JP3516566B2 - Aluminum alloy for cold forging and its manufacturing method - Google Patents
Aluminum alloy for cold forging and its manufacturing methodInfo
- Publication number
- JP3516566B2 JP3516566B2 JP35479896A JP35479896A JP3516566B2 JP 3516566 B2 JP3516566 B2 JP 3516566B2 JP 35479896 A JP35479896 A JP 35479896A JP 35479896 A JP35479896 A JP 35479896A JP 3516566 B2 JP3516566 B2 JP 3516566B2
- Authority
- JP
- Japan
- Prior art keywords
- weight
- aluminum alloy
- content
- cold forging
- cold
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Forging (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は、冷間鍛造を施され
る部品の素材として使用される冷間鍛造用アルミニウム
合金とその製造方法並びに冷間鍛造品の製造方法に関す
るBACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aluminum alloy for cold forging, which is used as a raw material for parts to be cold forged, a method for producing the same, and a method for producing a cold forged product.
【0002】[0002]
【従来の技術】アルミニウム合金は、鉄に比べ比重が約
1/3と軽量であるため、鉄からアルミニウム合金に材
料を置換し軽量化を計る例が数多くある。鍛造方法に
は、高温で素材を軟化させた状態で鍛造を行う熱間鍛造
と、常温で鍛造を行う冷間鍛造とがある。冷間鍛造で
は、加工時には鍛造し易いように素材を軟化させておく
必要があり、そのため、予め焼鈍処理を施されたものが
素材として用いられている。例えば、代表的な熱処理型
アルミニウム合金であるJIS6061合金の場合、押
出加工後(T1)の強度が高く硬いため、押出加工後4
20℃×2hr程度の焼鈍(O材処理)を行ったうえで
冷間鍛造に供している(例えば特開平3−170636
号公報参照)。2. Description of the Related Art Aluminum alloys have a specific gravity of about 1/3 that of iron and are lighter in weight. Therefore, there are many examples in which iron is replaced with aluminum alloys to reduce the weight. Forging methods include hot forging in which the material is forged in a softened state at high temperature and cold forging in which the material is forged at room temperature. In cold forging, it is necessary to soften the material so that it can be easily forged at the time of working. Therefore, a material that has been annealed in advance is used as the material. For example, in the case of JIS6061 alloy, which is a typical heat-treatable aluminum alloy, since the strength after extrusion (T1) is high and it is hard,
After annealing (O material treatment) at about 20 ° C. × 2 hr, it is subjected to cold forging (for example, JP-A-3-170636).
(See Japanese Patent Publication).
【0003】[0003]
【発明が解決しようとする課題】このように、従来材は
冷間鍛造前に焼鈍処理を行うため、冷間鍛造後に高強度
を得るには、溶体化焼入れ、時効という工程を経る必要
があった(図2(a)参照)。しかし、仮に、焼鈍工程
を行わずに冷間鍛造を行うことができれば、焼鈍工程だ
けでなくその後の焼入れ処理が不要になり、工程省略に
よる大幅なコストダウンが見込まれる。また、焼入れを
行わないことにより、冷間鍛造による加工歪みを強度ア
ップに用いることもできる。As described above, since the conventional material is annealed before cold forging, it is necessary to go through the steps of solution hardening and aging in order to obtain high strength after cold forging. (See FIG. 2 (a)). However, if the cold forging can be performed without performing the annealing process, not only the annealing process but also the subsequent quenching process becomes unnecessary, and a large cost reduction is expected by omitting the process. Further, by not quenching, the processing strain due to cold forging can be used for increasing the strength.
【0004】一方、焼鈍工程と溶体化焼入れ工程を省略
するには、例えば、押出直後の高温状態の押出材に焼入
れする、いわゆるプレス焼入れを行い、プレス焼入れ直
後の強度及び硬度が低いうちに冷間鍛造を行い、続いて
時効処理を行うことが考えられる。しかし、上記の60
61合金等、これまでのAl−Mg−Si合金では、冷
間加工時の変形抵抗が大きく、冷間加工が困難であっ
た。また、大型のプレスを用いて強引に冷間鍛造を行っ
た場合でも、変形抵抗がしだいに大きくなって寸法精度
のばらつきが大きくなるなど、冷間鍛造性が低下する事
態が生じ、実操業上の観点からは現実的なものとはなっ
ていない。On the other hand, in order to omit the annealing step and the solution hardening step, for example, the extruded material in a high temperature state immediately after extrusion, that is, so-called press quenching is carried out, and the strength and hardness immediately after the press quenching are low while the material is cooled. It is conceivable that forging is carried out for a while, followed by aging treatment. However, the above 60
Conventional Al-Mg-Si alloys such as 61 alloy have a large deformation resistance during cold working and are difficult to cold work. Even when a large press is used to forcibly perform cold forging, the deformation resistance gradually increases and the dimensional accuracy varies greatly. From the perspective of, it is not realistic.
【0005】本発明はかかる観点からなされたものであ
り、冷間鍛造前に焼鈍処理を必要とせず、また冷間鍛造
後に溶体化焼入れしなくても高強度を得ることができ、
さらに、プレス焼入れ後冷間鍛造までに長期間室温放置
していても機械的性質の変動が少なく冷間鍛造性が低下
しない(すなわち遅効性をもつ)冷間鍛造用アルミニウ
ム合金を提供することを目的とする。The present invention has been made from this point of view, and does not require an annealing treatment before cold forging, and high strength can be obtained without solution hardening after cold forging.
Furthermore, it is to provide an aluminum alloy for cold forging in which the mechanical properties do not fluctuate much and the cold forgeability does not deteriorate even if it is left at room temperature for a long time after press quenching and before cold forging (that is, it has slow-acting properties). To aim.
【0006】[0006]
【課題を解決するための手段】本発明者らは、上記の特
性を持つ冷間鍛造用アルミニウム合金を開発すべく、種
々の研究を行い、その結果、必要な冷間鍛造性を得るた
めにはMg、Siの添加量を所定の値以下に制限する必
要があること、また、その冷間鍛造性の経時変化を防ぐ
遅効性に対してはMg/Si比が大きく影響すること、
そしてMg2Siの化学量論比よりSiリッチ側の特定
の組成領域で室温時効の進行が抑制されることを見い出
した。また、冷間鍛造後の強度を向上させるためには、
熱処理後の析出物(Mg2Si)の分布を均一微細にす
る効果のあるCuの添加が有効であることを見い出し、
本発明を完成した。DISCLOSURE OF THE INVENTION The present inventors have conducted various studies to develop an aluminum alloy for cold forging having the above-mentioned characteristics, and as a result, in order to obtain the required cold forgeability. Indicates that it is necessary to limit the amount of addition of Mg and Si to a predetermined value or less, and that the Mg / Si ratio has a great influence on the retardation effect that prevents the change in cold forgeability over time.
It was also found that the progress of room temperature aging is suppressed in a specific composition region on the Si-rich side from the stoichiometric ratio of Mg 2 Si. Also, in order to improve the strength after cold forging,
It was found that the addition of Cu, which has the effect of making the distribution of precipitates (Mg 2 Si) after heat treatment uniform and fine, is effective,
The present invention has been completed.
【0007】本発明に係る冷間鍛造用アルミニウム合金
は、Mg0.4〜0.8重量%、Si0.4〜1.0重
量%、Cu0.15〜0.5重量%、Ti0.005〜
0.2重量%を含有し、残部Al及び不可避不純物から
なり、さらに、Mg含有重量%をX、Si含有重量%を
Yとしたとき、Y≧(1/1.73)X+0.15の関
係を満たすことを特徴とする。この合金は、必要に応
じ、Mn0.05〜0.6重量%、Cr0.05〜0.
3重量%、Zr0.05〜0.3重量%の内1種以上を
合計で0.9重量%以下含有する。また、不可避不純物
としては少ない方がよいが、Fe0.35重量%以下、
その他の不純物は単体で0.05重量%以下(総量で
0.15%以下)が許容される。The aluminum alloy for cold forging according to the present invention contains 0.4 to 0.8 wt% of Mg, 0.4 to 1.0 wt% of Si, 0.15 to 0.5 wt% of Cu, and 0.005 to Ti of 0.005.
When 0.2% by weight is contained and the balance is Al and unavoidable impurities, and further, Mg content weight% is X and Si content weight% is Y, the relation of Y ≧ (1 / 1.73) X + 0.15 It is characterized by satisfying. This alloy contains Mn 0.05 to 0.6% by weight and Cr 0.05 to 0.
3 wt% and one or more of 0.05 to 0.3 wt% Zr are contained in a total amount of 0.9 wt% or less. In addition, it is preferable that the amount of unavoidable impurities is small, but Fe 0.35% by weight or less,
0.05% by weight or less (0.15% or less in total) of other impurities is allowed as a simple substance.
【0008】また、本発明に係る冷間鍛造用アルミニウ
ム合金の製造方法は、上記組成のアルミニウム合金を4
40〜560℃で押出加工し、押出直後にプレス焼き入
れすることを特徴とする。そして、このプレス焼入れさ
れた押出材を冷間鍛造用素材とし、これを冷間鍛造し、
次いで通常の時効処理又は短時間加熱処理をすることに
より高強度の冷間鍛造品を得ることができる。Further, the method for producing an aluminum alloy for cold forging according to the present invention uses the aluminum alloy having the above-mentioned composition.
It is characterized in that it is extruded at 40 to 560 ° C. and press-hardened immediately after extrusion. Then, this press-quenched extruded material is used as a material for cold forging, which is cold forged,
Then, a normal forging treatment or a short-time heat treatment is performed to obtain a high-strength cold forged product.
【0009】[0009]
【発明の実施の形態】以下、本発明に係る冷間鍛造用ア
ルミニウム合金の成分添加理由及び組成限定理由につい
て説明する。BEST MODE FOR CARRYING OUT THE INVENTION The reasons for adding components and limiting the composition of the aluminum alloy for cold forging according to the present invention will be described below.
【0010】Mg、Si
先に述べたように、Mg2Siの化学量論比に対してS
iを相当量過剰に添加したとき、室温時効が抑制され遅
効性が発現する。そのMg、Siの割合は、Mg含有重
%をX、Si含有重量%をYとしたときY≧(1/1.
73)X+0.15を満たす範囲である。これよりMg
リッチ側、すなわちY<(1/1.73)X+0.15
の範囲では、Siによる室温時効の抑制効果が不十分で
あり、室温時効が進行してしまう。Mg, Si As described above, S relative to the stoichiometric ratio of Mg 2 Si
When i is added in an excessive amount, the room temperature aging is suppressed and the delayed effect is exhibited. When the Mg content weight% is X and the Si content weight% is Y, the ratio of Mg and Si is Y ≧ (1/1.
73) A range satisfying X + 0.15. Than Mg
Rich side, that is, Y <(1 / 1.73) X + 0.15
In the range, the effect of suppressing the room temperature aging by Si is insufficient, and the room temperature aging will proceed.
【0011】一方、MgはSiと結合し、Mg2Siを
形成することにより合金強度を向上させる。この効果を
発揮するには、Mgの添加量は0.4重量%以上とする
必要がある。しかし、Mgの含有量が0.8重量%を越
えると、上記の範囲を満たしていても、Mgの拡散によ
り室温時効が進行してしまい、また、常温での変形抵抗
が上昇し冷間鍛造性を低下させる。従って、Mgの含有
量は0.4重量%以上、0.8重量%以下とする。ま
た、Siは、上述したようにMg2Siを形成して合金
強度を向上させる効果がある。しかし、Siの添加量が
0.4重量%未満では材料の強度を向上させることがで
きず、1.0重量%以上では材料の延性が阻害されると
ともに、常温での変形抵抗が上昇し冷間鍛造性が低下す
る。さらに、SiはMg2Si析出の核となるが、その
添加量が多くなると析出の核が多くなる結果、析出が進
行しやすくなり、遅効性が失われる。従って、Siの含
有量は0.4重量%以上、1.0重量%以下とする。On the other hand, Mg combines with Si to form Mg 2 Si, thereby improving the alloy strength. In order to exert this effect, the addition amount of Mg needs to be 0.4% by weight or more. However, if the content of Mg exceeds 0.8% by weight, even if the above range is satisfied, room temperature aging will proceed due to the diffusion of Mg, and the deformation resistance at room temperature will increase, resulting in cold forging. Reduce sex. Therefore, the content of Mg is 0.4% by weight or more and 0.8% by weight or less. Further, Si has the effect of forming Mg 2 Si and improving the alloy strength as described above. However, if the amount of Si added is less than 0.4% by weight, the strength of the material cannot be improved, and if it is 1.0% by weight or more, the ductility of the material is impaired and the deformation resistance at room temperature rises, causing a decrease in cooling. Forgeability is reduced. Furthermore, Si becomes nuclei for precipitation of Mg 2 Si, but as the amount of addition of Si increases, the nuclei for precipitation increase, and as a result, precipitation easily progresses and the delayed effect is lost. Therefore, the Si content is 0.4% by weight or more and 1.0% by weight or less.
【0012】なお、上記範囲内では、Mgが少ない領域
の方が優れた遅効性が得られ、また、冷間鍛造性が向上
して複雑な形状の部材を成形することができ本発明合金
の適用範囲が広がる。従って、Mg含有量は好ましくは
0.65重量%以下であり、この範囲内で際だって優れ
た遅効性を示す。より好ましくはMg含有量は0.6重
量%以下であり、同時にSiを0.5〜0.7重量%の
範囲とすることにより、優れた冷間鍛造性及び遅効性を
示す冷間鍛造素材を得ることができる。図1に本発明の
Mg及びSiの組成範囲を図示する。なお、Y=(1/
1.73)Xのラインは、Mg2Siの化学量論比のラ
インである。Within the above range, the Mg-reduced region has a better slow-acting property, the cold forgeability is improved, and a member having a complicated shape can be formed. The range of application expands. Therefore, the Mg content is preferably 0.65% by weight or less, and within this range, a markedly superior slow-release effect is exhibited. More preferably, the Mg content is 0.6% by weight or less, and by simultaneously setting Si in the range of 0.5 to 0.7% by weight, a cold forging material exhibiting excellent cold forgeability and delayed effect. Can be obtained. FIG. 1 illustrates the composition ranges of Mg and Si according to the present invention. Note that Y = (1 /
The 1.73) X line is the line of the stoichiometric ratio of Mg 2 Si.
【0013】Cu
Cuは析出硬化により合金強度を向上させるとともに材
料の延性を向上させる。また、Cuを添加することによ
り、Mg、Siによって生成される析出物Mg2Siを
均一微細に分布させる効果がある。しかし、Cuの添加
量が0.15重量%未満では前記効果を発揮することが
できない。一方、0.5重量%を超えるとプレス焼入れ
性を低下させ、かつ変形抵抗を上昇させる。従って、C
uの含有量は0.15重量%以上、0.5重量%以下と
する。Cu Cu improves the alloy strength and the ductility of the material by precipitation hardening. In addition, the addition of Cu has the effect of uniformly and finely distributing the precipitate Mg 2 Si produced by Mg and Si. However, if the added amount of Cu is less than 0.15% by weight, the above effect cannot be exhibited. On the other hand, if it exceeds 0.5% by weight, press hardenability is deteriorated and deformation resistance is increased. Therefore, C
The content of u is 0.15% by weight or more and 0.5% by weight or less.
【0014】Mn、Cr、Zr
Mn、Cr、Zrはビレットの均質化処理時において微
細な金属間化合物として析出し、結晶粒を微細化させる
ことにより、強度、延性を向上させる。しかし、これら
の元素は添加量が増えるとともに焼入れ感受性を鋭く
し、プレス焼入れ性を低下させる作用がある。Mn、C
r、Zrの添加量がそれぞれ0.05重量%未満では前
記効果を発揮し得ない。一方、Mn、Cr、Zrの添加
量がそれぞれ0.6重量%、0.3重量%、0.3重量
%を超えるか、これらの合計が0.9重量%を超える
と、粗大な金属間化合物が晶出してしまうとともに焼入
れ感受性を鋭くし、所定の合金強度の向上が計れない。
従ってMn、Cr、Zrの含有量は、Mn0.05〜
0.6重量%、Cr0.05〜0.3重量%、Zr0.
05〜0.3重量%の内1種以上を合計で0.9重量%
以下とする。Mn, Cr, and Zr Mn, Cr, and Zr are precipitated as fine intermetallic compounds during homogenization treatment of the billet, and crystal grains are refined to improve strength and ductility. However, these elements have the effect of sharpening the quenching sensitivity and decreasing the press hardenability as the added amount increases. Mn, C
If the addition amounts of r and Zr are each less than 0.05% by weight, the above effect cannot be exhibited. On the other hand, if the addition amounts of Mn, Cr, and Zr exceed 0.6% by weight, 0.3% by weight, and 0.3% by weight, respectively, or if the total amount of these exceeds 0.9% by weight, coarse intermetallic compounds are present. As the compound crystallizes out, the quenching sensitivity becomes sharp, and the predetermined alloy strength cannot be improved.
Therefore, the content of Mn, Cr, and Zr is Mn0.05 to
0.6 wt%, Cr 0.05 to 0.3 wt%, Zr0.
0.9% by weight in total of at least one of 05 to 0.3% by weight
Below.
【0015】Ti
Tiは鋳造時における結晶粒を微細化することにより合
金強度を向上させる。この効果を発揮させるにはTi添
加量は0.005重量%以上とすることが必要である。
一方、Ti添加量が0.2重量%を超えると前記効果が
飽和してしまい、また粗大な金属間化合物が晶出し所定
の合金強度が得られない。従ってTiの含有量は0.0
05〜0.2重量%とする。Ti Ti improves the alloy strength by refining the crystal grains during casting. In order to exert this effect, the Ti addition amount must be 0.005% by weight or more.
On the other hand, if the amount of addition of Ti exceeds 0.2% by weight, the above effect is saturated, and coarse intermetallic compounds are crystallized, so that a predetermined alloy strength cannot be obtained. Therefore, the content of Ti is 0.0
It is set to 05 to 0.2% by weight.
【0016】不可避不純物
Fe
Feはアルミ地金に最も多く存在する不純物であり、
0.35重量%を超えて合金中に存在すると鋳造時に粗
大な金属間化合物を晶出し、合金の機械的性質を損な
う。従って、Feの含有量は0.35重量%以下とす
る。Inevitable Impurity Fe Fe is the most abundant impurity in aluminum ingot,
If it is present in the alloy in an amount of more than 0.35% by weight, coarse intermetallic compounds crystallize during casting and impair the mechanical properties of the alloy. Therefore, the Fe content is 0.35% by weight or less.
【0017】その他
アルミニウム合金を鋳造する際には地金、添加元素の中
間合金等様々な経路より不純物が混入する。また、混入
する元素も様々であるが、Fe以外の不純物はそれぞれ
の単体で0.05重量%以下、総量で0.15%以下で
あれば合金の特性にほとんど影響を及ぼさない。従っ
て、これらの不純物は単体で0.05重量%以下(総量
で0.15%以下)とする。When casting aluminum alloys, impurities are mixed in through various routes such as a base metal and an intermediate alloy of additive elements. Further, although various elements are mixed in, if the impurities other than Fe are 0.05 wt% or less for each element and 0.15% or less for the total amount, the characteristics of the alloy are hardly affected. Therefore, these impurities should be 0.05 wt% or less (total amount is 0.15% or less).
【0018】上記の組成のアルミニウム合金鋳塊を、5
00〜600℃×2〜10hrの条件で均質化処理を行
い、ついで440〜560℃で押出加工し、押出直後に
例えば水冷又はファン空冷によるプレス焼入れして、冷
間鍛造用素材を得ることができる。なお、均質化処理温
度を上記のように設定するのは、500℃未満では鋳造
時に生じた偏析をマトリックス中に拡散させるには不十
分であり、600℃を超えると局部溶解が発生し、押出
時に欠陥となるためである。また、押出加工の温度を上
記のように設定するのは、440℃未満では均質化処理
後の冷却過程で生じた析出物を分解させ固溶体状態とす
るには不十分であり、560℃を超えると押出時の加工
発熱により局部溶解が生じるためである。The aluminum alloy ingot having the above composition was added to 5
It is possible to obtain a material for cold forging by performing homogenization treatment under the condition of 0 to 600 ° C. × 2 to 10 hours, then extruding at 440 to 560 ° C., and immediately after extrusion, press quenching with water cooling or fan air cooling. it can. It should be noted that the homogenization treatment temperature set as described above is insufficient to diffuse segregation generated during casting into the matrix at less than 500 ° C, and local melting occurs at more than 600 ° C, resulting in extrusion. This is because it sometimes becomes a defect. Further, if the temperature of the extrusion process is set as described above, if it is lower than 440 ° C., it is insufficient to decompose the precipitate generated in the cooling process after the homogenization treatment into a solid solution state, and it exceeds 560 ° C. This is because the processing heat generated during extrusion causes local melting.
【0019】この素材は所定長に切断されて冷間鍛造に
供され、冷間鍛造後、通常の条件(例えば180〜19
0℃×3〜8hr)で時効処理を施される(図2(b)
参照)。なお、この冷間鍛造用アルミニウム合金は、冷
間鍛造後、ごく短時間の加熱を施すだけで、上記時効処
理後のほぼ9割以上に達する高い強度を得ることができ
る。これは、冷間鍛造による加工歪が加わっているため
析出が促進され、短時間で時効が進行するためである。
従って、上記時効処理の代わりに、190〜250℃×
5〜30minの条件でこの短時間加熱を施すようにし
てもよい。This material is cut into a predetermined length and subjected to cold forging, and after cold forging, it is subjected to normal conditions (for example, 180 to 19).
Aging treatment is performed at 0 ° C. × 3 to 8 hours (FIG. 2B).
reference). The aluminum alloy for cold forging can obtain high strength reaching almost 90% or more after the above-mentioned aging treatment only by performing heating for a short time after cold forging. This is because the work strain due to cold forging is applied, so that precipitation is promoted and aging proceeds in a short time.
Therefore, instead of the above aging treatment, 190 to 250 ° C.
You may make it heat this short time on the condition of 5 to 30 minutes.
【0020】次に、本発明に規定する組成をもつアルミ
ニウム合金押出材が優れた遅効性をもつことを、実例を
もって具体的に説明する。まず、表1に示す組成の16
0φ×150hのアルミニウム合金ビレットに580℃
×2hrの均質化処理を行った。そのビレットを再加熱
し、ビレット温度500℃、押出速度5m/minで押
し出した。このとき、プレス焼き入れをNo.18(J
IS6061)のみ水冷を用い、その他についてはファ
ン空冷にて行った。押出材の断面形状は40×40×2
tの角パイプにて押し出した。Next, the fact that the aluminum alloy extruded material having the composition specified in the present invention has an excellent slow-acting property will be specifically described with reference to examples. First, 16 of the composition shown in Table 1
580 ℃ for 0φ × 150h aluminum alloy billet
A homogenization treatment of × 2 hr was performed. The billet was reheated and extruded at a billet temperature of 500 ° C. and an extrusion speed of 5 m / min. At this time, press quenching was performed using No. 18 (J
Only IS6061) was water-cooled, and others were air-cooled with a fan. Cross-sectional shape of extruded material is 40 × 40 × 2
It was extruded with a square pipe of t.
【0021】[0021]
【表1】 [Table 1]
【0022】押出材からJIS5号引張試験片を採取
し、押出直後(3日以内)及び室温放置120日後に引
っ張り試験を行い、供試材の機械的性質を調査した。そ
の結果を表2に示す。また、表3には押出直後の押出材
に対し190℃×3hrの人工時効を施した後(T5調
質)、同様にJIS5号引張試験片により機械的性質を
調査した結果を示す。A JIS No. 5 tensile test piece was sampled from the extruded material, and a tensile test was conducted immediately after extrusion (within 3 days) and after 120 days of standing at room temperature to investigate the mechanical properties of the test material. The results are shown in Table 2. Further, Table 3 shows the results of similarly examining mechanical properties by JIS No. 5 tensile test pieces after artificial aging (T5 tempering) was performed on the extruded material immediately after extrusion at 190 ° C. for 3 hours.
【0023】[0023]
【表2】 [Table 2]
【0024】[0024]
【表3】 [Table 3]
【0025】No.1〜7は、従来品No.18に比べ
長期の室温放置によっても機械的性質の変化が小さく、
Mn等を含まないNo.7を除いてT5状態での強度は
従来品と同等となっている。一方、比較合金No.8、
9の結果をみると、Tiの含有量が0.005重量%未
満のNo.9はT5状態での強度が低く、逆に0.20
重量%を超えるNo.8は粗大な金属間化合物のために
強度、伸び共に低い。 No. 1 to 7 are conventional product Nos. Compared with 18, the change in mechanical properties is small even when left at room temperature for a long time,
No. containing no Mn, etc. Except for 7, the strength in the T5 state is the same as the conventional product. On the other hand, comparative alloy No. 8,
Looking at the results of No. 9, the Ti content was less than 0.005% by weight. No. 9 has a low strength in the T5 state, on the contrary, 0.20
No. more than weight%. Since No. 8 is a coarse intermetallic compound, both strength and elongation are low.
【0026】Mn、Cr、Zrの含有量が0.90重量
%を超える比較合金No.10の結果をみると、粗大な
金属間化合物とプレス焼き入れ性の低下のために、T5
状態での強度、伸びは共に低い。比較合金No.11、
12の結果をみると、Mgの含有量が0.40重量%未
満のNo.12はT5状態での強度が低く、逆に0.8
0重量%を超えるNo.11は120日経過後の機械的
性質の変化が大きく、室温時効が進行していることが分
かる。Comparative alloy No. 3 in which the contents of Mn, Cr and Zr exceeded 0.90% by weight. Looking at the result of No. 10, it was found that T5 was not found due to the coarse intermetallic compound and the deterioration of press hardenability.
Both strength and elongation in the state are low. Comparative alloy No. 11,
Looking at the results of No. 12, No. 12 with a Mg content of less than 0.40% by weight. No. 12 has a low strength in the T5 state, on the contrary 0.8
No. over 0% by weight. It can be seen that No. 11 has a large change in mechanical properties after 120 days, and that aging at room temperature is progressing.
【0027】比較合金No.13、14の結果をみる
と、Cuの含有量が0.15重量%未満のNo.14は
T5状態での強度が低く、逆に0.50重量%を超える
No.13は強度、伸びが共に低く、室温時効も進行し
ている。比較合金No.15、16の結果をみると、S
iの含有量が0.40重量%未満であるNo.16はT
5状態での強度が低く、逆に0.80重量%を超えるN
o.15は伸びが低い。比較合金No.17は、Y≧
(1/1.73)X+0.15の範囲内になく、120
日経過後の機械的性質の変化が大きく、Siによる室温
時効の抑制効果が不十分で室温時効が進行していること
が分かる。Comparative alloy No. Looking at the results of Nos. 13 and 14, No. 3 having a Cu content of less than 0.15% by weight. No. 14 has a low strength in the T5 state, and conversely exceeds 0.50% by weight. In No. 13, both strength and elongation are low, and room temperature aging is progressing. Comparative alloy No. Looking at the results of 15 and 16, S
No. in which the content of i is less than 0.40% by weight. 16 is T
Strength in 5 states is low, conversely N exceeding 0.80% by weight
o. No. 15 has low elongation. Comparative alloy No. 17 is Y ≧
(1 / 1.73) X + 0.15, not within the range of 120
It can be seen that the change in mechanical properties after a lapse of days is large, the effect of suppressing room temperature aging by Si is insufficient, and room temperature aging is progressing.
【0028】このように、プレス焼入れした本発明合金
の押出材は遅効性に優れている。本願発明はこの組成の
押出材を冷間鍛造用素材として用いようというもので、
この冷間鍛造用素材は変形抵抗が大きくなく、かつ長期
の室温放置によっても機械的性質が変動せず、そのため
冷間鍛造性に優れ、さらにその後の時効処理により高い
強度を得ることができる利点をもっている。As described above, the extruded material of the alloy of the present invention that has been press-quenched is excellent in retardation. The present invention intends to use the extruded material of this composition as a material for cold forging,
This cold forging material does not have large deformation resistance, and its mechanical properties do not change even when left at room temperature for a long time, so it has excellent cold forgeability, and it is possible to obtain high strength by subsequent aging treatment. I have
【0029】[0029]
【実施例】以下、本発明の実施例について、JIS60
61を比較例として説明する。[Examples] In the following, according to the examples of the present invention, JIS60
61 will be described as a comparative example.
【0030】表4に示す組成の160φ×150hのア
ルミニウム合金ビレットを鋳造し、580℃×2hrの
均質化処理を行った。そのビレットを再加熱して、ビレ
ット温度500℃、押出速度5m/minで押し出し
た。このとき水冷にてプレス焼入れを行った。押出材の
断面形状はφ20の丸棒にて押し出した。押し出した丸
棒は、引張矯正にて曲がりを取り除いた。JIS606
1合金については一部を、矯正後、空気炉にて420℃
×2hr保持した後、100℃まで炉冷し、焼鈍処理を
行った。An aluminum alloy billet having a composition of 160φ × 150 hours shown in Table 4 was cast and homogenized at 580 ° C. for 2 hours. The billet was reheated and extruded at a billet temperature of 500 ° C. and an extrusion speed of 5 m / min. At this time, press quenching was performed with water cooling. The cross-sectional shape of the extruded material was extruded with a φ20 round bar. The bent round bar was removed by tension straightening. JIS606
Part of 1 alloy is straightened and then 420 ° C in an air furnace
After holding for 2 hours, the furnace was cooled to 100 ° C. and annealed.
【0031】[0031]
【表4】 [Table 4]
【0032】プレス焼き入れ後30日経過後、上記供試
材を20mmにカットし、常温落槌試験にて変形抵抗を
測定するとともに、30ton圧縮試験機にて加工率6
5%まで据込み鍛造し、表面に割れが起こっていないか
目視にて判定し、割れの起こっていないものを○と評価
した。次に、据込み鍛造を行った供試材について、一部
は空気炉にて180℃×8hrの時効処理を施し、他は
220℃×15minの短時間加熱を行い、それぞれに
ついてビッカース硬度を測定した。なお、据え込み鍛造
を行ったJIS6061合金の一部については時効処理
又は短時間加熱を行う前に、空気炉にて530℃×2h
rの保持後直ちに水槽中に浸漬し水焼き入れを行った。
以上の製造条件を表5に、試験結果を表6に示す。After 30 days from press quenching , the above test material was cut into 20 mm, the deformation resistance was measured by a room temperature hammer test, and the processing rate was 6 by a 30 ton compression tester.
Upset up to 5% was forged, and it was visually judged whether or not cracks had occurred on the surface, and those with no cracks were evaluated as ◯. Next, some of the upset forged test materials were subjected to an aging treatment at 180 ° C for 8 hours in an air furnace, and the other were heated at 220 ° C for 15 minutes for a short time, and the Vickers hardness was measured for each. did. In addition, about a part of JIS6061 alloy which performed upset forging, before performing an aging treatment or a short time heating, it is 530 degreeC x 2h in an air furnace.
Immediately after holding r, it was immersed in a water tank and water-quenched.
The above manufacturing conditions are shown in Table 5, and the test results are shown in Table 6.
【0033】[0033]
【表5】 [Table 5]
【0034】[0034]
【表6】 [Table 6]
【0035】表6に示すように、JIS6061合金で
は焼鈍を行わなければ、変形抵抗が高すぎて圧縮試験機
の力量を超えてしまい、40%しか据込み鍛造ができな
かった。これよりJIS6061合金では室温時効が進
行しており、焼鈍を行わなければ鍛造性が著しく劣るこ
とが分かる。一方、本発明例は焼鈍工程なしでもJIS
6061焼鈍材と同等の変形抵抗、冷間鍛造性であるこ
とが分かる。As shown in Table 6, if the JIS6061 alloy was not annealed, the deformation resistance was too high and the force of the compression tester was exceeded, and only 40% upsetting was possible. From this, it can be seen that the JIS6061 alloy has undergone room temperature aging and the forgeability is remarkably inferior unless annealing is performed. On the other hand, the example of the present invention is JIS without the annealing process.
It can be seen that it has the same deformation resistance and cold forgeability as the 6061 annealed material.
【0036】また、JIS6061合金では溶体化焼入
れを行わなければその後の時効処理を行っても所定の強
度を発揮しないのに対し、本発明例は焼入れ工程なしで
時効処理のみでも、JIS6061合金T6相当の強度
を発揮することが分かる。さらに、本発明例では、22
0℃×15minの短時間加熱においても、時効処理後
の9割以上の強度を有することが分かる。Further, in the case of the JIS6061 alloy, if the solution hardening is not performed, the predetermined strength is not exhibited even if the subsequent aging treatment is performed, whereas in the example of the present invention, only the aging treatment without the quenching step is equivalent to JIS6061 alloy T6. You can see that it exerts its strength. Further, in the example of the present invention, 22
It can be seen that even after heating for a short time of 0 ° C. × 15 min, the strength after the aging treatment is 90% or more.
【0037】[0037]
【発明の効果】本発明によれば、所定の組成を有するア
ルミニウム合金を用いて高強度の冷間鍛造素材を得るこ
とができる。また、前記アルミニウム合金を冷間鍛造に
用いることにより、鍛造前の焼鈍処理、鍛造後の焼き入
れ処理を省略することが可能であり、製造工程のコスト
ダウンを行うことができる。According to the present invention, a high strength cold forging material can be obtained by using an aluminum alloy having a predetermined composition. Further, by using the aluminum alloy for cold forging, it is possible to omit the annealing treatment before forging and the quenching treatment after forging, and it is possible to reduce the cost of the manufacturing process.
【図1】冷間鍛造の従来工程と本発明工程を説明する図
である。FIG. 1 is a diagram illustrating a conventional process of cold forging and a process of the present invention.
【図2】本発明合金のMg、Si範囲を示す図である。FIG. 2 is a diagram showing Mg and Si ranges of the alloy of the present invention.
フロントページの続き (56)参考文献 特開 昭63−199841(JP,A) 特開 平3−180453(JP,A) 特開 平1−225756(JP,A) (58)調査した分野(Int.Cl.7,DB名) C22C 21/00 - 21/18 C22F 1/04 - 1/057 Continuation of front page (56) Reference JP-A-63-199841 (JP, A) JP-A-3-180453 (JP, A) JP-A-1-225756 (JP, A) (58) Fields investigated (Int .Cl. 7 , DB name) C22C 21/00-21/18 C22F 1/04-1/057
Claims (8)
5〜0.7重量%、Cu0.15〜0.5重量%、Ti
0.005〜0.2重量%を含有し、Mn0.05〜
0.6重量%、Cr0.05〜0.3重量%、Zr0.
05〜0.3重量%の内1種以上を合計で0.9重量%
以下(MnとCrの含有量の合計が0.45重量%以上
を除く)を含有し、残部Al及び不可避不純物からな
り、さらに、Mg含有重量%をX、Si含有重量%をY
としたとき、Y≧(1/1.73)X+0.15の関係
を満たすことを特徴とする優れた遅効性を有する冷間鍛
造用アルミニウム合金。1. Mg 0.4 to 0.65% by weight, Si0.
5 to 0.7% by weight, Cu 0.15 to 0.5% by weight, Ti
0.005 to 0.2% by weight, Mn 0.05 to
0.6 wt%, Cr 0.05 to 0.3 wt%, Zr0.
0.9% by weight in total of at least one of 05 to 0.3% by weight
Below (total content of Mn and Cr is 0.45 wt% or more
Other than Al ) and the balance Al and inevitable impurities, and further, Mg content weight% is X, Si content weight% is Y.
The aluminum alloy for cold forging having excellent slow-acting properties, which satisfies the relation of Y ≧ (1 / 1.73) X + 0.15.
5〜0.7重量%、Cu0.15〜0.5重量%、Ti
0.005〜0.2重量%を含有し、Mn0.05〜
0.6重量%(0.4重量%以上を除く)、Cr0.0
5〜0.3重量%、Zr0.05〜0.3重量%の内1
種以上を合計で0.9重量%以下を含有し、残部Al及
び不可避不純物からなり、さらに、Mg含有重量%を
X、Si含有重量%をYとしたとき、Y≧(1/1.7
3)X+0.15の関係を満たすことを特徴とする優れ
た遅効性を有する冷間鍛造用アルミニウム合金。2. Mg 0.4-0.65% by weight, Si0.
5 to 0.7% by weight, Cu 0.15 to 0.5% by weight, Ti
0.005 to 0.2% by weight, Mn 0.05 to
0.6 wt% (excluding 0.4 wt% or more) , Cr0.0
1 to 5 to 0.3% by weight and 0.05 to 0.3% by weight of Zr
When the total content of the seeds is 0.9 wt% or less, the balance is Al and inevitable impurities, and the Mg content wt% is X and the Si content wt% is Y, Y ≧ (1 / 1.7
3) An aluminum alloy for cold forging having excellent slow-acting properties, which satisfies the relationship of X + 0.15.
量%以上を除く)、Si0.5〜0.7重量%、Cu
0.15〜0.5重量%、Ti0.005〜0.2重量
%を含有し、Mn0.05〜0.6重量%、Cr0.0
5〜0.3重量%、Zr0.05〜0.3重量%の内1
種以上を合計で0.9重量%以下を含有し、残部Al及
び不可避不純物からなり、さらに、Mg含有重量%を
X、Si含有重量%をYとしたとき、Y≧(1/1.7
3)X+0.15の関係を満たすことを特徴とする優れ
た遅効性を有する冷間鍛造用アルミニウム合金。3. Mg 0.4 to 0.65% by weight (0.6 % by weight)
(Excluding amount% or more) , Si 0.5 to 0.7% by weight, Cu
0.15 to 0.5% by weight, Ti 0.005 to 0.2% by weight, Mn 0.05 to 0.6% by weight, Cr 0.0
1 to 5 to 0.3% by weight and 0.05 to 0.3% by weight of Zr
When the total content of the seeds is 0.9 wt% or less, the balance is Al and inevitable impurities, and the Mg content wt% is X and the Si content wt% is Y, Y ≧ (1 / 1.7
3) An aluminum alloy for cold forging having excellent slow-acting properties, which satisfies the relationship of X + 0.15.
特徴とする請求項1〜3のいずれかに記載された優れた
遅効性を有する冷間鍛造用アルミニウム合金。4. The aluminum alloy for cold forging having excellent slow-acting property according to any one of claims 1 to 3, which is an extruded material that is press-quenched.
成のアルミニウム合金からなることを特徴とする優れた
遅効性を有する冷間鍛造用アルミニウム合金押出材。 5. The set according to claim 1.
Made of an aluminum alloy
Aluminum alloy extruded material for cold forging having slow-acting properties.
成のアルミニウム合金を440〜560℃で押出加工
し、押出直後にプレス焼き入れすることを特徴とする優
れた遅効性を有する冷間鍛造用アルミニウム合金の製造
方法。6. An aluminum alloy having the composition according to any one of claims 1 to 3 is extruded at 440 to 560 ° C. and press-quenched immediately after extrusion, which is a cold alloy having excellent slow-acting properties. Method for producing aluminum alloy for hot forging.
成のアルミニウム合金を440〜560℃で押出加工
し、押出直後にプレス焼き入れし、これを素材として冷
間鍛造し、続いて時効処理を行うことを特徴とする冷間
鍛造品の製造方法。7. An aluminum alloy having the composition according to any one of claims 1 to 3 is extruded at 440 to 560 ° C., press-quenched immediately after extrusion, and cold forged by using this as a raw material. A method for manufacturing a cold forged product, characterized by performing an aging treatment.
5〜0.7重量%、Cu0.15〜0.5重量%、Ti
0.005〜0.2重量%を含有し、Mn0.05〜
0.6重量%、Cr0.05〜0.3重量%、Zr0.
05〜0.3重量%の内1種以上を合計で0.9重量%
以下を含有し、残部Al及び不可避不純物からなり、さ
らに、Mg含有重量%をX、Si含有重量%をYとした
とき、Y≧(1/1.73)X+0.15の関係を満た
す組成のアルミニウム合金を440〜560℃で押出加
工し、押出直後にプレス焼き入れし、これを素材として
冷間鍛造し、続いて190〜250℃×5〜30min
の短時間加熱処理を行うことを特徴とする冷間鍛造品の
製造方法。8. Mg 0.4-0.65% by weight, Si0.
5 to 0.7% by weight, Cu 0.15 to 0.5% by weight, Ti
0.005 to 0.2% by weight, Mn 0.05 to
0.6 wt%, Cr 0.05 to 0.3 wt%, Zr0.
0.9% by weight in total of at least one of 05 to 0.3% by weight
Contains the following, consisting of the balance Al and unavoidable impurities,
In addition, the Mg-containing weight% was X and the Si-containing weight% was Y.
Then satisfy the relation of Y ≧ (1 / 1.73) X + 0.15
Aluminum alloys having to composition extruded at four hundred forty to five hundred sixty ° C., and placed pressing baked immediately after extrusion, which then cold forging the as a material, followed by 190~250 ℃ × 5~30min
A method for manufacturing a cold forged product, which comprises performing heat treatment for a short time.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP35479896A JP3516566B2 (en) | 1996-12-22 | 1996-12-22 | Aluminum alloy for cold forging and its manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP35479896A JP3516566B2 (en) | 1996-12-22 | 1996-12-22 | Aluminum alloy for cold forging and its manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10183287A JPH10183287A (en) | 1998-07-14 |
JP3516566B2 true JP3516566B2 (en) | 2004-04-05 |
Family
ID=18439982
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP35479896A Expired - Fee Related JP3516566B2 (en) | 1996-12-22 | 1996-12-22 | Aluminum alloy for cold forging and its manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3516566B2 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5088703B2 (en) * | 1999-06-16 | 2012-12-05 | 日本軽金属株式会社 | Al-Mg-Si aluminum alloy cold forging with excellent appearance quality |
JP4942372B2 (en) * | 2006-03-24 | 2012-05-30 | 株式会社神戸製鋼所 | Aluminum alloy extrusion for electromagnetic forming |
JP5329746B2 (en) * | 2006-07-13 | 2013-10-30 | 株式会社神戸製鋼所 | Aluminum alloy sheet for warm forming |
KR101356243B1 (en) * | 2009-10-16 | 2014-01-28 | 쇼와 덴코 가부시키가이샤 | Process for producing brake piston |
CN103119184B (en) * | 2010-09-08 | 2015-08-05 | 美铝公司 | The 6XXX aluminium alloy improved and production method thereof |
WO2015129304A1 (en) * | 2014-02-28 | 2015-09-03 | アイシン軽金属株式会社 | High-strength aluminum alloy extrudate with excellent formability |
CN107097043A (en) * | 2017-04-13 | 2017-08-29 | 广西大学 | A kind of manufacture method of 6101 aluminium alloy extrusions |
JP7267072B2 (en) * | 2019-04-02 | 2023-05-01 | 株式会社神戸製鋼所 | Manufacturing method and equipment for aluminum alloy parts |
CN113684401B (en) * | 2021-08-25 | 2022-11-15 | 航桥新材料科技(滨州)有限公司 | Aluminum alloy for high-service transmission shaft and preparation method thereof |
-
1996
- 1996-12-22 JP JP35479896A patent/JP3516566B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH10183287A (en) | 1998-07-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0610006A1 (en) | Superplastic aluminum alloy and process for producing same | |
JPH0625388B2 (en) | High strength, high conductivity copper base alloy | |
US6423163B2 (en) | Process for the manufacture of a free-cutting aluminum alloy | |
EP0480402B1 (en) | Process for manufacturing aluminium alloy material with excellent formability, shape fixability and bake hardenability | |
JPH0372147B2 (en) | ||
JPWO2019167469A1 (en) | Al-Mg-Si based aluminum alloy material | |
WO2020182506A1 (en) | Method of manufacturing a 5xxx-series sheet product | |
JP3157068B2 (en) | Manufacturing method of aluminum alloy sheet for forming | |
JP3516566B2 (en) | Aluminum alloy for cold forging and its manufacturing method | |
CN100482834C (en) | Easily-workable magnesium alloy and method for preparing same | |
JP2007070686A (en) | Highly workable magnesium alloy, and method for producing the same | |
JPH1030147A (en) | Aluminum-zinc-magnesium alloy extruded material and its production | |
JP3849095B2 (en) | Aluminum alloy plate for forming and method for producing the same | |
JP2844411B2 (en) | Aluminum alloy sheet for superplastic forming capable of cold preforming and method for producing the same | |
JP3810902B2 (en) | Aluminum alloy fin material and method for producing aluminum alloy fin material | |
JP2004027253A (en) | Aluminum alloy sheet for molding, and method of producing the same | |
EP2006404A1 (en) | 6000 aluminum extrudate excelling in paint-baking hardenability and process for producing the same | |
JPH11350058A (en) | Aluminum alloy sheet excellent in formability and baking hardenability and its production | |
JPH0696756B2 (en) | Of heat-treating Al-Cu based aluminum alloy ingot for processing and method of manufacturing extruded material using the same | |
JPH08269608A (en) | High strength aluminum alloy excellent in formability and corrosion resistance | |
JPH04365834A (en) | Aluminum alloy sheet for press forming excellent in hardenability by low temperature baking and its production | |
JPH10259464A (en) | Production of aluminum alloy sheet for forming | |
JP3286119B2 (en) | Aluminum alloy foil and method for producing the same | |
JP2997146B2 (en) | Aluminum alloy sheet for press forming excellent in curability by low-temperature short-time baking and method for producing the same | |
JP3543362B2 (en) | Method for producing aluminum alloy sheet excellent in formability and bake hardenability |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040120 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040120 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080130 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090130 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100130 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |