JP5279119B2 - Partially modified aluminum alloy member and manufacturing method thereof - Google Patents
Partially modified aluminum alloy member and manufacturing method thereof Download PDFInfo
- Publication number
- JP5279119B2 JP5279119B2 JP2008180748A JP2008180748A JP5279119B2 JP 5279119 B2 JP5279119 B2 JP 5279119B2 JP 2008180748 A JP2008180748 A JP 2008180748A JP 2008180748 A JP2008180748 A JP 2008180748A JP 5279119 B2 JP5279119 B2 JP 5279119B2
- Authority
- JP
- Japan
- Prior art keywords
- aluminum alloy
- partially
- alloy member
- partially modified
- solution temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Heat Treatments In General, Especially Conveying And Cooling (AREA)
- Heat Treatment Of Articles (AREA)
Abstract
Description
本発明は、製品に要求される部位に応じて強度、耐応力腐食割れ性等の特性を部分的に改質したアルミニウム合金部材及びその製造方法に関する。 The present invention relates to an aluminum alloy member partially modified in properties such as strength and stress corrosion cracking resistance according to a site required for a product, and a method for manufacturing the same.
車両の軽量化を目的に、これまでの鉄部分に替わってアルミニウム合金の採用が広く検討されている。
車両のアルミ部品や機械構造アルミ部品においては、かならずしも部品全体に高強度が要求されるものではなく、例えば、部分的に応力が負荷される部品であっては、他の鉄部品との連結部とは高強度が要求されるものの応力が負荷される部位は、相対的に高強度よりも高い耐応力腐食割れ性が要求される場合もある。
特に、アルミニウム合金がAl−Zn−Mg系のJIS7000系合金である場合には、固溶硬化よりも析出硬化をねらいに合金設計されているが、熱処理により高強度になればなる程、耐応力腐食割れ性が低下するといった負の相関が強い材料特性も存在する。
In order to reduce the weight of the vehicle, the use of aluminum alloys has been widely studied in place of conventional iron parts.
For vehicle aluminum parts and machine structural aluminum parts, high strength is not always required for the whole part. For example, in the case of a part that is partially stressed, it is a connecting part with other iron parts. In other words, a portion to which stress is applied although high strength is required may require stress corrosion cracking resistance higher than that of high strength.
In particular, when the aluminum alloy is an Al—Zn—Mg JIS 7000 series alloy, the alloy is designed for precipitation hardening rather than solid solution hardening. There are also material properties with a strong negative correlation such as reduced corrosion cracking.
そこで、要求される部位毎に材料特性を調整できることが期待される。
材料特性を部位毎に調整する部分改質方法として部分熱処理方法が提案されているが、これまで提案されているものは特許文献1,2に示すように鉄系部品に対して部分的に誘導加熱するものや、部分的に高温液体に浸漬するものである。
しかし、これらの方法をアルミニウム合金に適用すると、アルミニウム合金は熱伝導性が良いために部分的加熱制御が難しいだけでなく図6に示すように、加熱部と一般部との境界部に大きく硬度が低下するV字状の熱影響部が生じるという問題がある。
Therefore, it is expected that the material characteristics can be adjusted for each required part.
A partial heat treatment method has been proposed as a partial reforming method for adjusting material properties for each part, but what has been proposed so far is partially induced for iron-based parts as shown in
However, when these methods are applied to an aluminum alloy, since the aluminum alloy has good thermal conductivity, it is difficult to control the partial heating, and as shown in FIG. 6, the boundary between the heating part and the general part has a large hardness. There is a problem that a V-shaped heat-affected zone occurs.
本発明は、製品に要求される品質特性が部位ごとに異なる場合に、その要求される部位に応じて部分改質されたアルミニウム合金部材の提供を目的とし、特に、部位ごとに要求される品質特性が相互に反する場合に、その両特性を両立させるのに効果的である。 An object of the present invention is to provide an aluminum alloy member that is partially modified according to a required part when the quality characteristics required for a product differ from part to part, and in particular, the quality required for each part. When the characteristics are contrary to each other, it is effective to make both the characteristics compatible.
本発明に係る部分改質アルミニウム合金部材は、析出硬化型アルミニウム合金であって、全体を溶体化温度まで加熱後に、部分的に急冷部分と徐冷部分とを相対的に制御することで、その後の人工時効処理にて急冷部分と徐冷部分とで強度差が生じていることを特徴とする。 The partially modified aluminum alloy member according to the present invention is a precipitation hardening type aluminum alloy, and after the whole is heated to the solution temperature, the quenching portion and the slow cooling portion are partially controlled relatively thereafter. In the artificial aging treatment, there is a difference in strength between the rapid cooling portion and the slow cooling portion.
ここで析出硬化型アルミニウム合金とは、液体化処理後に人工時効により合金マトリックス中に晶出物を析出させて、硬度及び強度を向上できるアルミニウム合金をいい、合金成分中に固溶硬化成分が含まれる場合も含まれる。
また、熱処理により析出硬化特性を有するものであれば、各種アルミニウム合金に適用できる。
Here, precipitation hardening type aluminum alloy refers to an aluminum alloy that can improve the hardness and strength by precipitating a crystallized substance in an alloy matrix by artificial aging after liquefaction treatment, and includes a solid solution hardening component in the alloy component. This is also included.
Moreover, as long as it has a precipitation hardening characteristic by heat processing, it can apply to various aluminum alloys.
溶体化温度とは、アルミニウム合金中に添加された成分がマトリックス中に充分に固溶するのに適した温度をいい、JIS4000系、JIS6000系,JIS7000系等合金系によっても、また添加成分量によっても異なる。
急冷部分と徐冷部分を制御するとは、アルミニウム合金部材全体を溶体化温度まで加熱後に200℃〜100℃以下になるまでの冷却速度を部分的に異ならせることをいい、冷却手段は水冷、油冷、強制空冷等、必要とする冷却速度に応じて選定される。
このような本発明に係る熱処理方法は、析出硬化型アルミニウム合金部材の全体を溶体化温度まで加熱する工程と、部分的に液体冷却する工程と、全体を人工時効処理する工程とを有していることを特徴とする。
The solution temperature is a temperature suitable for the components added in the aluminum alloy to be sufficiently dissolved in the matrix, and depending on the amount of the added component, depending on the alloy system such as JIS 4000, JIS 6000, and JIS 7000. Is also different.
Controlling the rapid cooling portion and the slow cooling portion refers to partially varying the cooling rate until the entire aluminum alloy member is heated to the solution treatment temperature and then becomes 200 ° C. to 100 ° C. or less. It is selected according to the required cooling rate, such as cooling or forced air cooling.
Such a heat treatment method according to the present invention includes a step of heating the entire precipitation hardening type aluminum alloy member to a solution temperature, a step of partially liquid cooling, and a step of artificially aging the whole. It is characterized by being.
析出硬化型アルミニウム合金を溶体化温度まで加熱後に、急冷し、その後に人工時効処理を施し、合金マトリックス中に微細な析出物を均一に晶出させることで引張り強度が向上する。
この際に溶体化温度後の冷却速度が遅いと、冷却過程にて析出物が徐々に成長し、その後の人工時効処理により引張り強度の上昇効果が小さくなるが、耐応力腐食割れ性が改善される。
The precipitation hardening type aluminum alloy is heated to the solution temperature and then rapidly cooled, and then subjected to artificial aging treatment, whereby fine precipitates are uniformly crystallized in the alloy matrix to improve the tensile strength.
At this time, if the cooling rate after the solution temperature is low, precipitates gradually grow in the cooling process, and the effect of increasing the tensile strength is reduced by the subsequent artificial aging treatment, but the stress corrosion cracking resistance is improved. The
特に、Al−Zn−Mg系合金は、高強度が得られやすい反面、応力腐食割れが生じやすいアルミニウム合金であり、本発明の適用効果が大きい。
そこで、Al−Zn−Mg系合金における強度及び耐応力腐食割れ性についての成分の影響を考慮すると、下記の範囲が好ましい。
(Zn及びMg成分)
ZnとMg成分は強度向上に効果的である。
Zn成分は押出性の低下を抑えつつ強度向上に寄与でき、6質量%(以下単に%と称する。)以上添加すると高強度が得られるが、8%を超えると耐応力腐食割れ性[耐SCC性(SCC:stress corrosion craking)]が急激に低下するので6〜8%の範囲が好ましく、理想的には7〜8%の範囲である。
Mg成分はZnと同時に添加することで高強度が得られやすいが、押出性の低下をまねきやすく、また添加量が多いと焼入れ感受性が高くなり、焼入れ時(溶体化温度まで加熱後の冷却時)の冷却速度の管理が難しくなる。
そこで、好ましくは、0.9〜2.5%の範囲に設定するのがよく、理想的には1.6〜2.0%の範囲である。
(Cu成分)
Cu成分は、Mgと同時に添加すると強度向上に効果的で、結晶粒界・内の電位差を緩和し、耐SCC性を向上させる効果がある。
しかし、添加量が多くなると、一般耐食性が低下し、焼き入れ感受性が高くなり冷却速度の管理が難しくなるため、0.1〜0.4%の範囲が好ましい。
(Mn,Cr及びZr)
Mn,Cr及びZr成分は単独または複合的に添加することで再結晶の成長を抑制できるために、耐SCC性が向上するがこれらの成分も添加量が多いと焼入れ感受性が高くなるために個々において0.5%以下、合計にて0.2〜0.8%の範囲が好ましい。
In particular, an Al—Zn—Mg alloy is an aluminum alloy in which high strength is easily obtained, but stress corrosion cracking is likely to occur, and the application effect of the present invention is great.
Therefore, in consideration of the influence of components on strength and stress corrosion cracking resistance in an Al—Zn—Mg alloy, the following ranges are preferable.
(Zn and Mg components)
Zn and Mg components are effective in improving the strength.
The Zn component can contribute to improvement of strength while suppressing deterioration of extrudability. When added in an amount of 6% by mass (hereinafter simply referred to as “%”), high strength is obtained, but when it exceeds 8%, stress corrosion cracking resistance [SCC resistance] Since the strength (SCC: stress corrosion cracking) decreases rapidly, the range of 6 to 8% is preferable, and ideally the range is 7 to 8%.
Mg component is easily added at the same time as Zn, but high strength is likely to be obtained, but it is easy to cause a decrease in extrudability, and when the amount added is high, quenching sensitivity becomes high and quenching (cooling after heating to solution temperature) ) Cooling rate management becomes difficult.
Therefore, it is preferable to set it in the range of 0.9 to 2.5%, and ideally in the range of 1.6 to 2.0%.
(Cu component)
When added simultaneously with Mg, the Cu component is effective in improving the strength, and has the effect of relaxing the potential difference within the crystal grain boundaries and improving the SCC resistance.
However, when the addition amount is increased, the general corrosion resistance is lowered, the quenching sensitivity is increased, and the management of the cooling rate becomes difficult, so the range of 0.1 to 0.4% is preferable.
(Mn, Cr and Zr)
Since Mn, Cr and Zr components can be added alone or in combination to suppress the growth of recrystallization, the SCC resistance is improved. However, if these components are added in large amounts, the quenching sensitivity increases. Is preferably 0.5% or less, and in the range of 0.2 to 0.8% in total.
本発明に係る部分改質アルミニウム合金部材は、溶体化温度に加熱した状態から冷却する焼入れ時の冷却速度を部位間で相対的に急冷する部分と、それよりは徐冷する部分とを制御してあることにより、製品の部位毎に強度、硬度、伸び、耐SCC性等の各品質特性(材料特性)を最適化したアルミニウム合金部材が得られる。 The partially-modified aluminum alloy member according to the present invention controls a portion where the cooling rate at the time of quenching, which is cooled from the state heated to the solution temperature, is relatively rapidly cooled between the portions, and a portion which is gradually cooled. As a result, an aluminum alloy member optimized for each quality characteristic (material characteristic) such as strength, hardness, elongation, and SCC resistance can be obtained for each part of the product.
本発明に係る部分改質アルミニウム合金の製造工程例を図1に模式的に示す。
アルミニウム合金部材は、押出材、引抜き材、圧延材、鍛造材、鋳造材等加工方法を問わない。
合金成分が金属マトリックス中に充分に固溶する溶体化温度まで加熱保持する(ステップS1)。
溶体化温度は合金系によって最適温度が設定され、概ね450℃〜580℃の範囲である。
次に部分的に冷却速度を異ならせて焼入れをする(ステップS2)。
図1に示した実施例は、アルミニウム合金部材1の一端(a)を部分的に水又は油に浸漬することで部分的に液体急冷を行ない、他の部分(b)はファン空冷にて冷却制御した例を示す。
このように、液体急冷にて相対的に急冷する部分と、ファン空冷にて相対的に徐冷する部分のように焼入れできる範囲にて急冷部分と徐冷できる部分を制御出来れば冷却方法の手段は問わない。
例えば、部分的にシャワー液体急冷等でもよい。
次に人工時効処理をする(ステップS3)。
人工時効処理は金属マトリックス中に析出物を晶出させるのが目的であり、合金系によって最適条件が異なり、JIS6000系では160〜190℃×4〜6時間の一段時効がよく、JIS7000系合金では、85〜95℃×3〜6時間の一段時効の後に140〜160℃×4〜12時間の二段時効を施すのがよい。
An example of the production process of the partially modified aluminum alloy according to the present invention is schematically shown in FIG.
The aluminum alloy member may be processed by any method such as extruded material, drawn material, rolled material, forged material, and cast material.
The alloy component is heated and held to a solution temperature at which the alloy component is sufficiently dissolved in the metal matrix (step S1).
The solution temperature is set to an optimum temperature depending on the alloy system, and generally ranges from 450 ° C to 580 ° C.
Next, quenching is performed by partially varying the cooling rate (step S2).
In the embodiment shown in FIG. 1, one end (a) of the
In this way, if the quenching part and the quenching part can be controlled within the quenchable range, such as the part that is relatively rapidly cooled by liquid quenching and the part that is relatively slowly cooled by fan air cooling, means for cooling method Does not matter.
For example, the shower liquid may be partially cooled.
Next, an artificial aging process is performed (step S3).
The purpose of the artificial aging treatment is to precipitate precipitates in the metal matrix, and the optimum conditions differ depending on the alloy system. In the JIS6000 series, the one-stage aging is good at 160 to 190 ° C. × 4 to 6 hours, and in the JIS7000 series alloys, It is preferable to perform a two-stage aging of 140 to 160 ° C. × 4 to 12 hours after a one-stage aging of 85 to 95 ° C. × 3 to 6 hours.
予備的評価として、Zn:7.9%,Mg:1.95%,Mn:0.35%,Cu:0.35%,Cr:0.13%,Zr:0.2%,Ti:0.02%,残部がAlと不純物とからなるJIS7000系合金の押出丸棒(φ=25mm×長さ300mm)を用いて、450〜550℃×1時間の加熱後にa=50mm水冷し、b=250mmファン空冷した。
次に90℃×4時間+145℃×8時間の人工時効処理を施した。
この試験片の硬さ(Hv:ビッカース硬度)分布を図2に示す。
この結果、本発明に係る部分急冷方法では、従来の部分加熱にて発生するV字状の軟化領域が発生しないことが明らかになった。
As preliminary evaluation, Zn: 7.9%, Mg: 1.95%, Mn: 0.35%, Cu: 0.35%, Cr: 0.13%, Zr: 0.2%, Ti: 0 .02%, JIS7000 series extruded round bar (φ = 25 mm × length 300 mm) consisting of Al and impurities in the balance, heated at 450 to 550 ° C. × 1 hour, then cooled with a = 50 mm, b = A 250 mm fan was air-cooled.
Next, an artificial aging treatment of 90 ° C. × 4 hours + 145 ° C. × 8 hours was performed.
The hardness (Hv: Vickers hardness) distribution of this test piece is shown in FIG.
As a result, in the partial quenching method according to the present invention, it has been clarified that the V-shaped softened region generated by the conventional partial heating does not occur.
次に本発明の実施例について説明する。
図3に示した実施例1,2はJIS6000系のAl−Mg−Si系合金、実施例3はJIS4000系のAl−Si系合金の例で、化学成分は質量%の値を示す。
この化学成分からなるφ=25mm,長さ300mmの丸棒(押出材)を用いてa=50mm水冷した。
実施例1〜3において、冷却速度は溶体化温度から100℃以下になるまでの平均冷却速度を示し、人工時効処理は180℃×3時間実施した。
この結果から焼入れ時の冷却速度を部分的に変えることで部分的に硬さの異なる部分改質アルミニウム合金部材が得られることが分かる。
Next, examples of the present invention will be described.
Examples 1 and 2 shown in FIG. 3 are examples of JIS6000-based Al—Mg—Si-based alloys, and Example 3 is an example of JIS4000-based Al—Si-based alloys.
Using a round bar (extruded material) of φ = 25 mm and length of 300 mm made of this chemical component, a = 50 mm was water-cooled.
In Examples 1 to 3, the cooling rate indicates an average cooling rate from the solution temperature to 100 ° C. or less, and the artificial aging treatment was performed at 180 ° C. for 3 hours.
From this result, it can be seen that a partially modified aluminum alloy member having partially different hardness can be obtained by partially changing the cooling rate during quenching.
図4に示した実施例4〜12及び比較例1〜2はJIS7000系のAl−Zn−Mg系合金例である。
ここでSi及びFe成分は不純物であり、Siは0.15%以下、Feは0.3%以下が好ましい。
Ti成分は結晶の微細化に効果的であり、0.001〜0.05%の範囲がよい。
φ=25mm,長さ300mmの丸棒(押出材)を用いてa=50mm水冷した。
人工時効処理は90℃×4〜6時間+140〜150℃×6〜12時間の範囲で実施し、耐SCC性は図5に示すようなJIS H8711,2号試験片を用い、引張り強さの約70%の応力を負荷し、JIS H8711に示す交互浸漬法で試験を実施し、ファン空冷部にて90日間、割れが発生しないことを目標とした。
また、硬さは所定の引張り強度を維持するためにHV=120以上を目標とした。
図4にその測定結果を示すように、実施例4〜12は、水冷部と空冷部(ファン冷却部)とに、硬度差10以上があり、目標硬度及び目標耐SCC性ともにクリアーしているのが分かる。
Examples 4 to 12 and Comparative Examples 1 and 2 shown in FIG. 4 are examples of JIS7000-based Al—Zn—Mg alloys.
Here, Si and Fe components are impurities, Si is preferably 0.15% or less, and Fe is preferably 0.3% or less.
The Ti component is effective for refining the crystal and is preferably in the range of 0.001 to 0.05%.
Using a round bar (extruded material) having a diameter of φ = 25 mm and a length of 300 mm, a = 50 mm was water-cooled.
The artificial aging treatment is performed in the range of 90 ° C. × 4 to 6 hours + 140 to 150 ° C. × 6 to 12 hours, and the SCC resistance is JIS H8711, No. 2 test piece as shown in FIG. The test was carried out by the alternate dipping method shown in JIS H8711 under a stress of about 70%, and the target was that no cracks would occur in the fan air-cooled part for 90 days.
Further, the hardness was targeted to be HV = 120 or more in order to maintain a predetermined tensile strength.
As shown in FIG. 4, Examples 4 to 12 have a hardness difference of 10 or more between the water cooling part and the air cooling part (fan cooling part), and both the target hardness and the target SCC resistance are clear. I understand.
Claims (2)
全体を溶体化温度まで加熱後に、部分的に急冷部分と徐冷部分とを相対的に制御することで、その後の人工時効処理にて急冷部分と徐冷部分とで強度差が生じていることを特徴とする部分改質アルミニウム合金部材。 An Al—Zn—Mg based precipitation hardening type aluminum alloy,
After the whole is heated to the solution temperature, the quenching part and the slow cooling part are partially controlled relatively, so that there is a difference in strength between the rapid cooling part and the slow cooling part in the subsequent artificial aging treatment. A partially modified aluminum alloy member characterized by the above.
部分的に液体冷却する工程と、全体を人工時効処理する工程とを有していることを特徴とする部分改質アルミニウム合金部材の製造方法。 Heating the entire Al—Zn—Mg precipitation hardening aluminum alloy member to a solution temperature;
A method for producing a partially modified aluminum alloy member, comprising a step of partially liquid cooling and a step of artificially aging the whole.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008180748A JP5279119B2 (en) | 2008-07-10 | 2008-07-10 | Partially modified aluminum alloy member and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008180748A JP5279119B2 (en) | 2008-07-10 | 2008-07-10 | Partially modified aluminum alloy member and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010018850A JP2010018850A (en) | 2010-01-28 |
JP5279119B2 true JP5279119B2 (en) | 2013-09-04 |
Family
ID=41704035
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008180748A Expired - Fee Related JP5279119B2 (en) | 2008-07-10 | 2008-07-10 | Partially modified aluminum alloy member and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5279119B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103608477A (en) * | 2011-06-02 | 2014-02-26 | 爱信轻金属株式会社 | Aluminum alloy and method of manufacturing extrusion using same |
DE102011080528B3 (en) * | 2011-08-05 | 2013-02-07 | Friedrich-Alexander-Universität Erlangen-Nürnberg | Method and tool for heat treatment of aluminum sheet material and heat treated aluminum sheet material according to such a method |
JP7294062B2 (en) * | 2019-10-30 | 2023-06-20 | マツダ株式会社 | Manufacturing method for light metal castings |
JP7380127B2 (en) * | 2019-11-20 | 2023-11-15 | 株式会社レゾナック | Manufacturing method for aluminum alloy forgings for automobile suspension parts |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5169030B2 (en) * | 2007-06-08 | 2013-03-27 | 日産自動車株式会社 | Quenching method and quenching apparatus |
-
2008
- 2008-07-10 JP JP2008180748A patent/JP5279119B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2010018850A (en) | 2010-01-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI490346B (en) | A wire or strip for mechanical construction for cold working and a method for manufacturing the same | |
JP5082483B2 (en) | Method for producing aluminum alloy material | |
JP5343333B2 (en) | Method for producing high-strength aluminum alloy material with excellent resistance to stress corrosion cracking | |
JP4577218B2 (en) | Method for producing Al-Mg-Si alloy sheet excellent in bake hardness and hemmability | |
JP5976317B2 (en) | Thermomechanical processing of iron alloys and related alloys and articles | |
TWI606124B (en) | Steel for mechanical structure for cold room processing and manufacturing method thereof | |
JP2017508880A (en) | 6000 series aluminum alloy | |
JP4185247B2 (en) | Aluminum-based alloy and heat treatment method thereof | |
JP4774630B2 (en) | Manufacturing method of aluminum forged parts | |
JP2007119853A (en) | Extruded pipe made from high-strength aluminum alloy superior in tube expansion workability, manufacturing method therefor and tube-expanded material | |
TWI595101B (en) | Cold forging and quenching and tempering after the delay breaking resistance of the wire with excellent bolts, and bolts | |
JP5279119B2 (en) | Partially modified aluminum alloy member and manufacturing method thereof | |
JP3849095B2 (en) | Aluminum alloy plate for forming and method for producing the same | |
JP5367250B2 (en) | Aluminum alloy plate for forming and method for producing the same | |
JP2003221637A (en) | Aluminum alloy plate for fabrication and its manufacturing process | |
JP3516566B2 (en) | Aluminum alloy for cold forging and its manufacturing method | |
JP6581347B2 (en) | Method for producing aluminum alloy plate | |
JP6467154B2 (en) | Manufacturing method of high strength and high ductility aluminum alloy sheet | |
JP2005139530A (en) | Method of producing aluminum alloy sheet for forming | |
JP5415016B2 (en) | Aluminum alloy plate for forming and method for producing the same | |
JP4771791B2 (en) | Method for producing aluminum alloy sheet for forming | |
JP2005082827A (en) | Aluminum alloy sheet for forming and its production method | |
JP3779584B2 (en) | Linear or bar steel with excellent deformability and machine parts | |
JPH08269608A (en) | High strength aluminum alloy excellent in formability and corrosion resistance | |
JPH073409A (en) | Heat treatment for extruded billet of al-mg-si based aluminum alloy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110426 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130207 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130213 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130328 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130507 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130520 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5279119 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |