JP2016084513A - Aluminum alloy having suppressed room temperature aging property and manufacturing method therefor - Google Patents

Aluminum alloy having suppressed room temperature aging property and manufacturing method therefor Download PDF

Info

Publication number
JP2016084513A
JP2016084513A JP2014218613A JP2014218613A JP2016084513A JP 2016084513 A JP2016084513 A JP 2016084513A JP 2014218613 A JP2014218613 A JP 2014218613A JP 2014218613 A JP2014218613 A JP 2014218613A JP 2016084513 A JP2016084513 A JP 2016084513A
Authority
JP
Japan
Prior art keywords
yield stress
room temperature
heat treatment
days
strain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014218613A
Other languages
Japanese (ja)
Other versions
JP6452384B2 (en
Inventor
高田 健
Takeshi Takada
健 高田
幸司 一谷
Koji Ichitani
幸司 一谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
UACJ Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
UACJ Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp, UACJ Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2014218613A priority Critical patent/JP6452384B2/en
Publication of JP2016084513A publication Critical patent/JP2016084513A/en
Application granted granted Critical
Publication of JP6452384B2 publication Critical patent/JP6452384B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress increase of yield strength by holding room temperature in an Al-Mg-Si alloy.SOLUTION: There is provided a manufacturing method of an alloy containing Mg:0.3 to 2.0% and Si:0.3 to 2.0%, further one of Cu:0.2 to 1.0% and Fe:0.05 to 0.3% and having yield stress value just after manufacturing of 150 MPa or less and a value of yield stress value when holding at 30°C for 20 days just after manufacturing minus yield stress value when holding for 10 days of 4 MPa or less and a manufacturing method by conducting a solution heat treatment at 500°C to the melting point with holding time of 1 minute to 1 hours, a heat treatment at 70 to 180°C with the holding time of 2 to 24 hours and then adding strain between plane strain and tensile strain of 0.2 to 2% by a tension leveler.SELECTED DRAWING: None

Description

本発明は、自動車用に適用されるAl−Mg−Si合金において、製造後から自動車製造現場でのプレス成形までの間の時効による強度上昇を極力抑制したアルミニウム合金及びその製造方法に関する。
長時間の室温保持後の強度上昇(室温時効)が抑制されたAl−Mg−Si合金であり、特に自動車用材料に使用される。
The present invention relates to an Al-Mg-Si alloy that is applied to automobiles, and an aluminum alloy that suppresses an increase in strength due to aging from after production until press molding at the automobile production site, and a method for producing the same.
It is an Al—Mg—Si alloy in which the increase in strength (room temperature aging) after long-term room temperature retention is suppressed, and is particularly used for automotive materials.

自動車車体軽量化のために、車体にはアルミニウム合金が使用される傾向にある。使用される合金は、主にAl−Mg−Si合金である。この合金では自動車製造ラインでの塗装焼付け工程後の降伏応力の上昇が期待される。これが自動車用材料へのAl−Mg−Si合金が使用される主な理由である。   In order to reduce the weight of automobile bodies, aluminum alloys tend to be used for vehicle bodies. The alloys used are mainly Al—Mg—Si alloys. This alloy is expected to increase the yield stress after the paint baking process in the automobile production line. This is the main reason why Al-Mg-Si alloys are used for automotive materials.

この合金では、合金製造時の熱処理にて、添加元素であるMgとSiが集合した微細なクラスタ(以下クラスタ)を形成させる。クラスタはMg原子とSi原子が母相であるアルミニウムの結晶構造を変えることなく集団となった形態である。このクラスタは、プレス成形での成形性を大きく低下させることなく、かつ塗装焼付け工程にて降伏応力の増大に寄与する析出物へと変化する。   In this alloy, fine clusters (hereinafter referred to as clusters) in which additive elements Mg and Si are aggregated are formed by heat treatment at the time of manufacturing the alloy. A cluster is a form in which Mg atoms and Si atoms form a group without changing the crystal structure of aluminum, which is the parent phase. This cluster changes into a precipitate that does not significantly reduce the formability in press molding and contributes to an increase in yield stress in the paint baking process.

しかし、クラスタが形成された合金では、製造からプレス成形の間の室温近傍での保持(室温時効)により降伏応力が増大する。これはクラスタが室温にて成長することに起因する。このようなプレス成形前の降伏応力の増大は、プレス成形自体には望ましくなく、そのため、製造から所定期間の間にプレス成形を実施しなければならないという制約が発生する。
このような製造後からプレス成形実施までの期間の限定は、自動車製造の生産自由度の観点から望ましくない。更に、海外などの遠距離に輸出する際には長時間の室温保持中に降伏応力の増大を極力抑えることが必要となる。その点からも、室温保持中での降伏応力の増大は望ましくない。
However, in an alloy in which clusters are formed, the yield stress increases due to the retention (room temperature aging) near the room temperature during manufacture and press forming. This is because the clusters grow at room temperature. Such an increase in yield stress before press forming is not desirable for press forming itself, and thus a restriction arises in that press forming must be performed during a predetermined period from manufacture.
Such limitation of the period from manufacture to press molding is not desirable from the viewpoint of the degree of production freedom in automobile manufacture. Furthermore, when exporting to a long distance such as overseas, it is necessary to suppress the increase in yield stress as much as possible while maintaining the room temperature for a long time. From this point of view, it is not desirable to increase the yield stress during holding at room temperature.

今まで様々な方法を用いた室温保持中の降伏応力の増大抑制を意味する室温時効抑制の報告がある。特許文献1と特許文献2では添加元素の調整を、特許文献3と特許文献4では溶体化熱処理後の予備熱処理温度の低温化を、特許文献5と特許文献6では予備熱処理条件の調整を、特許文献7は形成されるクラスタ数密度の調整を、特許文献8と特許文献9は集合組織形成を使用した室温時効抑制方法がそれぞれ提案されている。
一方、特許文献10では、溶体化および焼入れ処理後、レベラーにより0.5から5%の量の歪を材料表面に導入することで室温時効を抑制する技術が提案されている。
There have been reports of room temperature aging suppression, which means suppression of increase in yield stress during room temperature holding using various methods. In Patent Document 1 and Patent Document 2, adjustment of the additive element is performed, in Patent Document 3 and Patent Document 4 the preheat treatment temperature is lowered after the solution heat treatment, and in Patent Document 5 and Patent Document 6, the preheat treatment condition is adjusted. Patent Document 7 proposes the adjustment of the cluster number density to be formed, and Patent Document 8 and Patent Document 9 each propose a room temperature aging suppression method using texture formation.
On the other hand, Patent Document 10 proposes a technique for suppressing room temperature aging by introducing a strain of 0.5 to 5% to a material surface by a leveler after solution treatment and quenching treatment.

特開平11−172390号公報Japanese Patent Laid-Open No. 11-172390 特開2008−174797号公報JP 2008-174797 A 特開2000−273567号公報JP 2000-273567 A 特開2003−321723号公報JP 2003-321723 A 特開平9−143644号公報JP-A-9-143644 特開2013−167004号公報JP 2013-167004 A 特開2009−242904号公報JP 2009-242904 A 特開2004−10982号公報JP 2004-10982 A 特開2003−321754号公報JP 2003-321754 A 特開2003−247040号公報JP 2003-247040 A

Mg、Siを含有するアルミニウム合金において、室温保持時の降伏応力の上昇を極力抑制するためには、室温保持時のクラスタの成長を極力抑制することが必要である。一方、クラスタは、塗装焼付け熱処理にて析出物へ変化して強度上昇に寄与する機能を有する必要がある。すなわち、クラスタの成長抑制と塗装焼付け熱処理時の析出物への変化機能の双方を同時に保持することが必要である。
しかし、先の従来技術による室温時効抑制の効果はいずれも十分なものとは言えないものであった。
In an aluminum alloy containing Mg and Si, it is necessary to suppress the growth of clusters at the time of holding at room temperature as much as possible in order to suppress the increase in yield stress at the time of holding at room temperature. On the other hand, the cluster needs to have a function of changing to a precipitate by coating baking heat treatment and contributing to an increase in strength. That is, it is necessary to simultaneously maintain both the growth suppression of clusters and the function of changing to precipitates during paint baking heat treatment.
However, none of the effects of room temperature aging suppression by the prior art was satisfactory.

そこで、本発明は、アルミニウム合金中のクラスタ成長を遅滞させて、従来合金以上に室温時効を低下させること、すなわち室温保持中の降伏応力増大を局力抑えることを課題とする。   Therefore, an object of the present invention is to delay the cluster growth in the aluminum alloy and lower the room temperature aging more than that of the conventional alloy, that is, to suppress the increase in the yield stress while maintaining the room temperature.

前述したように、室温時効における降伏応力の上昇はクラスタの成長に起因するものである。工業的には、180日後の降伏応力の増加量が45MPa以下であることが望ましい。このようなアルミニウム合金を製造するには、まず、室温保持時の降伏応力の増大挙動を解明する必要がある。   As described above, the increase in yield stress due to room temperature aging is caused by cluster growth. Industrially, the increase in yield stress after 180 days is preferably 45 MPa or less. In order to produce such an aluminum alloy, it is first necessary to elucidate the increasing behavior of the yield stress when kept at room temperature.

本発明者らは、様々な合金の180日までの室温保持時の降伏応力の増大挙動を調査した結果、製造から10日以降から降伏応力の増大速度が変化することを見いだした。この知見に基づき、本発明者らは、製造から20日後の降伏応力値から10日後の降伏応力値を引いた差を4MPa以下にすることで、製造から180日後の降伏応力を45MPa以下に調整することに成功した。
なお、製造直後の降伏応力値は110MPa以下である必要がある。製造直後の降伏応力が110MPaを超えると、強度上昇量は抑制されても180日後の降伏応力の絶対値は成形性の低下を抑制することが不可能なレベルまで増大する。
As a result of investigating the increase behavior of yield stress at the time of holding the room temperature up to 180 days of various alloys, the present inventors have found that the increase rate of the yield stress changes after 10 days from the production. Based on this knowledge, the present inventors adjusted the yield stress after 180 days from production to 45 MPa or less by making the difference obtained by subtracting the yield stress value after 10 days from the yield stress value after 20 days from production 4 MPa or less. Succeeded in doing.
In addition, the yield stress value immediately after manufacture needs to be 110 MPa or less. When the yield stress immediately after production exceeds 110 MPa, the absolute value of the yield stress after 180 days increases to a level at which it is impossible to suppress the decrease in formability even if the increase in strength is suppressed.

本発明者らは、製造から20日後の降伏応力値から10日後の降伏応力値を引いた差を4MPa以下にする方法として、予備熱処理段階で形成されたクラスタを一部破壊することにより、室温時効でのクラスタ成長を抑制する方法を考案した。   As a method of reducing the difference obtained by subtracting the yield stress value after 10 days from the yield stress value after 20 days from the production to 4 MPa or less, the present inventors have partially destroyed the clusters formed in the preliminary heat treatment stage, thereby increasing the room temperature. A method to suppress cluster growth under aging was devised.

合金への外的応力による歪によってクラスタの一部が破壊されれば、続く室温保持中においては、クラスタの成長の前に、まずは破壊されたクラスタの修復が行われる。この修復には時間を要する。そのため、一部が破壊されたクラスタは破壊されていないクラスタに比べて、所定サイズへのクラスタの成長までの時間は長くなる結果、降伏応力の増加量が抑制されることが予想された。
また、クラスタの一部を破壊したとしても、室温保持にてクラスタが修復されれば塗装焼付け時には破壊前と同じく所定の降伏応力を発現する効果を有するため、塗装焼付け後の所定降伏応力値の確保には問題は生じないと考えられた。
If a part of the cluster is destroyed by strain due to external stress on the alloy, the broken cluster is first repaired before the growth of the cluster during the subsequent holding at room temperature. This repair takes time. For this reason, it was expected that the amount of increase in yield stress was suppressed as a result of the time required for the growth of the cluster to a predetermined size was longer in the partially destroyed cluster than in the non-destructed cluster.
In addition, even if a part of the cluster is destroyed, if the cluster is repaired at room temperature, it has the effect of expressing the specified yield stress at the time of paint baking as before the failure. It was thought that there would be no problem in securing.

本発明者らはこのクラスタの破壊方法として転位導入を考案した。導入された転位によりクラスタは切断され、一部破壊される。ただし、材料内にほぼ均一に転位を導入する必要がある。そのためには、板厚全体に塑性域に達する歪を付与することが必要である。   The present inventors devised the introduction of dislocations as a method for destroying this cluster. The cluster is cut by the introduced dislocation and partially destroyed. However, it is necessary to introduce dislocations almost uniformly into the material. For this purpose, it is necessary to impart a strain reaching the plastic region to the entire plate thickness.

歪を付与するために付加する応力は圧縮応力でも引張応力でも構わないが、本発明が対象とする板材に圧縮応力を付加する場合、コイル長手方向や板幅方向に均一に変形させることは工業的に困難である。また板厚方向への圧縮応力の付加として圧延が考えられるが、板厚中心にまで十分な歪を付与するにはそれなりの圧下率が必要となり、材料の延性を低下させてしまう。
このため、コイル長手方向に引張応力(テンション)を付加することによる伸び歪の付与を考案した。一般的には単純なレベラーやスキンパスでも材料内に伸び歪が付与される30℃にて180日保持後に0.2%の引張歪付与と170℃にて20分間の熱処理の順に施した後の降伏応力値が170MPa以上であるが、コイル長手方向へのテンションが十分でない場合は付与される歪は表面層に限られ、合金板中の表層にある一部のクラスタしか破壊されず、室温時効抑制への効果は極めて低いものになる。
The stress applied to impart strain may be either compressive stress or tensile stress. However, when compressive stress is applied to the plate material to which the present invention is applied, it is industrially necessary to deform the coil in the longitudinal direction or the plate width direction. Is difficult. In addition, rolling can be considered as an application of compressive stress in the thickness direction. However, in order to give sufficient strain to the center of the thickness, an appropriate rolling reduction is required, which lowers the ductility of the material.
For this reason, an extension strain was devised by applying a tensile stress in the coil longitudinal direction. Generally, even with a simple leveler or skin pass, elongation strain is imparted in the material. After holding for 180 days at 30 ° C., 0.2% tensile strain is applied and heat treatment is performed at 170 ° C. for 20 minutes in this order. Although the yield stress value is 170 MPa or more, when the tension in the coil longitudinal direction is not sufficient, the applied strain is limited to the surface layer, and only some of the clusters on the surface layer in the alloy plate are destroyed, and room temperature aging is achieved. The suppression effect is extremely low.

本発明は上述の検討を基になされたものであり、その要旨とするところは、
(1) 質量%にて、Mg:0.3〜2.0%、Si:0.3〜2.0%を含有し、製造直後の降伏応力値が110MPa以下であり、製造直後に30℃にて20日保持したときの降伏応力値から10日保持したときの降伏応力値を引いた値が4MPa以下であり、さらに製造直後に30℃にて180日保持後に0.2%の引張歪付与と170℃にて20分間の熱処理の順に施した後の降伏応力値が170MPa以上であることを特徴とする、室温保持での降伏応力の上昇量を抑制したアルミニウム合金。
ここで、降伏応力値は引張試験における0.2%耐力値を用いるものとする。
(2)質量%にて、Cu:0.2〜1.0%、Fe:0.05〜0.3%の何れかをさらに含有することを特徴とする、(1)記載の室温保持での降伏応力の上昇量を抑制したアルミニウム合金。
(3)板状に加工されたアルミニウム合金を、1分以上1時間以下の保持時間にて500℃以上融点以下の溶体化熱処理を施し、続いて2時間以上24時間以下の保持時間にて70℃以上180℃以下の熱処理を施した後、テンションレベラーにより0.3から2%の平面歪から引張歪の間の歪を付与することを特徴とする、上記(1)または(2)に記載の室温保持での降伏応力の上昇量を抑制したアルミニウム合金の製造方法。
である。
The present invention has been made on the basis of the above examination, and the gist thereof is as follows.
(1) In mass%, Mg: 0.3-2.0%, Si: 0.3-2.0% is contained, the yield stress value immediately after manufacture is 110 MPa or less, and 30 ° C. immediately after manufacture. The value obtained by subtracting the yield stress value when retained for 10 days from the yield stress value when retained at 20 days at 4 days is 4 MPa or less, and 0.2% tensile strain after being retained at 30 ° C. for 180 days immediately after production. An aluminum alloy that suppresses an increase in yield stress at room temperature retention, wherein the yield stress value after application and heat treatment at 170 ° C. for 20 minutes is 170 MPa or more.
Here, the yield stress value is a 0.2% proof stress value in a tensile test.
(2) By mass%, Cu: 0.2-1.0%, Fe: 0.05-0.3% is further contained, The room temperature holding | maintenance as described in (1) characterized by the above-mentioned An aluminum alloy that suppresses the increase in yield stress.
(3) The aluminum alloy processed into a plate shape is subjected to a solution heat treatment at 500 ° C. or higher and a melting point or lower at a holding time of 1 minute or more and 1 hour or less, and then 70 hours at a holding time of 2 hours or more and 24 hours or less. (1) or (2) above, wherein a strain between 0.3 to 2% plane strain to tensile strain is applied by a tension leveler after heat treatment at a temperature of from ℃ to 180 ℃. The manufacturing method of the aluminum alloy which suppressed the raise amount of the yield stress by holding at room temperature.
It is.

本発明により、製造からプレス成形までの室温保持による降伏応力の上昇速度が低下し、従来よりも長期の合金管理、および塗装焼付け熱処理後の強度を含む現状特性を維持した状態にて、長距離への合金輸送(輸出)が可能となる。   According to the present invention, the rate of increase in yield stress due to holding at room temperature from production to press molding is reduced, and long distances are maintained while maintaining the current properties including strength after long-term alloy management and paint baking heat treatment. Alloy transportation (export) to is possible.

予備熱処理段階で形成されたクラスタを一部破壊することにより、室温時効でのクラスタ成長を抑制した本発明のアルミニウム合金及びその製造方法について、本発明を構成する個々の要件及び好ましい要件について詳細に説明する。
まず、アルミニウム合金の成分について説明する。なお、各成分の含有量の%は質量%を意味する。
The aluminum alloy of the present invention that suppresses the cluster growth at room temperature aging by partially destroying the cluster formed in the preliminary heat treatment stage and the manufacturing method thereof in detail about individual requirements and preferable requirements constituting the present invention. explain.
First, the components of the aluminum alloy will be described. In addition,% of content of each component means the mass%.

(成分)
Mgはクラスタを構成する主要な元素であり、その添加量はSi添加量に依存するところではあるが、少なくとも0.3%以上がクラスタ形成に必要である。しかし、2.0%を超えた添加はMg単独の析出物を形成する。この析出物は破壊の起点となり成形性を低下させる。それゆえ上限は2.0%とした。
(component)
Mg is a main element constituting the cluster, and its addition amount depends on the Si addition amount, but at least 0.3% or more is necessary for cluster formation. However, addition exceeding 2.0% forms a precipitate of Mg alone. This precipitate becomes a starting point of fracture and reduces moldability. Therefore, the upper limit was set to 2.0%.

Siもクラスタを構成する主要な元素であり、Mg原子と同様な理由によりその添加量は決定される。0.3%以上がクラスタ形成に必要であり、2.0%を超える添加は、Mgの場合と同様に、破断起点となるSi析出物を形成させてプレス成形性を低下させる。
なお、Mg/Siが1以下であることが望ましい。Mg添加量よりもSi添加量が多いと、形成されるクラスタの分布密度が増大し、成形と強度の両向上が期待される。
Si is also a main element constituting the cluster, and its addition amount is determined for the same reason as Mg atoms. 0.3% or more is necessary for forming a cluster, and addition exceeding 2.0% causes Si precipitates to be the starting point of fracture to be formed as in the case of Mg, thereby reducing press formability.
Note that Mg / Si is desirably 1 or less. When the Si addition amount is larger than the Mg addition amount, the distribution density of the formed clusters increases, and both molding and strength are expected to be improved.

以上が、本発明のアルミニウム合金の基本成分であり、残部はAlと不可避的不純物である。さらに必要に応じて下記の成分を含有できる。   The above are the basic components of the aluminum alloy of the present invention, and the balance is Al and inevitable impurities. Furthermore, it can contain the following components as needed.

Cuは固溶状態にて成形性に効果的な元素である。そのためには、0.2%以上の添加が必要となる。しかし、1.0%を超える多量の添加はCu系析出物を形成させる。そのため、強度は上昇するが成形性が低下する。それゆえ、添加量は0.2%から1.0%とした。
Feは鋳造時に混入する元素である、0.3%を超えて含有するとFe−Al系の析出物を形成し、成形性、特に延性が著しく低下する。しかし、0.05%以上の添加は結晶粒の強化に効果的である。それゆえ、0.05〜0.3%の添加量とした。
Cu is an element effective for formability in a solid solution state. For that purpose, addition of 0.2% or more is necessary. However, a large amount of addition exceeding 1.0% forms a Cu-based precipitate. Therefore, the strength increases but the moldability decreases. Therefore, the addition amount is set to 0.2% to 1.0%.
When Fe exceeds 0.3%, which is an element mixed at the time of casting, Fe—Al-based precipitates are formed, and formability, particularly ductility, is significantly reduced. However, addition of 0.05% or more is effective for strengthening crystal grains. Therefore, the addition amount is set to 0.05 to 0.3%.

なお、強度を高めることを目的として、Mn、Cr、Tiの1種または2種以上を添加してもよい。ただし、多量の添加は成形性を低下させるまでに降伏応力を増大させ、また延性を低下させる。製造直後の降伏応力値が110MPa以下である制約のもとでは、Mn、Cr、Tiの添加量上限は、それぞれ、2.0%、1.0%、0.2%である。   For the purpose of increasing the strength, one or more of Mn, Cr and Ti may be added. However, a large amount of addition increases the yield stress and decreases the ductility before the formability is lowered. Under the constraint that the yield stress value immediately after production is 110 MPa or less, the upper limits of the addition amount of Mn, Cr, and Ti are 2.0%, 1.0%, and 0.2%, respectively.

次に製造方法について説明する。なお、降伏応力値の経時変化の限定理由については、製造方法との関連で説明する。
(製造方法)
先ず、溶解、鋳造工程では、上記合金の溶湯を、連続鋳造圧延法、半連続鋳造法(DC鋳造法)等の定法の溶解鋳造法を選択実施する。
Next, a manufacturing method will be described. The reason for limiting the change in yield stress over time will be explained in relation to the manufacturing method.
(Production method)
First, in the melting and casting process, a melt casting method such as a continuous casting rolling method or a semi-continuous casting method (DC casting method) is selectively performed on the molten alloy.

次に行う均質化熱処理では、定法に従い材質の均質化を狙う。均質化熱処理は添加元素の偏析をなくすことが主目的である。そのためには560℃以上融点以下の温度での熱処理が必要となる。
熱処理時間は、添加元素量にもよるが、上記温度範囲内にて20分以上8時間以下であれば充分である。20分より短いと十分に偏析をなくすことは困難となり、一方8時間以上であれば製造コストが増加する。
また上記温度範囲内にて上記加熱時間で保持した後は20℃/sec以上の冷却速度で冷却する必要がある。20℃/sec未満の冷却速度であると、固溶Mg量と固溶Si量は析出物を形成することで減少し、製品の強度と延性を低下させる。冷却速度を早める手段は、強制空冷、水冷などあるが、その手段に特に限定はない。
In the next homogenization heat treatment, we aim to homogenize the material according to a standard method. The main purpose of the homogenizing heat treatment is to eliminate segregation of additive elements. For this purpose, heat treatment at a temperature of 560 ° C. or higher and a melting point or lower is required.
Although the heat treatment time depends on the amount of added elements, it is sufficient if it is 20 minutes or longer and 8 hours or shorter within the above temperature range. If it is shorter than 20 minutes, it is difficult to sufficiently eliminate segregation. On the other hand, if it is 8 hours or more, the production cost increases.
Further, after being held within the above temperature range for the above heating time, it is necessary to cool at a cooling rate of 20 ° C./sec or more. When the cooling rate is less than 20 ° C./sec, the amount of solid solution Mg and the amount of solid solution Si are reduced by forming precipitates, and the strength and ductility of the product are lowered. Means for increasing the cooling rate include forced air cooling and water cooling, but the means is not particularly limited.

続く熱間圧延も定法に従う。まず、開始温度の設定が必要であり、その温度は450℃以上にすべきである。450℃未満の温度では、熱間圧延中での再結晶の頻度が急激に低下し、これが最終製品での未再結晶化の可能性を高くする。好ましくは開始温度が560℃以上であれば、均質化熱処理にて残存した析出物を溶解させ、固溶Mg量と固溶Si量を増大させることが可能となる。最終板厚は特に制限は設けず、5mm以下であることが、続く冷間圧延工程の容易さの点から好ましい。   Subsequent hot rolling also follows the regular method. First, it is necessary to set a starting temperature, and the temperature should be 450 ° C. or higher. At temperatures below 450 ° C., the frequency of recrystallization during hot rolling decreases sharply, which increases the possibility of non-recrystallization in the final product. Preferably, if the starting temperature is 560 ° C. or higher, the precipitate remaining in the homogenization heat treatment can be dissolved to increase the solid solution Mg amount and the solid solution Si amount. The final thickness is not particularly limited and is preferably 5 mm or less from the viewpoint of the ease of the subsequent cold rolling process.

なお、確実な再結晶を得るために、冷間圧延前に熱延板を焼鈍しても良い。その場合には400℃以上の温度にて20分以上の条件であれば充分であるが、8時間を超える長時間の焼鈍は製造コストを高める欠点となる。全体の製造コストを考慮して、この熱延板焼鈍を省略しても良い。   In order to obtain reliable recrystallization, the hot-rolled sheet may be annealed before cold rolling. In that case, a condition of 20 minutes or more at a temperature of 400 ° C. or more is sufficient, but long-term annealing exceeding 8 hours is a disadvantage of increasing the production cost. In consideration of the entire manufacturing cost, this hot-rolled sheet annealing may be omitted.

続く冷間圧延は所望の板厚まで定法で圧延してよい。
熱延板焼鈍と同様、確実な再結晶を得るために、冷間圧延の途中に1回以上の熱処理(中間焼鈍)を実施しても良い。この熱処理も定法に従い実施する。この時の温度は、冷間圧延前の熱延版焼鈍と同じく、400℃以上の温度にて、保持時間は、20分以上、製造コストを高めない8時間以下でよい。
冷間圧延も定法にしたがう。トータルの冷間圧下率、特に中間焼鈍を行う場合は、中間焼鈍から最終板厚までの冷間圧延率は大きい方が好ましい。トータルの冷間圧延率を75%以上とすることで最終焼鈍時の再結晶粒が微細化する。中間焼鈍を行う場合は、望ましくは中間焼鈍から最終板厚までの冷間圧延率を75%以上とすると良い。
Subsequent cold rolling may be performed by a standard method to a desired plate thickness.
Similar to hot-rolled sheet annealing, in order to obtain reliable recrystallization, one or more heat treatments (intermediate annealing) may be performed during the cold rolling. This heat treatment is also carried out according to a conventional method. The temperature at this time may be 400 ° C. or higher as in the case of hot rolling annealing before cold rolling, and the holding time may be 20 minutes or longer and 8 hours or shorter without increasing the manufacturing cost.
Follow the regular method for cold rolling. When performing the total cold rolling reduction, particularly intermediate annealing, it is preferable that the cold rolling rate from the intermediate annealing to the final sheet thickness is large. By setting the total cold rolling rate to 75% or more, recrystallized grains at the time of final annealing are refined. When performing the intermediate annealing, it is desirable that the cold rolling rate from the intermediate annealing to the final sheet thickness is 75% or more.

冷間圧延終了後は、溶体化熱処理を行う。
溶体化熱処理は、圧延組織の再結晶とともに、添加したMgとSiを十分な固溶Mg量と固溶Si量が存在する固溶状態にするためになすものであり、そのためには少なくとも500℃以上に加熱する必要がある。十分な固溶Mg量と固溶Si量の固溶状態が得られなければ、所定の焼付け降伏応力値を得ることができなくなる。上限温度は融点以下であるが、好ましくは、溶体化後の冷却時での板のたわみ抑制のため、580℃以下とするのが好ましい。
After the cold rolling, solution heat treatment is performed.
The solution heat treatment is performed in order to bring the added Mg and Si into a solid solution state in which sufficient solid solution Mg amount and solid solution Si amount exist together with recrystallization of the rolling structure, and for that purpose, at least 500 ° C. It is necessary to heat more. If a solid solution state with a sufficient amount of solid solution Mg and solid solution Si cannot be obtained, a predetermined baking yield stress value cannot be obtained. The upper limit temperature is not higher than the melting point, but is preferably not higher than 580 ° C. in order to suppress deflection of the plate during cooling after solution treatment.

保持時間は、添加両元素の完全固溶のために上記加熱温度域内に1分以上は必要である。上限は1時間である。これ以上の時間は生産コストを増大させて工業的な価値を低下させるので好ましくはない。
溶体化熱処理後の冷却速度は、つづく予備熱処理前までにクラスタ以外の析出物が形成することや、後述のように本願にとって好ましくない低温で形成するクラスタの形成を回避するため早いことが望ましい。一方で、早い冷却により板形状精度を低下させるたわみが発生しやすくなり、歩留まりが低下する。したがって、たわみが発生しにくい50℃/secを冷却速度の上限とするのが好ましい。下限は、1℃/secとする。それ以下であると冷却途中で強度を得るために好ましくない析出物が形成する。
The holding time is required to be 1 minute or longer in the heating temperature range in order to completely dissolve both elements added. The upper limit is 1 hour. A time longer than this is not preferable because it increases the production cost and decreases the industrial value.
The cooling rate after the solution heat treatment is desirably high in order to avoid the formation of precipitates other than clusters before the subsequent pre-heat treatment and the formation of clusters formed at a low temperature, which is undesirable for the present application as described later. On the other hand, deflection that lowers the plate shape accuracy is likely to occur due to rapid cooling, resulting in a decrease in yield. Therefore, it is preferable to set the upper limit of the cooling rate to 50 ° C./sec, at which deflection is unlikely to occur. The lower limit is 1 ° C./sec. If it is less than that, an undesirable precipitate is formed in order to obtain strength during cooling.

溶体化熱処理後には、得られた固溶Mgと固溶Siをクラスタに形成させるための予備熱処理を行うが、クラスタ形成温度域での予備熱処理は溶体化熱処理後に速やかに開始する必要がある。溶体化熱処理後に室温に保持する場合は、6時間以内に続く予備熱処理を実施する。室温保持時間が6時間を超えると、溶体化熱処理にて確保した固溶Mgと固溶Siが、塗装焼付け時の降伏応力値確保に寄与しない別のクラスタ(低温クラスタ)の形成に消費されてしまい、所望の塗装焼付け時の降伏応力値の確保が困難となる。   After the solution heat treatment, a preliminary heat treatment for forming the obtained solid solution Mg and solid solution Si in clusters is performed, but the preliminary heat treatment in the cluster formation temperature range needs to be started immediately after the solution heat treatment. In the case of keeping at room temperature after solution heat treatment, preliminary heat treatment is performed that lasts within 6 hours. If the room temperature holding time exceeds 6 hours, the solid solution Mg and solid solution Si secured by solution heat treatment are consumed to form another cluster (low temperature cluster) that does not contribute to securing the yield stress value during coating baking. Therefore, it becomes difficult to ensure the yield stress value at the time of desired coating baking.

溶体化熱処理後に実施する予備熱処理では固溶Mgと固溶Siにより高温クラスタを形成させる。そのためには、70℃以上180℃以下に保持する必要がある。70℃未満では、所望の塗装焼き付けによる降伏応力値への寄与のない別種のクラスタである低温クラスタが形成される。一方、180℃を超えると析出物が形成される。この温度範囲での保持時間は固溶原子の拡散により決まる。拡散は保持温度に依存する。したがって、高温の保持では、低温の保持よりも少ない保持時間で所定の高温クラスタが形成される。180℃の保持では少なくとも2時間の保持を施せば確実に高温クラスタが形成される。一方、70℃保持では6時間は必要となる。   In the preliminary heat treatment performed after the solution heat treatment, high-temperature clusters are formed by solid solution Mg and solid solution Si. For that purpose, it is necessary to hold | maintain at 70 to 180 degreeC. Below 70 ° C., low temperature clusters are formed, which are another type of cluster that does not contribute to the yield stress value due to desired paint baking. On the other hand, when it exceeds 180 degreeC, a precipitate will be formed. The holding time in this temperature range is determined by the diffusion of solid solution atoms. Diffusion depends on the holding temperature. Accordingly, in the high temperature holding, a predetermined high temperature cluster is formed with a holding time shorter than that in the low temperature holding. In the case of holding at 180 ° C., if the holding is performed for at least 2 hours, a high temperature cluster is surely formed. On the other hand, 6 hours are required for holding at 70 ° C.

予備熱処理後の室温保持時の降伏応力の増大は、この予備熱処理にて形成した高温クラスタの成長によるものである。したがって、この高温クラスタの成長速度を低下させれば、室温保持時の降伏応力の増大速度は低下する。
前述した様に、この高温クラスタの成長速度を低下させて、製造から室温保持にて20日後の降伏応力値から10日後の降伏応力値を引いた値が4MPa以下になれば、180日後の降伏応力値は45MPa以下となる。
The increase in yield stress at room temperature retention after the preheat treatment is due to the growth of high temperature clusters formed by this preheat treatment. Therefore, if the growth rate of this high-temperature cluster is reduced, the rate of increase in yield stress during holding at room temperature is reduced.
As described above, when the growth rate of this high-temperature cluster is reduced and the yield stress value after 10 days is subtracted from the yield stress value after 10 days from the production at room temperature, the yield after 180 days is reduced. The stress value is 45 MPa or less.

そのためには予備熱処理後に歪を付与することが有効である。本発明の歪は、歪を生成させるための荷重の負荷前と徐荷後の形状差から求めるものであるから、塑性歪を意味する。
付与すべき歪量は0.3%以上である。一方、歪量の増大は強度増大させ、さらに延性を低下させ、プレス成形性に望ましくない。そのために歪量の上限を設けることが必要となる。プレス成形性を阻害させない歪量は2%である。したがって、歪量は0.3%以上2%以下となる。
For this purpose, it is effective to impart strain after the preliminary heat treatment. The strain of the present invention means a plastic strain because it is obtained from the shape difference before and after the load is applied to generate the strain.
The amount of strain to be applied is 0.3% or more. On the other hand, an increase in the amount of strain increases the strength, further reduces the ductility, and is undesirable for press formability. Therefore, it is necessary to set an upper limit of the strain amount. The amount of strain that does not impair the press formability is 2%. Therefore, the strain amount is 0.3% or more and 2% or less.

このような効果が発現するメカニズムは以下のように考えられる。
アルミニウム合金材に導入した歪は、材料中を転位として移動し、母相であるアルミニウム合金相を変形させるとともに、合金相中に存在する高温クラスタを切断する形態で破壊する。切断された高温クラスタの近傍では、切断およびその後のさらなる転位作用により、高温クラスタを構成していたMg原子とSi原子の一部が固溶Mgと固溶Siとなる。この固溶Mg原子と固溶Si原子は、切断された高温クラスタの周囲に偏在し、溶体化熱処理後の固溶原子のように均一な状態とは異なる。つまり、この後に続く室温保持では、新規に低温クラスタを形成するのではなく、もとの高温クラスタの形状を修復するように移動する。この修復には時間を要するので、切断・破壊された高温クラスタの所定サイズへの成長は、破壊されない場合に比べて遅くなり、降伏応力の増加速度が低下するとともに、低温クラスタは形成せず、焼付け時の硬化能を阻害することもない。
The mechanism for producing such an effect is considered as follows.
The strain introduced into the aluminum alloy material moves as dislocations in the material, deforms the aluminum alloy phase that is a parent phase, and breaks in a form that cuts high-temperature clusters present in the alloy phase. In the vicinity of the cut high-temperature cluster, due to the cutting and subsequent further dislocation action, Mg atoms and a part of the Si atoms constituting the high-temperature cluster become solute Mg and solute Si. The solid solution Mg atom and the solid solution Si atom are unevenly distributed around the cut high temperature cluster, and are different from the uniform state like the solid solution atom after the solution heat treatment. That is, in the subsequent room temperature holding, instead of newly forming a low temperature cluster, the movement is performed so as to restore the shape of the original high temperature cluster. Since this repair takes time, the growth of the cut and destroyed high-temperature cluster to a predetermined size is slower than the case where it is not destroyed, the rate of increase in yield stress is reduced, and the low-temperature cluster is not formed. It does not hinder the curing ability during baking.

高温クラスタを破壊する転位を導入する応力は引張でも圧縮でも構わないが、本効果を十分に得るには、材料内に均一に転位を導入することが好ましい。これを工業的に達成するには前述のように、コイル長手方向に引張応力(テンション)を付加することが好都合である。一般的には単純なレベラーやスキンパスでも材料内に伸び歪が付与されるが、テンションが十分でない場合は付与される歪は表面層に限られ、合金板中の表層にある一部のクラスタしか破壊されず、室温時効抑制への効果は極めて低いものになる。発明効果と歪による基本的な成形性変化を考慮すると、テンションレベラーが適している。   The stress that introduces dislocations that break high temperature clusters may be either tensile or compression, but in order to obtain this effect sufficiently, it is preferable to introduce dislocations uniformly in the material. In order to achieve this industrially, as described above, it is advantageous to apply a tensile stress (tension) in the longitudinal direction of the coil. In general, even with a simple leveler or skin pass, elongation strain is imparted in the material. However, if the tension is not enough, the strain imparted is limited to the surface layer, and only some of the clusters on the surface layer in the alloy plate. It is not destroyed and the effect of suppressing aging at room temperature is extremely low. Considering the effect of the invention and the basic formability change due to strain, the tension leveler is suitable.

本発明の歪量は変形荷重負荷前後の材料長さの変化により規定する。一般的には複数方向での長さ変化が観測されるが、そのうちの最大のもので規定すれば良い。コイル形状である場合は、長手方向の長さ変化により評価できる。   The amount of strain in the present invention is defined by the change in the material length before and after loading the deformation load. In general, changes in length in a plurality of directions are observed, but the maximum one of them may be defined. In the case of a coil shape, it can be evaluated by a change in length in the longitudinal direction.

以上のような本発明の実施可能性及び効果を、さらに実施例を用いて示す。   The feasibility and effects of the present invention as described above will be further described using examples.

表1は試験に供したアルミニウム合金とその成分である。これら合金に対して、DC鋳造、580℃にて24時間の均一化熱処理、500℃を開始温度として板厚4mmまでの熱間圧延、板厚1mmまでの冷間圧延を実施して、板状のサンプルを作製した。ここで、そのサンプルからJIS5号引張試験片を作製し、大気炉による溶体化熱処理とオイルバスを用いた予備熱処理を施した。溶体化熱処理以降のプロセス条件を表2に記す。なお、溶体化熱処理の保持時間は1時間とし、終了後は空冷と水冷を順に実施し、室温まで冷却した。予備熱処理後にテンションレベラーで試験片に引張歪を付与した。
その後、室温での引張試験を実施した。室温保持は30℃に設定した乾燥炉中の保持により実施した。溶体化熱処理および予備熱処理条件の組み合わせとして5種類の条件を設定した。
Table 1 shows the aluminum alloys used for the tests and their components. These alloys were subjected to DC casting, uniform heat treatment at 580 ° C. for 24 hours, hot rolling up to a plate thickness of 4 mm starting from 500 ° C., and cold rolling to a plate thickness of 1 mm. A sample of was prepared. Here, a JIS No. 5 tensile test piece was prepared from the sample and subjected to solution heat treatment using an atmospheric furnace and preliminary heat treatment using an oil bath. Table 2 shows the process conditions after the solution heat treatment. In addition, the holding time of the solution heat treatment was 1 hour, and after the completion, air cooling and water cooling were sequentially performed and cooled to room temperature. After preliminary heat treatment, tensile strain was applied to the test piece with a tension leveler.
Thereafter, a tensile test at room temperature was performed. The room temperature was maintained by holding in a drying oven set at 30 ° C. Five types of conditions were set as combinations of solution heat treatment and pre-heat treatment conditions.

引張試験は、10日、20日、および180日室温保持後の試験片に実施した。それぞれ、10日時効後、20日時効後、180日時効後と記した。一方、室温保持しなかった試験片は、ただちに、引張試験を実施し、0日時効後と記した。
表3には各合金における予備熱処理後に付与した引張歪量と30℃の時効時間後に得られた降伏応力値(0.2%耐力値)を示す。また、180日後に0.2%の引張歪付与と170℃にて20分保持の熱処理とを順に施した後の降伏応力値(以降BHYSと記す)も示す。
Tensile tests were performed on specimens after room temperature retention for 10 days, 20 days, and 180 days. They were marked as 10 days, 20 days, and 180 days, respectively. On the other hand, the test piece that was not kept at room temperature was immediately subjected to a tensile test and marked as after 0 date.
Table 3 shows the amount of tensile strain applied after the preliminary heat treatment in each alloy and the yield stress value (0.2% yield strength value) obtained after an aging time of 30 ° C. In addition, the yield stress value (hereinafter referred to as BHYS) after sequentially applying 0.2% tensile strain and heat treatment held at 170 ° C. for 20 minutes after 180 days is also shown.

必要な室温時効特性は、室温(30℃)にて10日保持したときの降伏応力値を基準にして、同じく20日保持したときの降伏応力値の増加量が4MPa以下で、同じく180日保持したときの降伏応力の増加量が45MPa以下であり、室温保持180日での降伏応力の値が150MPa以下であることである。更にBHYSが170MPa以上であることが必要である。   Necessary room temperature aging characteristics are based on the yield stress value when held at room temperature (30 ° C.) for 10 days, and the increase in yield stress value when held for 20 days is 4 MPa or less, and also holds for 180 days. The amount of increase in yield stress is 45 MPa or less, and the yield stress value at 180 days at room temperature is 150 MPa or less. Furthermore, BHYS needs to be 170 MPa or more.

本発明で規定する請求範囲内の合金であれば、引張歪量0.3%から2%にて、20日間の増加量が4MPa以下かつ180日間の増加量が45MPa以下であり、BHYSは170MPa以上である。しかし、請求範囲内の合金であっても、0.3%未満の歪では180日間の増加量が45MPaを超えてしまい、長期室温保持による強度増加量は極めて大きくなり成形性に不利に働く。ただし、BHYSは170MPa以上であり、塗装焼付け強度は維持される。また、3.0%の場合、180日間の強度増加量は45MPa以下ではあるが、0日の降伏強度が110MPa以上と強度の絶対値が大きくなる。加えて、歪量が大きいために、クラスタは大きく破壊され、BHYSは170MPaに満たなくなる。   In the case of an alloy within the scope of the claims specified in the present invention, an increase amount for 20 days is 4 MPa or less and an increase amount for 180 days is 45 MPa or less at a tensile strain of 0.3% to 2%, and BHYS is 170 MPa. That's it. However, even in the case of alloys within the scope of claims, when the strain is less than 0.3%, the increase in 180 days exceeds 45 MPa, and the increase in strength due to long-term room temperature retention becomes extremely large, which adversely affects the formability. However, BHYS is 170 MPa or more, and the coating bake strength is maintained. In the case of 3.0%, the increase in strength for 180 days is 45 MPa or less, but the yield strength on day 0 is 110 MPa or more, and the absolute value of strength increases. In addition, since the amount of strain is large, the cluster is largely destroyed and BHYS is less than 170 MPa.

更に、熱処理条件が請求範囲外であれば、所定の特性は得られない。溶体化熱処理温度が低ければ(P2)、固溶量が少なく、室温保持による強度増加量は少ないが、溶体化熱処理前の析出物が残存することにより強度は増大する。また、冷延にて導入された歪が全て回復することなく残存し、これも強度増加に寄与する。更に、固溶量が少ないためBHYSは170MPaに満たなくなる。予備熱処理温度が高い場合(P5)と請求範囲内の予備熱処理温度であるが保持時間が長い場合(P3)は、強化量が大きくなるため、初期降伏応力が大きくなる。一方、予備熱処理温度が低い場合(P4)は、初期降伏応力は小さいが、固溶量が多いために室温保持時の強度上昇が大きくなる。しかし、BHYSに寄与しないクラスタが形成されるため、BHYSは小さい。一方、予備熱処理温度が高いと、クラスタは形成せず、初期降伏応力が大きく、結果、BHYSも大きくなる。   Furthermore, if the heat treatment conditions are out of the claims, the predetermined characteristics cannot be obtained. If the solution heat treatment temperature is low (P2), the amount of solid solution is small, and the amount of increase in strength due to holding at room temperature is small, but the strength is increased by the presence of precipitates before solution heat treatment. Moreover, all the strains introduced by cold rolling remain without recovering, which also contributes to an increase in strength. Furthermore, since the amount of solid solution is small, BHYS is less than 170 MPa. When the pre-heat treatment temperature is high (P5) and the pre-heat treatment temperature within the claimed range but when the holding time is long (P3), the amount of strengthening becomes large, so the initial yield stress becomes large. On the other hand, when the preliminary heat treatment temperature is low (P4), the initial yield stress is small, but since the amount of solid solution is large, the increase in strength at room temperature is large. However, BHYS is small because clusters that do not contribute to BHYS are formed. On the other hand, if the preliminary heat treatment temperature is high, clusters are not formed, the initial yield stress is large, and as a result, BHYS is also large.

Figure 2016084513
Figure 2016084513

Figure 2016084513
Figure 2016084513

Figure 2016084513
Figure 2016084513

Claims (3)

質量%にて、Mg:0.3〜2.0%、Si:0.3〜2.0%を含有し、製造直後の降伏応力値が110MPa以下であり、製造直後に30℃にて20日保持したときの降伏応力値から10日保持したときの降伏応力値を引いた値が4MPa以下であり、さらに製造直後に30℃にて180日保持後に0.2%の引張歪付与と170℃にて20分間の熱処理の順に施した後の降伏応力値が170MPa以上であることを特徴とする、室温保持での降伏応力の上昇量を抑制したアルミニウム合金。   It contains Mg: 0.3-2.0% and Si: 0.3-2.0% in mass%, the yield stress value immediately after production is 110 MPa or less, and 20% at 30 ° C. immediately after production. The value obtained by subtracting the yield stress value when retained for 10 days from the yield stress value when retained for 10 days is 4 MPa or less, and 0.2% tensile strain was imparted after maintaining for 180 days at 30 ° C. immediately after production. An aluminum alloy that suppresses an increase in yield stress at room temperature, characterized in that a yield stress value after applying heat treatment at 20 ° C. for 20 minutes in order is 170 MPa or more. 質量%にてCu:0.2〜1.0%、Fe:0.05〜0.3%の何れかをさらに含有することを特徴とする、請求項1記載の室温保持での降伏応力の上昇量を抑制したアルミニウム合金。   It further contains any one of Cu: 0.2 to 1.0% and Fe: 0.05 to 0.3% by mass%. Aluminum alloy with reduced rise. 板状に加工されたアルミニウム合金を、1分以上1時間以下の保持時間にて500℃以上融点以下の溶体化熱処理を施し、続いて2時間以上24時間以下の保持時間にて70℃以上180℃以下の熱処理を施した後、テンションレベラーにより0.2から2%の平面歪から引張歪の間の歪を付与することを特徴とする、請求項1または2に記載の室温保持での降伏応力の上昇量を抑制したアルミニウム合金の製造方法。   The aluminum alloy processed into a plate shape is subjected to a solution heat treatment at 500 ° C. or higher and a melting point or lower at a holding time of 1 minute or longer and 1 hour or shorter, and subsequently at 70 ° C. or higher and 180 hours at a holding time of 2 hours or longer and 24 hours or shorter. The yield at room temperature retention according to claim 1 or 2, wherein a strain between 0.2 to 2% plane strain to tensile strain is applied by a tension leveler after heat treatment at ℃ or lower. A method for producing an aluminum alloy that suppresses an increase in stress.
JP2014218613A 2014-10-27 2014-10-27 Method for producing aluminum alloy with suppressed aging at room temperature Expired - Fee Related JP6452384B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014218613A JP6452384B2 (en) 2014-10-27 2014-10-27 Method for producing aluminum alloy with suppressed aging at room temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014218613A JP6452384B2 (en) 2014-10-27 2014-10-27 Method for producing aluminum alloy with suppressed aging at room temperature

Publications (2)

Publication Number Publication Date
JP2016084513A true JP2016084513A (en) 2016-05-19
JP6452384B2 JP6452384B2 (en) 2019-01-16

Family

ID=55972078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014218613A Expired - Fee Related JP6452384B2 (en) 2014-10-27 2014-10-27 Method for producing aluminum alloy with suppressed aging at room temperature

Country Status (1)

Country Link
JP (1) JP6452384B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107723535A (en) * 2017-10-25 2018-02-23 宝鸡市金海源钛标准件制品有限公司 A kind of preparation method of aluminum alloy plate materials

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04147951A (en) * 1990-10-09 1992-05-21 Sumitomo Light Metal Ind Ltd Manufacture of aluminum alloy material for forming excellent in formability, shape freezability and baking hardenability of painting
JP2009242904A (en) * 2008-03-31 2009-10-22 Kobe Steel Ltd Aluminum alloy sheet superior in paint baking hardenability and invulnerable to room temperature aging, and method for production thereof
JP2012025976A (en) * 2010-07-20 2012-02-09 Sumitomo Light Metal Ind Ltd METHOD OF MANUFACTURING Al-Mg-Si BASED ALUMINUM ALLOY PLATE EXCELLENT IN COAT BAKING HARDENABILITY AND FORMABILITY, AND HAVING AGING SUPPRESSION EFFECT AT ROOM TEMPERATURE
JP2012041567A (en) * 2010-08-12 2012-03-01 Sumitomo Light Metal Ind Ltd METHOD FOR MANUFACTURING Al-Mg-Si BASED ALUMINUM ALLOY SHEET EXCELLENT IN HARDENABILITY IN COATING/BAKING AND MOLDABILITY

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04147951A (en) * 1990-10-09 1992-05-21 Sumitomo Light Metal Ind Ltd Manufacture of aluminum alloy material for forming excellent in formability, shape freezability and baking hardenability of painting
JP2009242904A (en) * 2008-03-31 2009-10-22 Kobe Steel Ltd Aluminum alloy sheet superior in paint baking hardenability and invulnerable to room temperature aging, and method for production thereof
JP2012025976A (en) * 2010-07-20 2012-02-09 Sumitomo Light Metal Ind Ltd METHOD OF MANUFACTURING Al-Mg-Si BASED ALUMINUM ALLOY PLATE EXCELLENT IN COAT BAKING HARDENABILITY AND FORMABILITY, AND HAVING AGING SUPPRESSION EFFECT AT ROOM TEMPERATURE
JP2012041567A (en) * 2010-08-12 2012-03-01 Sumitomo Light Metal Ind Ltd METHOD FOR MANUFACTURING Al-Mg-Si BASED ALUMINUM ALLOY SHEET EXCELLENT IN HARDENABILITY IN COATING/BAKING AND MOLDABILITY

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107723535A (en) * 2017-10-25 2018-02-23 宝鸡市金海源钛标准件制品有限公司 A kind of preparation method of aluminum alloy plate materials

Also Published As

Publication number Publication date
JP6452384B2 (en) 2019-01-16

Similar Documents

Publication Publication Date Title
US9396827B2 (en) Cu—Ti based copper alloy sheet material and method for producing the same, and electric current carrying component
JP6567293B2 (en) Aluminum alloy foil with excellent elongation characteristics
JP5918158B2 (en) Aluminum alloy sheet with excellent properties after aging at room temperature
JP6429519B2 (en) Warm forming method of Al-Mg-Si alloy rolled sheet
KR102302032B1 (en) High-strength 6000-based alloy thick plate having uniform strength in plate thickness direction and method for manufacturing the same
JP2016151045A (en) Method for producing 7000 series aluminum alloy member excellent in stress corrosion cracking resistance
JP2007031819A (en) Method for producing aluminum alloy sheet
JP6810508B2 (en) High-strength aluminum alloy plate
CN105316545A (en) Rolled aluminum alloy material
JP2015040340A (en) Molding aluminum alloy sheet and method for manufacturing the same
KR101614004B1 (en) Magnesium alloy for precipition hardened extrusion and manufacturing method of the magnesium alloy
JP6355098B2 (en) High formability aluminum alloy sheet with excellent thermal conductivity and method for producing the same
KR101751521B1 (en) Method of manufacturing magnesium alloy sheet
WO2018003709A1 (en) Aluminum alloy sheet having excellent ridging resistance and hem bendability and production method for same
KR101993506B1 (en) Precipitation hardening magnesium alloy for extruding and method for manufacturing the same
JP6452384B2 (en) Method for producing aluminum alloy with suppressed aging at room temperature
JP2014234542A (en) Aluminum alloy sheet having excellent ridging resistance
JP5279119B2 (en) Partially modified aluminum alloy member and manufacturing method thereof
JP6467154B2 (en) Manufacturing method of high strength and high ductility aluminum alloy sheet
JP6619919B2 (en) Aluminum alloy plate excellent in ridging resistance and hem bendability and method for producing the same
JP2016037632A (en) Aluminum alloy sheet
KR101610360B1 (en) Magnesium alloy sheet, method for manufacturing the same
TW201738390A (en) Method for producing al-mg-Si alloy plate
JP6085473B2 (en) Aluminum alloy plate with excellent press formability
JPWO2016056240A1 (en) Aluminum alloy plate for superplastic forming and manufacturing method thereof

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20170623

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170627

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181211

R150 Certificate of patent or registration of utility model

Ref document number: 6452384

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees