JP2015040340A - Molding aluminum alloy sheet and method for manufacturing the same - Google Patents

Molding aluminum alloy sheet and method for manufacturing the same Download PDF

Info

Publication number
JP2015040340A
JP2015040340A JP2013172957A JP2013172957A JP2015040340A JP 2015040340 A JP2015040340 A JP 2015040340A JP 2013172957 A JP2013172957 A JP 2013172957A JP 2013172957 A JP2013172957 A JP 2013172957A JP 2015040340 A JP2015040340 A JP 2015040340A
Authority
JP
Japan
Prior art keywords
aluminum alloy
strain
temperature
treatment
alloy sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013172957A
Other languages
Japanese (ja)
Inventor
隆廣 鹿川
Takahiro Kagawa
隆廣 鹿川
幸司 一谷
Koji Ichitani
幸司 一谷
日比野 旭
Akira Hibino
旭 日比野
洋一郎 戸次
Yoichiro Totsugi
洋一郎 戸次
高田 健
Takeshi Takada
健 高田
Original Assignee
株式会社Uacj
Uacj Corp
株式会社Uacj
新日鐵住金株式会社
Nippon Steel & Sumitomo Metal
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Uacj, Uacj Corp, 株式会社Uacj, 新日鐵住金株式会社, Nippon Steel & Sumitomo Metal filed Critical 株式会社Uacj
Priority to JP2013172957A priority Critical patent/JP2015040340A/en
Publication of JP2015040340A publication Critical patent/JP2015040340A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a molding aluminum alloy sheet excellent in coating/baking hardenability, mass productivity and moldability, and a method for manufacturing the same.SOLUTION: A method for manufacturing a molding aluminum alloy sheet comprises: a casting step (S11); a homogenization treatment step (S12); a hot rolling step (S13); a cold rolling step (S14); a solution heat treatment step (S15); the strain introduction step (S16) of introducing a strain of 0.5-5% within 5 minutes after the solution heat treatment step (S15) is performed at a temperature of 500-580°C and cooled to 100°C or less at a cooling rate of 600°C/min. or more; and a preliminary aging treatment step (S17) performed at 50-120°C for 2-24 hours.

Description

本発明は、自動車ボディシートや部品、各種機械器具、家電部品などの素材として成形加工を施して使用されるアルミニウム合金板及びその製造方法に関し、特に、塗装焼付けのような時効処理により優れた強度を有するアルミニウム合金板及びその製造方法に関するものである。   The present invention relates to an aluminum alloy plate used as a material for automobile body sheets and parts, various machinery and appliances, home appliance parts and the like, and a method for producing the same, and in particular, excellent strength due to aging treatment such as paint baking. The present invention relates to an aluminum alloy sheet having
従来、自動車のボディシートには鋼板圧延板が用いられてきたが、排出ガス削減、燃費向上などの対策とした自動車車体軽量化の観点でアルミニウム合金圧延板が積極的に使用されるようになっている。自動車のボディシートに用いられるアルミニウム合金には、プレス加工を施して使用されるため、成形性が良いこと、高強度であることが要求される。   Conventionally, rolled steel sheets have been used for automobile body sheets, but aluminum alloy rolled sheets have been actively used from the viewpoint of reducing the weight of automobile bodies as measures to reduce exhaust emissions and improve fuel efficiency. ing. Aluminum alloys used for automobile body sheets are required to have good formability and high strength because they are used after being pressed.
自動車のボディシートの一般的な工法としては、成形前は材料の耐力を低く抑えておき、成形後の塗装焼付けにおける温度上昇を利用して時効硬化させ、ボディシートとして必要な強度を得る手法が用いられる。   As a general construction method for automobile body sheets, the strength of the material is kept low before molding, and age hardening is performed using the temperature rise in paint baking after molding to obtain the necessary strength as a body sheet. Used.
これらの背景から、自動車用ボディシートには素板の状態では低耐力でありながら、時効硬化により高い強度を得られる時効硬化型の6000系アルミニウム合金、すなわちAl−Mg−Si系合金が用いられる。   From these backgrounds, an age-hardening type 6000 series aluminum alloy, that is, an Al—Mg—Si based alloy that can obtain high strength by age hardening while being low in yield strength in the state of a base plate is used for an automobile body sheet. .
このAl−Mg−Si系合金を用いたアルミニウム合金板は、一般的に、鋳造、均質化処理、熱間圧延、冷間圧延、溶体化処理の手順により製造される。この際、溶体化処理の後に焼入れを行い、この焼入れ後に予備時効処理を行って強化寄与相に変化しやすいMg−Siクラスタ(即ち、強化寄与相の前駆相)を析出させて、成形後の塗装焼付けによる時効硬化能を改善する方法がある。ここで、強化寄与相は、MgとSiからなる析出物であるβ’’相であり、溶体化処理・焼入れ後に適切な温度で予備時効を行うことにより、この強化寄与相に変化しやすい高温クラスタができる。これに対して、溶体化処理・焼入れ後に室温付近で保持すると、強化寄与相に変化しにくい低温クラスタができる。   An aluminum alloy plate using this Al—Mg—Si alloy is generally manufactured by the procedures of casting, homogenization treatment, hot rolling, cold rolling, and solution treatment. In this case, quenching is performed after the solution treatment, and pre-aging treatment is performed after the quenching to precipitate Mg-Si clusters that are easy to change into the strengthening contribution phase (that is, the precursor phase of the strengthening contribution phase). There is a method to improve age hardening ability by paint baking. Here, the strengthening contribution phase is a β '' phase that is a precipitate composed of Mg and Si, and is subjected to preliminary aging at an appropriate temperature after solution treatment / quenching, so that the strengthening contribution phase is likely to change to this strengthening contribution phase. Create a cluster. On the other hand, when it is kept at around room temperature after solution treatment and quenching, a low-temperature cluster that hardly changes to a strengthening contribution phase can be formed.
この予備時効に関して、特許文献1では、50〜100℃で1〜24時間の予備時効処理後に、さらにスキンパス圧延等により歪みを板表面に付与することによって、室温放置中に形成され、塗装焼付け温度域で強化寄与相に変化しにくいMg−Si低温クラスタの形成を抑制し、フラットヘム加工性、耐デント性、AB耐力を向上させたAl−Mg−Si系合金を開示している。   Regarding this preliminary aging, in Patent Document 1, after preliminary aging treatment at 50 to 100 ° C. for 1 to 24 hours, a strain is applied to the plate surface by skin pass rolling or the like, and the coating is baked at room temperature. An Al—Mg—Si alloy is disclosed in which the formation of a low-temperature Mg—Si cluster that hardly changes to a strengthening contribution phase in the region is suppressed, and the flat heme workability, dent resistance, and AB strength are improved.
特開2003−247040号公報JP 2003-247040 A
上述したように、Al−Mg−Si系合金の時効硬化能を高めるには、室温放置中に形成され、塗装焼付け温度域で強化寄与相に変化しにくいMg−Si低温クラスタの生成を抑制することが必要となる。   As described above, in order to increase the age-hardening ability of the Al—Mg—Si-based alloy, the formation of low-temperature Mg—Si clusters that are formed during standing at room temperature and hardly change into a strengthening contribution phase in the coating baking temperature range is suppressed. It will be necessary.
しかしながら、特許文献1に開示された方法では、スキンパス圧延のような手法で板厚表面への歪導入を想定しているため、板厚内部では歪付与による低温クラスタの形成抑制に伴う特性改善効果が十分に得られない可能性がある。   However, in the method disclosed in Patent Document 1, it is assumed that strain is introduced into the surface of the plate thickness by a technique such as skin pass rolling. May not be sufficient.
また、特許文献1に開示された方法では、予備時効処理の後に歪付与を行っているため、歪導入までに所定の時間(例えば、1〜24時間)を要することになる。このため、連続熱処理設備を用いて同一熱処理工程内で予備時効処理と歪付与とを連続的に行うことが困難であり、量産性を考慮すると非効率になってしまう。   Further, in the method disclosed in Patent Document 1, since strain is applied after the preliminary aging treatment, a predetermined time (for example, 1 to 24 hours) is required until the strain is introduced. For this reason, it is difficult to continuously perform the preliminary aging treatment and the strain imparting in the same heat treatment process using the continuous heat treatment equipment, which becomes inefficient when considering mass productivity.
さらに、特許文献1で開示されているアルミニウム合金では伸びが25%以下となっており、成形加工用Al−Mg−Si系合金としては成形性が低いことが問題となる可能性がある。   Further, the aluminum alloy disclosed in Patent Document 1 has an elongation of 25% or less, and as an Al—Mg—Si alloy for forming, there is a possibility that the formability is low.
本発明は上記事情を鑑みてなされたものであり、優れた塗装焼付け硬化性、量産性、及び成形性を有する成形加工用アルミニウム合金板及びその製造方法を提供することを目的とするものである。   This invention is made | formed in view of the said situation, and it aims at providing the aluminum alloy plate for shaping | molding which has the outstanding paint bake hardenability, mass-productivity, and a moldability, and its manufacturing method. .
上記課題を解決するべく本発明者らが種々実験・検討を行った結果、Al−Mg−Si系アルミニウム合金板の製造工程において、溶体化処理後の一定時間内に歪付与に伴う転位導入することにより、後の予備時効処理における低温クラスタの形成が抑制され、塗装焼付け処理のような人工時効処理後に優れた塗装焼付け硬化性を有するアルミニウム合金板を提供できることを見出した。   As a result of various experiments and examinations by the present inventors to solve the above-described problems, in the manufacturing process of the Al—Mg—Si based aluminum alloy plate, dislocations accompanying strain application are introduced within a certain time after the solution treatment. Thus, it has been found that formation of low temperature clusters in the subsequent preliminary aging treatment is suppressed, and an aluminum alloy plate having excellent paint bake hardenability after artificial aging treatment such as paint baking treatment can be provided.
さらに、本発明者らは、製造後所定期間を経たアルミニウム合金板の引張強さをTSとし、0.2%耐力をYSとしたときにその比であるTS/YSをパラメータとし、このTS/YSが所定の範囲にあるときに人工時効処理後に優れた塗装焼付け硬化性を有することを見出し、本発明を完成させるに至った。   Furthermore, the present inventors set TS / YS as a parameter when TS is the tensile strength of an aluminum alloy sheet that has passed a predetermined period after manufacture, and YS is 0.2% proof stress. It has been found that when YS is in a predetermined range, it has excellent bake hardenability after the artificial aging treatment, and the present invention has been completed.
即ち、本発明の成形加工用アルミニウム合金板は、製造後7日間以上室温で保持した後のアルミニウム合金板の引張強さをTS、0.2%耐力をYSとすると、TS/YS=1.50〜1.90であり、かつ伸びが25%を超えることを特徴とする。   That is, the aluminum alloy sheet for forming according to the present invention has TS / YS = 1..., Assuming that the tensile strength of the aluminum alloy sheet after holding at room temperature for 7 days or more after production is TS and the 0.2% proof stress is YS. 50 to 1.90, and the elongation exceeds 25%.
また、本発明の成形加工用アルミニウム合金板の製造方法は、鋳造工程、均質化処理工程、熱間圧延工程、冷間圧延工程及び溶体化処理工程を施す成形加工用アルミニウム合金板の製造方法において、前記溶体化処理工程を500℃〜580℃の温度で行い、600℃/分以上の冷却速度で100℃以下にした後、5分以内に0.5%〜5%の歪みを導入する歪導入工程を施し、さらに50〜120℃で2〜24時間の予備時効処理工程を施すことを特徴とする。   Moreover, the manufacturing method of the aluminum alloy plate for shaping | molding of this invention is the manufacturing method of the aluminum alloy plate for shaping | molding which performs a casting process, a homogenization process, a hot rolling process, a cold rolling process, and a solution treatment process. The solution treatment step is performed at a temperature of 500 ° C. to 580 ° C., and the temperature is reduced to 100 ° C. or less at a cooling rate of 600 ° C./min or more. An introduction step is performed, and a preliminary aging treatment step is further performed at 50 to 120 ° C. for 2 to 24 hours.
前記合金板の組成として、質量%でMg:0.3〜1.5%、Si:0.3〜1.5%を含有し、かつMn:0.03〜0.6%、Cu:0.03〜1.0%、Cr:0.04〜0.4%、Fe:0.03〜1.5%、Ti:0.005〜0.2%、Zn:0.03〜1.0%のうちから選ばれた1種または2種以上を含有し、さらにSi/Mgが質量比で1以上であり、かつ残部がAlおよび不可避不純物からなることが好ましい。   As a composition of the said alloy plate, Mg: 0.3-1.5% and Si: 0.3-1.5% are contained by the mass%, and Mn: 0.03-0.6%, Cu: 0 0.03-1.0%, Cr: 0.04-0.4%, Fe: 0.03-1.5%, Ti: 0.005-0.2%, Zn: 0.03-1.0 It is preferable that one or two or more selected from the group% is contained, Si / Mg is 1 or more by mass ratio, and the balance is made of Al and inevitable impurities.
本発明によれば、優れた強度及び成形性を有するアルミニウム合金板を、量産的規模においても低コストで確実かつ安定して製造することができる。   According to the present invention, an aluminum alloy plate having excellent strength and formability can be reliably and stably manufactured at a low cost even on a mass production scale.
本発明の成形加工用アルミニウム合金板の製造方法の一例を示すフローチャートである。It is a flowchart which shows an example of the manufacturing method of the aluminum alloy plate for shaping | molding of this invention. 一般的な塗装焼付け温度域(150〜200℃)における示差走査熱量計(DSC)によるDSC曲線の測定結果を示すグラフである。It is a graph which shows the measurement result of the DSC curve by the differential scanning calorimeter (DSC) in a general coating baking temperature range (150-200 degreeC).
以下、本発明に係る成形加工用アルミニウム合金板及びその製造方法について詳細に説明する。   Hereinafter, the aluminum alloy sheet for forming according to the present invention and the manufacturing method thereof will be described in detail.
本発明の成形加工用アルミニウム合金板は、製造後7日間以上室温で保持した後のアルミニウム合金板の引張強さをTS、0.2%耐力をYSとすると、TS/YS=1.50〜1.90の範囲とされる。このTS/YSについて以下に詳細に説明する。   The aluminum alloy sheet for forming according to the present invention has TS / YS = 1.50, where TS is the tensile strength of the aluminum alloy sheet after holding at room temperature for 7 days or more after production, and YS is the 0.2% proof stress. The range is 1.90. This TS / YS will be described in detail below.
(TS/YS)
本発明のアルミニウム合金板は、後述するように、製造工程の所定の段階で歪を導入することにより、歪付与しなかった合金板と比べて引張強さ(TS)が減少し、0.2%耐力(YS)が増加するという特徴を有する。TSの減少は低温クラスタの形成量の減少、YSは加工硬化による。従って、これらの特徴から、TSからYSを除した値(TS/YS)を算出することで、歪付与に伴う転位導入の有無、および転位導入による低温クラスタの抑制効果の有無を判断することができる。
(TS / YS)
As will be described later, the aluminum alloy plate of the present invention introduces strain at a predetermined stage of the manufacturing process, thereby reducing the tensile strength (TS) compared to an alloy plate not subjected to strain, and 0.2. % Yield Strength (YS) is increased. The decrease in TS is due to the decrease in the formation amount of low temperature clusters, and YS is due to work hardening. Therefore, by calculating the value obtained by subtracting YS from TS (TS / YS) from these characteristics, it is possible to determine the presence or absence of dislocation introduction accompanying strain application and the presence or absence of a low-temperature cluster suppression effect due to dislocation introduction. it can.
本発明では、TS/YSを1.50〜1.90の範囲に規定する。TS/YSが1.50未満では、ひずみ付与量が大き過ぎることにより、加工硬化によってYSが大きくなり過ぎたことを示すものであり、材料の延性が非常に低くなってしまっているので、プレス成形性が大幅に低下してしまう。これに対してTS/YSが1.90を超えると、ひずみ付与量が小さ過ぎることにより、転位導入量が不足して、低温クラスタの抑制効果が不十分となり、多量に低温クラスタが形成されてTSが大幅に増大したことを示しており、塗装焼付硬化性が大幅に低下してしまう。   In the present invention, TS / YS is defined in the range of 1.50 to 1.90. If TS / YS is less than 1.50, the strain imparting amount is too large, indicating that YS has become too large due to work hardening, and the ductility of the material has become very low. Formability will be greatly reduced. On the other hand, if TS / YS exceeds 1.90, the amount of applied strain is too small, so that the amount of dislocation introduction is insufficient, the effect of suppressing low temperature clusters is insufficient, and a large amount of low temperature clusters are formed. This shows that TS is greatly increased, and the paint bake hardenability is greatly reduced.
また、製造後7日間以上としたのは、7日間未満の室温放置ではクラスタ形成がまだ不安定であって、それに伴い機械的特性も不安定となり、TS/YS比が定まらない場合があるからである。一方、後述の実施例の表2における7日後と30日後のTS/YS比を比較するとほぼ変化がない。このため、TS/YS比の算出する際には、製造から7日以上室温でクラスタを析出させた後、引張試験を行うのが望ましい。
ここで、「製造後」とは、鋳造工程から予備時効処理工程までを行ってアルミニウム合金板を製造した後のことをいう。
In addition, the reason why the production period is set to 7 days or more is that the cluster formation is still unstable when left at room temperature for less than 7 days, and the mechanical characteristics are also unstable accordingly, and the TS / YS ratio may not be determined. It is. On the other hand, when the TS / YS ratios after 7 days and 30 days in Table 2 of Examples described later are compared, there is almost no change. For this reason, when calculating the TS / YS ratio, it is desirable to conduct a tensile test after depositing the clusters at room temperature for 7 days or more after production.
Here, “after manufacture” refers to after the aluminum alloy sheet is manufactured by performing from the casting process to the preliminary aging treatment process.
製造後7日間以上室温で保持した後のTS、YSそれぞれについては、特に制限するものではないが、TSは200MPa以上、270MPa以下が好ましい。また、YSは90MPa以上、160MPa以下が好ましい。   Each of TS and YS after being held at room temperature for 7 days or more after production is not particularly limited, but TS is preferably 200 MPa or more and 270 MPa or less. YS is preferably 90 MPa or more and 160 MPa or less.
(アルミニウム合金材の伸び)
本発明のアルミニウム合金板は、伸びが25%を超えるものとしている。25%以下では成形性が低く、プレス成形時に破断してしまう可能性があるからである。他方、上限は特に制限はないが実際上のびの限度を考慮して33%程度とすることが好ましい。
(Elongation of aluminum alloy material)
The aluminum alloy plate of the present invention has an elongation exceeding 25%. This is because if it is 25% or less, the moldability is low, and there is a possibility of breaking during press molding. On the other hand, the upper limit is not particularly limited, but is preferably about 33% in consideration of the practical limit.
[アルミニウム合金板の合金組成]
本発明のアルミニウム合金板としては、Al−Mg−Si系合金もしくはAl−Mg−Si−Cu系合金であれば良く、具体的な成分組成は特に制約するものではないが、質量%でMg:0.3〜1.5%、Si:0.3〜1.5%を含有し、かつMn:0.03〜0.6%、Cu:0.03〜1.0%、Cr:0.04〜0.4%、Fe:0.03〜1.5%、Ti:0.005〜0.2%、Zn:0.03〜2.5%のうちから選ばれた1種または2種以上を含有し、さらにSi/Mgが質量比で1以上であり、残部がAlおよび不可避不純物からなるAl−Mg−Si系アルミニウム合金板を素材とすることが好ましい。
[Alloy composition of aluminum alloy sheet]
The aluminum alloy plate of the present invention may be an Al—Mg—Si based alloy or an Al—Mg—Si—Cu based alloy, and the specific component composition is not particularly limited, but Mg: 0.3-1.5%, Si: 0.3-1.5%, Mn: 0.03-0.6%, Cu: 0.03-1.0%, Cr: 0.00. One or two selected from 04-0.4%, Fe: 0.03-1.5%, Ti: 0.005-0.2%, Zn: 0.03-2.5% It is preferable to use an Al—Mg—Si-based aluminum alloy plate containing the above, Si / Mg at a mass ratio of 1 or more, and the balance being Al and inevitable impurities.
以下に素材合金の成分組成の限定理由について説明する。   The reason for limiting the component composition of the material alloy will be described below.
(Mg)
Mgは本発明で対象としている系の合金で基本となる合金元素であって、Siと共同して強度向上に寄与する。Mg量は、0.3〜1.5%の範囲内とすることが好ましい。Mg量が0.3%未満では塗装焼付け時に析出硬化によって強度向上に寄与するG.P.ゾーンの生成量が少なくなるため、充分な強度向上が得られない。一方1.5%を超えると、粗大なMg−Si系の金属間化合物が生成され、成形性、特に曲げ加工性が低下し易くなる。
(Mg)
Mg is an alloy element which is a basic alloy of the system targeted by the present invention, and contributes to strength improvement in cooperation with Si. The amount of Mg is preferably in the range of 0.3 to 1.5%. If the Mg content is less than 0.3%, G. contributes to strength improvement by precipitation hardening during baking. P. Since the amount of zone formation is reduced, sufficient strength improvement cannot be obtained. On the other hand, if it exceeds 1.5%, a coarse Mg—Si-based intermetallic compound is generated, and the formability, particularly the bending workability, tends to deteriorate.
(Si)
Siも本発明の系の合金で基本となる合金元素であって、Mgと共同して強度向上に寄与する。また、Siは、鋳造時に金属Siの晶出物として生成され、その金属Si粒子の周囲が加工によって変形されて、溶体化処理の際に再結晶核の生成サイトとなるため、再結晶組織の微細化にも寄与する。Si量は0.3〜1.5%の範囲内とすることが好ましい。Si量が0.3%未満では上記の効果が充分に得られず、一方1.5%を超えると粗大なSi粒子や粗大なMg−Si系の金属間化合物が生じて、成形性、特に曲げ加工性の低下を招き易くなる。
(Si)
Si is also an alloy element that is a basic alloy of the system of the present invention, and contributes to strength improvement in cooperation with Mg. Further, Si is generated as a crystallized product of metal Si during casting, and the periphery of the metal Si particles is deformed by processing and becomes a recrystallization nucleus generation site during solution treatment. Contributes to miniaturization. The amount of Si is preferably in the range of 0.3 to 1.5%. When the amount of Si is less than 0.3%, the above effects cannot be obtained sufficiently, while when it exceeds 1.5%, coarse Si particles and coarse Mg-Si based intermetallic compounds are produced, and formability, particularly It tends to cause a decrease in bending workability.
(Si/Mg比)
優れた時効硬化性を実現するために、Si/Mg比は質量比で1以上とすることが好ましい。Si/Mg比が質量比で1未満では、組成によっては時効硬化性が低下することがある。時効硬化性の低下により、塗装焼付け処理後の耐力値の低下が引き起こされ、自動車ボディパネル用途に必要な耐デント性が大幅に低下してしまう。なお、Si/Mg比の上限は、Siの上限(下限)とMgの下限(上限)から求めることができ、Siの上限が1.5%、Mgの下限が0.3%であるため、Si/Mg比の上限は5となる。
(Si / Mg ratio)
In order to achieve excellent age-hardening properties, the Si / Mg ratio is preferably 1 or more by mass ratio. If the Si / Mg ratio is less than 1 in terms of mass ratio, age-hardening properties may decrease depending on the composition. The deterioration of age-hardening causes a decrease in the proof stress after the paint baking process, and the dent resistance required for automobile body panel applications is greatly reduced. The upper limit of the Si / Mg ratio can be determined from the upper limit (lower limit) of Si and the lower limit (upper limit) of Mg. Since the upper limit of Si is 1.5% and the lower limit of Mg is 0.3%, The upper limit of the Si / Mg ratio is 5.
(Mn、Cu、Cr、Zr、Fe、Zn、Ti)
これらの元素は、強度向上や結晶粒微細化、あるいは時効性(焼付け硬化性)の向上や表面処理性の向上に有効であり、いずれか1種または2種以上を添加することができる。
(Mn, Cu, Cr, Zr, Fe, Zn, Ti)
These elements are effective for improving strength, crystal grain refinement, aging (bake hardenability), and surface treatment, and any one or more of them can be added.
これらのうちMn、Cr、Zrは、強度向上と結晶粒の微細化および組織の安定化に効果がある元素である。Mnは0.03〜0.6%の範囲内、Cr、Zrは0.01〜0.4%の範囲内とすることが好ましい。Mnの含有量が0.03%未満、もしくはCrまたはZrの含有量が0.01%未満では、上記の効果が充分に得られない。一方、Mnの含有量が0.6%を超えるか、あるいはCr、Zrの含有量がそれぞれ0.4%を超えれば、上記の効果が飽和するばかりでなく、多数の金属間化合物が生成されて成形性に悪影響を及ぼすおそれがある。   Among these, Mn, Cr, and Zr are elements that are effective in improving the strength, refining crystal grains, and stabilizing the structure. Mn is preferably in the range of 0.03 to 0.6%, and Cr and Zr are preferably in the range of 0.01 to 0.4%. If the Mn content is less than 0.03%, or the Cr or Zr content is less than 0.01%, the above effects cannot be obtained sufficiently. On the other hand, if the content of Mn exceeds 0.6% or the content of Cr and Zr exceeds 0.4%, not only the above effects are saturated but also a large number of intermetallic compounds are produced. May adversely affect moldability.
Feも強度向上と結晶粒微細化に有効な元素である。Fe量は、0.03〜0.5%の範囲内とすることが好ましい。その含有量が0.03%未満では充分な効果が得られず、一方、0.5%を超えれば、成形性、特にヘム曲げ加工性が低下するおそれがある。   Fe is also an effective element for strength improvement and crystal grain refinement. The amount of Fe is preferably in the range of 0.03 to 0.5%. If the content is less than 0.03%, sufficient effects cannot be obtained. On the other hand, if the content exceeds 0.5%, moldability, particularly hem bending workability, may be deteriorated.
Znは時効性向上を通じて強度向上に寄与するとともに表面処理性の向上に有効な元素である。Zn量は、0.03〜1.0%の範囲内とすることが好ましい。Znの添加量が0.03%未満では上記の効果が充分に得られず、一方1.0%を超えれば成形性が低下してしまう。   Zn is an element that contributes to strength improvement through improvement in aging and is effective in improving surface treatment. The amount of Zn is preferably in the range of 0.03 to 1.0%. If the added amount of Zn is less than 0.03%, the above effect cannot be obtained sufficiently, while if it exceeds 1.0%, the moldability is lowered.
Tiも強度向上と鋳塊組織の微細化に有効な元素である。Ti量は、0.005〜0.2%の範囲内とすることが好ましい。その含有量が0.005%未満では充分な効果が得られず、一方0.2%を超えればTi添加の効果が飽和するばかりでなく、粗大な晶出物が生じるおそれがある。   Ti is also an element effective for improving the strength and refining the ingot structure. The amount of Ti is preferably in the range of 0.005 to 0.2%. If its content is less than 0.005%, a sufficient effect cannot be obtained. On the other hand, if it exceeds 0.2%, not only the effect of Ti addition is saturated, but also a coarse crystallized product may be produced.
Cuは強度向上および成形性向上のために添加されることがある元素である。Cu量は、0.03〜1.0%であることが望ましい。その含有量が0.03%未満では充分な効果が得られず、一方1.0%を超えると耐食性(耐粒界腐食性、耐糸錆性)が劣化する。   Cu is an element that may be added to improve strength and formability. The amount of Cu is preferably 0.03 to 1.0%. If the content is less than 0.03%, sufficient effects cannot be obtained. On the other hand, if the content exceeds 1.0%, corrosion resistance (intergranular corrosion resistance, yarn rust resistance) deteriorates.
(不可避的不純物)
以上の各元素のほか、地金や中間合金に含まれているものは基本的にはAlおよび不可避的不純物であり、本発明の効果を妨げるものではないため、このような不可避的不純物の含有も許容される。
(Inevitable impurities)
In addition to the above elements, those contained in the metal and the intermediate alloy are basically Al and inevitable impurities, and do not interfere with the effects of the present invention, so the inclusion of such inevitable impurities Is also acceptable.
なお、前述のMn、Cu、Cr、Zr、Fe、Ti、Znの含有量範囲は、それぞれ意図的に添加する場合の範囲として示したものであり、いずれも下限値より少ない量を不純物として含有する場合を排除するものではない。特に、0.03%未満のFeは、通常のアルミ地金を用いれば不可避的に含有されるのが通常である。   In addition, the above-mentioned content ranges of Mn, Cu, Cr, Zr, Fe, Ti, and Zn are shown as ranges in the case where each is intentionally added, and each contains an amount smaller than the lower limit as an impurity. If you do not exclude. In particular, Fe of less than 0.03% is usually inevitably contained if a normal aluminum ingot is used.
また、時効性Al−Mg−Si系合金、時効性Al−Mg−Si−Cu系合金においては、高温時効促進元素あるいは室温時効抑制元素であるAg、In、Cd、Be、あるいはSnを微量添加することがある。本発明の場合も微量添加であればこれらの元素の添加も許容され、それぞれ0.3%以下であれば特に所期の目的を損なうことはない。   In addition, in aging Al-Mg-Si alloys and aging Al-Mg-Si-Cu alloys, trace amounts of Ag, In, Cd, Be, or Sn, which are high temperature aging promoting elements or room temperature aging inhibiting elements, are added. There are things to do. Also in the case of the present invention, addition of these elements is permitted if added in a trace amount, and if the content is 0.3% or less, the intended purpose is not particularly impaired.
[アルミニウム合金板の製造方法]
図1に、本発明の成形加工用アルミニウム合金板の製造方法の一例を示す。
本発明に係るアルミニウム合金板は、鋳造工程(S11)、均質化処理工程(S12)、熱間圧延工程(S13)、冷間圧延工程(S14)、溶体化処理工程(S15)、歪導入工程(S16)、予備時効処理工程(S17)及び時効処理工程(S18)を経て製造される。以下、項目毎に分けて説明する。
[Method for producing aluminum alloy sheet]
In FIG. 1, an example of the manufacturing method of the aluminum alloy plate for shaping | molding processing of this invention is shown.
The aluminum alloy sheet according to the present invention includes a casting step (S11), a homogenization treatment step (S12), a hot rolling step (S13), a cold rolling step (S14), a solution treatment step (S15), and a strain introduction step. It is manufactured through (S16), preliminary aging treatment step (S17) and aging treatment step (S18). Hereinafter, description will be made separately for each item.
(鋳造工程:S11)
所定の成分に溶解調整されたアルミニウム合金溶湯を、通常の溶解鋳造法を適宜選択して鋳造する。ここで通常の溶解鋳造法としては、例えば半連続鋳造法(DC鋳造法)や薄板連続鋳造法(ロールキャスト法等)などを含む。
(Casting process: S11)
An aluminum alloy melt adjusted to be dissolved in a predetermined component is cast by appropriately selecting a normal melting casting method. Here, the normal melt casting method includes, for example, a semi-continuous casting method (DC casting method), a thin plate continuous casting method (roll casting method, etc.) and the like.
(均質化処理工程:S12)
均質化処理は、溶湯凝固時の合金元素のミクロ偏析を緩和し、併せてMn、Crをはじめとする各種の遷移元素を含む場合には、これらを主成分とする金属間化合物の分散粒子を、マトリクス中に均一かつ高密度に析出させるための工程である。均質化処理の加熱時間は、通常は1時間以上とし、また経済的な理由から48時間以内に終了させるのが通常である。但し、この均質化処理における加熱温度は、熱延前に熱延開始温度まで加熱する加熱処理温度に近いことから、熱延前加熱処理を兼ねて均質化処理を行なうことも可能である。
(Homogenization process: S12)
Homogenization treatment mitigates microsegregation of alloying elements during solidification of molten metal, and when various transition elements such as Mn and Cr are included, dispersed particles of intermetallic compounds containing these as main components This is a process for depositing uniformly and densely in the matrix. The heating time for the homogenization treatment is usually 1 hour or more, and is usually terminated within 48 hours for economic reasons. However, since the heating temperature in this homogenization treatment is close to the heat treatment temperature for heating to the hot rolling start temperature before hot rolling, it is possible to perform the homogenization processing also as the pre-hot rolling heat treatment.
(熱間圧延工程:S13)
この均質化処理の前もしくは後に適宜面削を施した後、例えば300〜590℃程度の温度範囲内で熱間圧延を開始し、所定の板厚で熱間圧延を終了する。
(Hot rolling process: S13)
After chamfering as appropriate before or after the homogenization treatment, hot rolling is started within a temperature range of about 300 to 590 ° C., for example, and the hot rolling is finished at a predetermined plate thickness.
(冷間圧延工程:S14)
熱間圧延後は、さらに冷間圧延を行なって、通常0.7〜2.5mmの範囲の最終板厚とする。
(Cold rolling process: S14)
After the hot rolling, cold rolling is further performed to obtain a final thickness in the range of 0.7 to 2.5 mm.
(溶体化処理工程:S15)
鋳造、均質化、熱間圧延、および冷間圧延を経て所定の厚さまで圧延後、500℃〜580℃の温度で溶体化処理を行う。この溶体化処理は、MgSi、単体Si等をマトリックスに固溶させ、これにより焼付け硬化性を付与して塗装焼付け後の強度向上を図るために重要な工程である。また、この工程は、MgSi、単体Si粒子等の固溶により第2相粒子の分布密度を低下させて、延性と曲げ性を向上させるためにおいても重要な工程である。
(Solution treatment process: S15)
After rolling to a predetermined thickness through casting, homogenization, hot rolling, and cold rolling, solution treatment is performed at a temperature of 500 ° C to 580 ° C. This solution treatment is an important step for solid-dissolving Mg 2 Si, elemental Si, etc. in the matrix, thereby imparting bake hardenability and improving the strength after paint baking. This step is also an important step for improving the ductility and bendability by lowering the distribution density of the second phase particles by solid solution of Mg 2 Si, simple substance Si particles and the like.
溶体化処理温度は500℃以上、580℃以下とする。溶体化処理温度が500℃未満の場合、室温での経時変化の抑制に対しては有利と考えられるが、その場合MgSi、Siなどの固溶量が少なくなって、充分な焼付け硬化性が得られなくなるばかりでなく、延性と曲げ性も悪化する。なお、溶体化効果を特に重視する場合は、溶体化処理温度は500℃以上とすることが好ましい。一方、溶体化処理温度の上限は特に規定しないが、共晶融解のおそれや再結晶粒粗大化等を考慮して、通常は580℃以下とする。 Solution treatment temperature shall be 500 degreeC or more and 580 degrees C or less. When the solution treatment temperature is less than 500 ° C., it is considered advantageous for suppressing the change over time at room temperature, but in that case, the amount of solid solution of Mg 2 Si, Si, etc. is reduced and sufficient bake hardenability is obtained. Not only can not be obtained, but ductility and bendability also deteriorate. In the case where the solution effect is particularly important, the solution treatment temperature is preferably 500 ° C. or higher. On the other hand, the upper limit of the solution treatment temperature is not particularly defined, but is usually set to 580 ° C. or less in consideration of eutectic melting and recrystallization grain coarsening.
また、溶体化処理の時間は特に規制しないが、溶体化処理の時間は5分以内が望ましい。通常は5分を超えると溶体化効果が飽和し、経済性を損なうばかりではなく、結晶粒粗大化のおそれもあるからである。   Further, the solution treatment time is not particularly limited, but the solution treatment time is preferably within 5 minutes. Usually, when it exceeds 5 minutes, the solution effect is saturated, not only the economic efficiency is impaired, but also there is a risk of coarsening of crystal grains.
溶体化処理後には、600℃/分以上の冷却速度で焼入れする。溶体化処理後の冷却速度が600℃/分未満では、冷却中にMgSiあるいは単体Siが粒界に多量に析出してしまい、成形性、特にヘム加工性が低下すると同時に、塗装焼付処理後の強度増加が低下して充分な強度が得られなくなる可能性がある。この冷却速度を達成するためには、ファンによる空冷でも良いが、より冷却速度が速い冷却液への浸漬や、ミスト状にした水の噴霧によって冷却するのがより好ましい。 After the solution treatment, quenching is performed at a cooling rate of 600 ° C./min or more. When the cooling rate after solution treatment is less than 600 ° C./min, a large amount of Mg 2 Si or simple substance Si precipitates at the grain boundaries during cooling, and at the same time, the formability, particularly heme workability, decreases, and the paint baking process. There is a possibility that subsequent strength increase will decrease and sufficient strength cannot be obtained. In order to achieve this cooling rate, air cooling with a fan may be used, but cooling by immersion in a cooling liquid with a higher cooling rate or spraying of mist-like water is more preferable.
前述のような冷却速度で室温まで焼入れた場合には、低温クラスタMg−Siが形成される。この低温クラスタは、一般的な塗装焼付け温度域である170〜200℃では強化寄与相であるβ’’相になりにくく、時効処理後の強度が低くなる可能性がある。このため、本発明では、室温冷却前に歪みを導入することで低温クラスタの形成を抑制する効果を付与している。   When quenched to room temperature at the cooling rate as described above, low temperature clusters Mg—Si are formed. This low-temperature cluster is unlikely to become a β ″ phase, which is a strengthening contribution phase, in a general paint baking temperature range of 170 to 200 ° C., and the strength after aging treatment may be lowered. For this reason, in this invention, the effect which suppresses formation of a low temperature cluster is provided by introduce | transducing distortion before room temperature cooling.
(歪導入工程:S16)
まず、この歪の導入のタイミングを規定した理由について、以下で説明する。
(Strain introduction step: S16)
First, the reason for defining the timing for introducing the distortion will be described below.
図2は、560℃で溶体化処理し、20℃/秒の冷却速度で空冷し、100℃未満に焼入れてから10分間、室温の水で水冷後、90℃で4hの予備時効処理を施すプロセス1と、同様の冷却を施し、100℃未満になってから5分間、室温の水で水冷、次いで1%の歪みを付与し、再び室温の水に5分間水冷した後、90℃で4hの予備時効処理を施すプロセス2のそれぞれの処理を行ったアルミニウム合金について、示差走査熱量計(DSC)によりDSC曲線を測定した結果を示す。   2 shows solution treatment at 560 ° C., air cooling at a cooling rate of 20 ° C./second, quenching to below 100 ° C., water cooling with water at room temperature for 10 minutes, and pre-aging treatment at 90 ° C. for 4 hours. The same cooling as in Process 1 was performed, and after cooling to less than 100 ° C. for 5 minutes, water cooling with room temperature water was performed, then 1% strain was applied, water cooling to room temperature water again for 5 minutes, and then at 90 ° C. for 4 hours. The result of having measured the DSC curve with the differential scanning calorimeter (DSC) about the aluminum alloy which performed each process 2 of performing pre-aging treatment of this is shown.
プロセス1では、プロセス2と比較して一般的な塗装焼付処理の温度域である170〜200℃において析出や相変態に対応する発熱ピークが減少している。これは10分間の室温保持において、塗装焼付処理温度域で強化寄与相の析出を抑制する低温クラスタが形成したためであると考えられる。   In Process 1, compared with Process 2, the exothermic peak corresponding to precipitation and phase transformation is reduced in a temperature range of 170 to 200 ° C., which is a general paint baking temperature range. This is considered to be due to the formation of a low-temperature cluster that suppresses the precipitation of the strengthening contribution phase in the temperature range of the coating baking treatment at room temperature for 10 minutes.
即ち、優れた時効硬化性を実現するためには、プロセス2のように、溶体化処理後、焼き入れて100℃以下にしてから9分以内に、好ましくは5分以内に歪み導入する。また、量産性を考慮すると、連続熱処理工程において溶体化処理炉の後に歪み導入設備を配置し、溶体化処理後に連続して歪みを導入することが望ましい。   That is, in order to achieve excellent age-hardening properties, as in Process 2, after solution treatment, strain is introduced within 9 minutes, preferably within 5 minutes after quenching to 100 ° C. or lower. In consideration of mass productivity, it is desirable to dispose strain introduction equipment after the solution treatment furnace in the continuous heat treatment step and continuously introduce strain after the solution treatment.
また、歪導入量は、0.5〜5.0%とする。0.5%未満では導入量が少なく低温クラスタの形成抑制の効果が低くなり、時効処理後の強度が低くなる可能性がある。一方で、歪付与量が5%を超えると延性の低下や加工硬化による高耐力化で成形性が低下することが懸念される。   The strain introduction amount is 0.5 to 5.0%. If it is less than 0.5%, the introduction amount is small and the effect of suppressing the formation of low-temperature clusters is low, and the strength after aging treatment may be low. On the other hand, when the amount of applied strain exceeds 5%, there is a concern that the formability is lowered due to a decrease in ductility or a higher yield strength due to work hardening.
歪導入は、圧延だけでなく、ロールレベラ、テンションレベラのような歪矯正設備を用い、これらを組み合わせて歪みを導入するのが好ましい。圧延のみで歪みを導入すると圧下率や板厚によっては歪みが板厚全体に導入されず、表層部分のみしか歪が入らないおそれがあり、歪付与による特性改善の効果が低くなる可能性があるためである。このため、ローラーレベラ、テンションレベラのような歪矯正設備による曲げ変形、もしくは引張変形により歪導入を行い、板厚全体に歪導入するのがより好ましい。板厚全体に歪を導入するとは、具体的には、板厚方向の表層部における歪量を1とした場合、板厚方向の1/4部の歪量が0.3以上であり、板厚方向の1/2部(板厚中心部)の歪量が0.1以上であることが好ましい。また、より好ましい条件としては、板厚方向の表層部における歪量を1とした場合、板厚方向の1/4部の歪量が0.5以上であり、板厚方向の1/2部(板厚中心部)の歪量が0.25以上を満たす歪分布とする。   It is preferable that the strain is introduced not only by rolling, but also by using a strain correction facility such as a roll leveler or a tension leveler and combining them. If strain is introduced only by rolling, strain may not be introduced to the entire thickness depending on the rolling reduction and thickness, and only the surface layer may be distorted, which may reduce the effect of improving characteristics by applying strain. Because. For this reason, it is more preferable to introduce strain by bending deformation or tensile deformation by a strain correction facility such as a roller leveler or tension leveler, and to introduce strain to the entire plate thickness. Specifically, introducing strain into the entire plate thickness means that when the strain amount in the surface layer portion in the plate thickness direction is 1, the strain amount in the 1/4 portion in the plate thickness direction is 0.3 or more. It is preferable that the strain amount of the ½ part in the thickness direction (center part of the plate thickness) is 0.1 or more. Further, as a more preferable condition, when the strain amount in the surface layer portion in the plate thickness direction is 1, the strain amount in ¼ portion in the plate thickness direction is 0.5 or more, and ½ portion in the plate thickness direction The strain distribution is such that the strain amount in the (thickness center portion) satisfies 0.25 or more.
なお、導入する歪は圧縮歪、または引張歪、もしくはその両方を組み合わせた歪が該当する。   The strain to be introduced corresponds to a compressive strain, a tensile strain, or a combination of both.
(予備時効処理工程:S17)
上記の歪付与後、50〜120℃で2〜24時間の予備時効処理を行う。この予備時効処理により、塗装焼付温度域で代表的な強化寄与相であるβ”へ移行しやすい高温クラスタの形成、および安定化を行う。予備時効処理は長時間になると室温時効硬化が抑制されるが、一方で塗装焼付硬化性が低下するため、目的に応じて温度と時間の調整が必要となる。
(Preliminary aging treatment step: S17)
After the above strain application, preliminary aging treatment is performed at 50 to 120 ° C. for 2 to 24 hours. This preliminary aging treatment forms and stabilizes high-temperature clusters that tend to shift to β '', which is a typical strengthening contribution phase in the paint baking temperature range, and room temperature aging hardening is suppressed as the pre-aging treatment takes a long time. However, since the paint bake hardenability decreases, it is necessary to adjust the temperature and time according to the purpose.
予備時効処理の温度が50℃未満では、高温クラスタの形成が不十分であるため塗装焼付硬化性が大幅に低下してしまう。一方、120℃を超えると高温クラスタではなく直接β”が析出して材料強度が大幅に上昇してヘム加工性が大幅に劣化してしまう。また、予備時効処理の時間が2時間未満では、高温クラスタの形成が不十分であるため塗装焼付硬化性が大幅に低下してしまう。一方、24時間を超えると高温クラスタの形成は十分であるが一部がβ”に近い形まで成長して、材料強度が大幅に上昇してヘム加工性が大幅に劣化してしまう。   When the temperature of the preliminary aging treatment is less than 50 ° C., the formation of high-temperature clusters is insufficient, and the paint bake hardenability is greatly lowered. On the other hand, when the temperature exceeds 120 ° C., β ″ is precipitated directly instead of high-temperature clusters, the material strength is significantly increased, and the hem workability is greatly deteriorated. Also, when the pre-aging time is less than 2 hours, Insufficient formation of high-temperature clusters results in a significant reduction in paint bake hardenability. On the other hand, after 24 hours, formation of high-temperature clusters is sufficient, but some grow to a shape close to β ″. As a result, the material strength is significantly increased, and the hemmability is greatly deteriorated.
なお、連続熱処理工程においては、溶体化処理、焼入れ、歪導入の工程後に予備時効温度範囲で再加熱し、巻き取ったコイルを保温する徐冷を施してもよい。   In the continuous heat treatment step, after the solution treatment, quenching, and strain introduction steps, reheating may be performed within a pre-aging temperature range, and slow cooling may be performed to keep the wound coil warm.
(時効処理工程:S18)
塗装焼付け処理のような人工時効処理を行い、強化寄与相であるMgとSiからなる析出物であるβ’’相を析出させ、優れた塗装焼付け硬化性を付与する。
(Aging treatment step: S18)
An artificial aging treatment such as a paint baking process is performed to precipitate a β ″ phase, which is a precipitate composed of Mg and Si, which is a reinforcing contribution phase, and imparts excellent paint bake hardenability.
(本実施形態の効果)
Al−Mg−Si系アルミニウム合金板の製造工程において、溶体化処理後の一定時間内に歪付与に伴う転位導入することにより、後の予備時効処理における低温クラスタの形成が抑制され、塗装焼付け処理のような人工時効処理後に優れた塗装焼付け硬化性及び伸びを有するアルミニウム合金板を提供できる。
(Effect of this embodiment)
In the manufacturing process of the Al-Mg-Si-based aluminum alloy sheet, by introducing dislocations accompanying strain application within a certain time after the solution treatment, the formation of low-temperature clusters in the subsequent preliminary aging treatment is suppressed, and the paint baking process It is possible to provide an aluminum alloy plate having excellent paint bake hardenability and elongation after artificial aging treatment as described above.
また、予備時効処理の後ではなく、溶体化処理後に歪付与に伴う転位導入することにより、効率良く、量産性に優れた製造方法とすることができる。   In addition, by introducing dislocation accompanying strain application after the solution treatment, not after the pre-aging treatment, the production method can be efficiently and excellent in mass productivity.
さらに、TS/YSをパラメータとし、このTS/YSを1.50〜1.90の範囲とすることにより、人工時効処理後に優れた塗装焼付け硬化性を有するものとすることができる。   Furthermore, by setting TS / YS as a parameter and setting this TS / YS within a range of 1.50 to 1.90, it is possible to have excellent paint bake hardenability after artificial aging treatment.
以下に本発明の実施例を比較例と共に記載する。なお、以下の実施例は、本発明の効果を説明するためのものであり、実施例記載のプロセス、条件及び性能値が本発明の技術的範囲を制限するものではない。   Examples of the present invention will be described below together with comparative examples. The following examples are for explaining the effects of the present invention, and the processes, conditions and performance values described in the examples do not limit the technical scope of the present invention.
表1に示す成分組成の合金記号A1〜A9について、それぞれの常法に従って溶製し、DC鋳造によりスラブに鋳造した。なお、A1〜A8は、いずれも合金の成分組成が本発明の実施形態で好ましいと規定する範囲内のものであり、A9は、Si/Mg比が1未満であって、本発明の実施形態で規定する範囲外のものである。
※‘―’は無添加を表す
Alloy symbols A1 to A9 having the component compositions shown in Table 1 were melted in accordance with respective ordinary methods and cast into slabs by DC casting. A1 to A8 are all within the range that the alloy component composition is preferable in the embodiment of the present invention, and A9 has an Si / Mg ratio of less than 1, and the embodiment of the present invention. It is out of the range specified in.
* '-' Indicates no additive
得られた各スラブに対して、550℃、6hの条件で均質化を施し、熱間圧延に供した。熱間圧延は、終了温度を300℃で4mmまで行い、最終的に冷間圧延により1mmの冷間圧延板を得た。   Each obtained slab was homogenized under conditions of 550 ° C. and 6 hours, and subjected to hot rolling. The hot rolling was performed at an end temperature of 300 ° C. up to 4 mm, and finally a 1 mm cold rolled sheet was obtained by cold rolling.
この冷間圧延板を試験片サイズに切断、加工した後、530℃もしくは560℃で15分の溶体化処理を行い、1200℃/分で25℃の室温まで焼入れした。焼入れ後、室温で5分経過後に歪みを引張変形により表2に示す歪量で導入した。   The cold-rolled plate was cut into a test piece size, processed, and then subjected to a solution treatment at 530 ° C. or 560 ° C. for 15 minutes, and quenched to a room temperature of 25 ° C. at 1200 ° C./min. After quenching, after 5 minutes at room temperature, strain was introduced by tensile deformation in the amount of strain shown in Table 2.
歪導入後、表2に示す各条件で予備時効処理を行った。各予備時効処理の昇温速度は45℃/秒、熱処理終了後の冷却速度は10℃/秒で一定とし、徐冷と表示した処理では熱処理中に1℃/hの徐冷を行い、所定の熱処理時間が経過した後、室温大気に放冷した。
※BH:ベークハード処理の略であり、自動車ボディシート材の塗装焼付け処理に相当し、室温経時を考慮し、製造から30日後の室温保持を経た素材に(2%ストレッチ+時効処理)した後の0.2%耐力値を表す。
After introducing the strain, preliminary aging treatment was performed under the conditions shown in Table 2. The temperature increase rate of each preliminary aging treatment is 45 ° C./second, the cooling rate after the heat treatment is constant at 10 ° C./second, and in the treatment indicated as gradual cooling, gradual cooling at 1 ° C./h is performed during the heat treatment. After the elapse of the heat treatment time, the mixture was allowed to cool to room temperature.
* BH: Abbreviation for bake hard treatment, equivalent to paint baking treatment of automobile body sheet materials, after taking into account the room temperature aging, after having been kept at room temperature 30 days after production (2% stretch + aging treatment) Of 0.2% proof stress.
転位の導入による低温クラスタ形成の抑制効果を確認するため、各条件で作製したアルミニウム合金板より圧延直角方向が引張方向となるようにJIS5号形状の引張試験片を採取して、JISZ2241に従って引張試験を行って測定した引張強さ(TS)と0.2%耐力値(YS)より、TS/YS比を算出した。   In order to confirm the effect of suppressing the formation of low-temperature clusters by the introduction of dislocations, JIS No. 5-shaped tensile test pieces were taken from the aluminum alloy plate produced under each condition so that the direction perpendicular to the rolling direction was the tensile direction, and a tensile test was performed according to JISZ2241. The TS / YS ratio was calculated from the tensile strength (TS) and 0.2% proof stress value (YS) measured by performing the above.
なお、実施例では製造から7日間の室温保持後、引張試験を行い、TS/YS比の算出を行った。   In the examples, a tensile test was performed after holding the room temperature for 7 days from the manufacture, and the TS / YS ratio was calculated.
各条件で作製したアルミニウム合金板の室温経時に伴う機械的特性の変化を調べるため、製造から30日室温保持し、各板の素板における機械的特性(TS、YS、伸び)を上記と同様の方法で測定した。さらに、2%ストレッチを付与し170℃で20分の塗装焼付処理を想定した時効処理を施し、その焼付前と後の各板について、引張方向が圧延方向に対して直角となるように引張試験を行って、上記と同様の方法で0.2%耐力(BH)を測定した。以上の各項目の測定値を表2に示す。   In order to investigate changes in mechanical properties of aluminum alloy sheets produced under various conditions with the passage of time, room temperature is maintained for 30 days from the production, and the mechanical characteristics (TS, YS, elongation) of the base plate of each plate are the same as above. It measured by the method of. Furthermore, an aging treatment was applied assuming a 2% stretch and a coating baking process at 170 ° C. for 20 minutes, and the tensile test was performed so that the tensile direction was perpendicular to the rolling direction for each plate before and after the baking. And 0.2% yield strength (BH) was measured in the same manner as described above. Table 2 shows the measured values of the above items.
製造プロセス番号1〜11は、いずれも製造プロセス条件、TS/YS比および伸びが本発明で規定する範囲を満たすものである。これに対して、製造プロセス番号12〜14、16は、いずれも転位導入を行わずTS/YS比が本発明の範囲外のものである。また、製造プロセス番号15は、歪量が大きく、TS/YS比が本発明の範囲外のものである。製造プロセス番号17は、製造プロセス条件およびTS/YS比は本発明で規定する範囲を満たすものであるが、伸びが本発明で規定する範囲外のものである。   Production process numbers 1 to 11 all satisfy the ranges defined by the present invention in terms of production process conditions, TS / YS ratio, and elongation. In contrast, production process numbers 12 to 14 and 16 do not introduce dislocations, and the TS / YS ratio is outside the scope of the present invention. Moreover, the manufacturing process number 15 has a large amount of distortion, and the TS / YS ratio is outside the scope of the present invention. In the manufacturing process number 17, the manufacturing process conditions and the TS / YS ratio satisfy the range defined by the present invention, but the elongation is outside the range defined by the present invention.
合金A1を素材とした製造プロセス番号1〜4はいずれも、同じ合金A1を素材とした製造プロセス番号12〜14と比較して、時効処理後の0.2%耐力値(BH)が優れることを確認した。また同様に、合金A2を素材とした製造プロセス番号5は、同じ合金A2を素材としたプロセス番号16と比較して、時効処理後の0.2%耐力値(BH)が優れることを確認した。また、合金A1を素材とした製造プロセス番号15では、本発明で規定する範囲よりも大きな歪を付与したことにより、時効処理後の0.2%耐力値は比較的高い値を示しているが、伸びが23%と本発明で規定する範囲よりも小さく、成形性が著しく低下してしまった。   Production process numbers 1 to 4 made of alloy A1 are all excellent in 0.2% proof stress (BH) after aging treatment, compared to production process numbers 12 to 14 made of the same alloy A1. It was confirmed. Similarly, it was confirmed that the manufacturing process number 5 made of the alloy A2 is superior in the 0.2% proof stress value (BH) after the aging treatment as compared with the process number 16 made of the same alloy A2. . Moreover, in the manufacturing process number 15 which used the alloy A1 as a raw material, although the strain larger than the range prescribed | regulated by this invention was provided, the 0.2% yield strength value after an aging treatment has shown a comparatively high value. The elongation was 23%, which was smaller than the range specified in the present invention, and the moldability was remarkably lowered.
また、製造プロセス番号17は、Si/Mg比が本発明の実施形態で規定する範囲外であるため、時効処理後の0.2%耐力値(BH)が著しく低い。   Moreover, since the Si / Mg ratio is outside the range defined by the embodiment of the present invention, the manufacturing process number 17 has a remarkably low 0.2% proof stress value (BH) after aging treatment.
以上、本発明の実施形態を説明したが、この実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。この実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。この実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。   As mentioned above, although embodiment of this invention was described, this embodiment is shown as an example and is not intending limiting the range of invention. This embodiment can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. This embodiment and its modifications are included in the scope of the present invention and the gist thereof, and are also included in the invention described in the claims and the equivalent scope thereof.

Claims (4)

  1. 製造後7日間以上室温で保持した後のアルミニウム合金板の引張強さをTS、0.2%耐力をYSとすると、TS/YS=1.50〜1.90であり、かつ伸びが25%を超えることを特徴とする成形加工用アルミニウム合金板。   When the tensile strength of the aluminum alloy plate after holding at room temperature for 7 days or more after production is TS and the 0.2% proof stress is YS, TS / YS = 1.50 to 1.90 and the elongation is 25%. An aluminum alloy plate for forming, characterized by exceeding.
  2. 前記合金板の組成として、質量%でMg:0.3〜1.5%、Si:0.3〜1.5%を含有し、かつMn:0.03〜0.6%、Cu:0.03〜1.0%、Cr:0.04〜0.4%、Fe:0.03〜1.5%、Ti:0.005〜0.2%、Zn:0.03〜1.0%のうちから選ばれた1種または2種以上を含有し、さらにSi/Mgが質量比で1以上であり、かつ残部がAlおよび不可避不純物からなることを特徴とする請求項1に記載の成形加工用アルミニウム合金板。   As a composition of the said alloy plate, Mg: 0.3-1.5% and Si: 0.3-1.5% are contained by the mass%, and Mn: 0.03-0.6%, Cu: 0 0.03-1.0%, Cr: 0.04-0.4%, Fe: 0.03-1.5%, Ti: 0.005-0.2%, Zn: 0.03-1.0 1 or 2 or more types selected from among%, Si / Mg is 1 or more by mass ratio, and the balance consists of Al and inevitable impurities. Aluminum alloy sheet for forming process.
  3. 鋳造工程、均質化処理工程、熱間圧延工程、冷間圧延工程及び溶体化処理工程を施す成形加工用アルミニウム合金板の製造方法において、前記溶体化処理工程を500℃〜580℃の温度で行い、600℃/分以上の冷却速度で100℃以下にした後、9分以内に0.5%〜5%の歪みを導入する歪導入工程を施し、さらに50〜120℃で2〜24時間の予備時効処理工程を施すことを特徴とする成形加工用アルミニウム合金板の製造方法。   In the method for manufacturing an aluminum alloy sheet for forming, which performs a casting process, a homogenization process, a hot rolling process, a cold rolling process, and a solution treatment process, the solution treatment process is performed at a temperature of 500 ° C. to 580 ° C. , After the temperature is reduced to 100 ° C. or less at a cooling rate of 600 ° C./min or more, a strain introducing step for introducing 0.5% to 5% strain is performed within 9 minutes, and further, 50 to 120 ° C. for 2 to 24 hours. A method for producing an aluminum alloy sheet for forming, characterized by performing a preliminary aging treatment step.
  4. 前記合金板の組成として、質量%でMg:0.3〜1.5%、Si:0.3〜1.5%を含有し、かつMn:0.03〜0.6%、Cu:0.03〜1.0%、Cr:0.04〜0.4%、Fe:0.03〜1.5%、Ti:0.005〜0.2%、Zn:0.03〜1.0%のうちから選ばれた1種または2種以上を含有し、さらにSi/Mgが質量比で1以上であり、かつ残部がAlおよび不可避不純物からなることを特徴とする請求項3に記載の成形加工用アルミニウム合金板の製造方法。

    As a composition of the said alloy plate, Mg: 0.3-1.5% and Si: 0.3-1.5% are contained by the mass%, and Mn: 0.03-0.6%, Cu: 0 0.03-1.0%, Cr: 0.04-0.4%, Fe: 0.03-1.5%, Ti: 0.005-0.2%, Zn: 0.03-1.0 1 or 2 or more types selected from%, Si / Mg is 1 or more by mass ratio, and the balance consists of Al and inevitable impurities. A method for producing an aluminum alloy sheet for forming.

JP2013172957A 2013-08-23 2013-08-23 Molding aluminum alloy sheet and method for manufacturing the same Pending JP2015040340A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013172957A JP2015040340A (en) 2013-08-23 2013-08-23 Molding aluminum alloy sheet and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013172957A JP2015040340A (en) 2013-08-23 2013-08-23 Molding aluminum alloy sheet and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2015040340A true JP2015040340A (en) 2015-03-02

Family

ID=52694670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013172957A Pending JP2015040340A (en) 2013-08-23 2013-08-23 Molding aluminum alloy sheet and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2015040340A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015052141A (en) * 2013-09-06 2015-03-19 株式会社神戸製鋼所 Aluminum alloy sheet excellent in baking finish hardenability
JP2016180134A (en) * 2015-03-23 2016-10-13 富士重工業株式会社 Magnesium-lithium alloy, manufacturing method of magnesium-lithium alloy, aircraft component and manufacturing method of aircraft component
CN108300907A (en) * 2018-02-10 2018-07-20 沈阳航空航天大学 A kind of Al-Mn-Si-Mg alloy materials and preparation method thereof
CN109837490A (en) * 2017-11-28 2019-06-04 宝山钢铁股份有限公司 A kind of preprocess method improving 6000 line aluminium alloy material natrual ageing stability
US10851442B2 (en) 2015-03-25 2020-12-01 Subaru Corporation Magnesium-lithium alloy, rolled stock made of magnesium-lithium alloy, and processed product including magnesium-lithium alloy as material

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003129201A (en) * 2001-10-18 2003-05-08 Furukawa Electric Co Ltd:The Production method for aluminum alloy plate excellent in bendability, and aluminum alloy plate excellent in bendability and produced by the method
JP2003247040A (en) * 2002-02-25 2003-09-05 Kobe Steel Ltd Aluminum alloy sheet having excellent flat hem workability and production method thereof
JP2004010982A (en) * 2002-06-07 2004-01-15 Kobe Steel Ltd Aluminum alloy sheet having excellent bending workability and press formability
JP2012214846A (en) * 2011-03-31 2012-11-08 Kobe Steel Ltd Aluminum alloy sheet for molding process and method for producing the same
JP2014058733A (en) * 2012-09-19 2014-04-03 Kobe Steel Ltd Aluminum alloy sheet excellent in baking finish hardenability

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003129201A (en) * 2001-10-18 2003-05-08 Furukawa Electric Co Ltd:The Production method for aluminum alloy plate excellent in bendability, and aluminum alloy plate excellent in bendability and produced by the method
JP2003247040A (en) * 2002-02-25 2003-09-05 Kobe Steel Ltd Aluminum alloy sheet having excellent flat hem workability and production method thereof
JP2004010982A (en) * 2002-06-07 2004-01-15 Kobe Steel Ltd Aluminum alloy sheet having excellent bending workability and press formability
JP2012214846A (en) * 2011-03-31 2012-11-08 Kobe Steel Ltd Aluminum alloy sheet for molding process and method for producing the same
JP2014058733A (en) * 2012-09-19 2014-04-03 Kobe Steel Ltd Aluminum alloy sheet excellent in baking finish hardenability

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015052141A (en) * 2013-09-06 2015-03-19 株式会社神戸製鋼所 Aluminum alloy sheet excellent in baking finish hardenability
JP2016180134A (en) * 2015-03-23 2016-10-13 富士重工業株式会社 Magnesium-lithium alloy, manufacturing method of magnesium-lithium alloy, aircraft component and manufacturing method of aircraft component
US10752981B2 (en) 2015-03-23 2020-08-25 Subaru Corporation Magnesium-lithium alloy, method of manufacturing magnesium-lithium alloy, aircraft part, and method of manufacturing aircraft part
US10851442B2 (en) 2015-03-25 2020-12-01 Subaru Corporation Magnesium-lithium alloy, rolled stock made of magnesium-lithium alloy, and processed product including magnesium-lithium alloy as material
CN109837490A (en) * 2017-11-28 2019-06-04 宝山钢铁股份有限公司 A kind of preprocess method improving 6000 line aluminium alloy material natrual ageing stability
CN109837490B (en) * 2017-11-28 2020-11-17 宝山钢铁股份有限公司 Pretreatment method for improving natural aging stability of 6000 series aluminum alloy material
CN108300907A (en) * 2018-02-10 2018-07-20 沈阳航空航天大学 A kind of Al-Mn-Si-Mg alloy materials and preparation method thereof

Similar Documents

Publication Publication Date Title
JP4577218B2 (en) Method for producing Al-Mg-Si alloy sheet excellent in bake hardness and hemmability
JP2008174797A (en) Aluminum alloy sheet
JP5918158B2 (en) Aluminum alloy sheet with excellent properties after aging at room temperature
JP2015040340A (en) Molding aluminum alloy sheet and method for manufacturing the same
JPH0747808B2 (en) Method for producing aluminum alloy sheet excellent in formability and bake hardenability
JP3845312B2 (en) Aluminum alloy plate for forming and method for producing the same
JP4086350B2 (en) Method for producing aluminum alloy sheet for forming
JP3849095B2 (en) Aluminum alloy plate for forming and method for producing the same
JP2008223054A (en) Aluminum alloy sheet for forming-work having excellent deep drawability and burning/softening resistance, and producing method therefor
JPH05112840A (en) Baking hardenability al-mg-si alloy sheet excellent in press formability and its manufacture
JP4771791B2 (en) Method for producing aluminum alloy sheet for forming
JP2008231475A (en) Aluminum alloy sheet for forming workpiece, and producing method therefor
JP5367250B2 (en) Aluminum alloy plate for forming and method for producing the same
JP2626958B2 (en) Method for producing aluminum alloy sheet excellent in formability and bake hardenability
JPH08176764A (en) Production of aluminum alloy sheet for forming
JP2011144410A (en) METHOD FOR MANUFACTURING HIGHLY FORMABLE Al-Mg-Si-BASED ALLOY SHEET
JP2007239005A (en) Method for producing 6000 series aluminum alloy sheet having excellent room temperature non-aging property, formability and coating/baking hardenability
JP4257179B2 (en) T4-treated aluminum alloy rolled sheet for forming and method for producing the same
JP2009030106A (en) Aluminum alloy panel and manufacturing method therefor
JP3686146B2 (en) Method for producing aluminum alloy sheet for forming
JPH07228957A (en) Production of aluminum alloy sheet having excellent formability and quench-hardenability
JP2017061709A (en) Aluminum alloy sheet excellent in ridging resistance and hem bendability and manufacturing method therefor
JP2015224377A (en) Aluminum alloy plate excellent in ridging resistance
JPH09176805A (en) Production of aluminum fin material
JPWO2018003709A1 (en) Aluminum alloy plate excellent in ridging resistance and hem bendability and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170509

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20170623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170623

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170720

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180116

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180119