KR20100009683A - Heat treatment method for al alloy panel - Google Patents

Heat treatment method for al alloy panel Download PDF

Info

Publication number
KR20100009683A
KR20100009683A KR1020080070424A KR20080070424A KR20100009683A KR 20100009683 A KR20100009683 A KR 20100009683A KR 1020080070424 A KR1020080070424 A KR 1020080070424A KR 20080070424 A KR20080070424 A KR 20080070424A KR 20100009683 A KR20100009683 A KR 20100009683A
Authority
KR
South Korea
Prior art keywords
heat treatment
alloy sheet
aluminum alloy
aluminum
magnesium
Prior art date
Application number
KR1020080070424A
Other languages
Korean (ko)
Other versions
KR101028029B1 (en
Inventor
홍승현
정유동
Original Assignee
현대자동차주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대자동차주식회사 filed Critical 현대자동차주식회사
Priority to KR1020080070424A priority Critical patent/KR101028029B1/en
Priority to US12/356,439 priority patent/US20100012236A1/en
Priority to CN200910005653A priority patent/CN101634004A/en
Publication of KR20100009683A publication Critical patent/KR20100009683A/en
Application granted granted Critical
Publication of KR101028029B1 publication Critical patent/KR101028029B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/047Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with magnesium as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent

Abstract

PURPOSE: A heat treatment method for an aluminium alloy panel is provided to reduce bending caused by dynamic transformation aging in plate molding and obtain high-strength property by strain hardening after molding. CONSTITUTION: A heat treatment method for an aluminium alloy panel comprises the steps of: cold-rolling an aluminium alloy board in the final pass at a reduction rate of 45~50%, performing a first heat treatment at the temperature of 450~510°C for 3 hours, rapidly cooling the aluminium alloy board at the speed more than 60°C/sec, and performing a second heat treatment of the cooled aluminium alloy board at the temperature of 200~220°C.

Description

알루미늄 합금 판재의 열처리 방법{Heat treatment method for Al alloy panel}Heat treatment method for Al alloy panel

본 발명은 알루미늄 합금 판재의 열처리 방법에 관한 것으로서, 더욱 상세하게는 AA5454 알루미늄-마그네슘 합금 판재의 성형시 발생하는 표면 굴곡을 억제할 수 있도록 한 알루미늄 합금 판재의 열처리 방법에 관한 것이다.The present invention relates to a heat treatment method of an aluminum alloy sheet, and more particularly, to a heat treatment method of an aluminum alloy sheet to be able to suppress the surface bending generated during the molding of the AA5454 aluminum-magnesium alloy sheet.

현재 자동차용 외판재로 주로 사용되는 알루미늄 합금은 5xxx(알루미늄-마그네슘) 및 6xxx(알루미늄-마그네슘-실리콘) 계열 합금으로서, 강도 및 강성 보완을 위하여 판재의 두께가 크게는 2mm까지 적용되고 있다.Currently, aluminum alloys mainly used as exterior panels for automobiles are 5xxx (aluminum-magnesium) and 6xxx (aluminum-magnesium-silicon) based alloys, and a plate thickness of up to 2 mm is applied to supplement strength and rigidity.

성형성 측면에서, 상기 알루미늄-마그네슘 합금이 알루미늄-마그네슘-실리콘 합금에 비해 우수하여, 복잡한 형상의 내판과 외판에 주로 적용되고 있다.In terms of formability, the aluminum-magnesium alloy is superior to the aluminum-magnesium-silicon alloy, and is mainly applied to inner and outer shells of a complicated shape.

그러나, 상기 알루미늄-마그네슘 합금 판재는 열처리에 의한 석출강화 효과를 얻기 위하여 첨가되는 합금원소의 거동에 의하여, 판재 성형시 특정 고용 원소 또는 석출상과 미세조직상 금속의 소성변형에 관여하는 전위와의 상호작용, 즉 동 적 변형시효 및 불균일 변형으로 인해, 판재 표면에 미세한 표면굴곡이 발생하여 면품질 문제로 인해 자동차 상품성을 해치는 요인을 제공하고 있다.However, the aluminum-magnesium alloy sheet has the potential to be involved in plastic deformation of a specific solid solution element or precipitated phase and microstructured metal during sheet forming by the behavior of alloying elements added to obtain the precipitation strengthening effect by heat treatment. Interactions, ie dynamic strain aging and non-uniform strains, produce fine surface curvatures on the surface of the sheet, which contributes to the detriment of automotive commerciality due to surface quality problems.

일반적으로, 상기 표면굴곡 현상의 발생은 도 1의 그래프에 나타낸 것처럼 판재 재료를 대상으로 수행한 인장시험 시에 나타나는 인장곡선 상에서, 톱니모양 거동(Serrated Flow)의 발생으로 평가할 수 있다.In general, the occurrence of the surface bending phenomenon can be evaluated as the generation of serrated flow on the tensile curve appearing in the tensile test performed on the plate material as shown in the graph of FIG.

지금까지의 종래 기술에서는 5천계 알루미늄 판재의 변형시효로 인한 표면 굴곡은 막을 수 없으며, 표면굴곡이 발생하는 경우 외판을 전면 샌딩하는 후공정을 도입하여 해결하고 있는 바, 이는 패널(Panel) 생산성을 크게 해치며 제조 원가를 상승시키는 결과를 초래하게 되어 개선의 여지가 필요한 실정에 있다.Until now, the surface bending due to the strain aging of the 5000-based aluminum sheet cannot be prevented, and when surface bending occurs, it is solved by introducing a post-process of front sanding of the outer plate, which improves panel productivity. There is a need for room for improvement as it results in a significant harm and an increase in manufacturing cost.

더욱이, 고성형성을 얻기 위해서는 Mg 첨가량을 증가시킬 수 밖에 없으나, Mg 함량이 증가할수록 성형 후 표면 굴곡현상을 심해지게 되므로, 판재의 성형성을 해치지 않으면서 성형 중 표면 굴곡을 막기 위한 공정은 현재까지 제시되고 있지 않은 실정에 있다.Moreover, in order to obtain high formability, the amount of Mg added must be increased, but as the Mg content increases, surface bending occurs after molding, and thus, a process for preventing surface bending during molding without impairing the formability of the sheet is to date. It is not present.

하나의 대안으로, 복잡한 형상의 인너 패널(Inner panel)의 경우 표면 외관이 중요하지 않으므로, Mg 함량이 2.8% 이상의 합금을 사용하여 성형성을 확보하고, 외판의 경우 Mg 함량이 2.5% 미만의 합금을 적용하여 표면 품질을 유지하는 방안이 모색되었으나, 디자인의 요구를 수용하기 위한 외판의 성형성이 부족하여 부득이하게 전면 샌딩 공정을 도입하더라도 고함량의 Mg을 포함하는 알루미늄-마그네슘 합금을 적용하고 있는 실정에 있다.As an alternative, the surface appearance is not important in the case of the inner panel of complex shape, so that the Mg content of 2.8% or more of the alloy is used to secure formability, and the outer plate of the Mg content of less than 2.5% Although it was sought to maintain the surface quality by applying the method, the aluminum-magnesium alloy containing high content of Mg is applied even if the front sanding process is inevitably introduced due to the lack of formability of the outer plate to accommodate the design demand. There is a situation.

본 발명은 상기와 같은 판재성형 시에 발생하는 표면굴곡을 해결하기 위해 안출한 것으로서, 냉간압연을 거쳐 최종 열처리(시효처리)된 AA5454 알루미늄-마그네슘 합금 판재를 대상으로 간단한 열처리 공정을 적용하여, 판재 성형 시에 표면 거침의 원인을 제공하는 고용 Mg 합금을 석출시키면서 결정립 크기를 키워줌으로써, 전위의 이동에 제한을 최대한으로 줄여서 표면 굴곡을 형성시키는 동적 시효경화를 방지할 수 있는 알루미늄 합금 판재의 열처리 방법을 제공하는데 그 목적이 있다.The present invention was devised to solve the surface curvature generated during the sheet forming, by applying a simple heat treatment process to the AA5454 aluminum-magnesium alloy plate that is subjected to the final heat treatment (aging treatment) through cold rolling, Method of heat treatment of aluminum alloy sheet which can prevent dynamic aging hardening to form surface curvature by minimizing the limit on dislocation movement by increasing solid grain size by depositing solid solution Mg alloy which causes surface roughness during molding The purpose is to provide.

상기한 목적을 달성하기 위한 본 발명은 냉간 압연 스케쥴 중, 최종 패스에서 알루미늄 합금 판재를 압하율 45~50%로 냉간압연하는 단계와; 상기 냉간압연된 알루미늄 합금 판재를 450~510℃에서 3시간 동안 1차 열처리하는 단계와; 1차 열처리 후, 60℃/초 이상의 속도로 급랭하는 단계와; 급랭된 알루미늄 합금 판재를 200~220℃에서 재열처리하는 2차 열처리 단계; 를 포함하는 것을 특징으로 하는 알루미늄 합금 판재의 열처리 방법을 제공한다.The present invention for achieving the above object is the cold rolling schedule, the step of cold rolling the aluminum alloy sheet in the final pass rate of 45-50%; Primary heat treatment of the cold rolled aluminum alloy plate at 450 to 510 ° C. for 3 hours; After the first heat treatment, quenching at a rate of at least 60 ° C./sec; A second heat treatment step of reheating the quenched aluminum alloy sheet at 200 to 220 ° C .; It provides a heat treatment method of the aluminum alloy sheet material comprising a.

또한, 상기 알루미늄 합금 판재는 알루미늄(Al)을 주성분으로 하고, 여기에 마그네슘(Mg) 3.0∼3.8중량%, 망간(Mn) 0.20∼0.50중량%, 철(Fe) 0.35중량%, 기타 불가피한 불순물이 함유된 AA5454 알루미늄-마그네슘 합금 판재인 것을 특징으로 한다.In addition, the aluminum alloy sheet material is aluminum (Al) as a main component, and magnesium (Mg) 3.0 to 3.8% by weight, manganese (Mn) 0.20 to 0.50% by weight, iron (Fe) 0.35% by weight, other unavoidable impurities It is characterized in that the contained AA5454 aluminum-magnesium alloy plate.

특히, 상기 알루미늄 합금 판재를 압하율 45~50%로 냉간압연함으로써, 상기 알루미늄 합금 판재의 표면에 전단응력이 가해지는 동시에 전단 집합조직인 {001}<110>이 발달하도록 한 것을 특징으로 한다.Particularly, by cold rolling the aluminum alloy sheet at a rolling reduction ratio of 45 to 50%, shear stress is applied to the surface of the aluminum alloy sheet and at the same time, {001} <110> is developed.

상기한 과제 해결 수단을 통하여, 본 발명은 다음과 같은 효과를 제공할 수 있다.Through the above problem solving means, the present invention can provide the following effects.

본 발명에 따르면, AA5454 알루미늄-마그네슘 합금 판재를 대상으로 1차 열처리 및 보다 낮은 온도에서 진행되는 2차 열처리를 실시하여, 마그네슘 석출물의 조대화를 막아줌으로써, 판재 성형 시에 동적 변형시효에 의하여 발생하는 표면 굴곡을 줄이고, 성형이 용이하며, 성형 후 가공경화에 의한 고강도 특성을 얻을 수 있다.According to the present invention, the AA5454 aluminum-magnesium alloy sheet is subjected to the primary heat treatment and the secondary heat treatment proceeding at a lower temperature, thereby preventing coarsening of magnesium precipitates, thereby generating by dynamic strain aging during sheet forming. It is possible to reduce the surface curvature, easy molding, and obtain high strength characteristics by work hardening after molding.

이하, 본 발명을 보다 상세하게 설명하기로 한다.Hereinafter, the present invention will be described in more detail.

본 발명은 AA5454 알루미늄-마그네슘 합금 판재를 대상으로 간단한 열처리 공정을 적용하여, 판재 성형 시에 동적 변형시효에 의하여 발생하는 표면 굴곡을 줄이고, 성형이 용이하며, 성형 후 가공경화에 의한 고강도 특성을 얻을 수 있는 열처리 방법을 제공하고자 한 것이다.The present invention applies a simple heat treatment process to the AA5454 aluminum-magnesium alloy plate, reducing the surface bending caused by the dynamic strain aging during sheet forming, easy forming, and obtain high strength characteristics by work hardening after forming It is to provide a heat treatment method that can be.

즉, 본 발명은 AA5454 알루미늄-마그네슘 합금 판재에서 마그네슘(Mg)에 의한 석출상 형성으로 재열처리 후 고강도를 얻을 수 있으며, 알루미늄-마그네슘 합금 판재에 특정 온도구간에서 열처리를 행함으로써, 판재 성형 시의 표면거침을 저감시킬 수 있는 열처리 방법을 제공하고자 한 것이다.That is, the present invention can obtain high strength after reheating by forming precipitated phase by magnesium (Mg) in AA5454 aluminum-magnesium alloy sheet, and heat-treating the aluminum-magnesium alloy sheet at a specific temperature section, It is to provide a heat treatment method that can reduce the surface roughness.

본 발명의 열처리 대상 합금으로 채택된 AA5454 알루미늄-마그네슘 합금의 화학조성은 알루미늄(Al)을 주성분으로 하고, 여기에 마그네슘(Mg) 3.0∼3.8중량%, 망간(Mn) 0.20∼0.50중량%, 철(Fe) 0.35중량%, 기타 불가피한 불순물이 함유된 일종의 상용합금이다.The chemical composition of the AA5454 aluminum-magnesium alloy adopted as the heat treatment target alloy of the present invention is based on aluminum (Al), including magnesium (Mg) 3.0 to 3.8% by weight, manganese (Mn) 0.20 to 0.50% by weight, iron (Fe) 0.35% by weight, a type of commercial alloy containing other unavoidable impurities.

상기와 같은 조성을 갖는 AA5454 알루미늄-마그네슘 판재는 잉곳 상태의 원료를 용해시킴과 함께 DC주조하여 두께 150mm의 알루미늄-마그네슘 합금 슬라브를 만드는 단계와, 550℃에서 열간압연을 시작하여 두께 20mm까지 압연하는 단계와, 420℃에서 권취한 열연 코일을 다시 두께 1.0mm까지 냉간 압연하는 단계와, 516℃에서 7시간동안 시효처리하는 단계, 를 포함하는 통상적인 방법으로 제조된다.AA5454 aluminum-magnesium plate having the composition as described above is a step of melting the raw material in the ingot state and DC casting to make an aluminum-magnesium alloy slab having a thickness of 150mm, starting hot rolling at 550 ℃ and rolling to a thickness of 20mm And cold rolling the hot rolled coil wound at 420 ° C. again to a thickness of 1.0 mm, and aging at 516 ° C. for 7 hours.

이때, 성형성 확보를 위해 상기와 같이 시효처리를 시행하여 연신률을 최대한 증가시키지만, 표면 굴곡이 생기게 되는 원인인 마그네슘 석출물이 조대화되는 것을 피할 수 없었다.At this time, the aging treatment is performed as described above to secure moldability, but the elongation is increased as much as possible, but coarsening of the magnesium precipitate, which causes surface curvature, cannot be avoided.

즉, 고용 마그네슘의 석출이 일어나는 열처리 공정에서 마스네슘 석출물이 조대화되지 않도록 하는 것은 최종 시효처리(냉간압연 후, 열처리)시 통상적인 공법의 온도인 450~510℃의 온도범위에서 5~7시간 동안 열처리하는 공정으로는 이루어질 수 없었다.That is, to prevent coarsening of magnesium precipitates in the heat treatment process in which precipitation of solid solution magnesium takes 5 to 7 hours in the temperature range of 450 to 510 ° C., which is the temperature of a conventional method during final aging treatment (cold rolling, heat treatment). It could not be achieved by the process of heat treatment during.

이러한 점을 감안하여, 본 발명은 연신률은 상기와 같은 순서로 제조되는 판재와 동등 이상이나, 표면 굴곡이 생기는 마그네슘 석출물의 조대화를 막기 위해 석출물 성장을 방해하는 전단 응력을 냉간압연 중에 최대한 가하고, 열처리를 단계적으로 시행하여 석출물이 미세하게 분포하도록 유도하는 점에 그 특징이 있다.In view of this point, the present invention, although the elongation is equal to or higher than the plate produced in the above order, in order to prevent the coarsening of magnesium precipitates surface curvature is applied to the maximum shear stress during the cold rolling, It is characterized by inducing the finely distributed precipitate by performing heat treatment step by step.

이를 위해, 본 발명에서는 통상적으로 5패스로 구성된 냉간 압연 스케쥴 중, 최종 패스에서 표면 전단응력을 가하기 위해 전단계(4패스 후) 두께 대비 45~50% 압하를 가한다.To this end, in the present invention, in the cold rolling schedule consisting of five passes, 45-50% reduction is applied to the thickness of the previous step (after four passes) to apply the surface shear stress in the final pass.

그 이유는 모든 패스에서 전단응력을 가하게 되면, 결정립 방위는 전단 집합조직이라 불리는 {001}<110>으로 변하게 되어, 이방성이 커지게 되는 단점이 발생하기 때문에 최종 압연에서만 전단을 가해야만 한다.The reason is that when the shear stress is applied in every pass, the grain orientation changes to {001} <110>, which is called the shear texture, and the anisotropy becomes large. Therefore, the shear stress must be applied only in the final rolling.

본 발명은 AA5454 알루미늄 합금 판재의 표면굴곡의 원인을 제공하는 석출된 고용 Mg를 과다 성장되지 않도록 냉간압연 중 표면 전단을 가한 후, 저온 다단 열처리를 시행하는 점에 주안점이 있다.The present invention focuses on the low temperature multi-stage heat treatment after the surface shear is applied during cold rolling so as not to overgrow the precipitated solid solution Mg which provides the cause of surface bending of AA5454 aluminum alloy sheet.

즉, 본 발명의 열처리 방법은 냉간 압연 스케쥴 중, 최종 패스에서 AA5454 알루미늄 합금 판재를 압하율 45~50%로 냉간압연하는 단계와, 450~510℃에서 3시간 동안 1차 열처리하는 단계와, 60℃/초 이상의 속도로 급랭하는 단계와, 200~220℃에서 재열처리하는 2차 열처리 단계로 진행된다.That is, the heat treatment method of the present invention, the cold rolling schedule, the step of cold rolling the AA5454 aluminum alloy sheet at 45 ~ 50% reduction rate in the final pass, the first heat treatment for 3 hours at 450 ~ 510 ℃, 60 It proceeds to the step of quenching at a rate of more than ℃ / sec, and the second heat treatment step of reheating at 200 ~ 220 ℃.

보다 상세하게는, 본 발명은 마그네슘 석출물의 성장 구동력을 최대한 낮추기 위해, 450~510℃에서 3시간 동안 1차 열처리 단계를 실시하여 마그네슘 석출물을 석출시킨 후, 60℃/초 이상의 속도로 급랭하고, 연이어 200~220℃에서 재열처리 즉, 2차 열처리를 시행한다.More specifically, in order to lower the growth driving force of the magnesium precipitate as much as possible, after performing the first heat treatment step for 3 hours at 450 ~ 510 ℃ to precipitate the magnesium precipitate, and then quenched at a rate of 60 ℃ / sec or more, Subsequently, reheat treatment, that is, secondary heat treatment, is performed at 200 to 220 ° C.

이렇게 2차 열처리를 시행하는 이유는 연신률 회복을 시키면서도 고온성장이 주 메커니즘인 마그네슘 석출물이 성장하지 못하도록 하기 위함에 있다.The reason for the secondary heat treatment is to prevent the growth of magnesium precipitate, which is the main mechanism of high temperature growth, while recovering the elongation.

이와 같이, 본 발명에서 적용한 열처리 방법은 AA5454 알루미늄 합금 입계에 석출되어 있는 마그네슘(Mg)이 그 성장이 일어나지 않는 임계 온도로 냉간압연된 후, 이미 생성되어 있는 마그네슘 석출물은 1차 열처리 단계로 고용시키고, 2차 열처리를 통해 미세하게 마그네슘 석출물을 재석출시키되 그 성장을 억제시키는 메커니즘으로 이루어진다.As described above, in the heat treatment method applied in the present invention, after magnesium (Mg) precipitated at the AA5454 aluminum alloy grain boundary is cold rolled to a critical temperature at which growth does not occur, the already formed magnesium precipitate is dissolved in a first heat treatment step. In the second heat treatment, finely precipitate the magnesium precipitate, but it consists of a mechanism to suppress the growth.

첨부한 도 2는 본 발명의 열처리 공정 중 판재에 대한 냉간 압연 후 (111) 극점도로 표시된 집합조직을 나타낸다.FIG. 2 shows the texture represented by the (111) pole figure after cold rolling of the plate during the heat treatment process of the present invention.

도 2에서, (a)에 표시한 기존재의 집합조직과 비교하여 (b)에 표시한 본 발명재는 표면에 전단이 가해져 있어 열처리 중 석출물의 성장을 지연시키는 전단 집합조직인 {001}<110>이 발달하고, 내부에는 전형적인 압연 집합조직인 구리형 집합조직이 발달됨을 볼 수 있다.In FIG. 2, the present invention material shown in (b) is compared with the texture of the existing material shown in (a), and the shear texture is applied to the surface to delay the growth of precipitates during heat treatment {001} <110> This development, and the inside can be seen that the copper-like texture, which is a typical rolling texture.

반면에, 기존재는 표면과 내부 모두 동일한 구리형 집합조직이다. On the other hand, the existing material is the same copper-like texture both on the surface and inside.

첨부한 도 3은 본 발명의 열처리 방법으로 제조된 알루미늄 판재와, 기존의 열처리 방법으로 제조된 알루미늄 판재에 대한 인장변형 거동 시험 결과를 나타내는 그래프이다.FIG. 3 is a graph showing tensile strain behavior test results of the aluminum sheet manufactured by the heat treatment method of the present invention and the aluminum sheet manufactured by the conventional heat treatment method.

도 3에서, 기존재1(450℃, 5시간 열처리) 및 기존재2(510℃, 5시간 열처리)의 인장변형과 달리, 본 발명재에서는 변형시효가 발생하지 않음을 볼 수 있으며, 이는 상기와 같은 2차 열처리 단계에 의해 마그네슘 석출물의 성장이 억제된 것을 간접적으로 보여주는 것이다.In Figure 3, unlike the tensile strain of the existing material 1 (450 ℃, 5 hours heat treatment) and the existing material 2 (510 ℃, 5 hours heat treatment), it can be seen that the strain aging does not occur in the present invention, which Indirectly shows that the growth of the magnesium precipitate is suppressed by the secondary heat treatment step such as.

여기서, 본 발명의 열처리 방법에 따른 효과를 시험예를 통해 알아보면 다음과 같다.Here, look at the effect according to the heat treatment method of the present invention through a test example as follows.

시험예Test Example

본 발명의 열처리 방법과, 기존의 열처리 방법에 따른 판재의 변형 시효발생 양상을 시험을 통해 알아보고자, 변형시효 발생여부는 인장시험을 통해 인장 곡선 상에서 파악하였으며, 최종 시험편의 표면 조도 분석을 통해 확인하였는 바, 그 결과는 다음의 표 1에 나타낸 바와 같다.In order to find out the heat treatment method of the present invention and the deformation aging generation pattern of the plate according to the existing heat treatment method through a test, whether or not deformation aging occurred on the tensile curve through the tensile test, and confirmed through the surface roughness analysis of the final test piece As a result, the results are shown in Table 1 below.

Figure 112008052015319-PAT00001
Figure 112008052015319-PAT00001

Figure 112008052015319-PAT00002
Figure 112008052015319-PAT00002

Figure 112008052015319-PAT00003
Figure 112008052015319-PAT00003

위의 표 1에서, 본 발명에 따른 실시예1~24에서는 표면굴곡이 전혀 발생하지 않았고(도 4의 (b) 사진 참조), 비교예1~38에서는 표면불량 내지 표면굴곡이 발생됨(도 4의 (a) 사진 참조)을 알 수 있었다.In Table 1 above, in Examples 1 to 24 according to the present invention, no surface bending occurred at all (see (b) of FIG. 4), and in Comparative Examples 1 to 38, surface defects to surface bending occurred (FIG. 4). (A) see photo).

도 1은 종래의 열처리 방법에 의하여 제조된 알루미늄 함금 판재에 대한 인장시험 결과로서, 표면굴곡 현상이 발생됨을 설명하는 그래프,1 is a graph illustrating a surface bending phenomenon as a tensile test result of an aluminum alloy sheet manufactured by a conventional heat treatment method,

도 2는 본 발명의 열처리 공정 중 판재에 대한 냉간 압연 후 (111) 극점도로 표시된 집합조직을 나타내며,Figure 2 shows the texture shown in the (111) pole figure after cold rolling on the plate during the heat treatment process of the present invention,

도 3은 본 발명의 열처리 방법으로 제조된 알루미늄 판재와, 기존의 열처리 방법으로 제조된 알루미늄 판재에 대한 인장변형 거동 시험 결과를 나타내는 그래프,3 is a graph showing the tensile strain behavior test results for the aluminum sheet produced by the heat treatment method of the present invention, and the aluminum sheet produced by the conventional heat treatment method,

도 4는 본 발명의 열처리 방법으로 제조된 알루미늄 판재와, 기존의 열처리 방법으로 제조된 알루미늄 판재의 표면 굴곡 발생 여부를 시각적으록 관찰할 수 있는 대비 사진.Figure 4 is a contrast picture that can be visually observed whether the occurrence of surface bending of the aluminum sheet produced by the heat treatment method of the present invention, and the aluminum sheet produced by the conventional heat treatment method.

Claims (3)

냉간 압연 스케쥴 중, 최종 패스에서 알루미늄 합금 판재를 압하율 45~50%로 냉간압연하는 단계와; During the cold rolling schedule, cold rolling the aluminum alloy sheet with a rolling reduction of 45 to 50% in the final pass; 상기 냉간압연된 알루미늄 합금 판재를 450~510℃에서 3시간 동안 1차 열처리하는 단계와;Primary heat treatment of the cold rolled aluminum alloy plate at 450 to 510 ° C. for 3 hours; 1차 열처리 후, 60℃/초 이상의 속도로 급랭하는 단계와;After the first heat treatment, quenching at a rate of at least 60 ° C./sec; 급랭된 알루미늄 합금 판재를 200~220℃에서 재열처리하는 2차 열처리 단계;A second heat treatment step of reheating the quenched aluminum alloy sheet at 200 to 220 ° C .; 를 포함하는 것을 특징으로 하는 알루미늄 합금 판재의 열처리 방법.Heat treatment method of an aluminum alloy sheet material comprising a. 청구항 1에 있어서, 상기 알루미늄 합금 판재는 알루미늄(Al)을 주성분으로 하고, 여기에 마그네슘(Mg) 3.0∼3.8중량%, 망간(Mn) 0.20∼0.50중량%, 철(Fe) 0.35중량%, 기타 불가피한 불순물이 함유된 AA5454 알루미늄-마그네슘 합금 판재인 것을 특징으로 하는 알루미늄 합금 판재의 열처리 방법.The aluminum alloy sheet according to claim 1, wherein the aluminum alloy sheet has aluminum (Al) as a main component, and magnesium (Mg) 3.0 to 3.8 wt%, manganese (Mn) 0.20 to 0.50 wt%, iron (Fe) 0.35 wt%, etc. A method of heat treatment of an aluminum alloy sheet, characterized in that the AA5454 aluminum-magnesium alloy sheet containing inevitable impurities. 청구항 1 또는 청구항 2에 있어서, 상기 알루미늄 합금 판재를 압하율 45~50%로 냉간압연함으로써, 상기 알루미늄 합금 판재의 표면에 전단응력이 가해지는 동시에 전단 집합조직인 {001}<110>이 발달하도록 한 것을 특징으로 하는 알루 미늄 합금 판재의 열처리 방법.The method according to claim 1 or 2, wherein the aluminum alloy sheet is cold-rolled at a rolling reduction of 45 to 50%, so that shear stress is applied to the surface of the aluminum alloy sheet and at the same time, {001} <110> is developed. Heat treatment method of the aluminum alloy sheet material, characterized in that.
KR1020080070424A 2008-07-21 2008-07-21 Heat treatment method for Al alloy panel KR101028029B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020080070424A KR101028029B1 (en) 2008-07-21 2008-07-21 Heat treatment method for Al alloy panel
US12/356,439 US20100012236A1 (en) 2008-07-21 2009-01-20 Heat treatment method of aluminum alloy panel
CN200910005653A CN101634004A (en) 2008-07-21 2009-02-10 Heat treatment method of aluminum alloy panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080070424A KR101028029B1 (en) 2008-07-21 2008-07-21 Heat treatment method for Al alloy panel

Publications (2)

Publication Number Publication Date
KR20100009683A true KR20100009683A (en) 2010-01-29
KR101028029B1 KR101028029B1 (en) 2011-04-13

Family

ID=41529245

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080070424A KR101028029B1 (en) 2008-07-21 2008-07-21 Heat treatment method for Al alloy panel

Country Status (3)

Country Link
US (1) US20100012236A1 (en)
KR (1) KR101028029B1 (en)
CN (1) CN101634004A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101509636B1 (en) * 2012-12-28 2015-04-08 주식회사 포스코 Apparatus and method for cooling magnesium alloy sheet

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2017014219A (en) 2015-05-08 2018-03-01 Novelis Inc Shock heat treatment of aluminum alloy articles.
EP3526352B1 (en) 2016-10-17 2021-09-01 Novelis Inc. Metal sheet with tailored properties
CN106435297A (en) * 2016-11-17 2017-02-22 东莞宜安科技股份有限公司 Preparation method for bending-resistant and corrosion-resistant high-strength aluminium magnesium alloy and product thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4820355A (en) * 1987-03-30 1989-04-11 Rockwell International Corporation Method for fabricating monolithic aluminum structures
JPH0733553B2 (en) * 1992-03-09 1995-04-12 スカイアルミニウム株式会社 Aluminum alloy rolled sheet for forming, which has excellent resistance to stress corrosion cracking, and method for producing the same
US5496426A (en) * 1994-07-20 1996-03-05 Aluminum Company Of America Aluminum alloy product having good combinations of mechanical and corrosion resistance properties and formability and process for producing such product

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101509636B1 (en) * 2012-12-28 2015-04-08 주식회사 포스코 Apparatus and method for cooling magnesium alloy sheet

Also Published As

Publication number Publication date
CN101634004A (en) 2010-01-27
KR101028029B1 (en) 2011-04-13
US20100012236A1 (en) 2010-01-21

Similar Documents

Publication Publication Date Title
JP7321828B2 (en) High-strength 6xxx aluminum alloy and method for making same
JP4939093B2 (en) Method for producing 6000 series aluminum alloy plate for automobile panel having excellent hem bendability and bake hardness
WO1995022634A1 (en) Method of manufacturing aluminum alloy plate for molding
JP2011252212A (en) Method for forming processing of 6000 series aluminum alloy material, and forming processed product
JP2008045192A (en) Aluminum alloy sheet showing excellent ridging-mark resistance at molding
CN111218590B (en) High-strength high-formability aluminum-magnesium-copper alloy plate and preparation method thereof
CN104451285A (en) Al-Mg alloy sheet for car body and manufacturing method of Al-Mg alloy sheet
US20190119799A1 (en) High-strength, highly formable aluminum alloys and methods of making the same
KR101028029B1 (en) Heat treatment method for Al alloy panel
JP6316747B2 (en) Aluminum alloy plate for blow molding and manufacturing method thereof
JP5644093B2 (en) Manufacturing method of high strength members
JP2006257505A (en) Aluminum alloy sheet having excellent extension flange formability
JP2009148823A (en) Warm press-forming method for aluminum alloy cold-rolled sheet
JP3833574B2 (en) Aluminum alloy sheet with excellent bending workability and press formability
JP2003321754A (en) Method for manufacturing aluminum alloy sheet with excellent bendability
JP4201745B2 (en) 6000 series aluminum alloy plate for superplastic forming excellent in paint bake hardenability and method for producing the same
WO2011004554A1 (en) Process for production of cold-rolled steel sheet having excellent press moldability, and cold-rolled steel sheet
JP2004238657A (en) Method of manufacturing aluminum alloy plate for outer panel
JP2004124213A (en) Aluminum alloy sheet for panel forming, and its manufacturing method
CN109321843B (en) High-strength high-plasticity cold-rolled steel plate and manufacturing method thereof
JP2015010259A (en) Aluminum alloy sheet
JP7153469B2 (en) Aluminum alloy plate excellent in formability, strength and appearance quality, and method for producing the same
JP4694770B2 (en) Aluminum alloy plate with excellent bending workability
JP3234511B2 (en) Method of manufacturing Al alloy plate for high speed forming and method of high speed forming of Al alloy plate
JPH10219412A (en) Manufacture of rolled aluminum alloy sheet excellent in external appearance characteristic after forming

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
FPAY Annual fee payment
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20180329

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee