成形品を作製した。
The obtained test material (aluminum alloy plate material) was subjected to the following forming process, and the forming processability and mechanical properties were evaluated.
After the aluminum alloy plate (test material) is rapidly heated to a temperature of 540 ° C. and held for 60 seconds, after the solution treatment, a quenching treatment is performed to cool to room temperature at a cooling rate of 50 ° C./s. After 10 minutes have passed, the room mold is clamped between the upper mold and the lower mold, press-molded using a low-viscosity lubricant, and a rectangular U-shaped press having a rectangular bottom A molded product was produced.

得られたプレス成形品について、割れ発生の有無を観察すると共に、プレス成形品の底面よりJIS Z2241、JIS5号試験片を採取して機械的性質(塗装焼付け処理前)を測定し、該試験片を、プレス成形後、1週間室温時効した後、170℃の温度で8時間の人工時効処理を行い、機械的性質(塗装焼付け処理後)を測定した。結果を表4に示す。   The obtained press-molded product was observed for occurrence of cracks, and JIS Z2241 and JIS No. 5 test specimens were collected from the bottom surface of the press-molded product and measured for mechanical properties (before paint baking treatment). After press molding, after aging for 1 week at room temperature, an artificial aging treatment was performed at a temperature of 170 ° C. for 8 hours, and the mechanical properties (after paint baking treatment) were measured. The results are shown in Table 4.

Figure 2011252212
Figure 2011252212

表4に示すように、本発明に従う試験材23〜25はいずれも、プレス成形品に割れが発生することのない良好な成形加工性を示し、塗装焼付け処理前においても200MPaに近い耐力、塗装焼付け処理後においては300MPaを超える耐力を示す高強度をそなえていることが確認された   As shown in Table 4, all of the test materials 23 to 25 according to the present invention showed good forming workability without causing cracks in the press-formed product, and the proof stress and coating near 200 MPa even before the coating baking process. After baking, it was confirmed that it had high strength with a yield strength exceeding 300 MPa.

これに対して、試験材26は熱間圧延開始温度が高過ぎるため、熱間圧延で割れが発生し試験材の製造ができなかった。試験材27は熱間圧延開始温度が低いため、熱間圧延のコストが著しく高くなるものであり、強度も低下した。   On the other hand, since the test material 26 had a hot rolling start temperature that was too high, cracking occurred during hot rolling, and the test material could not be manufactured. Since the test material 27 has a low hot rolling start temperature, the hot rolling cost is remarkably increased, and the strength is also lowered.

実施例3、比較例3
実施例1で造塊したアルミニウム合金E4の鋳塊を用い、この鋳塊を530℃で8時間均質化熱処理した後、480℃で熱間圧延を開始し板厚4mmまで熱間圧延を行い、370℃で1時間の中間焼鈍を施して室温まで炉内冷却を行い、その後、冷間圧延を行い、板厚1.5mmとした。得られた冷間圧延材を板幅200mm、長さ250mm(板厚1.5mm)に切断して成形加工に供するためのアルミニウム合金板材(試験材)とした。
Example 3 and Comparative Example 3
Using the ingot of the aluminum alloy E4 ingoted in Example 1, this ingot was subjected to homogenization heat treatment at 530 ° C. for 8 hours, hot rolling was started at 480 ° C., and hot rolling was performed to a plate thickness of 4 mm. Intermediate annealing at 370 ° C. for 1 hour was performed to cool the inside of the furnace to room temperature, and then cold rolling was performed to obtain a plate thickness of 1.5 mm. The obtained cold-rolled material was cut into a plate width of 200 mm and a length of 250 mm (plate thickness of 1.5 mm) to obtain an aluminum alloy plate material (test material) for use in forming processing.

得られたアルミニウム合金板材(試験材)に予め二硫化モリブデン系の離型剤を塗布した上で、表5に示す溶体化処理条件で溶体化処理を行い、溶体化処理後の試験材を500℃とした金型を構成する上型と下型との間に挟持固定してプレス成形した後、得られたプレス成形品を一旦金型から取り出し、上型と下型からなる室温の金型内に収め、50℃/秒の冷却速度で急速に冷却して焼入れ処理し、底面を有する断面コ字形状のプレス成形品を作製した。なお、表5において、本発明の条件を外れたものには下線を付した。   After applying a molybdenum disulfide-based release agent to the obtained aluminum alloy sheet (test material) in advance, solution treatment is performed under the solution treatment conditions shown in Table 5 to obtain 500 test materials after solution treatment. After pressing and molding between the upper mold and the lower mold constituting the mold set at ℃, the obtained press-molded product is once taken out from the mold, and the room temperature mold composed of the upper mold and the lower mold Then, it was rapidly cooled and quenched at a cooling rate of 50 ° C./second to produce a U-shaped press-formed product having a bottom surface. In Table 5, those outside the conditions of the present invention are underlined.

得られたプレス成形品について、割れ発生の有無を観察すると共に、プレス成形品の底面よりJIS Z2241、JIS5号試験片を採取して機械的性質(塗装焼付け処理前)を測定し、該試験片を、焼入れ処理後後、1週間室温時効した後、170℃の温度で8時間の人工時効処理を行い、機械的性質(塗装焼付け処理後)を測定した。結果を表6に示す。   The obtained press-molded product was observed for occurrence of cracks, and JIS Z2241 and JIS No. 5 test specimens were collected from the bottom surface of the press-molded product and measured for mechanical properties (before paint baking treatment). After the quenching treatment, the mixture was aged at room temperature for 1 week, then subjected to an artificial aging treatment at 170 ° C. for 8 hours, and the mechanical properties (after the baking treatment) were measured. The results are shown in Table 6.

Figure 2011252212
Figure 2011252212

Figure 2011252212
Figure 2011252212

表6に示すように、本発明に従う試験材28〜31はいずれも、プレス成形品に割れが発生することのない良好な成形加工性を示し、塗装焼付け処理前においても200MPaに近い耐力、塗装焼付け処理後においては300MPaを超える耐力を示す高強度をそなえていることが確認された   As shown in Table 6, all of the test materials 28 to 31 according to the present invention showed good moldability without causing cracks in the press-molded product, and the proof stress and coating near 200 MPa even before the coating baking process. After baking, it was confirmed that it had high strength with a yield strength exceeding 300 MPa.

これに対して、試験材32、33は溶体化処理時間が短いため、また、試験材34は溶体化処理温度が低いため、いずれも強度が劣っていた。   On the other hand, the test materials 32 and 33 were inferior in strength because the solution treatment time was short and the test material 34 was low in solution treatment temperature.

Claims (10)

質量%(以下、合金成分値は質量%で示す)で、Si:0.3%以上4.0%以下、Mg:0.3%以上2.0%以下、Cu:2.0%以下、Mn:1.5%以下、Fe:1.5%以下、Zn:2.0%以下、Cr:0.50%以下、Zr:0.50%以下、Ti:0.50%以下、V:0.50%以下を含有し、残部がアルミニウムおよび不可避的不純物からなる6000系アルミニウム合金材を成形加工する方法であって、該アルミニウム合金材を溶体化処理する工程と、溶体化処理後、金型内で成形加工を行う工程と、成形加工に続いて金型内で250℃以下の温度まで冷却して焼入れ処理する工程を含むことを特徴とする6000系アルミニウム合金材の成形加工方法。 In mass% (hereinafter, alloy component values are expressed in mass%), Si: 0.3% to 4.0%, Mg: 0.3% to 2.0%, Cu: 2.0% or less, Mn: 1.5% or less, Fe: 1.5% or less, Zn: 2.0% or less, Cr: 0.50% or less, Zr: 0.50% or less, Ti: 0.50% or less, V: A method of forming a 6000 series aluminum alloy material containing 0.50% or less, the balance being aluminum and inevitable impurities, a solution treatment of the aluminum alloy material, and after the solution treatment, A method of forming a 6000 series aluminum alloy material, comprising: a step of forming in a mold; and a step of cooling to a temperature of 250 ° C. or lower in the mold following the forming process and quenching. 請求項1記載の6000系アルミニウム合金材を溶体化処理する工程と、溶体化処理後、250℃以下の温度まで冷却して焼入れ処理する工程と、焼入れ処理後、120時間以内に金型内で成形加工を行う工程を含むことを特徴とする6000系アルミニウム合金材の成形加工方法。 A solution treatment of the 6000 series aluminum alloy material according to claim 1, a step of cooling to a temperature of 250 ° C. or less after the solution treatment, and a quenching treatment within 120 hours after the quenching treatment. A method for forming a 6000 series aluminum alloy material, comprising a step of performing a forming process. 請求項1記載の6000系アルミニウム合金材を溶体化処理する工程と、溶体化処理後、加熱をした金型内で成形加工を行う工程と、成形加工後、金型から離型して250℃以下の温度まで冷却して焼入れ処理する工程を含むことを特徴とする6000系アルミニウム合金材の成形加工方法。 A step of solution-treating the 6000 series aluminum alloy material according to claim 1; a step of forming a solution in a heated mold after the solution treatment; and A method for forming a 6000 series aluminum alloy material, comprising a step of cooling to the following temperature and quenching. 400℃以上融点未満の温度で溶体化処理することを特徴とする請求項1または2記載の6000系アルミニウム合金材の成形加工方法。 The method for forming a 6000 series aluminum alloy material according to claim 1, wherein the solution treatment is performed at a temperature of 400 ° C. or higher and lower than the melting point. 400℃以上融点未満の温度で溶体化処理し、350℃以上融点未満の温度に加熱した金型内で成形加工を行うことを特徴とする請求項3記載の6000系アルミニウム合金材の成形加工方法。 The method for forming a 6000 series aluminum alloy material according to claim 3, wherein the solution is formed at a temperature of 400 ° C or higher and lower than the melting point, and is formed in a mold heated to a temperature of 350 ° C or higher and lower than the melting point. . 前記焼入れ処理において、400℃から250℃までの冷却速度を2℃/秒以上とすることを特徴とする請求項1〜5のいずれかに記載の6000系アルミニウム合金材の成形加工方法。 The method for forming a 6000 series aluminum alloy material according to any one of claims 1 to 5, wherein a cooling rate from 400 ° C to 250 ° C is set to 2 ° C / second or more in the quenching treatment. 前記溶体化処理を金型内で行うことを特徴とする請求項1〜6のいずれかに記載の6000系アルミニウム合金材の成形加工方法。 The method for forming a 6000 series aluminum alloy material according to any one of claims 1 to 6, wherein the solution treatment is performed in a mold. 前記6000系アルミニウム合金材が圧延材であり、該圧延材の熱間圧延は開始温度を350℃以上として行われたものであることを特徴とする請求項1〜7のいずれかに記載の6000系アルミニウム合金材の成形加工方法。 The 6000 series aluminum alloy material according to any one of claims 1 to 7, wherein the 6000 series aluminum alloy material is a rolled material, and the hot rolling of the rolled material is performed at a start temperature of 350 ° C or higher. Of forming aluminum-based aluminum alloy material. 前記6000系アルミニウム合金材が押出材であり、該押出材の熱間押出は開始温度を350℃以上として行われたものであることを特徴とする請求項1〜7のいずれかに記載の6000系アルミニウム合金材の成形加工方法。 The 6000 series aluminum alloy material according to any one of claims 1 to 7, wherein the 6000 series aluminum alloy material is an extruded material, and the hot extrusion of the extruded material is performed at a start temperature of 350 ° C or higher. Of forming aluminum-based aluminum alloy material. 請求項1〜9のいずれかに記載の6000系アルミニウム合金材の成形加工方法により成形されたことを特徴とする成形加工品。 A molded product formed by the method for molding a 6000 series aluminum alloy material according to any one of claims 1 to 9.
JP2010127675A 2010-06-03 2010-06-03 Method for forming processing of 6000 series aluminum alloy material, and forming processed product Pending JP2011252212A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010127675A JP2011252212A (en) 2010-06-03 2010-06-03 Method for forming processing of 6000 series aluminum alloy material, and forming processed product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010127675A JP2011252212A (en) 2010-06-03 2010-06-03 Method for forming processing of 6000 series aluminum alloy material, and forming processed product

Publications (1)

Publication Number Publication Date
JP2011252212A true JP2011252212A (en) 2011-12-15

Family

ID=45416355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010127675A Pending JP2011252212A (en) 2010-06-03 2010-06-03 Method for forming processing of 6000 series aluminum alloy material, and forming processed product

Country Status (1)

Country Link
JP (1) JP2011252212A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102634696A (en) * 2012-04-27 2012-08-15 黄向民 Rare-earth aluminum alloy and preparation method thereof
JP2014087836A (en) * 2012-10-31 2014-05-15 Aisin Takaoka Ltd Method and apparatus for die-quenching aluminum alloy material
JP2014223667A (en) * 2013-05-17 2014-12-04 三菱重工業株式会社 Forming method of alloy material and press forming machine
CN104532082A (en) * 2015-01-16 2015-04-22 常熟市长发铝业有限公司 High-strength low-piece-weight aluminum alloy bicycle pipe
WO2015129304A1 (en) * 2014-02-28 2015-09-03 アイシン軽金属株式会社 High-strength aluminum alloy extrudate with excellent formability
CN106148772A (en) * 2016-08-02 2016-11-23 王映朴 Aluminium alloys for auto body plate
US9556502B2 (en) 2012-07-16 2017-01-31 Arconic Inc. 6xxx aluminum alloys, and methods for producing the same
US20170081748A1 (en) * 2014-03-14 2017-03-23 Imperial Innovations Limited A method of forming parts from sheet metal alloy
WO2017142030A1 (en) * 2016-02-19 2017-08-24 日本発條株式会社 Aluminum alloy and fastener member
CN107557621A (en) * 2017-08-31 2018-01-09 国网河南省电力公司西峡县供电公司 It is a kind of suitable for aluminium alloy conductor of overhead transmission line and preparation method thereof
CN110904370A (en) * 2019-12-09 2020-03-24 安徽鑫铂铝业股份有限公司 Solar photovoltaic aluminum profile and preparation method thereof
WO2020102065A3 (en) * 2018-11-12 2020-07-23 Novelis Inc. Rapidly aged, high strength, heat treatable aluminum alloy products and methods of making the same
CN112626384A (en) * 2020-11-04 2021-04-09 佛山科学技术学院 Aluminum alloy with medium strength and high plasticity as well as preparation method and application thereof
CN113564429A (en) * 2021-08-10 2021-10-29 江苏亚太航空科技有限公司 Fine-grain aluminum alloy block and preparation process and application thereof
CN114737074A (en) * 2022-04-24 2022-07-12 慈溪市宜美佳铝业有限公司 Plastic aluminum alloy and preparation method thereof
US11608551B2 (en) 2017-10-31 2023-03-21 Howmet Aerospace Inc. Aluminum alloys, and methods for producing the same
WO2023063366A1 (en) * 2021-10-12 2023-04-20 株式会社日立ハイテク Aluminum alloy sheet processing method
FR3129408A1 (en) * 2021-11-25 2023-05-26 Constellium Muscle Shoals Llc 6xxx alloy strip and manufacturing process

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5372059A (en) * 1976-12-09 1978-06-27 Sumitomo Light Metal Ind Method of making highhbright aluminum material
JPS62199755A (en) * 1986-02-26 1987-09-03 Furukawa Alum Co Ltd Manufacture of aluminum alloy material for forming
JPH05271834A (en) * 1992-03-27 1993-10-19 Sky Alum Co Ltd Aluminum alloy having stable artificial ageing characteristic
JPH06248400A (en) * 1993-02-23 1994-09-06 Sumitomo Metal Ind Ltd Method for forging aluminum alloy
JP2001059124A (en) * 1999-06-16 2001-03-06 Nippon Light Metal Co Ltd Al-Mg-Si ALUMINUM ALLOY COLD FORGED PART EXCELLENT IN APPEARANCE QUALITY AND ITS PRODUCTION
JP2005213529A (en) * 2004-01-27 2005-08-11 Mitsubishi Heavy Ind Ltd Method for manufacturing plastic working member, aluminum alloy plastic working member, and scroll member for compressor
WO2008059242A2 (en) * 2006-11-14 2008-05-22 The University Of Birmingham Process for forming metal alloy sheet components
JP2011063868A (en) * 2009-09-18 2011-03-31 Mazda Motor Corp Methods for manufacturing aluminum molded component and metal structure including the aluminum molded component

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5372059A (en) * 1976-12-09 1978-06-27 Sumitomo Light Metal Ind Method of making highhbright aluminum material
JPS62199755A (en) * 1986-02-26 1987-09-03 Furukawa Alum Co Ltd Manufacture of aluminum alloy material for forming
JPH05271834A (en) * 1992-03-27 1993-10-19 Sky Alum Co Ltd Aluminum alloy having stable artificial ageing characteristic
JPH06248400A (en) * 1993-02-23 1994-09-06 Sumitomo Metal Ind Ltd Method for forging aluminum alloy
JP2001059124A (en) * 1999-06-16 2001-03-06 Nippon Light Metal Co Ltd Al-Mg-Si ALUMINUM ALLOY COLD FORGED PART EXCELLENT IN APPEARANCE QUALITY AND ITS PRODUCTION
JP2005213529A (en) * 2004-01-27 2005-08-11 Mitsubishi Heavy Ind Ltd Method for manufacturing plastic working member, aluminum alloy plastic working member, and scroll member for compressor
WO2008059242A2 (en) * 2006-11-14 2008-05-22 The University Of Birmingham Process for forming metal alloy sheet components
JP2011063868A (en) * 2009-09-18 2011-03-31 Mazda Motor Corp Methods for manufacturing aluminum molded component and metal structure including the aluminum molded component

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102634696A (en) * 2012-04-27 2012-08-15 黄向民 Rare-earth aluminum alloy and preparation method thereof
US9890443B2 (en) 2012-07-16 2018-02-13 Arconic Inc. 6XXX aluminum alloys, and methods for producing the same
US9556502B2 (en) 2012-07-16 2017-01-31 Arconic Inc. 6xxx aluminum alloys, and methods for producing the same
JP2014087836A (en) * 2012-10-31 2014-05-15 Aisin Takaoka Ltd Method and apparatus for die-quenching aluminum alloy material
JP2014223667A (en) * 2013-05-17 2014-12-04 三菱重工業株式会社 Forming method of alloy material and press forming machine
JPWO2015129304A1 (en) * 2014-02-28 2017-03-30 アイシン軽金属株式会社 High-strength aluminum alloy extruded material with excellent formability
WO2015129304A1 (en) * 2014-02-28 2015-09-03 アイシン軽金属株式会社 High-strength aluminum alloy extrudate with excellent formability
US10465271B2 (en) 2014-03-14 2019-11-05 Imperial Innovations Limited Method of forming parts from sheet metal alloy
JP2017515689A (en) * 2014-03-14 2017-06-15 インペリアル イノヴェーションズ リミテッド Method of forming parts from sheet metal alloy
US11441216B2 (en) 2014-03-14 2022-09-13 Imperial Innovations Limited Method of forming parts from sheet metal alloy
US20170081748A1 (en) * 2014-03-14 2017-03-23 Imperial Innovations Limited A method of forming parts from sheet metal alloy
CN104532082A (en) * 2015-01-16 2015-04-22 常熟市长发铝业有限公司 High-strength low-piece-weight aluminum alloy bicycle pipe
JPWO2017142030A1 (en) * 2016-02-19 2018-12-13 日本発條株式会社 Aluminum alloy and fastening member
WO2017142030A1 (en) * 2016-02-19 2017-08-24 日本発條株式会社 Aluminum alloy and fastener member
US11279990B2 (en) 2016-02-19 2022-03-22 Nhk Spring Co., Ltd. Aluminum alloy and fastener member
CN106148772A (en) * 2016-08-02 2016-11-23 王映朴 Aluminium alloys for auto body plate
CN107618231B (en) * 2016-08-02 2020-03-10 荣成市名骏户外休闲用品有限公司 Preparation method of aluminum alloy plate for vehicle body
CN107587011A (en) * 2016-08-02 2018-01-16 王映朴 Aluminium alloys for auto body plate
CN107618231A (en) * 2016-08-02 2018-01-23 王映朴 Aluminium alloys for auto body plate
CN107557621A (en) * 2017-08-31 2018-01-09 国网河南省电力公司西峡县供电公司 It is a kind of suitable for aluminium alloy conductor of overhead transmission line and preparation method thereof
US11608551B2 (en) 2017-10-31 2023-03-21 Howmet Aerospace Inc. Aluminum alloys, and methods for producing the same
CN112996941A (en) * 2018-11-12 2021-06-18 诺维尔里斯公司 Rapidly aging high strength heat treatable aluminum alloy products and methods of making the same
KR20210043625A (en) * 2018-11-12 2021-04-21 노벨리스 인크. High-strength, heat-treated aluminum alloy product that has been rapidly aged and its manufacturing method
US11814713B2 (en) 2018-11-12 2023-11-14 Novelis Inc. Rapidly aged, high strength, heat treatable aluminum alloy products and methods of making the same
JP2022512990A (en) * 2018-11-12 2022-02-07 ノベリス・インコーポレイテッド Rapidly aged high-strength and heat-treatable aluminum alloy products and methods for manufacturing them
WO2020102065A3 (en) * 2018-11-12 2020-07-23 Novelis Inc. Rapidly aged, high strength, heat treatable aluminum alloy products and methods of making the same
KR102555353B1 (en) * 2018-11-12 2023-07-13 노벨리스 인크. Rapidly aged high-strength, heat treatable aluminum alloy product and manufacturing method thereof
CN110904370B (en) * 2019-12-09 2021-07-27 安徽鑫铂铝业股份有限公司 Solar photovoltaic aluminum profile and preparation method thereof
CN110904370A (en) * 2019-12-09 2020-03-24 安徽鑫铂铝业股份有限公司 Solar photovoltaic aluminum profile and preparation method thereof
CN112626384A (en) * 2020-11-04 2021-04-09 佛山科学技术学院 Aluminum alloy with medium strength and high plasticity as well as preparation method and application thereof
CN113564429A (en) * 2021-08-10 2021-10-29 江苏亚太航空科技有限公司 Fine-grain aluminum alloy block and preparation process and application thereof
WO2023063366A1 (en) * 2021-10-12 2023-04-20 株式会社日立ハイテク Aluminum alloy sheet processing method
FR3129408A1 (en) * 2021-11-25 2023-05-26 Constellium Muscle Shoals Llc 6xxx alloy strip and manufacturing process
WO2023094773A1 (en) 2021-11-25 2023-06-01 Constellium Muscle Shoals Llc Strip made of 6xxx alloy and manufacturing process
CN114737074A (en) * 2022-04-24 2022-07-12 慈溪市宜美佳铝业有限公司 Plastic aluminum alloy and preparation method thereof

Similar Documents

Publication Publication Date Title
JP2011252212A (en) Method for forming processing of 6000 series aluminum alloy material, and forming processed product
JP2010159488A (en) Method for molding 2,000 series aluminum alloy material, and formed product molded by the same
JP2010159489A (en) Method for molding 7,000 series aluminum alloy material, and formed product molded by the same
JP5709298B2 (en) Method for producing Al-Mg-Si based aluminum alloy plate excellent in paint bake hardenability and formability
JP2016522320A (en) Aluminum alloy material suitable for manufacturing automobile body panel and method for producing the same
CN112458344B (en) High-strength corrosion-resistant aluminum alloy and preparation method and application thereof
WO2015182748A1 (en) Method for manufacturing aluminum alloy member and aluminum alloy member using same
JP2021059774A (en) Aluminum-alloy sheet
JP6644376B2 (en) Method for producing extruded high-strength aluminum alloy with excellent formability
JP2015040340A (en) Molding aluminum alloy sheet and method for manufacturing the same
JP6316747B2 (en) Aluminum alloy plate for blow molding and manufacturing method thereof
JP2009148823A (en) Warm press-forming method for aluminum alloy cold-rolled sheet
CN110551953A (en) High strength aluminothermic stamping with intermediate quench
JP5111966B2 (en) Method for manufacturing aluminum alloy panel
JP3833574B2 (en) Aluminum alloy sheet with excellent bending workability and press formability
JP5050577B2 (en) Aluminum alloy plate for forming process excellent in deep drawability and bake-proof softening property and method for producing the same
CN112522550A (en) Aluminum alloy with rapid aging response and preparation method and application thereof
JP4201745B2 (en) 6000 series aluminum alloy plate for superplastic forming excellent in paint bake hardenability and method for producing the same
JP2008062255A (en) SUPERPLASTIC MOLDING METHOD FOR Al-Mg-Si BASED ALUMINUM ALLOY SHEET HAVING REDUCED GENERATION OF CAVITY, AND Al-Mg-Si BASED ALUMINUM ALLOY MOLDED SHEET
JP2012025976A (en) METHOD OF MANUFACTURING Al-Mg-Si BASED ALUMINUM ALLOY PLATE EXCELLENT IN COAT BAKING HARDENABILITY AND FORMABILITY, AND HAVING AGING SUPPRESSION EFFECT AT ROOM TEMPERATURE
KR20100009683A (en) Heat treatment method for al alloy panel
JP2001131666A (en) Al-Mn-Mg ALLOY PLATE FOR FORMING CASE, AND ITS MANUFACTURING METHOD
CN103643092A (en) High strain hardening index AlMgSi alloy sheet and manufacturing method thereof
TWI510638B (en) A method for making aluminum alloy material
JP3234511B2 (en) Method of manufacturing Al alloy plate for high speed forming and method of high speed forming of Al alloy plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130329

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20131023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140312

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140728