JP2012025976A - METHOD OF MANUFACTURING Al-Mg-Si BASED ALUMINUM ALLOY PLATE EXCELLENT IN COAT BAKING HARDENABILITY AND FORMABILITY, AND HAVING AGING SUPPRESSION EFFECT AT ROOM TEMPERATURE - Google Patents

METHOD OF MANUFACTURING Al-Mg-Si BASED ALUMINUM ALLOY PLATE EXCELLENT IN COAT BAKING HARDENABILITY AND FORMABILITY, AND HAVING AGING SUPPRESSION EFFECT AT ROOM TEMPERATURE Download PDF

Info

Publication number
JP2012025976A
JP2012025976A JP2010162776A JP2010162776A JP2012025976A JP 2012025976 A JP2012025976 A JP 2012025976A JP 2010162776 A JP2010162776 A JP 2010162776A JP 2010162776 A JP2010162776 A JP 2010162776A JP 2012025976 A JP2012025976 A JP 2012025976A
Authority
JP
Japan
Prior art keywords
temperature
aging
less
stage pre
aluminum alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010162776A
Other languages
Japanese (ja)
Inventor
Mineo Asano
峰生 浅野
Hidetoshi Uchida
秀俊 内田
Keita Fukawa
啓太 布川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP2010162776A priority Critical patent/JP2012025976A/en
Publication of JP2012025976A publication Critical patent/JP2012025976A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing an Al-Mg-Si based aluminum alloy plate which is excellent in coat baking hardenability and formability, and has aging suppression effect at room temperature.SOLUTION: The Al-Mg-Si based aluminum alloy plate has a composition containing, by mass%, 0.5-2.0% of Si, 0.2-1.5% of Mg, and further containing one or more kinds selected from Cu, Zn, Fe, Mn, Cr, V, Zr, Ti, and B and the balance Al with unavoidable impurities. The method for manufacturing the Al-Mg-Si based aluminum alloy plate includes: (1) a quenching step of performing solution treatment at a temperature of 480°C or more and 580°C or less, and cooling the alloy plate to a quenching temperature of 50°C or less at a cooling speed of 2°C/second or more; (2) a first step preliminary aging step of heating the alloy plate to the first step preliminary aging temperature of 50°C or more and 100°C or less at a temperature raising speed of 2°C/second or more after holding it at the quenching temperature for one hour or less, and holding it at the first step preliminary aging temperature for one minute or more and 10 hours or less; (3) a second step preliminary aging step of heating the alloy plate to the second preliminary aging temperature being the temperature 10°C higher than the first step preliminary aging temperature or more and 140°C or less at the temperature raising speed of 1°C/hour or more, and holding it at the second step preliminary aging temperature for one minute or more and 10 hours or less.

Description

本発明は塗装焼付硬化性および成形性に優れ、且つ室温時効抑制効果を有し、特に自動車外板に適したAl−Mg−Si系アルミニウム合金板の製造方法に関する。   The present invention relates to a method for producing an Al—Mg—Si-based aluminum alloy plate that is excellent in paint bake hardenability and formability, has an effect of suppressing aging at room temperature, and is particularly suitable for an automobile outer plate.

近年、排気ガス等による地球温暖化対策として、自動車の燃費向上のために、車体の軽量化が求められている。このため、自動車の車体、特に自動車外板用材料として、従来から使用されている鋼板に代わって、アルミニウム合金板の適用が増加している。   In recent years, as a measure against global warming caused by exhaust gas or the like, a reduction in weight of the vehicle body has been demanded in order to improve the fuel efficiency of automobiles. For this reason, the application of aluminum alloy plates is increasing instead of steel plates that have been used conventionally as materials for automobile bodies, particularly automobile outer plates.

自動車外板用アルミニウム合金材としては、Al−Mg系アルミニウム合金やAl−Mg−Si系アルミニウム合金が使用されており、このうち、熱処理型合金であるAl−Mg−Si系アルミニウム合金は適切な条件で製造することにより塗装焼付硬化性を示す点で、自動車外板用としてAl−Mg系アルミニウム合金に比べ優れた特性をそなえている。   Al-Mg-based aluminum alloys and Al-Mg-Si-based aluminum alloys are used as aluminum alloy materials for automobile outer plates, and among these, Al-Mg-Si-based aluminum alloys that are heat-treatable alloys are suitable. It has excellent characteristics as compared with an Al-Mg-based aluminum alloy for automobile outer panels in that it exhibits paint bake hardenability by producing under conditions.

しかし、Al−Mg−Si系アルミニウム合金は、その反面、非熱処理型合金であるAl−Mg系アルミニウム合金にはみられない室温時効硬化性を示し、室温時効硬化することにより、プレス成形やヘム加工(曲げ加工)時に割れが発生し易くなるという難点があり、Al−Mg−Si系アルミニウム合金を自動車外板用材料として適用するためには、塗装焼付硬化と室温時効抑制という相反する特性を両立させなければならないという問題がある。   However, Al-Mg-Si-based aluminum alloys, on the other hand, exhibit room temperature age-hardening properties that are not found in Al-Mg-based aluminum alloys, which are non-heat-treatable alloys. In order to apply Al-Mg-Si based aluminum alloy as a material for automotive outer panels, the conflicting properties of paint bake hardening and room temperature aging suppression are difficult to crack during processing (bending). There is a problem that they must be compatible.

Al−Mg−Si系アルミニウム合金において、塗装焼付硬化と室温時効抑制の相反する特性を両立させようとする試みは、これまでにも検討されており、溶体化処理条件や予備時効条件等の工夫によりある程度両立可能な手法が提案されているが、これらの手法も両特性を完全に両立させるには十分でなく、さらに改善が要求されている。   In Al-Mg-Si-based aluminum alloys, attempts to achieve both contradictory properties of paint bake hardening and room temperature aging suppression have been studied so far, and devices such as solution treatment conditions and preliminary aging conditions have been studied. However, these methods are not sufficient to make both characteristics completely compatible, and further improvements are required.

特開平8−74014号公報JP-A-8-74014 特開2007−239005号公報JP 2007-239005 A 特開2002−206152号公報JP 2002-206152 A

本発明は、Al−Mg−Si系合金を自動車用外板用として適用する場合において、プレス成形やヘム加工(曲げ加工)時に割れが発生し易くなるという問題を解消するために、合金組成、溶体化処理条件、予備時効条件と成形性との関係について試験、検討を重ねた結果としてなされたものであり、その目的は、塗装焼付硬化性および成形性に優れ、室温時効抑制効果を有するAl−Mg−Si系アルミニウム合金板の製造方法を提供することにある。   In the case of applying the Al-Mg-Si-based alloy as an automotive outer plate, the present invention eliminates the problem that cracking is likely to occur during press molding or hem processing (bending processing). It was made as a result of repeated testing and examination on the relationship between solution treatment conditions, preliminary aging conditions and formability, and its purpose is Al with excellent bake hardenability and formability and having an effect of suppressing room temperature aging The object is to provide a method for producing a Mg—Si based aluminum alloy plate.

上記の目的を達成するための請求項1による塗装焼付硬化性および成形性に優れ、室温時効抑制効果を有するAl−Mg−Si系アルミニウム合金板の製造方法は、質量%で、Si:0.5〜2.0%、Mg:0.2〜1.5%を含有し、さらにCu:1.0%以下、Zn:0.5%以下、Fe:0.5%以下、Mn:0.3%以下、Cr:0.3%以下、V:0.2%以下、Zr:0.15%以下、Ti:0.1%以下、B:0.005%以下のうち1種または2種以上を含有し、残部Alおよび不可避的不純物からなる組成を有するAl−Mg−Si系アルミニウム合金の板材を、(1)480℃以上580℃以下の温度で溶体化処理し、2℃/秒以上の冷却速度で50℃未満の焼入れ温度まで冷却する焼入れ工程、(2)前記焼入れ温度で1時間以内の時間保持した後、2℃/分以上の昇温速度で50℃以上100℃以下の1段目予備時効温度まで加熱し、該1段目予備時効温度で1分以上10時間以内の時間保持する1段目予備時効工程、および、(3)1℃/時間以上の昇温速度で前記1段目予備時効温度よりも10℃高い温度以上140℃以下の2段目予備時効温度に加熱し、該2段目予備時効温度で1分以上10時間以内の時間保持する2段目予備時効工程で処理することを特徴とする。なお、以下の説明において、合金成分はいずれも質量%で示す。   The method for producing an Al—Mg—Si based aluminum alloy plate having excellent paint bake hardenability and formability according to claim 1 for achieving the above object and having an effect of suppressing room temperature aging is expressed by mass%, and Si: 0.00. 5 to 2.0%, Mg: 0.2 to 1.5%, Cu: 1.0% or less, Zn: 0.5% or less, Fe: 0.5% or less, Mn: 0.00%. 1% or less of 3% or less, Cr: 0.3% or less, V: 0.2% or less, Zr: 0.15% or less, Ti: 0.1% or less, B: 0.005% or less (1) Solution treatment at a temperature of 480 ° C. or higher and 580 ° C. or lower is performed on a plate material of an Al—Mg—Si based aluminum alloy having a composition comprising the balance Al and inevitable impurities. A quenching step of cooling to a quenching temperature of less than 50 ° C. at a cooling rate of (2) the quenching temperature And then heated to a first stage pre-aging temperature of 50 ° C. or more and 100 ° C. or less at a temperature rising rate of 2 ° C./min or more, and at the first stage pre-aging temperature for 1 minute or more and 10 hours. The first stage pre-aging process for holding the time within the following range, and (3) the second stage pre-aging process at a temperature rising rate of 1 ° C./hour or more and a temperature higher by 10 ° C. than the first stage pre-aging temperature and not more than 140 ° C. Heating to a temperature, the second stage pre-aging temperature is maintained at the second stage pre-aging temperature for 1 minute to 10 hours, and the treatment is performed. In the following description, all alloy components are indicated by mass%.

請求項2による塗装焼付硬化性および成形性に優れ、室温時効抑制効果を有するAl−Mg−Si系アルミニウム合金板の製造方法は、請求項1において、前記(2)の1段目予備時効工程の後、50℃以上1段目予備時効温度未満の温度まで冷却し、前記(3)の2段目予備時効工程を行うことを特徴とする。   The method for producing an Al—Mg—Si based aluminum alloy sheet having excellent paint bake hardenability and formability according to claim 2 and having an effect of suppressing aging at room temperature is the first stage pre-aging step of (2) in claim 1. After that, it is cooled to a temperature not lower than 50 ° C. and lower than the first stage pre-aging temperature, and the second stage pre-aging step (3) is performed.

請求項3による塗装焼付硬化性および成形性に優れ、室温時効抑制効果を有するAl−Mg−Si系アルミニウム合金板の製造方法は、請求項1において、前記(2)の1段目予備時効工程の後、冷却することなく、前記(3)の2段目予備時効工程を行うことを特徴とする。   The method for producing an Al—Mg—Si based aluminum alloy plate having excellent paint bake hardenability and formability according to claim 3 and having an effect of suppressing aging at room temperature is the first-stage preliminary aging step of (2) in claim 1. Thereafter, the second preliminary aging step (3) is performed without cooling.

本発明によれば、塗装焼付硬化性および成形性に優れ、室温時効抑制効果を有し、特に自動車外板用として好適なAl−Mg−Si系アルミニウム合金板の製造方法が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the Al-Mg-Si type aluminum alloy plate which is excellent in paint bake hardenability and a moldability, has a room temperature aging suppression effect, and is especially suitable for motor vehicle outer plates is provided.

本発明における合金成分の意義および限定理由について説明する。
Si:
Siは、塗装焼付硬化性を得るために必要な合金成分であり、Mg−Si系化合物を形成して強度を高めるよう機能する。Siの好ましい含有量は0.5〜2.0%の範囲であり、0.5%未満では塗装焼付処理(150〜200℃の温度範囲内で20分保持する熱処理)で十分な塗装焼付硬化性が得られず、2.0%を超えると、室温時効が顕著に進み、プレス成形性や曲げ加工性が劣化する。Siのさらに好ましい含有量は0.8〜1.2%の範囲である。
The significance and reasons for limitation of the alloy components in the present invention will be described.
Si:
Si is an alloy component necessary for obtaining paint bake hardenability, and functions to increase the strength by forming an Mg—Si compound. The preferable content of Si is in the range of 0.5 to 2.0%, and if it is less than 0.5%, the paint baking and curing is sufficient with the paint baking process (heat treatment held at 150 to 200 ° C. for 20 minutes). If it exceeds 2.0%, aging at room temperature proceeds remarkably, and press formability and bending workability deteriorate. A more preferable content of Si is in the range of 0.8 to 1.2%.

Mg:
Mgは、Siと同様に塗装焼付硬化性を得るために必要な合金成分であり、Mg−Si系化合物を形成して強度を高めるよう機能する。Mgの好ましい含有量は0.2〜1.5%の範囲であり、0.2%未満では塗装焼付処理(150〜200℃の温度範囲内で20分保持する熱処理)で十分な塗装焼付硬化性が得られず、1.5%を超えると、室温時効が顕著に進み、プレス成形性や曲げ加工性が劣化する。Mgのさらに好ましい含有量は0.3〜0.7%の範囲である。
Mg:
Similar to Si, Mg is an alloy component necessary for obtaining paint bake hardenability, and functions to increase the strength by forming an Mg-Si compound. The preferred Mg content is in the range of 0.2 to 1.5%, and if it is less than 0.2%, the paint baking and curing is sufficient with a paint baking process (heat treatment held at 150 to 200 ° C. for 20 minutes). If it exceeds 1.5%, aging at room temperature proceeds remarkably, and press formability and bending workability deteriorate. A more preferable content of Mg is in the range of 0.3 to 0.7%.

Cu:
Cuは、強度を高め、成形性を向上させるよう機能する。Cuの好ましい含有量は1.0%以下の範囲であり、1.0%を越えると室温時効が顕著に進み、プレス成形性や曲げ加工性が低下し、また、耐食性も劣化する。
Cu:
Cu functions to increase strength and improve formability. The preferred Cu content is in the range of 1.0% or less, and if it exceeds 1.0%, aging at room temperature proceeds remarkably, press formability and bending workability deteriorate, and corrosion resistance also deteriorates.

Zn:
Znは、表面処理時のりん酸亜鉛処理性を向上させるよう機能する。Znの好ましい含有量は0.5%以下の範囲であり、0.5%を超えると耐食性が劣化する。
Zn:
Zn functions to improve the zinc phosphate processability during the surface treatment. The preferable content of Zn is in the range of 0.5% or less, and if it exceeds 0.5%, the corrosion resistance deteriorates.

Fe、Mn、Cr、V、Zr:
上記の元素は、強度を高め、結晶粒を微細化して成形加工時の肌荒れを防止するよう機能する。好ましい含有量はFe0.5%以下、Mn0.3%以下、Cr0.3%以下、V0.2%以下、Zr0.15%以下の範囲であり、それぞれ上限を超えると、粗大な金属間化合物が生成してプレス成形性や曲げ加工性が劣化する。
Fe, Mn, Cr, V, Zr:
The above elements function to increase the strength and refine the crystal grains to prevent rough skin during molding. The preferred contents are Fe 0.5% or less, Mn 0.3% or less, Cr 0.3% or less, V 0.2% or less, and Zr 0.15% or less. As a result, press formability and bending workability deteriorate.

Ti、B:
TiおよびBは、鋳造組織を微細化して成形性を向上させるよう機能する。好ましい含有量はTi0.1%以下、B0.005%以下の範囲であり、それぞれ上限を超えると、粗大な金属間化合物が生成してプレス成形性や曲げ加工性が劣化する。
Ti, B:
Ti and B function to refine the cast structure and improve formability. Preferable contents are in the range of Ti 0.1% or less and B 0.005% or less. When the upper limit is exceeded, a coarse intermetallic compound is generated, and press formability and bending workability deteriorate.

上記の組成を有するAl−Mg−Si系合金の製造工程について説明すると、上記の組成を有するAl−Mg−Si系アルミニウム合金を溶解、鋳造し、得られた鋳塊を、常法に従って均質化処理、熱間圧延、必要に応じて中間焼鈍を行いながら所定の厚さまで冷間圧延する。   The production process of the Al—Mg—Si alloy having the above composition will be described. The Al—Mg—Si based aluminum alloy having the above composition is melted and cast, and the resulting ingot is homogenized according to a conventional method. It cold-rolls to predetermined thickness, performing a process, hot rolling, and intermediate annealing as needed.

溶体化処理、焼入れ工程:
冷間圧延されたAl−Mg−Si系アルミニウム合金板材は塗装焼付硬化性を得るために、先ず溶体化処理および焼入れ(T4処理)を行う。溶体化処理は480℃以上580℃以下の温度範囲で行う。480℃未満ではSiおよびMgの固溶が不十分となり、塗装焼付硬化性が低下する。また、580℃を超えると、SiおよびMgの固溶は十分であるが、局所的に融解するおそれがあり、安定した板材の製造を行うことができない。
Solution treatment, quenching process:
The cold-rolled Al—Mg—Si aluminum alloy sheet is first subjected to solution treatment and quenching (T4 treatment) in order to obtain paint bake hardenability. The solution treatment is performed in a temperature range of 480 ° C. or higher and 580 ° C. or lower. If it is less than 480 degreeC, the solid solution of Si and Mg will become inadequate, and paint bake hardenability will fall. If the temperature exceeds 580 ° C., the solid solution of Si and Mg is sufficient, but there is a risk of local melting, and a stable plate material cannot be produced.

溶体化処理後の焼入れは、2℃/秒以上、望ましくは10℃/秒以上の冷却速度で溶体化処理温度から50℃未満の焼入れ温度まで急冷することにより行われる。冷却速度が2℃/秒未満では、冷却中、粒界にSiやMg−Si系化合物が析出することに起因してプレス成形性や曲げ加工性が低下する。また、SiおよびMgの固溶が不十分となり、塗装焼付硬化性が低下する。焼入れ時の温度が50℃以上の場合には、焼入れ不足が発生し、十分な塗装焼付硬化性が得られなくなる。   The quenching after the solution treatment is performed by rapidly cooling from the solution treatment temperature to a quenching temperature of less than 50 ° C. at a cooling rate of 2 ° C./second or more, preferably 10 ° C./second or more. When the cooling rate is less than 2 ° C./second, press formability and bending workability are deteriorated due to the precipitation of Si or Mg—Si compounds at the grain boundaries during cooling. Moreover, the solid solution of Si and Mg becomes insufficient, and the paint bake hardenability is lowered. When the temperature during quenching is 50 ° C. or higher, insufficient quenching occurs, and sufficient paint bake hardenability cannot be obtained.

1段目予備時効工程:
1段目予備時効工程は、前記焼入れ温度で1時間以内の時間、望ましくは15分以内の時間保持した後、2℃/分以上の昇温速度で50℃以上100℃以下の1段目予備時効温度まで加熱し、該1段目予備時効温度で1分以上10時間以内の時間保持する処理工程である。
First stage preliminary aging process:
The first-stage preliminary aging step is the first-stage preliminary aging at 50 ° C. or higher and 100 ° C. or lower at a temperature rising rate of 2 ° C./min or higher after holding at the quenching temperature for a time within 1 hour, preferably within 15 minutes. It is a processing step of heating to an aging temperature and holding the first stage pre-aging temperature for a period of 1 minute to 10 hours.

焼入れ温度での保持時間は1時間以内とする必要があり、1時間を超えると、時効硬化が進み、十分な塗装焼付硬化性が得られなくなる。1段目予備時効は、2℃/分以上、望ましくは10℃/分以上の昇温速度で焼入れ温度から50℃以上100℃以下の1段目予備時効温度まで加熱し、この温度で1分以上10時間以内の時間保持することにより行われる。1段目予備時効温度が50℃未満では、予備時効効果が得られず、十分な塗装焼付硬化が達成できない。1段目予備時効温度が100℃を超えると、予備時効効果は十分得られるが、後述する2段目の予備時効を行っても室温時効抑制効果が得られなくなる。   The holding time at the quenching temperature needs to be within 1 hour. If it exceeds 1 hour, age hardening proceeds and sufficient paint bake hardenability cannot be obtained. The first stage pre-aging is heated from the quenching temperature to the first stage pre-aging temperature of 50 ° C. or more and 100 ° C. or less at a temperature increase rate of 2 ° C./min or more, preferably 10 ° C./min or more, and this temperature is 1 minute. This is carried out by holding the time within 10 hours. If the first stage pre-aging temperature is less than 50 ° C., the pre-aging effect cannot be obtained, and sufficient paint bake hardening cannot be achieved. When the first stage pre-aging temperature exceeds 100 ° C., a sufficient pre-aging effect is obtained, but even if the second stage pre-aging described below is performed, the room temperature aging suppressing effect cannot be obtained.

焼入れ温度から1段目予備時効温度までの昇温速度が2℃/分未満の場合には、時効硬化が進み、十分な塗装焼付硬化性が得られなくなる。1段目予備時効温度での保持時間が1分未満では、2段目の予備時効における予備時効効果は十分得られるが、室温時効抑制効果が得られなくなる。また、保持時間が10時間を超えると、時効硬化が進み、耐力値が高くなりすぎるため、プレス成形性や曲げ加工性が低下する。   When the rate of temperature increase from the quenching temperature to the first stage pre-aging temperature is less than 2 ° C./min, age hardening proceeds and sufficient paint bake hardenability cannot be obtained. If the holding time at the first stage pre-aging temperature is less than 1 minute, the preliminary aging effect in the second stage pre-aging is sufficiently obtained, but the room temperature aging suppressing effect cannot be obtained. On the other hand, if the holding time exceeds 10 hours, age hardening proceeds and the proof stress value becomes too high, so that press formability and bending workability are deteriorated.

1段目予備時効工程後は、冷却することなく、1段目予備時効温度から直接2段目予備時効温度に昇温して2段目予備時効温度で保持する2段目予備時効を行ってもよく、冷却した後に2段目予備時効を行うこともできる。1段目予備時効温度から冷却する場合には、1段目予備時効温度から50℃以上1段目予備時効温度未満の温度まで冷却する必要がある。50℃未満の温度まで冷却した場合には、冷却中に時効硬化が進み、十分な塗装焼付硬化性が得られなくなる。   After the first stage pre-aging process, the second stage pre-aging is performed by raising the temperature directly from the first stage pre-aging temperature to the second stage pre-aging temperature and holding it at the second stage pre-aging temperature without cooling. It is also possible to perform second stage pre-aging after cooling. When cooling from the first stage pre-aging temperature, it is necessary to cool from the first stage pre-aging temperature to a temperature not lower than 50 ° C. and lower than the first stage pre-aging temperature. When cooled to a temperature of less than 50 ° C., age hardening proceeds during cooling and sufficient paint bake hardenability cannot be obtained.

2段目予備時効工程:
2段目予備時効工程は、1℃/時間以上、望ましくは10℃/時間以上の昇温速度で、1段目予備時効温度から1段目予備時効温度よりも10℃高い温度以上140℃以下の2段目予備時効温度まで加熱し、該2段目予備時効温度で1分以上10時間以内の時間保持する処理工程である。
Second stage preliminary aging process:
The second stage pre-aging step is at a temperature increase rate of 1 ° C./hour or more, preferably 10 ° C./hour or more, and a temperature higher by 10 ° C. than the first stage pre-aging temperature but not more than 140 ° C. The second stage pre-aging temperature is maintained and the second stage pre-aging temperature is maintained for 1 minute to 10 hours.

2段目予備時効温度が1段目予備時効温度よりも10℃高い温度未満の場合には、十分な2段目予備時効効果が得られず、優れた塗装焼付硬化性および室温時効抑制効果が得られなくなる。すなわち、塗装焼付硬化性および室温時効抑制効果において、2段目予備時効を行った場合と行わなかった場合の差がみられなくなる。また、2段目予備時効温度が140℃を超えると、時効硬化が進み、耐力値が高くなりすぎるため、プレス成形性や曲げ加工性が低下する。   If the second stage pre-aging temperature is less than 10 ° C higher than the first stage pre-aging temperature, sufficient second stage pre-aging effect cannot be obtained, and excellent paint bake hardenability and room temperature aging suppression effect are obtained. It can no longer be obtained. That is, the difference between the case where the second stage preliminary aging is performed and the case where the second stage preliminary aging is not performed is not observed in the bake hardenability and the room temperature aging suppressing effect. On the other hand, if the second stage preliminary aging temperature exceeds 140 ° C., age hardening proceeds and the proof stress value becomes too high, so that press formability and bending workability deteriorate.

1段目予備時効温度から2段目予備時効温度への昇温速度が1℃/時間未満の場合には、十分な2段目予備時効効果が得られず、優れた塗装焼付硬化性および室温時効抑制効果が得られなくなる。2段目予備時効温度での保持時間が1分未満では十分な2段目予備時効効果が得られず、優れた塗装焼付硬化性および室温時効抑制効果が得られなくなる。また、保持時間が10時間を超えると、時効硬化が進み、耐力値が高くなりすぎるため、プレス成形性や曲げ加工性が低下する。   When the rate of temperature increase from the first stage pre-aging temperature to the second stage pre-aging temperature is less than 1 ° C./hour, a sufficient second stage pre-aging effect cannot be obtained, and excellent paint bake hardenability and room temperature. Aging suppression effect cannot be obtained. If the holding time at the second stage pre-aging temperature is less than 1 minute, sufficient second stage pre-aging effect cannot be obtained, and excellent paint bake hardenability and room temperature aging inhibiting effect cannot be obtained. On the other hand, if the holding time exceeds 10 hours, age hardening proceeds and the proof stress value becomes too high, so that press formability and bending workability are deteriorated.

工場での実生産を想定した場合、溶体化処理、焼入れ工程、1段目および2段目予備時効工程は通常は連続焼鈍炉を用いて行うことが望ましいが、1段目および2段目の予備時効時間が1時間を超える場合については、板材をコイルとして巻き取って予備時効を行うのがよい。この場合、1段目予備時効後の板材をコイルとして巻き取り、このコイルを2段目予備時効工程前に50℃以上1段目予備時効温度未満の温度まで冷却する際には、30℃/時間以下の冷却速度で冷却することが必要である。コイルに対して30℃/時間を超える冷却速度で冷却を行った場合には、コイル全体を均一に冷却することが難しく、コイル内での予備時効状態が不均一となり、安定した塗装焼付硬化性および室温時効抑制効果が得られなくなるためである。   Assuming actual production in the factory, the solution treatment, the quenching process, the first stage and the second stage pre-aging process are usually preferably performed using a continuous annealing furnace. When the preliminary aging time exceeds 1 hour, it is preferable to perform preliminary aging by winding the plate material as a coil. In this case, the plate material after the first stage pre-aging is wound as a coil, and when this coil is cooled to a temperature of 50 ° C. or more and lower than the first stage pre-aging temperature before the second stage pre-aging process, 30 ° C. / It is necessary to cool at a cooling rate of less than an hour. When the coil is cooled at a cooling rate exceeding 30 ° C./hour, it is difficult to cool the entire coil uniformly, the pre-aging state in the coil is not uniform, and stable paint bake hardenability. This is because the room temperature aging suppression effect cannot be obtained.

本発明においては、前記の合金組成を有するAl−Mg−Si系アルミニウム合金材を、前記の溶体化処理、焼入れ工程、1段目予備時効工程、1段目予備時効工程後に必要に応じて行う冷却工程、および2段目予備時効工程からなる一連の工程で処理することにより、塗装焼付硬化性および成形性に優れ、室温時効抑制効果を有するAl−Mg−Si系アルミニウム合金板を製造することができる。   In the present invention, the Al—Mg—Si based aluminum alloy material having the above alloy composition is performed as necessary after the solution treatment, quenching step, first stage pre-aging step, and first stage pre-aging step. To produce an Al—Mg—Si-based aluminum alloy sheet that is excellent in paint bake hardenability and formability and has an effect of suppressing aging at room temperature by processing in a series of steps consisting of a cooling step and a second stage pre-aging step. Can do.

以下、本発明の実施例を比較例と対比して説明し、その効果を実証する。なお、これらの実施例は、本発明の一実施態様を示すものであり、本発明はこれらに限定されない。   Examples of the present invention will be described below in comparison with comparative examples to demonstrate the effects. In addition, these Examples show one embodiment of this invention, and this invention is not limited to these.

実施例1、比較例1
表1に示す組成を有するアルミニウム合金(発明材:A〜J、比較材:K〜T)をDC鋳造により造塊し、得られた鋳塊を、550℃で24時間均質化処理した後、室温まで冷却し、その後、400℃まで再加熱して熱間圧延を開始し、厚さ2.0mmまで圧延した。熱間圧延の終了温度は250℃とした。続いて、1.0mmまで冷間圧延を行った。表1において、本発明の条件を外れたものには下線を付した。
Example 1 and Comparative Example 1
An aluminum alloy having the composition shown in Table 1 (invention materials: A to J, comparative materials: KT) was ingoted by DC casting, and the resulting ingot was homogenized at 550 ° C. for 24 hours, It was cooled to room temperature, then reheated to 400 ° C. to start hot rolling, and rolled to a thickness of 2.0 mm. The end temperature of hot rolling was 250 ° C. Subsequently, cold rolling was performed to 1.0 mm. In Table 1, those outside the conditions of the present invention are underlined.

得られた冷間圧延材について、550℃で60秒間の溶体化処理を行い、20℃/秒の冷却速度で20℃の焼入れ温度まで急冷した。20℃で10分保持した後、20℃/分の昇温速度で80℃の1段目予備時効温度まで加熱して、80℃で1時間保持する1段目予備時効を行った。その後、冷却せずに、20℃/時間の昇温速度で80℃から120℃の2段目予備時効温度まで加熱し、120℃で5分保持する2段目予備時効を行い、40℃まで冷却して、40℃にて3日および30日保持した後、以下の方法で室温時効特性、塗装焼付硬化性、成形性を評価した。結果を表2に示す。   The obtained cold-rolled material was subjected to a solution treatment at 550 ° C. for 60 seconds, and rapidly cooled to a quenching temperature of 20 ° C. at a cooling rate of 20 ° C./second. After maintaining at 20 ° C. for 10 minutes, the first stage pre-aging was performed by heating to a first stage pre-aging temperature of 80 ° C. at a rate of temperature increase of 20 ° C./min and holding at 80 ° C. for 1 hour. Then, without cooling, the second stage pre-aging temperature is maintained at 120 ° C. for 5 minutes by heating from 80 ° C. to 120 ° C. at a temperature increase rate of 20 ° C./hour, and up to 40 ° C. After cooling and holding at 40 ° C. for 3 and 30 days, room temperature aging characteristics, paint bake hardenability and moldability were evaluated by the following methods. The results are shown in Table 2.

室温時効特性:
40℃にて3日および30日保持した板材(試験材)について、圧延方向に対して平行方向にJIS5号引張試験片を採取した後、引張試験を行い、30日保持した試験材の耐力(30d後の耐力)と3日保持した試験材の耐力(3d後の耐力)との差を評価し、差が10MPa以下を合格、10MPa未満を不合格(×)とした。
Room temperature aging characteristics:
For a plate material (test material) held at 40 ° C. for 3 days and 30 days, a JIS No. 5 tensile test piece was taken in a direction parallel to the rolling direction, and then a tensile test was performed. The difference between the yield strength after 30 d) and the yield strength of the test material held for 3 days (the yield strength after 3 d) was evaluated, and a difference of 10 MPa or less was accepted and less than 10 MPa was rejected (x).

塗装焼付硬化性:
40℃にて30日保持した板材(試験材)について、圧延方向に対して平行方向にJIS5号引張試験片を採取し、2%の引張変形を施した後、170℃にて30分熱処理を行った後、常温で引張試験を行い、耐力200MPa以上を合格、200MPa未満を不合格(×)とした。
Paint bake curability:
For a plate material (test material) held at 40 ° C. for 30 days, a JIS No. 5 tensile test piece was taken in a direction parallel to the rolling direction, subjected to 2% tensile deformation, and then heat treated at 170 ° C. for 30 minutes. After performing, the tensile test was done at normal temperature, yield strength 200MPa or more was passed, and less than 200MPa was made disqualified (x).

成形性:
40℃にて30日保持した板材(試験材)について、平面ひずみの破断限界ひずみ量、曲げ試験時の曲げ割れ発生有無を調査して、評価を行った。
平面ひずみの破断限界ひずみ量は、次に示す手順で測定した。圧延方向に対して平行方向に幅50mm、長さ100mmの試験片を採取し、試験片に直径5mmのスクライブドサークルを転写した後、直径50mmの球頭パンチを用いた張出試験を行った。張出試験時の成形条件はしわ押さえ力:50kN、成形速度:120mm/分、潤滑油:高粘度油(動粘度1000mm/s)とした。張出試験後のパネルを用いて、破断部近傍の主ひずみ方向のスクライブドサークル径(寸法A)を測定した後、次式により、平面ひずみの破断限界ひずみ量を算出し、0.20以上を合格、0.20未満を不合格(×)とした。
(平面ひずみの破断限界ひずみ量)=((寸法A)−5mm)/5mm
Formability:
About the board | plate material (test material) hold | maintained at 40 degreeC for 30 days, the fracture limit strain amount of a plane strain and the presence or absence of a bending crack at the time of a bending test were investigated and evaluated.
The fracture limit amount of plane strain was measured by the following procedure. A test piece having a width of 50 mm and a length of 100 mm was taken in a direction parallel to the rolling direction, a scribed circle having a diameter of 5 mm was transferred to the test piece, and then an overhang test using a ball-head punch having a diameter of 50 mm was performed. . The molding conditions during the overhang test were wrinkle holding force: 50 kN, molding speed: 120 mm / min, and lubricating oil: high viscosity oil (kinematic viscosity 1000 mm 2 / s). After measuring the scribed circle diameter (dimension A) in the principal strain direction in the vicinity of the fractured portion using the panel after the overhang test, the fracture limit strain amount of plane strain is calculated by the following formula, 0.20 or more Was passed and less than 0.20 was rejected (x).
(Fracture limit strain amount of plane strain) = ((dimension A) −5 mm) / 5 mm

曲げ試験時の曲げ割れ発生有無は、次に示す手順で評価した。圧延方向に対して平行方向に幅25mm、長さ200mmの試験片を採取し、10%の引張変形を施した後、内側曲げ半径0.5mmの180°曲げ試験を行った。曲げ加工性の評価は目視による曲げ部の外観観察により行い、割れの発生していないものを合格(○)、割れが発生したものを不合格(×)とした。   The presence or absence of bending cracks during the bending test was evaluated by the following procedure. A test piece having a width of 25 mm and a length of 200 mm was taken in a direction parallel to the rolling direction, subjected to 10% tensile deformation, and then subjected to a 180 ° bending test with an inner bending radius of 0.5 mm. Evaluation of bending workability was performed by visually observing the appearance of the bent portion, and the case where no crack was generated was accepted (◯), and the case where crack was generated was regarded as unacceptable (x).

Figure 2012025976
Figure 2012025976

Figure 2012025976
Figure 2012025976

表2に示すように、本発明に従う試験材1〜10はいずれも、塗装焼付硬化性、成形性に優れ、十分な室温時効抑制効果を有していた。   As shown in Table 2, all of the test materials 1 to 10 according to the present invention were excellent in paint bake hardenability and moldability and had a sufficient room temperature aging inhibitory effect.

これに対して、試験材11、試験材13はそれぞれSi量、Mg量が少ないため、いずれも塗装焼付後の耐力が低く塗装焼付硬化性が劣っていた。試験材12、試験材14、試験材15はそれぞれSi量、Mg量、Cu量が多いため、いずれも3d後の耐力と30d後の耐力の差が大きく、室温時効抑制効果が不十分であった。また、平面ひずみの破断限界ひずみ量が低く、曲げ割れが発生し、成形性に劣っていた。   On the other hand, since the test material 11 and the test material 13 had a small amount of Si and Mg, respectively, the proof stress after paint baking was low and the paint bake curability was poor. Since the test material 12, the test material 14, and the test material 15 have a large amount of Si, Mg, and Cu, respectively, the difference between the proof strength after 3d and the proof strength after 30d is large, and the room temperature aging suppression effect is insufficient. It was. Moreover, the fracture limit amount of plane strain was low, bending cracks occurred, and the formability was poor.

試験材16、試験材17はそれぞれFe量、Mn量が多いため、いずれも塗装焼付後の耐力が低く、塗装焼付硬化性に劣っていた。また、平面ひずみの破断限界ひずみ量が低く、曲げ割れも発生し、成形性にも劣っていた。試験材18、試験材19、試験材20はそれぞれCr量、V量、Zr量が多いため、いずれも平面ひずみの破断限界ひずみ量が低く、曲げ割れが発生し、成形性に劣っていた。   Since each of the test material 16 and the test material 17 had a large amount of Fe and Mn, both had low proof stress after paint baking and were inferior in paint bake curability. Moreover, the fracture limit strain amount of plane strain was low, bending cracks were generated, and the moldability was poor. Since each of the test material 18, the test material 19, and the test material 20 had a large amount of Cr, V, and Zr, all of them had a low plane strain breaking limit strain, a bending crack was generated, and the formability was poor.

実施例2、比較例2
表1に示すアルミニウム合金Aの鋳塊を、540℃で12時間均質化処理した後、室温まで冷却し、その後、420℃まで再加熱して熱間圧延を開始し、厚さ3.0mmまで圧延した。熱間圧延の終了温度は250℃とした。続いて、1.0mmまで冷間圧延を行った。
Example 2 and Comparative Example 2
The ingot of aluminum alloy A shown in Table 1 is homogenized at 540 ° C. for 12 hours, then cooled to room temperature, and then reheated to 420 ° C. to start hot rolling, and to a thickness of 3.0 mm Rolled. The end temperature of hot rolling was 250 ° C. Subsequently, cold rolling was performed to 1.0 mm.

得られた冷間圧延材について、表3に示すように、470〜590℃で30秒の溶体化処理を行い、0.2℃/秒および2℃/秒の冷却速度で5〜55℃の焼入れ温度まで冷却して、焼入れ温度で3〜70分保持した後、0.2℃/分および2℃/分の昇温速度で40〜110℃の1段目予備時効温度まで加熱して、1段目予備時効温度で30秒〜11時間保持する1段目予備時効を行った。なお、表3において、本発明の条件を外れたものには下線を付した。   About the obtained cold-rolled material, as shown in Table 3, the solution treatment of 470-590 degreeC is performed for 30 second, and it is 5-55 degreeC with the cooling rate of 0.2 degreeC / second and 2 degreeC / second. After cooling to the quenching temperature and holding at the quenching temperature for 3 to 70 minutes, heating to the first stage pre-aging temperature of 40 to 110 ° C. at a temperature rising rate of 0.2 ° C./min and 2 ° C./min, The first stage pre-aging was carried out at the first stage pre-aging temperature for 30 seconds to 11 hours. In Table 3, those outside the conditions of the present invention are underlined.

その後、冷却することなく、20℃/時間の昇温速度で120℃の2段目予備時効温度に加熱して、10分保持する2段目予備時効を行い、40℃まで冷却した。その後、40℃の温度に3日および30日保持した後、実施例1と同じ方法で室温時効特性、塗装焼付硬化性、成形性を評価した。結果を表3に示す。   Then, without cooling, the second stage pre-aging temperature of 120 ° C. was heated at a rate of temperature increase of 20 ° C./hour and held for 10 minutes to cool to 40 ° C. Then, after maintaining at a temperature of 40 ° C. for 3 days and 30 days, room temperature aging characteristics, paint bake hardenability, and moldability were evaluated in the same manner as in Example 1. The results are shown in Table 3.

Figure 2012025976
Figure 2012025976

表3に示すように、本発明の条件に従う試験材21〜28はいずれも、塗装焼付硬化性、成形性に優れ、十分な室温時効抑制効果を有していた。   As shown in Table 3, all of the test materials 21 to 28 in accordance with the conditions of the present invention were excellent in paint bake hardenability and moldability and had a sufficient room temperature aging suppression effect.

これに対して、試験材29は溶体化処理温度が低いため、試験材31は溶体化処理後の冷却速度が低いため、試験材32は焼入れ温度が高いため、試験材33は1段目予備時効時間が長いため、試験材34は1段目予備時効温度が低いため、また、試験材36は1段目予備時効温度までの昇温速度が低いため、いずれも塗装焼付後の耐力が低く塗装焼付硬化性に劣っていた。試験材30は、溶体化処理温度が高く、溶体化処理中に局所融解が生じたため、各評価試験を行うことができなかった。   On the other hand, since the test material 29 has a low solution treatment temperature, the test material 31 has a low cooling rate after the solution treatment, and the test material 32 has a high quenching temperature. Since the aging time is long, the test material 34 has a low first stage pre-aging temperature, and the test material 36 has a low rate of temperature rise to the first stage pre-aging temperature. It was inferior in paint bake curability. Since the test material 30 had a high solution treatment temperature and local melting occurred during the solution treatment, each evaluation test could not be performed.

試験材35は1段目予備時効温度が高いため、試験材37は1段目予備時効時間が短いため、いずれも30日保持後の耐力(30d後の耐力)と3日保持後の耐力(3d後の耐力)との差が大きく、室温時効抑制効果が不十分であった。また、平面ひずみの破断限界ひずみ量が低く、曲げ割れが発生し成形性に劣っていた。   Since the test material 35 has a high first stage pre-aging temperature, and the test material 37 has a short first stage pre-aging time, both have a yield strength after 30 days (strength after 30 d) and a yield strength after 3 days ( The difference from the yield strength after 3d) was large, and the room temperature aging suppression effect was insufficient. Moreover, the fracture limit strain amount of plane strain was low, bending cracking occurred, and the formability was poor.

また、試験材38は、30日保持後の耐力(30d後の耐力)と3日保持後の耐力(3d後の耐力)との差は小さく、塗装焼付後の耐力も高かったが、予備時効時間が長かったため、30日保持後の耐力(30d後の耐力)が高くなり、平面ひずみの破断限界ひずみ量が低く、曲げ割れが発生し、成形性に劣っていた。   The test material 38 had a small difference between the proof strength after 30 days (proof strength after 30 d) and the proof strength after 3 days (proof strength after 3 d), and the proof strength after baking was high. Since the time was long, the proof stress after 30 days retention (proof strength after 30 d) was high, the fracture limit strain of plane strain was low, bending cracks were generated, and the formability was poor.

実施例3、比較例3
表1に示すアルミニウム合金Aの鋳塊を、560℃で16時間均質化処理した後、室温まで冷却し、その後、380℃まで再加熱して熱間圧延を開始し、厚さ2.5mmまで圧延した。熱間圧延の終了温度は250℃とした。続いて、1.0mmまで冷間圧延を行った。
Example 3 and Comparative Example 3
The ingot of aluminum alloy A shown in Table 1 was homogenized at 560 ° C. for 16 hours, then cooled to room temperature, then reheated to 380 ° C. and started hot rolling until the thickness reached 2.5 mm. Rolled. The end temperature of hot rolling was 250 ° C. Subsequently, cold rolling was performed to 1.0 mm.

得られた冷間圧延材について、550℃で45秒の溶体化処理を行い、10℃/秒の冷却速度で30℃の焼入れ温度まで冷却して、焼入れ温度で5分保持した後、10℃/分の昇温速度で90℃の1段目予備時効温度まで加熱して、1段目予備時効温度で2時間保持する1段目予備時効を行った。   The obtained cold-rolled material was subjected to a solution treatment at 550 ° C. for 45 seconds, cooled to a quenching temperature of 30 ° C. at a cooling rate of 10 ° C./second, held at the quenching temperature for 5 minutes, and then 10 ° C. The first stage pre-aging was carried out by heating to the first stage pre-aging temperature of 90 ° C. at a rate of temperature rise / minute and holding at the first stage pre-aging temperature for 2 hours.

その後、冷却せずに、表4に示すように、0.1℃/時間および1℃/時間の昇温速度で90〜150℃の2段目予備時効温度に加熱して、30秒〜11時間保持する2段目予備時効を行い、40℃まで冷却した。その後、40℃の温度に3日および30日保持した後、実施例1と同じ方法で室温時効特性、塗装焼付硬化性、成形性を評価した。結果を表4に示す。なお、表4において、本発明の条件を外れたものには下線を付した。   Then, without cooling, as shown in Table 4, it was heated to the second stage pre-aging temperature of 90 to 150 ° C. at a rate of temperature increase of 0.1 ° C./hour and 1 ° C./hour, for 30 seconds to 11 The second stage pre-aging was carried out for a period of time and cooled to 40 ° C. Then, after maintaining at a temperature of 40 ° C. for 3 days and 30 days, room temperature aging characteristics, paint bake hardenability, and moldability were evaluated in the same manner as in Example 1. The results are shown in Table 4. In Table 4, those outside the conditions of the present invention are underlined.

Figure 2012025976
Figure 2012025976

表3に示すように、本発明の条件に従う試験材39〜43はいずれも、塗装焼付硬化性、成形性に優れ、十分な室温時効抑制効果を有していた。   As shown in Table 3, all of the test materials 39 to 43 according to the conditions of the present invention were excellent in paint bake hardenability and moldability and had a sufficient room temperature aging suppression effect.

これに対して、試験材44は2段目予備時効温度が低く、1段目予備時効温度と2段目予備時効温度の差が小さいため、試験材46は2段目予備時効温度までの昇温速度が低いため、試験材47は2段目予備時効時間が短いため、いずれも30日保持後の耐力(30d後の耐力)と3日保持後の耐力(3d後の耐力)との差が大きく、室温時効抑制効果が不十分であった。また、平面ひずみの破断限界ひずみ量が低く、曲げ割れが発生し成形性に劣っていた。   In contrast, the test material 44 has a low second stage pre-aging temperature, and the difference between the first stage pre-aging temperature and the second stage pre-aging temperature is small. Since the temperature rate is low, the test material 47 has a short second stage pre-aging time, and therefore, the difference between the yield strength after 30 days (strength after 30 d) and the yield strength after 3 days (strength after 3 d). The room temperature aging inhibitory effect was insufficient. Moreover, the fracture limit strain amount of plane strain was low, bending cracking occurred, and the formability was poor.

試験材45は2段目予備時効温度が高いため、試験材48は2段目予備時効時間が長いため、いずれも30日保持後の耐力(30d後の耐力)が高くなり、平面ひずみの破断限界ひずみ量が低く、曲げ割れが発生し成形性に劣っていた。   Since the test material 45 has a high second stage pre-aging temperature, and the test material 48 has a long second stage pre-aging time, both have a high yield strength after 30 days (30d yield strength) and fracture of plane strain. The limit strain was low, bending cracks occurred, and the formability was poor.

実施例4、比較例4
表1に示すアルミニウム合金Aの鋳塊を、560℃で24時間均質化処理した後、室温まで冷却し、その後、410℃まで再加熱して熱間圧延を開始し、厚さ4.0mmまで圧延した。熱間圧延の終了温度は250℃とした。続いて、1.0mmまで冷間圧延を行った。
Example 4 and Comparative Example 4
The ingot of aluminum alloy A shown in Table 1 was homogenized at 560 ° C. for 24 hours, then cooled to room temperature, and then reheated to 410 ° C. to start hot rolling, to a thickness of 4.0 mm Rolled. The end temperature of hot rolling was 250 ° C. Subsequently, cold rolling was performed to 1.0 mm.

得られた冷間圧延材について、560℃で45秒の溶体化処理を行い、50℃/秒の冷却速度で40℃の焼入れ温度まで冷却して、焼入れ温度で1分保持した後、15℃/分の昇温速度で90℃の1段目予備時効温度まで加熱して、1段目予備時効温度で1.5時間保持する1段目予備時効を行った。   The obtained cold-rolled material was subjected to a solution treatment at 560 ° C. for 45 seconds, cooled to a quenching temperature of 40 ° C. at a cooling rate of 50 ° C./second, held at the quenching temperature for 1 minute, and then 15 ° C. The first stage pre-aging was performed by heating to 90 ° C. at the first stage pre-aging temperature at a rate of temperature rise / min and holding at the first stage pre-aging temperature for 1.5 hours.

その後、表5に示すように、20℃/時間の冷却速度で45℃および55℃の温度まで冷却した後、1℃/時間の昇温速度で95〜145℃の2段目予備時効温度に加熱して、1分〜10時間保持する2段目予備時効を行い、40℃まで冷却した。その後、40℃の温度に3日および30日保持した後、実施例1と同じ方法で室温時効特性、塗装焼付硬化性、成形性を評価した。結果を表5に示す。なお、表5において、本発明の条件を外れたものには下線を付した。   Then, as shown in Table 5, after cooling to a temperature of 45 ° C. and 55 ° C. at a cooling rate of 20 ° C./hour, the second stage pre-aging temperature of 95 to 145 ° C. is reached at a heating rate of 1 ° C./hour. The second stage pre-aging was performed by heating and holding for 1 minute to 10 hours, and cooled to 40 ° C. Then, after maintaining at a temperature of 40 ° C. for 3 days and 30 days, room temperature aging characteristics, paint bake hardenability, and moldability were evaluated in the same manner as in Example 1. The results are shown in Table 5. In Table 5, those outside the conditions of the present invention are underlined.

Figure 2012025976
Figure 2012025976

表5に示すように、本発明の条件に従う試験材49〜53はいずれも、塗装焼付硬化性、成形性に優れ、十分な室温時効抑制効果を有していた。   As shown in Table 5, all of the test materials 49 to 53 according to the conditions of the present invention were excellent in paint bake hardenability and moldability and had a sufficient room temperature aging inhibitory effect.

これに対して、試験材54は、1段目予備時効後の冷却温度が45℃と低く、2段目予備時効温度がやや低いため、塗装焼付硬化性が劣っていた。また、試験材55は、1段目予備時効後の冷却温度が45℃と低く、2段目予備時効温度がやや高いため、塗装焼付硬化性が劣っていた。   On the other hand, the test material 54 had a low cooling temperature of 45 ° C. after the first stage pre-aging, and the second stage pre-aging temperature was slightly low, so the paint bake curability was inferior. Further, the test material 55 had a low cooling temperature of 45 ° C. after the first stage pre-aging, and the second stage pre-aging temperature was slightly high, so the paint bake curability was inferior.

Claims (3)

質量%で、Si:0.5〜2.0%、Mg:0.2〜1.5%を含有し、さらにCu:1.0%以下、Zn:0.5%以下、Fe:0.5%以下、Mn:0.3%以下、Cr:0.3%以下、V:0.2%以下、Zr:0.15%以下、Ti:0.1%以下、B:0.005%以下のうち1種または2種以上を含有し、残部Alおよび不可避的不純物からなる組成を有するAl−Mg−Si系アルミニウム合金の板材を、下記(1)〜(3)の工程で処理することを特徴とする塗装焼付硬化性および成形性に優れ、室温時効抑制効果を有するAl−Mg−Si系アルミニウム合金板の製造方法。
(1)480℃以上580℃以下の温度で溶体化処理し、2℃/秒以上の冷却速度で50℃未満の焼入れ温度まで冷却する焼入れ工程、
(2)前記焼入れ温度で1時間以内の時間保持した後、2℃/分以上の昇温速度で50℃以上100℃以下の1段目予備時効温度まで加熱し、該1段目予備時効温度で1分以上10時間以内の時間保持する1段目予備時効工程、および、
(3)1℃/時間以上の昇温速度で前記1段目予備時効温度よりも10℃高い温度以上140℃以下の2段目予備時効温度に加熱し、該2段目予備時効温度で1分以上10時間以内の時間保持する2段目予備時効工程。
In mass%, Si: 0.5 to 2.0%, Mg: 0.2 to 1.5%, Cu: 1.0% or less, Zn: 0.5% or less, Fe: 0.00%. 5% or less, Mn: 0.3% or less, Cr: 0.3% or less, V: 0.2% or less, Zr: 0.15% or less, Ti: 0.1% or less, B: 0.005% Treating a plate of Al—Mg—Si based aluminum alloy containing one or more of the following and having the balance of Al and inevitable impurities in the following steps (1) to (3) A method for producing an Al—Mg—Si-based aluminum alloy plate that is excellent in paint bake hardenability and formability and has an effect of suppressing aging at room temperature.
(1) A quenching process in which a solution treatment is performed at a temperature of 480 ° C. or more and 580 ° C. or less, and the solution is cooled to a quenching temperature of less than 50 ° C. at a cooling rate of 2 ° C./second or more
(2) After holding at the quenching temperature for less than 1 hour, the first stage pre-aging temperature is heated to a first stage pre-aging temperature of 50 ° C. or more and 100 ° C. or less at a temperature rising rate of 2 ° C./min or more. And the first stage pre-aging process for holding at least 1 minute and within 10 hours, and
(3) Heat at a temperature rising rate of 1 ° C./hour or more to a second stage pre-aging temperature of 10 ° C. to 140 ° C. higher than the first stage pre-aging temperature, and the second stage pre-aging temperature is 1 Second stage pre-aging process for holding for 10 minutes or more.
前記(2)の1段目予備時効工程の後、50℃以上1段目予備時効温度未満の温度まで冷却し、前記(3)の2段目予備時効工程を行うことを特徴とする請求項1記載の塗装焼付硬化性および成形性に優れ、室温時効抑制効果を有するAl−Mg−Si系アルミニウム合金板の製造方法。 The second-stage preliminary aging process of (3) is performed after the first-stage preliminary aging process of (2) is cooled to a temperature not lower than 50 ° C and lower than the first-stage preliminary aging temperature. The manufacturing method of the Al-Mg-Si type aluminum alloy plate which is excellent in paint bake hardenability and formability of 1 and has a room temperature aging suppression effect. 前記(2)の1段目予備時効工程の後、冷却することなく、前記(3)の2段目予備時効工程を行うことを特徴とする請求項1記載の塗装焼付硬化性および成形性に優れ、室温時効抑制効果を有するAl−Mg−Si系アルミニウム合金板の製造方法。 The paint bake hardenability and formability according to claim 1, wherein the second stage pre-aging step (3) is performed after the first stage pre-aging step (2) without cooling. A method for producing an Al—Mg—Si-based aluminum alloy plate having an excellent room temperature aging suppression effect.
JP2010162776A 2010-07-20 2010-07-20 METHOD OF MANUFACTURING Al-Mg-Si BASED ALUMINUM ALLOY PLATE EXCELLENT IN COAT BAKING HARDENABILITY AND FORMABILITY, AND HAVING AGING SUPPRESSION EFFECT AT ROOM TEMPERATURE Pending JP2012025976A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010162776A JP2012025976A (en) 2010-07-20 2010-07-20 METHOD OF MANUFACTURING Al-Mg-Si BASED ALUMINUM ALLOY PLATE EXCELLENT IN COAT BAKING HARDENABILITY AND FORMABILITY, AND HAVING AGING SUPPRESSION EFFECT AT ROOM TEMPERATURE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010162776A JP2012025976A (en) 2010-07-20 2010-07-20 METHOD OF MANUFACTURING Al-Mg-Si BASED ALUMINUM ALLOY PLATE EXCELLENT IN COAT BAKING HARDENABILITY AND FORMABILITY, AND HAVING AGING SUPPRESSION EFFECT AT ROOM TEMPERATURE

Publications (1)

Publication Number Publication Date
JP2012025976A true JP2012025976A (en) 2012-02-09

Family

ID=45779254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010162776A Pending JP2012025976A (en) 2010-07-20 2010-07-20 METHOD OF MANUFACTURING Al-Mg-Si BASED ALUMINUM ALLOY PLATE EXCELLENT IN COAT BAKING HARDENABILITY AND FORMABILITY, AND HAVING AGING SUPPRESSION EFFECT AT ROOM TEMPERATURE

Country Status (1)

Country Link
JP (1) JP2012025976A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103014439A (en) * 2012-11-26 2013-04-03 姚芸 Material capable of preventing large grains from being produced in aluminium alloy sections
JP2016020527A (en) * 2014-07-14 2016-02-04 新日鐵住金株式会社 Manufacturing method of high strength high ductility aluminum alloy sheet
JP2016084513A (en) * 2014-10-27 2016-05-19 新日鐵住金株式会社 Aluminum alloy having suppressed room temperature aging property and manufacturing method therefor
CN117127132A (en) * 2023-10-26 2023-11-28 中北大学 Short-period heat treatment process for Mg-Gd-Y-Zn-Zr magnesium alloy

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103014439A (en) * 2012-11-26 2013-04-03 姚芸 Material capable of preventing large grains from being produced in aluminium alloy sections
JP2016020527A (en) * 2014-07-14 2016-02-04 新日鐵住金株式会社 Manufacturing method of high strength high ductility aluminum alloy sheet
JP2016084513A (en) * 2014-10-27 2016-05-19 新日鐵住金株式会社 Aluminum alloy having suppressed room temperature aging property and manufacturing method therefor
CN117127132A (en) * 2023-10-26 2023-11-28 中北大学 Short-period heat treatment process for Mg-Gd-Y-Zn-Zr magnesium alloy
CN117127132B (en) * 2023-10-26 2024-02-06 中北大学 Short-period heat treatment process for Mg-Gd-Y-Zn-Zr magnesium alloy

Similar Documents

Publication Publication Date Title
JP7321828B2 (en) High-strength 6xxx aluminum alloy and method for making same
JP5709298B2 (en) Method for producing Al-Mg-Si based aluminum alloy plate excellent in paint bake hardenability and formability
JP4939093B2 (en) Method for producing 6000 series aluminum alloy plate for automobile panel having excellent hem bendability and bake hardness
JP4495623B2 (en) Aluminum alloy plate excellent in stretch flangeability and bending workability and method for producing the same
JP5918158B2 (en) Aluminum alloy sheet with excellent properties after aging at room temperature
JP5918209B2 (en) Aluminum alloy sheet for forming
JP2010159488A (en) Method for molding 2,000 series aluminum alloy material, and formed product molded by the same
JP4939088B2 (en) Manufacturing method of aluminum alloy sheet with excellent ridging mark property during forming
JP2011252212A (en) Method for forming processing of 6000 series aluminum alloy material, and forming processed product
JP6301095B2 (en) Al-Mg-Si aluminum alloy plate for automobile panel and method for producing the same
JP2008045192A (en) Aluminum alloy sheet showing excellent ridging-mark resistance at molding
JP7249321B2 (en) Method for manufacturing aluminum alloy member
JP6224550B2 (en) Aluminum alloy sheet for forming
JP2012025976A (en) METHOD OF MANUFACTURING Al-Mg-Si BASED ALUMINUM ALLOY PLATE EXCELLENT IN COAT BAKING HARDENABILITY AND FORMABILITY, AND HAVING AGING SUPPRESSION EFFECT AT ROOM TEMPERATURE
JP2006241548A (en) Al-Mg-Si ALLOY SHEET SUPERIOR IN BENDABILITY, MANUFACTURING METHOD THEREFOR, AND AUTOMOTIVE SKIN PLATE OBTAINED FROM THE SHEET
JP4944474B2 (en) Aluminum alloy plate excellent in stretch flangeability and manufacturing method thereof
JP3833574B2 (en) Aluminum alloy sheet with excellent bending workability and press formability
JP5111966B2 (en) Method for manufacturing aluminum alloy panel
JP6204298B2 (en) Aluminum alloy plate
JP6315582B2 (en) Aluminum alloy sheet for forming
JP6306123B2 (en) Aluminum alloy plate and method for producing aluminum alloy plate
WO2017170835A1 (en) Aluminum alloy sheet and aluminum alloy sheet manufacturing method
JP6301175B2 (en) Aluminum alloy sheet with excellent formability and bake hardenability
JP6956101B2 (en) Manufacturing method of high-strength aluminum alloy plate material with excellent seizure curability
JP2871731B2 (en) Aluminum alloy material for forming and its manufacturing method