JP2012041567A - METHOD FOR MANUFACTURING Al-Mg-Si BASED ALUMINUM ALLOY SHEET EXCELLENT IN HARDENABILITY IN COATING/BAKING AND MOLDABILITY - Google Patents

METHOD FOR MANUFACTURING Al-Mg-Si BASED ALUMINUM ALLOY SHEET EXCELLENT IN HARDENABILITY IN COATING/BAKING AND MOLDABILITY Download PDF

Info

Publication number
JP2012041567A
JP2012041567A JP2010180816A JP2010180816A JP2012041567A JP 2012041567 A JP2012041567 A JP 2012041567A JP 2010180816 A JP2010180816 A JP 2010180816A JP 2010180816 A JP2010180816 A JP 2010180816A JP 2012041567 A JP2012041567 A JP 2012041567A
Authority
JP
Japan
Prior art keywords
temperature
aging
less
preliminary aging
preliminary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010180816A
Other languages
Japanese (ja)
Other versions
JP5709298B2 (en
Inventor
Mineo Asano
峰生 浅野
Original Assignee
Sumitomo Light Metal Ind Ltd
住友軽金属工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Ind Ltd, 住友軽金属工業株式会社 filed Critical Sumitomo Light Metal Ind Ltd
Priority to JP2010180816A priority Critical patent/JP5709298B2/en
Publication of JP2012041567A publication Critical patent/JP2012041567A/en
Application granted granted Critical
Publication of JP5709298B2 publication Critical patent/JP5709298B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing an Al-Mg-Si based aluminum alloy sheet excellent in coating/baking curability and moldability.SOLUTION: The sheet material of an Al-Mg-Si-based aluminum alloy having a composition which contains 0.5-2.0% of Si and 0.2-1.5% of Mg by mass, further contains one, two or more kinds of Cu, Zn, Fe, Mn, Cr, V, Zr, Ti and B, and the balance comprising Al and inevitable impurities is subjected to solution treatment at a temperature equal to or higher than 480°C and equal to or lower than 580°C, is cooled to a quenching temperature below 60°C at a cooling speed equal to or higher than 2°C/second, is held at the quenching temperature for the time equal to or shorter than one hour, and is then subjected to: (1) intermediate preliminary aging of heating it from the quenching temperature to an intermediate preliminary aging temperature equal to or higher by 10°C than a preliminary aging temperature and equal to or lower than 150°C at a temperature elevating rate equal to or higher than 2°C/minute, and holding it at the intermediate preliminary aging temperature for the time equal to or shorter than ten minutes; and (2) preliminary aging of cooling it from the intermediate preliminary aging temperature to the preliminary aging temperature equal to or higher than 50°C and equal to or lower than 140°C at a cooling rate equal to or higher than 2°C/minute, and holding it at the preliminary aging temperature for the time equal to or longer than one minute and equal to or shorter than ten hours.

Description

本発明は塗装焼付硬化性および成形性に優れ、特に自動車外板に適したAl−Mg−Si系アルミニウム合金板の製造方法に関する。   The present invention relates to a method for producing an Al—Mg—Si based aluminum alloy plate that is excellent in paint bake hardenability and formability, and is particularly suitable for an automobile outer plate.
近年、排気ガス等による地球温暖化対策として、自動車の燃費向上のために、車体の軽量化が求められている。このため、自動車の車体、特に自動車外板用材料として、従来から使用されている鋼板に代わって、アルミニウム合金板の適用が増加している。   In recent years, as a measure against global warming caused by exhaust gas or the like, a reduction in weight of the vehicle body has been demanded in order to improve the fuel efficiency of automobiles. For this reason, the application of aluminum alloy plates is increasing instead of steel plates that have been used conventionally as materials for automobile bodies, particularly automobile outer plates.
自動車外板用アルミニウム合金材としては、Al−Mg系アルミニウム合金やAl−Mg−Si系アルミニウム合金が使用されており、このうち、熱処理型合金であるAl−Mg−Si系アルミニウム合金は適切な条件で製造することにより塗装焼付硬化性を示す点で、自動車外板用としてAl−Mg系アルミニウム合金に比べて優れた特性をそなえている。   Al-Mg-based aluminum alloys and Al-Mg-Si-based aluminum alloys are used as aluminum alloy materials for automobile outer plates, and among these, Al-Mg-Si-based aluminum alloys that are heat-treatable alloys are suitable Compared to Al-Mg-based aluminum alloys, it has excellent characteristics for automotive outer panels in that it exhibits paint bake hardenability when manufactured under conditions.
しかし、Al−Mg−Si系アルミニウム合金を、塗装焼付硬化性のみを重視した条件で製造した場合、製造途中で時効硬化し、製造完了直後の強度(以下、初期強度)が高くなるため、プレス成形やヘム加工(曲げ加工)時に割れが発生し易くなるという難点があり、Al−Mg−Si系アルミニウム合金を自動車外板用材料として適用するためには、塗装焼付硬化性と成形性という両特性を両立させなければならないという問題がある。   However, when an Al—Mg—Si-based aluminum alloy is manufactured under conditions that emphasize only paint bake hardenability, it age-hardens during the manufacturing process, and the strength immediately after completion of the manufacturing (hereinafter referred to as initial strength) increases. There is a problem that cracking is likely to occur during molding and hem processing (bending), and in order to apply an Al-Mg-Si aluminum alloy as a material for an automobile outer plate, both paint bake hardenability and formability are required. There is a problem that the characteristics must be compatible.
Al−Mg−Si系アルミニウム合金において、前記両特性を両立させようとする試みは、これまでにも検討されており、溶体化処理条件や予備時効条件等の工夫によりある程度両立可能な手法が提案されているが、これらの手法も両特性を完全に両立させるにはなお十分でなく、さらに改善が要求されている。   In Al-Mg-Si-based aluminum alloys, attempts to achieve both of the above characteristics have been studied so far, and a method that can be compatible to some extent by devising solution treatment conditions, pre-aging conditions, etc. is proposed. However, these methods are still not sufficient to achieve both characteristics completely, and further improvements are required.
特開平8−74014号公報JP-A-8-74014 特開2007−239005号公報JP 2007-239005 A 特開2002−206152号公報JP 2002-206152 A
本発明は、Al−Mg−Si系合金を自動車用外板用として適用する場合において、プレス成形やヘム加工(曲げ加工)時に割れが発生し易くなるという問題を解消するために、合金組成、溶体化処理条件、時効条件と塗装焼付硬化性、成形性との関係について試験、検討を重ねた結果としてなされたものであり、その目的は、塗装焼付硬化性および成形性に優れたAl−Mg−Si系アルミニウム合金板の製造方法を提供することにある。   In the case of applying the Al-Mg-Si-based alloy as an automotive outer plate, the present invention eliminates the problem that cracking is likely to occur during press molding or hem processing (bending processing). It was made as a result of repeated examinations and studies on the relationship between solution treatment conditions, aging conditions, paint bake hardenability, and moldability, and the purpose was Al-Mg excellent in paint bake hardenability and moldability. -It is providing the manufacturing method of a Si type aluminum alloy plate.
上記の目的を達成するための請求項1による塗装焼付硬化性および成形性に優れたAl−Mg−Si系アルミニウム合金板の製造方法は、質量%で、Si:0.5〜2.0%、Mg:0.2〜1.5%を含有し、さらにCu:1.0%以下、Zn:0.5%以下、Fe:0.5%以下、Mn:0.3%以下、Cr:0.3%以下、V:0.2%以下、Zr:0.15%以下、Ti:0.1%以下、B:0.005%以下のうち1種または2種以上を含有し、残部Alおよび不可避的不純物からなる組成を有するAl−Mg−Si系アルミニウム合金の板材を、480℃以上580℃以下の温度で溶体化処理し、2℃/秒以上の冷却速度で60℃未満の焼入れ温度まで冷却して、該焼入れ温度で1時間以内の時間保持した後、中間予備時効および予備時効を行い、中間予備時効は、前記焼入れ温度から2℃/分以上の昇温速度で予備時効温度よりも10℃高い温度以上150℃以下の中間予備時効温度まで加熱して、該中間予備時効温度で10分以内の時間保持し、予備時効は、前記中間予備時効温度から2℃/分以上の冷却速度で50℃以上140℃以下の予備時効温度まで冷却して、該予備時効温度で1分以上10時間以内の時間保持することを特徴とする。なお、以下の説明において、合金成分はいずれも質量%で示す。   The method for producing an Al—Mg—Si-based aluminum alloy plate excellent in paint bake hardenability and formability according to claim 1 for achieving the above object is mass%, Si: 0.5 to 2.0% Mg: 0.2 to 1.5%, Cu: 1.0% or less, Zn: 0.5% or less, Fe: 0.5% or less, Mn: 0.3% or less, Cr: 0.3% or less, V: 0.2% or less, Zr: 0.15% or less, Ti: 0.1% or less, B: 0.005% or less, containing one or more, the balance A plate of Al—Mg—Si based aluminum alloy having a composition composed of Al and inevitable impurities is subjected to solution treatment at a temperature of 480 ° C. or more and 580 ° C. or less, and quenched at a cooling rate of 2 ° C./second or less and less than 60 ° C. After cooling to the temperature and holding at the quenching temperature for less than 1 hour, intermediate preliminary aging and Preliminary aging is performed, and intermediate preliminary aging is performed by heating from the quenching temperature to an intermediate preliminary aging temperature of 10 ° C. to 150 ° C. higher than the preliminary aging temperature at a rate of temperature increase of 2 ° C./min or more. The aging temperature is maintained for 10 minutes or less, and the preliminary aging is performed by cooling from the intermediate preliminary aging temperature to a preliminary aging temperature of 50 ° C. or more and 140 ° C. or less at a cooling rate of 2 ° C./minute or more. It is characterized by holding for 1 minute to 10 hours. In the following description, all alloy components are indicated by mass%.
請求項2による塗装焼付硬化性および成形性に優れ、室温時効抑制効果を有するAl−Mg−Si系アルミニウム合金板の製造方法は、請求項1において、前記(1)の中間予備時効の後、2℃/分以上の冷却速度で予備時効温度未満の温度まで冷却し、該温度から2℃/分以上の昇温速度で50℃以上140℃以下の予備時効温度まで加熱し、該予備時効温度で1分以上10時間以内の時間保持する予備時効を行うことを特徴とする。   The method for producing an Al—Mg—Si-based aluminum alloy plate having excellent paint bake hardenability and formability according to claim 2 and having an effect of suppressing aging at room temperature is the method according to claim 1, wherein the intermediate preliminary aging of (1) is Cooling to a temperature below the pre-aging temperature at a cooling rate of 2 ° C./min or more, heating from the temperature to a pre-aging temperature of 50 ° C. to 140 ° C. at a temperature rising rate of 2 ° C./min or more, and the pre-aging temperature Preliminary aging is performed by holding for 1 minute to 10 hours.
本発明によれば、塗装焼付硬化性および成形性に優れ、特に自動車外板用として好適なAl−Mg−Si系アルミニウム合金板の製造方法が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the Al-Mg-Si type aluminum alloy plate which is excellent in paint bake hardenability and a moldability and is suitable especially for motor vehicle outer plates is provided.
本発明における合金成分の意義および限定理由について説明する。
Si:
Siは、塗装焼付硬化性を得るために必要な合金成分であり、Mg−Si系化合物を形成して強度を高めるよう機能する。Siの好ましい含有量は0.5〜2.0%の範囲であり、0.5%未満では塗装焼付処理(150〜200℃の温度範囲内で20分保持する熱処理)で十分な塗装焼付硬化性が得られず、2.0%を超えると、初期強度が高くなり、プレス成形性や曲げ加工性が劣化する。Siのさらに好ましい含有量は0.8〜1.2%の範囲である。
The significance and reasons for limitation of the alloy components in the present invention will be described.
Si:
Si is an alloy component necessary for obtaining paint bake hardenability, and functions to increase the strength by forming an Mg—Si compound. The preferable content of Si is in the range of 0.5 to 2.0%, and if it is less than 0.5%, the paint baking and curing is sufficient with the paint baking process (heat treatment held at 150 to 200 ° C. for 20 minutes). However, if it exceeds 2.0%, the initial strength increases and the press formability and bending workability deteriorate. A more preferable content of Si is in the range of 0.8 to 1.2%.
Mg:
Mgは、Siと同様に塗装焼付硬化性を得るために必要な合金成分であり、Mg−Si系化合物を形成して強度を高めるよう機能する。Mgの好ましい含有量は0.2〜1.5%の範囲であり、0.2%未満では塗装焼付処理(150〜200℃の温度範囲内で20分保持する熱処理)で十分な塗装焼付硬化性が得られず、1.5%を超えると、初期強度が高くなり、プレス成形性や曲げ加工性が劣化する。Mgのさらに好ましい含有量は0.3〜0.7%の範囲である。
Mg:
Similar to Si, Mg is an alloy component necessary for obtaining paint bake hardenability, and functions to increase the strength by forming an Mg-Si compound. The preferred Mg content is in the range of 0.2 to 1.5%, and if it is less than 0.2%, the paint baking and curing is sufficient with a paint baking process (heat treatment held at 150 to 200 ° C. for 20 minutes). However, if it exceeds 1.5%, the initial strength increases, and the press formability and bending workability deteriorate. A more preferable content of Mg is in the range of 0.3 to 0.7%.
Cu:
Cuは、強度を高め、成形性を向上させるよう機能する。Cuの好ましい含有量は1.0%以下の範囲であり、1.0%を越えると初期強度が高くなり、プレス成形性や曲げ加工性が低下し、また、耐食性も劣化する。
Cu:
Cu functions to increase strength and improve formability. The preferable content of Cu is in the range of 1.0% or less. If it exceeds 1.0%, the initial strength is increased, the press formability and bending workability are lowered, and the corrosion resistance is also deteriorated.
Zn:
Znは、表面処理時のりん酸亜鉛処理性を向上させるよう機能する。Znの好ましい含有量は0.5%以下の範囲であり、0.5%を超えると耐食性が劣化する。
Zn:
Zn functions to improve the zinc phosphate processability during the surface treatment. The preferable content of Zn is in the range of 0.5% or less, and if it exceeds 0.5%, the corrosion resistance deteriorates.
Fe、Mn、Cr、V、Zr:
上記の元素は、強度を高め、結晶粒を微細化して成形加工時の肌荒れを防止するよう機能する。好ましい含有量はFe0.5%以下、Mn0.3%以下、Cr0.3%以下、V0.2%以下、Zr0.15%以下の範囲であり、それぞれ上限を超えると、粗大な金属間化合物が生成してプレス成形性や曲げ加工性が劣化する。
Fe, Mn, Cr, V, Zr:
The above elements function to increase the strength and refine the crystal grains to prevent rough skin during molding. The preferred contents are Fe 0.5% or less, Mn 0.3% or less, Cr 0.3% or less, V 0.2% or less, and Zr 0.15% or less. As a result, press formability and bending workability deteriorate.
Ti、B:
TiおよびBは、鋳造組織を微細化して成形性を向上させるよう機能する。好ましい含有量はTi0.1%以下、B0.005%以下の範囲であり、それぞれ上限を超えると、粗大な金属間化合物が生成してプレス成形性や曲げ加工性が劣化する。
Ti, B:
Ti and B function to refine the cast structure and improve formability. Preferable contents are in the range of Ti 0.1% or less and B 0.005% or less. When the upper limit is exceeded, a coarse intermetallic compound is generated, and press formability and bending workability deteriorate.
上記の組成を有するAl−Mg−Si系合金の製造工程について説明すると、上記の組成を有するAl−Mg−Si系アルミニウム合金を溶解、鋳造し、得られた鋳塊を、常法に従って均質化処理、熱間圧延、必要に応じて中間焼鈍を行いながら所定の厚さまで冷間圧延する。   The production process of the Al—Mg—Si alloy having the above composition will be described. The Al—Mg—Si based aluminum alloy having the above composition is melted and cast, and the resulting ingot is homogenized according to a conventional method. It cold-rolls to predetermined thickness, performing a process, hot rolling, and intermediate annealing as needed.
溶体化処理、焼入れ、焼入れ後の室温時効:
冷間圧延されたAl−Mg−Si系アルミニウム合金板材は塗装焼付硬化性を得るために、先ず溶体化処理および焼入れ(T4処理)を行う。溶体化処理は480℃以上580℃以下の温度範囲で行う。480℃未満ではSiおよびMgの固溶が不十分となり、塗装焼付硬化性が低下する。また、580℃を超えると、SiおよびMgの固溶は十分であるが、局所的に融解するおそれがあり、安定した板材の製造を行うことができない。
Room temperature aging after solution treatment, quenching and quenching:
The cold-rolled Al—Mg—Si aluminum alloy sheet is first subjected to solution treatment and quenching (T4 treatment) in order to obtain paint bake hardenability. The solution treatment is performed in a temperature range of 480 ° C. or higher and 580 ° C. or lower. If it is less than 480 degreeC, the solid solution of Si and Mg will become inadequate, and paint bake hardenability will fall. If the temperature exceeds 580 ° C., the solid solution of Si and Mg is sufficient, but there is a risk of local melting, and a stable plate material cannot be produced.
溶体化処理後の焼入れは、2℃/秒以上、より好ましくは20℃/秒以上の冷却速度で溶体化処理温度から60℃未満の焼入れ温度まで急冷することにより行われる。冷却速度が2℃/秒未満では、冷却中、粒界にSiやMg−Si系化合物が析出することに起因してプレス成形性や曲げ加工性が低下する。また、SiおよびMgの固溶が不十分となり、塗装焼付硬化性が低下する。焼入れ時の温度が60℃以上の場合には、焼入れ不足が発生し、十分な塗装焼付硬化性が得られなくなる。   The quenching after the solution treatment is performed by rapidly cooling from the solution treatment temperature to a quenching temperature of less than 60 ° C. at a cooling rate of 2 ° C./second or more, more preferably 20 ° C./second or more. When the cooling rate is less than 2 ° C./second, press formability and bending workability are deteriorated due to the precipitation of Si or Mg—Si compounds at the grain boundaries during cooling. Moreover, the solid solution of Si and Mg becomes insufficient, and the paint bake hardenability is lowered. When the temperature during quenching is 60 ° C. or higher, insufficient quenching occurs and sufficient paint bake hardenability cannot be obtained.
焼入れ後、焼入れ温度で1時間以内の時間保持し、その後、中間予備時効および予備時効を行う。焼入れ温度での保持時間が1時間を超えると、時効硬化が進み、十分な塗装焼付硬化性が得られなくなる。さらに好ましい保持時間は10分以内である。   After quenching, hold at quenching temperature for less than 1 hour, then perform intermediate preliminary aging and preliminary aging. When the holding time at the quenching temperature exceeds 1 hour, age hardening proceeds and sufficient paint bake hardenability cannot be obtained. Further preferable holding time is within 10 minutes.
中間予備時効、中間予備時効後の冷却:
中間予備時効は、前記焼入れ温度から2℃/分以上、より好ましくは20℃/分以上の昇温速度で後述する予備時効温度よりも10℃高い温度以上150℃以下、より好ましくは120℃以下の中間予備時効温度まで加熱し、中間予備時効温度で10分以内の時間保持することにより行われる。中間予備時効温度への昇温速度が2℃/分未満では、時効硬化が進み、十分な塗装焼付硬化が得られない。中間予備時効温度が予備時効温度よりも10℃高い温度未満では、十分な中間予備時効効果が得られず、十分な塗装焼付硬化が達成できない。中間予備時効温度が150℃を超えると、初期強度が高くなり、十分な成形性が得られなくなる。
Intermediate preliminary aging, cooling after intermediate preliminary aging:
The intermediate preliminary aging is at least 2 ° C./minute from the quenching temperature, more preferably at a temperature rising rate of 20 ° C./minute or more, a temperature that is 10 ° C. higher than the preliminary aging temperature described later, and 150 ° C. or less, more preferably 120 ° C. or less. The intermediate preliminary aging temperature is heated to the intermediate preliminary aging temperature and held for 10 minutes or less at the intermediate preliminary aging temperature. When the rate of temperature increase to the intermediate preliminary aging temperature is less than 2 ° C./min, age hardening proceeds and sufficient paint bake hardening cannot be obtained. If the intermediate preliminary aging temperature is less than 10 ° C. higher than the preliminary aging temperature, sufficient intermediate preliminary aging effect cannot be obtained, and sufficient paint bake hardening cannot be achieved. If the intermediate preliminary aging temperature exceeds 150 ° C., the initial strength increases and sufficient moldability cannot be obtained.
中間予備時効温度での保持時間は好ましくは10分以内、より好ましくは5分以内である。保持時間が10分を超えると、時効硬化が進み、十分な塗装焼付硬化性が得られなくなる。また、中間予備時効温度での保持時間が10分を超え、中間予備時効温度が140℃を超えた場合には、初期強度が高くなり、十分な成形性が得られなくなる。   The holding time at the intermediate pre-aging temperature is preferably within 10 minutes, more preferably within 5 minutes. When the holding time exceeds 10 minutes, age hardening proceeds and sufficient paint bake curability cannot be obtained. On the other hand, when the holding time at the intermediate preliminary aging temperature exceeds 10 minutes and the intermediate preliminary aging temperature exceeds 140 ° C., the initial strength increases and sufficient moldability cannot be obtained.
中間予備時効後、中間予備時効温度から2℃/分以上の冷却速度で50℃以上140℃以下の予備時効温度まで冷却して予備時効を行う。または、2℃/分以上の冷却速度で予備時効温度未満の温度に冷却し、予備時効温度まで加熱して予備時効を行う。中間予備時効後の冷却速度が2℃/分未満では、時効硬化が進み、十分な塗装焼付硬化性が得られなくなる。   After the intermediate preliminary aging, preliminary aging is performed by cooling from the intermediate preliminary aging temperature to a preliminary aging temperature of 50 ° C. or more and 140 ° C. or less at a cooling rate of 2 ° C./min or more. Alternatively, it is cooled to a temperature lower than the pre-aging temperature at a cooling rate of 2 ° C./min or more and heated to the pre-aging temperature to perform pre-aging. When the cooling rate after intermediate preliminary aging is less than 2 ° C./min, age hardening proceeds and sufficient paint bake hardenability cannot be obtained.
予備時効:
予備時効温度は50℃以上140℃以下が好ましい。50℃未満では、十分な予備時効効果が得られず、塗装焼付硬化が不十分となる。予備時効温度が140℃を超えると、初期強度が高くなり、十分な成形性が得られなくなる。予備時効の保持時間は1分以上10時間以内が好ましく、1分未満では、十分な予備時効効果が得られず、塗装焼付硬化が不十分となる。保持時間が10時間を超えると、初期強度が高くなり、十分な成形性が得られなくなる。
Pre-aging:
The preliminary aging temperature is preferably 50 ° C or higher and 140 ° C or lower. If it is less than 50 degreeC, sufficient preliminary aging effect is not acquired and paint baking hardening becomes inadequate. When the pre-aging temperature exceeds 140 ° C., the initial strength increases and sufficient moldability cannot be obtained. The pre-aging time is preferably 1 minute or more and within 10 hours, and if it is less than 1 minute, sufficient preliminary aging effect cannot be obtained, and paint bake hardening becomes insufficient. If the holding time exceeds 10 hours, the initial strength increases and sufficient moldability cannot be obtained.
中間予備時効後、中間予備時効温度から2℃/分以上の冷却速度で予備時効温度未満の温度に冷却した場合には、冷却した温度から2℃/分以上、より好ましくは20℃/分以上の昇温速度で50℃以上140℃以下の予備時効温度まで加熱して予備時効を行う。昇温速度が2℃/分未満では、時効硬化が進み、十分な塗装焼付硬化が得られない。   After the intermediate pre-aging, when cooled to a temperature below the pre-aging temperature at a cooling rate of 2 ° C./min or more from the intermediate pre-aging temperature, the cooling temperature is 2 ° C./min or more, more preferably 20 ° C./min or more. Pre-aging is performed by heating to a pre-aging temperature of 50 ° C. or higher and 140 ° C. or lower at a rate of temperature increase. When the rate of temperature rise is less than 2 ° C./min, age hardening proceeds and sufficient paint bake hardening cannot be obtained.
本発明においては、前記の合金組成を有するAl−Mg−Si系アルミニウム合金材を、溶体化処理、焼入れ、中間予備時効、中間予備時効後の冷却、および予備時効からなる前記一連の工程で処理することにより、塗装焼付硬化性および成形性に優れたAl−Mg−Si系アルミニウム合金板を製造することができる。   In the present invention, the Al—Mg—Si based aluminum alloy material having the above alloy composition is treated in the series of steps including solution treatment, quenching, intermediate preliminary aging, cooling after intermediate preliminary aging, and preliminary aging. By doing, the Al-Mg-Si type aluminum alloy plate excellent in paint bake hardenability and formability can be manufactured.
以下、本発明の実施例を比較例と対比して説明し、その効果を実証する。なお、これらの実施例は、本発明の一実施態様を示すものであり、本発明はこれらに限定されない。   Examples of the present invention will be described below in comparison with comparative examples to demonstrate the effects. In addition, these Examples show one embodiment of this invention, and this invention is not limited to these.
実施例1、比較例1
表1に示す組成を有するアルミニウム合金(発明材:A〜J、比較材:K〜T)をDC鋳造により造塊し、得られた鋳塊を、550℃で24時間均質化処理した後、室温まで冷却し、その後、390℃まで再加熱して熱間圧延を開始し、厚さ4.0mmまで圧延した。熱間圧延の終了温度は240℃とした。続いて、0.9mmまで冷間圧延を行った。表1において、本発明の条件を外れたものには下線を付した。
Example 1 and Comparative Example 1
An aluminum alloy having the composition shown in Table 1 (invention materials: A to J, comparative materials: KT) was ingoted by DC casting, and the resulting ingot was homogenized at 550 ° C. for 24 hours, It was cooled to room temperature, then reheated to 390 ° C. to start hot rolling, and rolled to a thickness of 4.0 mm. The end temperature of hot rolling was 240 ° C. Subsequently, cold rolling was performed to 0.9 mm. In Table 1, those outside the conditions of the present invention are underlined.
得られた冷間圧延材について、550℃で40秒間の溶体化処理を行い、10℃/秒の冷却速度で20℃の焼入れ温度まで急冷した。20℃で5分保持した後、100℃/分の昇温速度で100℃の中間予備時効温度まで加熱して、100℃で1分間保持する中間予備時効を行った。その後、20℃/分の冷却速度で80℃の予備時効温度まで冷却して、80℃で1時間保持する予備時効を行い、40℃まで冷却して、40℃にて3日および30日保持した後、以下の方法で引張性質、塗装焼付硬化性、成形性を評価した。結果を表2に示す。   The obtained cold-rolled material was subjected to a solution treatment at 550 ° C. for 40 seconds, and rapidly cooled to a quenching temperature of 20 ° C. at a cooling rate of 10 ° C./second. After maintaining at 20 ° C. for 5 minutes, intermediate preliminary aging was performed by heating to an intermediate preliminary aging temperature of 100 ° C. at a rate of temperature increase of 100 ° C./min and holding at 100 ° C. for 1 minute. Then, it is cooled to a pre-aging temperature of 80 ° C. at a cooling rate of 20 ° C./min, pre-aging is carried out at 80 ° C. for 1 hour, cooled to 40 ° C., and held at 40 ° C. for 3 and 30 days. Then, tensile properties, paint bake hardenability, and moldability were evaluated by the following methods. The results are shown in Table 2.
引張性質:
40℃にて3日および30日保持した板材(試験材)について、圧延方向に対して垂直方向にJIS5号引張試験片を採取して、引張試験を行い、3日保持した試験材の耐力(初期耐力)および30日保持した試験材の耐力(時効後耐力)を測定した。
Tensile properties:
For plate materials (test materials) held at 40 ° C. for 3 days and 30 days, a JIS No. 5 tensile test piece was taken in a direction perpendicular to the rolling direction, subjected to a tensile test, and the proof stress of the test material held for 3 days ( The initial strength) and the strength of the test material held for 30 days (post-aging strength) were measured.
塗装焼付硬化性:
40℃にて30日保持した板材(試験材)について、圧延方向に対して垂直方向にJIS5号引張試験片を採取し、2%の引張変形を施した後、175℃にて30分熱処理を行った後、常温で引張試験を行い、耐力200MPa以上を合格、200MPa未満を不合格(×)と評価した。
Paint bake curability:
For a plate material (test material) held at 40 ° C. for 30 days, a JIS No. 5 tensile test piece was taken in the direction perpendicular to the rolling direction, subjected to 2% tensile deformation, and then heat treated at 175 ° C. for 30 minutes. After the test, a tensile test was performed at room temperature, and a proof stress of 200 MPa or more was evaluated as acceptable and a value less than 200 MPa was evaluated as rejected (x).
成形性:
40℃にて30日保持した板材(試験材)について、平面ひずみの破断限界ひずみ量、曲げ試験時の曲げ割れ発生有無を調査して、評価を行った。
平面ひずみの破断限界ひずみ量は、次に示す手順で測定した。圧延方向に対して垂直方向に幅140mm、長さ200mmの試験片を採取し、試験片に直径5mmのスクライブドサークルを転写した後、直径100mmの球頭パンチを用いた張出試験を行った。張出試験時の成形条件はしわ押さえ力:200kN、成形速度:200mm/分、潤滑油:高粘度油(動粘度1000mm/s)とした。張出試験後のパネルを用いて、破断部近傍の主ひずみ方向のスクライブドサークル径(寸法A)を測定した後、次式により、平面ひずみの破断限界ひずみ量を算出し、0.20以上を曲げ加工性合格(○)、0.20未満を曲げ加工性不合格(×)と評価した。
(平面ひずみの破断限界ひずみ量)=((寸法A)−5mm)/5mm
Formability:
About the board | plate material (test material) hold | maintained at 40 degreeC for 30 days, the fracture limit strain amount of a plane strain and the presence or absence of a bending crack at the time of a bending test were investigated and evaluated.
The fracture limit amount of plane strain was measured by the following procedure. A test piece having a width of 140 mm and a length of 200 mm was taken in a direction perpendicular to the rolling direction, a scribed circle having a diameter of 5 mm was transferred to the test piece, and then an overhang test using a spherical head punch having a diameter of 100 mm was performed. . The molding conditions during the overhang test were wrinkle holding force: 200 kN, molding speed: 200 mm / min, and lubricating oil: high viscosity oil (kinematic viscosity 1000 mm 2 / s). After measuring the scribed circle diameter (dimension A) in the main strain direction in the vicinity of the fractured portion using the panel after the overhang test, the fracture limit strain amount of plane strain is calculated by the following formula, 0.20 or more Was evaluated as a bending workability pass (O), and a value less than 0.20 was evaluated as a bending workability failure (X).
(Fracture limit strain amount of plane strain) = ((dimension A) −5 mm) / 5 mm
曲げ試験時の曲げ割れ発生有無は、次に示す手順で評価した。圧延方向に対して垂直方向に幅25mm、長さ200mmの試験片を採取し、10%の引張変形を施した後、内側曲げ半径0.4mmの180°曲げ試験を行った。曲げ加工性の評価は目視による曲げ部の外観観察により行い、割れの発生していないものを合格(○)、割れが発生したものを不合格(×)と評価した。   The presence or absence of bending cracks during the bending test was evaluated by the following procedure. A test piece having a width of 25 mm and a length of 200 mm was taken in a direction perpendicular to the rolling direction, subjected to a tensile deformation of 10%, and then subjected to a 180 ° bending test with an inner bending radius of 0.4 mm. Evaluation of bending workability was performed by visually observing the appearance of the bent portion, and the case where no cracks occurred was evaluated as pass (◯), and the case where cracks occurred was evaluated as reject (x).
表2に示すように、本発明に従う試験材1〜10はいずれも、塗装焼付硬化性および成形性に優れていた。   As shown in Table 2, all of the test materials 1 to 10 according to the present invention were excellent in paint bake hardenability and moldability.
これに対して、試験材11、試験材13はそれぞれSi量、Mg量が少ないため、いずれも塗装焼付後の耐力が低く塗装焼付硬化性が劣っていた。試験材12、試験材14、試験材15はそれぞれSi量、Mg量、Cu量が多いため、いずれも初期耐力および時効後耐力が大きく、平面ひずみの破断限界ひずみ量が低く、曲げ割れが発生し、成形性に劣っていた。   On the other hand, since the test material 11 and the test material 13 had a small amount of Si and Mg, respectively, the proof stress after paint baking was low and the paint bake curability was poor. Since Test Material 12, Test Material 14, and Test Material 15 have a large amount of Si, Mg, and Cu, respectively, the initial strength and post-aging strength are large, the plane strain has a low fracture limit strain, and bending cracking occurs. However, the moldability was inferior.
試験材16、試験材17はそれぞれFe量、Mn量が多いため、いずれも塗装焼付後の耐力が低く、塗装焼付硬化性に劣っていた。また、平面ひずみの破断限界ひずみ量が低く、曲げ割れも発生し、成形性にも劣っていた。試験材18、試験材19、試験材20はそれぞれCr量、V量、Zr量が多いため、いずれも平面ひずみの破断限界ひずみ量が低く、曲げ割れが発生し、成形性に劣っていた。   Since each of the test material 16 and the test material 17 had a large amount of Fe and Mn, both had low proof stress after paint baking and were inferior in paint bake curability. Moreover, the fracture limit strain amount of plane strain was low, bending cracks were generated, and the moldability was poor. Since each of the test material 18, the test material 19, and the test material 20 had a large amount of Cr, V, and Zr, all of them had a low plane strain breaking limit strain, a bending crack was generated, and the formability was poor.
実施例2、比較例2
表1に示すアルミニウム合金Aの鋳塊を、550℃で12時間均質化処理した後、室温まで冷却し、その後、410℃まで再加熱して熱間圧延を開始し、厚さ3.0mmまで圧延した。熱間圧延の終了温度は240℃とした。続いて、0.9mmまで冷間圧延を行った。
Example 2 and Comparative Example 2
The ingot of aluminum alloy A shown in Table 1 was homogenized at 550 ° C. for 12 hours, then cooled to room temperature, and then reheated to 410 ° C. to start hot rolling, up to a thickness of 3.0 mm Rolled. The end temperature of hot rolling was 240 ° C. Subsequently, cold rolling was performed to 0.9 mm.
得られた冷間圧延材について、表3に示すように、470〜590℃で60秒の溶体化処理を行い、0.2℃/秒および2℃/秒の冷却速度で5〜65℃の焼入れ温度まで冷却して、焼入れ温度で3〜70分保持した後、0.2℃/分および2℃/分の昇温速度で70〜160℃の中間予備時効温度まで加熱して、中間予備時効温度で1〜20分間保持する中間予備時効を行った。なお、表3において、本発明の条件を外れたものには下線を付した。   About the obtained cold-rolled material, as shown in Table 3, a solution treatment for 60 seconds is performed at 470 to 590 ° C., and 5 to 65 ° C. at a cooling rate of 0.2 ° C./second and 2 ° C./second. After cooling to the quenching temperature and holding at the quenching temperature for 3 to 70 minutes, heating to an intermediate preliminary aging temperature of 70 to 160 ° C. at a temperature rising rate of 0.2 ° C./min and 2 ° C./min, Intermediate preliminary aging was performed, which was held at the aging temperature for 1-20 minutes. In Table 3, those outside the conditions of the present invention are underlined.
その後、5℃/分の冷却速度で70℃の予備時効温度に加熱して、3時間保持する予備時効を行い、40℃まで冷却した。その後、40℃の温度に3日および30日保持した後、実施例1と同じ方法で引張性質、塗装焼付硬化性、成形性を評価した。結果を表3に示す。   Thereafter, the sample was heated to a pre-aging temperature of 70 ° C. at a cooling rate of 5 ° C./min, pre-aging was carried out for 3 hours, and then cooled to 40 ° C. Then, after maintaining at a temperature of 40 ° C. for 3 days and 30 days, tensile properties, paint bake hardenability, and moldability were evaluated in the same manner as in Example 1. The results are shown in Table 3.
表3に示すように、本発明の条件に従う試験材21〜28はいずれも、塗装焼付硬化性および成形性に優れていた。   As shown in Table 3, all of the test materials 21 to 28 according to the conditions of the present invention were excellent in paint bake hardenability and moldability.
これに対して、試験材29は溶体化処理温度が低いため、試験材31は溶体化処理後の冷却速度が低いため、試験材32は焼入れ温度が高いため、試験材33は焼入れ温度での保持時間が長いため、試験材34は中間予備時効温度が低いため、試験材36は中間予備時効温度までの昇温速度が低いため、また、試験材37は中間予備時効温度での保持時間が長いため、いずれも塗装焼付後の耐力が低く塗装焼付硬化性に劣っていた。   On the other hand, since the test material 29 has a low solution treatment temperature, the test material 31 has a low cooling rate after the solution treatment, so the test material 32 has a high quenching temperature, and therefore the test material 33 has a quenching temperature. Since the holding time is long, the test material 34 has a low intermediate preliminary aging temperature, the test material 36 has a low rate of temperature rise to the intermediate preliminary aging temperature, and the test material 37 has a holding time at the intermediate preliminary aging temperature. Because of their long length, the yield strength after baking was low and the baking resistance was poor.
試験材35は中間予備時効温度が高いため、初期耐力および時効後耐力が大きく、平面ひずみの破断限界ひずみ量が低く、曲げ割れが発生し成形性に劣っていた。なお、試験材30は、溶体化処理温度が高く、溶体化処理中に局所融解が生じたため、各評価試験を行うことができなかった。   Since the test material 35 had a high intermediate preliminary aging temperature, the initial proof stress and the post-aging proof stress were large, the plane strain strain limit strain was low, bending cracks were generated, and the formability was poor. Since the test material 30 had a high solution treatment temperature and local melting occurred during the solution treatment, each evaluation test could not be performed.
実施例3、比較例3
表1に示すアルミニウム合金Aの鋳塊を、540℃で16時間均質化処理した後、室温まで冷却し、その後、380℃まで再加熱して熱間圧延を開始し、厚さ2.5mmまで圧延した。熱間圧延の終了温度は240℃とした。続いて、0.9mmまで冷間圧延を行った。
Example 3 and Comparative Example 3
The ingot of aluminum alloy A shown in Table 1 was homogenized at 540 ° C. for 16 hours, then cooled to room temperature, then reheated to 380 ° C. and started hot rolling until the thickness reached 2.5 mm. Rolled. The end temperature of hot rolling was 240 ° C. Subsequently, cold rolling was performed to 0.9 mm.
得られた冷間圧延材について、550℃で50秒の溶体化処理を行い、20℃/秒の冷却速度で30℃の焼入れ温度まで冷却して、焼入れ温度で2分保持した後、75℃/分の昇温速度で150℃の中間予備時効温度まで加熱して、中間予備時効温度で0.5分間保持する中間予備時効を行った。   The obtained cold-rolled material was subjected to a solution treatment at 550 ° C. for 50 seconds, cooled to a quenching temperature of 30 ° C. at a cooling rate of 20 ° C./second, held at the quenching temperature for 2 minutes, and then 75 ° C. The sample was heated to an intermediate preliminary aging temperature of 150 ° C. at a rate of temperature rise / minute, and an intermediate preliminary aging was performed by maintaining the intermediate preliminary aging temperature for 0.5 minutes.
その後、0.2℃/分および2℃/分の冷却速度で40〜150℃の予備時効温度まで冷却して、30秒〜20時間保持する予備時効を行い、40℃まで冷却した。その後、40℃の温度に3日および30日保持した後、実施例1と同じ方法で引張性質、塗装焼付硬化性、成形性を評価した。結果を表4に示す。なお、表4において、本発明の条件を外れたものには下線を付した。   Then, it cooled to the pre-aging temperature of 40-150 degreeC with the cooling rate of 0.2 degree-C / min and 2 degree-C / min, the pre-aging hold | maintained for 30 second-20 hours was performed, and it cooled to 40 degreeC. Then, after maintaining at a temperature of 40 ° C. for 3 days and 30 days, tensile properties, paint bake hardenability, and moldability were evaluated in the same manner as in Example 1. The results are shown in Table 4. In Table 4, those outside the conditions of the present invention are underlined.
表4に示すように、本発明の条件に従う試験材38〜42はいずれも、塗装焼付硬化性および成形性に優れていた。   As shown in Table 4, all of the test materials 38 to 42 according to the conditions of the present invention were excellent in paint bake hardenability and moldability.
これに対して、試験材43は予備時効温度が低いため、試験材45は予備時効温度までの冷却速度が低いため、試験材46は予備時効時間が短いため、いずれも塗装焼付後の耐力が低く塗装焼付硬化性に劣っていた。   On the other hand, since the test material 43 has a low pre-aging temperature, the test material 45 has a low cooling rate to the pre-aging temperature, and the test material 46 has a short pre-aging time. It was low and inferior in paint bake curability.
試験材44は予備時効温度が高いため、試験材47は予備時効温度での保持時間が長いため、いずれも初期耐力および時効後耐力が大きく、平面ひずみの破断限界ひずみ量が低く、曲げ割れが発生し成形性に劣っていた。   Since the test material 44 has a high pre-aging temperature, and the test material 47 has a long holding time at the pre-aging temperature, both have high initial proof stress and post-aging proof stress, low plane strain breaking limit strain amount, and bending cracking. Generated and inferior in formability.
実施例4、比較例4
表1に示すアルミニウム合金Aの鋳塊を、540℃で24時間均質化処理した後、室温まで冷却し、その後、400℃まで再加熱して熱間圧延を開始し、厚さ3.5mmまで圧延した。熱間圧延の終了温度は240℃とした。続いて、0.9mmまで冷間圧延を行った。
Example 4 and Comparative Example 4
The ingot of aluminum alloy A shown in Table 1 was homogenized at 540 ° C. for 24 hours, then cooled to room temperature, and then reheated to 400 ° C. to start hot rolling until the thickness reached 3.5 mm. Rolled. The end temperature of hot rolling was 240 ° C. Subsequently, cold rolling was performed to 0.9 mm.
得られた冷間圧延材について、540℃で60秒の溶体化処理を行い、15℃/秒の冷却速度で15℃の焼入れ温度まで冷却して、焼入れ温度で10分保持した後、50℃/分の昇温速度で150℃の中間予備時効温度まで加熱して、中間予備時効温度で1分間保持する中間予備時効を行った。   The obtained cold-rolled material was subjected to a solution treatment at 540 ° C. for 60 seconds, cooled to a quenching temperature of 15 ° C. at a cooling rate of 15 ° C./second, held at the quenching temperature for 10 minutes, and then cooled to 50 ° C. The intermediate preliminary aging was performed by heating to an intermediate preliminary aging temperature of 150 ° C. at a rate of temperature increase / min and holding at the intermediate preliminary aging temperature for 1 minute.
その後、表5に示すように、0.2℃/分および2℃/分の冷却速度で予備時効温度より20℃低い温度まで冷却した後、この冷却温度から0.2℃/分および2℃/分の昇温速度で40〜150℃の予備時効温度に加熱して、30秒〜20時間保持する予備時効を行い、40℃まで冷却した。その後、40℃の温度に3日および30日保持した後、実施例1と同じ方法で引張性質、塗装焼付硬化性、成形性を評価した。結果を表5に示す。なお、表5において、本発明の条件を外れたものには下線を付した。   Then, as shown in Table 5, after cooling to a temperature 20 ° C. lower than the pre-aging temperature at a cooling rate of 0.2 ° C./min and 2 ° C./min, from this cooling temperature, 0.2 ° C./min and 2 ° C. The sample was heated to a pre-aging temperature of 40 to 150 ° C. at a rate of temperature rise / min, pre-aging was carried out for 30 seconds to 20 hours, and cooled to 40 ° C. Then, after maintaining at a temperature of 40 ° C. for 3 days and 30 days, tensile properties, paint bake hardenability, and moldability were evaluated in the same manner as in Example 1. The results are shown in Table 5. In Table 5, those outside the conditions of the present invention are underlined.
表5に示すように、本発明の条件に従う試験材48〜52はいずれも、塗装焼付硬化性および成形性に優れていた。   As shown in Table 5, all of the test materials 48 to 52 according to the conditions of the present invention were excellent in paint bake hardenability and moldability.
これに対して、試験材53は予備時効温度が低いため、試験材55は中間予備時効後の冷却温度が低いため、試験材56は予備時効温度までの昇温速度が低いため、試験材57は予備時効温度での保持時間が短いため、いずれも焼付塗装後の耐力が低く、塗装焼付硬化性が劣っていた。試験材54は予備時効温度が高いため、試験材58は予備時効温度での保持時間が長いため、いずれも初期耐力および時効後耐力が大きく、平面ひずみの破断限界ひずみ量が低く、曲げ割れが発生し成形性に劣っていた。   On the other hand, since the test material 53 has a low preliminary aging temperature, the test material 55 has a low cooling temperature after the intermediate preliminary aging, and therefore the test material 56 has a low temperature rising rate up to the preliminary aging temperature. Since the retention time at the preliminary aging temperature was short, all of them had low proof stress after baking coating and were inferior in paint bake hardenability. Since the test material 54 has a high pre-aging temperature, the test material 58 has a long holding time at the pre-aging temperature, and therefore, both of the initial strength and the post-aging strength are large, the plane strain has a low fracture limit strain amount, and bending cracks are not generated. Generated and inferior in formability.

Claims (2)

  1. 質量%で、Si:0.5〜2.0%、Mg:0.2〜1.5%を含有し、さらにCu:1.0%以下、Zn:0.5%以下、Fe:0.5%以下、Mn:0.3%以下、Cr:0.3%以下、V:0.2%以下、Zr:0.15%以下、Ti:0.1%以下、B:0.005%以下のうち1種または2種以上を含有し、残部Alおよび不可避的不純物からなる組成を有するAl−Mg−Si系アルミニウム合金の板材を、480℃以上580℃以下の温度で溶体化処理し、2℃/秒以上の冷却速度で60℃未満の焼入れ温度まで冷却して、該焼入れ温度で1時間以内の時間保持した後、下記(1)〜(2)の中間予備時効および予備時効を行うことを特徴とする塗装焼付硬化性および成形性に優れたAl−Mg−Si系アルミニウム合金板の製造方法。
    (1)前記焼入れ温度から2℃/分以上の昇温速度で予備時効温度よりも10℃高い温度以上150℃以下の中間予備時効温度まで加熱し、該中間予備時効温度で10分以内の時間保持する中間予備時効、および、
    (2)前記中間予備時効温度から2℃/分以上の冷却速度で50℃以上140℃以下の予備時効温度まで冷却し、該予備時効温度で1分以上10時間以内の時間保持する予備時効。
    In mass%, Si: 0.5 to 2.0%, Mg: 0.2 to 1.5%, Cu: 1.0% or less, Zn: 0.5% or less, Fe: 0.00%. 5% or less, Mn: 0.3% or less, Cr: 0.3% or less, V: 0.2% or less, Zr: 0.15% or less, Ti: 0.1% or less, B: 0.005% A sheet material of an Al—Mg—Si based aluminum alloy containing one or more of the following and having the balance Al and unavoidable impurities is subjected to a solution treatment at a temperature of 480 ° C. or more and 580 ° C. or less, After cooling to a quenching temperature of less than 60 ° C. at a cooling rate of 2 ° C./second or more and holding the quenching temperature within 1 hour, intermediate preliminary aging and preliminary aging described in (1) to (2) below are performed. Of an Al-Mg-Si-based aluminum alloy plate excellent in paint bake hardenability and formability Production method.
    (1) Heating from the quenching temperature at a rate of temperature increase of 2 ° C./min or more to an intermediate preliminary aging temperature of 10 ° C. to 150 ° C. higher than the preliminary aging temperature, and the intermediate preliminary aging temperature within 10 minutes Preserving intermediate aging, and
    (2) Preliminary aging in which the intermediate aging temperature is cooled to a preliminary aging temperature of 50 ° C. or more and 140 ° C. or less at a cooling rate of 2 ° C./min or more and maintained at the preliminary aging temperature for 1 minute to 10 hours.
  2. 前記(1)の中間予備時効の後、2℃/分以上の冷却速度で予備時効温度未満の温度まで冷却し、該温度から2℃/分以上の昇温速度で50℃以上140℃以下の予備時効温度まで加熱して、該予備時効温度で1分以上10時間以内の時間保持する予備時効を行うことを特徴とする請求項1記載の塗装焼付硬化性および成形性に優れたAl−Mg−Si系アルミニウム合金板の製造方法。 After the intermediate pre-aging of (1), the cooling is performed at a cooling rate of 2 ° C./min or more to a temperature below the pre-aging temperature, and the temperature is increased from 50 ° C. to 140 ° C. at a temperature rising rate of 2 ° C./min or more. The Al-Mg excellent in paint bake hardenability and formability according to claim 1, wherein preliminary aging is performed by heating to a pre-aging temperature and maintaining the pre-aging temperature for 1 minute to 10 hours. -Manufacturing method of Si type aluminum alloy plate.
JP2010180816A 2010-08-12 2010-08-12 Method for producing Al-Mg-Si based aluminum alloy plate excellent in paint bake hardenability and formability Active JP5709298B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010180816A JP5709298B2 (en) 2010-08-12 2010-08-12 Method for producing Al-Mg-Si based aluminum alloy plate excellent in paint bake hardenability and formability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010180816A JP5709298B2 (en) 2010-08-12 2010-08-12 Method for producing Al-Mg-Si based aluminum alloy plate excellent in paint bake hardenability and formability

Publications (2)

Publication Number Publication Date
JP2012041567A true JP2012041567A (en) 2012-03-01
JP5709298B2 JP5709298B2 (en) 2015-04-30

Family

ID=45898207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010180816A Active JP5709298B2 (en) 2010-08-12 2010-08-12 Method for producing Al-Mg-Si based aluminum alloy plate excellent in paint bake hardenability and formability

Country Status (1)

Country Link
JP (1) JP5709298B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014126073A1 (en) * 2013-02-13 2014-08-21 株式会社神戸製鋼所 Aluminum alloy sheet with excellent baking paint hardenability
JP2015067857A (en) * 2013-09-27 2015-04-13 株式会社Uacj Al-Mg-Si-BASED ALUMINUM ALLOY SHEET FOR AUTOMOBILE PANEL AND MANUFACTURING METHOD THEREFOR
WO2015151908A1 (en) * 2014-03-31 2015-10-08 株式会社神戸製鋼所 Aluminum alloy plate having excellent moldability and bake hardening properties
JP2016084513A (en) * 2014-10-27 2016-05-19 新日鐵住金株式会社 Aluminum alloy having suppressed room temperature aging property and manufacturing method therefor
CN106917016A (en) * 2017-03-06 2017-07-04 桂林航天工业学院 Car body lightweight aluminum alloy plate materials and preparation method thereof
WO2017170835A1 (en) * 2016-03-30 2017-10-05 株式会社神戸製鋼所 Aluminum alloy sheet and aluminum alloy sheet manufacturing method
JP2017186641A (en) * 2016-03-30 2017-10-12 株式会社神戸製鋼所 Aluminum alloy sheet and manufacturing method of aluminum alloy sheet
CN110983125A (en) * 2019-12-26 2020-04-10 营口忠旺铝业有限公司 6-series aluminum alloy template and production process thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0881744A (en) * 1994-09-13 1996-03-26 Sky Alum Co Ltd Method and equipment for manufacturing aluminum alloy sheet excellent in formability and baking hardenability
JPH09268356A (en) * 1996-04-04 1997-10-14 Mitsubishi Alum Co Ltd Production of aluminum alloy sheet
JPH10505131A (en) * 1994-09-06 1998-05-19 アルキャン・インターナショナル・リミテッド Heat treatment method of aluminum alloy sheet
JP2002206152A (en) * 2000-11-10 2002-07-26 Kobe Steel Ltd Method for producing aluminum alloy material excellent in suppression of room temperature aging and low temperature age hardenability and the aluminum alloy material
JP2004527658A (en) * 2001-05-03 2004-09-09 アルキャン・インターナショナル・リミテッドAlcan International Limited Method of manufacturing aluminum alloy sheet with improved bending characteristics and aluminum alloy sheet manufactured by the method
JP2009242904A (en) * 2008-03-31 2009-10-22 Kobe Steel Ltd Aluminum alloy sheet superior in paint baking hardenability and invulnerable to room temperature aging, and method for production thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10505131A (en) * 1994-09-06 1998-05-19 アルキャン・インターナショナル・リミテッド Heat treatment method of aluminum alloy sheet
JPH0881744A (en) * 1994-09-13 1996-03-26 Sky Alum Co Ltd Method and equipment for manufacturing aluminum alloy sheet excellent in formability and baking hardenability
JPH09268356A (en) * 1996-04-04 1997-10-14 Mitsubishi Alum Co Ltd Production of aluminum alloy sheet
JP2002206152A (en) * 2000-11-10 2002-07-26 Kobe Steel Ltd Method for producing aluminum alloy material excellent in suppression of room temperature aging and low temperature age hardenability and the aluminum alloy material
JP2004527658A (en) * 2001-05-03 2004-09-09 アルキャン・インターナショナル・リミテッドAlcan International Limited Method of manufacturing aluminum alloy sheet with improved bending characteristics and aluminum alloy sheet manufactured by the method
JP2009242904A (en) * 2008-03-31 2009-10-22 Kobe Steel Ltd Aluminum alloy sheet superior in paint baking hardenability and invulnerable to room temperature aging, and method for production thereof

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10544492B2 (en) 2013-02-13 2020-01-28 Kobe Steel, Ltd. Aluminum alloy sheet with excellent baking paint hardenability
JP2014152381A (en) * 2013-02-13 2014-08-25 Kobe Steel Ltd Aluminum alloy sheet having excellent bake coating hardenability
CN104981555B (en) * 2013-02-13 2017-07-14 株式会社神户制钢所 Toast the excellent aluminium alloy plate of application hardening
WO2014126073A1 (en) * 2013-02-13 2014-08-21 株式会社神戸製鋼所 Aluminum alloy sheet with excellent baking paint hardenability
JP2015067857A (en) * 2013-09-27 2015-04-13 株式会社Uacj Al-Mg-Si-BASED ALUMINUM ALLOY SHEET FOR AUTOMOBILE PANEL AND MANUFACTURING METHOD THEREFOR
WO2015151908A1 (en) * 2014-03-31 2015-10-08 株式会社神戸製鋼所 Aluminum alloy plate having excellent moldability and bake hardening properties
JP2015196852A (en) * 2014-03-31 2015-11-09 株式会社神戸製鋼所 Aluminum alloy sheet excellent in moldability and coating/baking hardenability
CN106103762A (en) * 2014-03-31 2016-11-09 株式会社神户制钢所 Formability and the aluminium alloy plate of baking application hardening excellence
JP2016084513A (en) * 2014-10-27 2016-05-19 新日鐵住金株式会社 Aluminum alloy having suppressed room temperature aging property and manufacturing method therefor
WO2017170835A1 (en) * 2016-03-30 2017-10-05 株式会社神戸製鋼所 Aluminum alloy sheet and aluminum alloy sheet manufacturing method
JP2017186641A (en) * 2016-03-30 2017-10-12 株式会社神戸製鋼所 Aluminum alloy sheet and manufacturing method of aluminum alloy sheet
CN108884524A (en) * 2016-03-30 2018-11-23 株式会社神户制钢所 The manufacturing method of aluminium alloy plate and aluminium alloy plate
CN106917016A (en) * 2017-03-06 2017-07-04 桂林航天工业学院 Car body lightweight aluminum alloy plate materials and preparation method thereof
CN110983125A (en) * 2019-12-26 2020-04-10 营口忠旺铝业有限公司 6-series aluminum alloy template and production process thereof

Also Published As

Publication number Publication date
JP5709298B2 (en) 2015-04-30

Similar Documents

Publication Publication Date Title
CA2981329C (en) High-strength 6xxx aluminum alloys and methods of making the same
CN105026588B (en) The manufacture method of Al Mg Si alloy rolled sheet products with excellent mouldability
JP6005544B2 (en) Aluminum alloy sheet with excellent bake hardenability
JP2019173176A (en) Aluminum sheet for automobile having reduced or no surface roping and capable of being molded at high level, and manufacturing method therefor
US10590515B2 (en) 6XXX aluminum alloys, and methods for producing the same
US7824607B2 (en) Aluminum alloy sheet
US9453273B2 (en) Aluminum alloy sheet with excellent paint-bake hardenability
EP2440680B1 (en) STRUCTURAL AUTOMOTIVE PART MADE FROM AN Al-Zn-Mg-Cu ALLOY PRODUCT AND METHOD OF ITS MANUFACTURE
JP4901757B2 (en) Aluminum alloy plate and manufacturing method thereof
EP0786535B1 (en) Method of manufacturing aluminum alloy plate for forming
JP5746528B2 (en) Aluminum alloy sheet with excellent bake hardenability
US6743396B2 (en) Method for producing AlMn strips or sheets
JP4312819B2 (en) Aluminum alloy sheet with excellent ridging marks during molding
JP5342201B2 (en) Aluminum alloy plate with excellent formability
US8852364B2 (en) Aluminum alloy and high strength bolt made of aluminum alloy
JP5758676B2 (en) Aluminum alloy plate for forming and method for producing the same
US10253404B2 (en) High strength, high formability, and low cost aluminum-lithium alloys
JP5068654B2 (en) High strength, high toughness Al-Zn alloy products and methods for producing such products
EP2635720B1 (en) Formed automotive part made from an aluminium alloy product and method of its manufacture
KR101455606B1 (en) Aluminum alloy sheet for cold press forming, method of manufacturing the same, and cold press forming method for aluminum alloy sheet
JP5882380B2 (en) Manufacturing method of aluminum alloy sheet for press forming
JP5925667B2 (en) Aluminum alloy material for high-pressure hydrogen gas container and manufacturing method thereof
JP5852534B2 (en) Aluminum alloy sheet with excellent bake hardenability
US20100279143A1 (en) Multi-alloy composite sheet for automotive panels
JP4794862B2 (en) Method for producing 6000 series aluminum alloy plate excellent in paint bake hardenability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130628

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20131023

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140606

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150302

R150 Certificate of patent or registration of utility model

Ref document number: 5709298

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150