JPH10183287A - Aluminum alloy for cold forging and its production - Google Patents

Aluminum alloy for cold forging and its production

Info

Publication number
JPH10183287A
JPH10183287A JP35479896A JP35479896A JPH10183287A JP H10183287 A JPH10183287 A JP H10183287A JP 35479896 A JP35479896 A JP 35479896A JP 35479896 A JP35479896 A JP 35479896A JP H10183287 A JPH10183287 A JP H10183287A
Authority
JP
Japan
Prior art keywords
weight
cold forging
aluminum alloy
alloy
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP35479896A
Other languages
Japanese (ja)
Other versions
JP3516566B2 (en
Inventor
Takashi Oka
貴志 岡
Masakazu Hirano
正和 平野
Kazuhiro Kaita
一浩 貝田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP35479896A priority Critical patent/JP3516566B2/en
Publication of JPH10183287A publication Critical patent/JPH10183287A/en
Application granted granted Critical
Publication of JP3516566B2 publication Critical patent/JP3516566B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an aluminum alloy for cold forging, requiring no annealing treatment before cold forging and capable of producing a high strength even if solution hardening treatment is omitted after cold forging. SOLUTION: The aluminum alloy for cold forging has a composition consisting of, by weight, 0.4-0.8% Mg, 0.4-1.0% Si, 0.15-0.5% Cu, 0.005-0.2% Ti, and the balance Al with inevitable impurities and satisfying the relation of Y>=(1/1.73)X+0.15 when X and Y represent Mg content (wt.%) and Si content (wt.%), respectively. A cold forged product is produced by subjecting this alloy to extrusion at 440 -560'C and then to press quenching without delay and subjecting the resultant slug to cold forging and successively to aging treatment or short-time heating treatment at 190-250 deg.C for 5-30min.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、冷間鍛造を施され
る部品の素材として使用される冷間鍛造用アルミニウム
合金とその製造方法並びに冷間鍛造品の製造方法に関す
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aluminum alloy for cold forging used as a material of a part to be subjected to cold forging, a method for producing the same, and a method for producing a cold forged product.

【0002】[0002]

【従来の技術】アルミニウム合金は、鉄に比べ比重が約
1/3と軽量であるため、鉄からアルミニウム合金に材
料を置換し軽量化を計る例が数多くある。鍛造方法に
は、高温で素材を軟化させた状態で鍛造を行う熱間鍛造
と、常温で鍛造を行う冷間鍛造とがある。冷間鍛造で
は、加工時には鍛造し易いように素材を軟化させておく
必要があり、そのため、予め焼鈍処理を施されたものが
素材として用いられている。例えば、代表的な熱処理型
アルミニウム合金であるJIS6061合金の場合、押
出加工後(T1)の強度が高く硬いため、押出加工後4
20℃×2hr程度の焼鈍(O材処理)を行ったうえで
冷間鍛造に供している(例えば特開平3−170636
号公報参照)。
2. Description of the Related Art Aluminum alloys have a specific gravity of about 1/3 that of iron and are lighter. Therefore, there are many examples of replacing aluminum with an aluminum alloy to reduce the weight. Forging methods include hot forging, in which the material is softened at a high temperature, and cold forging, in which the forging is performed at room temperature. In cold forging, it is necessary to soften the material at the time of working so that it is easy to forge. Therefore, a material that has been subjected to an annealing treatment in advance is used as the material. For example, in the case of JIS6061 alloy, which is a typical heat-treated aluminum alloy, the strength after extrusion (T1) is high and hard, so that it is 4% after extrusion.
After being subjected to annealing (O material treatment) at about 20 ° C. × 2 hours, it is subjected to cold forging (for example, Japanese Patent Application Laid-Open No. 3-170636).
Reference).

【0003】[0003]

【発明が解決しようとする課題】このように、従来材は
冷間鍛造前に焼鈍処理を行うため、冷間鍛造後に高強度
を得るには、溶体化焼入れ、時効という工程を経る必要
があった(図2(a)参照)。しかし、仮に、焼鈍工程
を行わずに冷間鍛造を行うことができれば、焼鈍工程だ
けでなくその後の焼入れ処理が不要になり、工程省略に
よる大幅なコストダウンが見込まれる。また、焼入れを
行わないことにより、冷間鍛造による加工歪みを強度ア
ップに用いることもできる。
As described above, since the conventional material is subjected to an annealing treatment before cold forging, in order to obtain high strength after cold forging, it is necessary to go through steps of solution quenching and aging. (See FIG. 2A). However, if the cold forging can be performed without performing the annealing step, not only the annealing step but also the subsequent quenching treatment is not required, and a significant cost reduction can be expected by omitting the step. Further, by not performing the quenching, the processing strain due to the cold forging can be used for increasing the strength.

【0004】一方、焼鈍工程と溶体化焼入れ工程を省略
するには、例えば、押出直後の高温状態の押出材に焼入
れする、いわゆるプレス焼入れを行い、プレス焼入れ直
後の強度及び硬度が低いうちに冷間鍛造を行い、続いて
時効処理を行うことが考えられる。しかし、上記の60
61合金等、これまでのAl−Mg−Si合金では、冷
間加工時の変形抵抗が大きく、冷間加工が困難であっ
た。また、大型のプレスを用いて強引に冷間鍛造を行っ
た場合でも、変形抵抗がしだいに大きくなって寸法精度
のばらつきが大きくなるなど、冷間鍛造性が低下する事
態が生じ、実操業上の観点からは現実的なものとはなっ
ていない。
[0004] On the other hand, in order to omit the annealing step and the solution quenching step, for example, so-called press quenching is performed by quenching an extruded material in a high-temperature state immediately after extrusion. It is conceivable to perform cold forging and then perform aging treatment. However, the above 60
Conventional Al-Mg-Si alloys such as alloy No. 61 have a large deformation resistance during cold working, making cold working difficult. In addition, even when cold forging is performed forcibly using a large-sized press, the cold forging property deteriorates, such as the deformation resistance gradually increasing and the dimensional accuracy varies. It is not realistic from the point of view.

【0005】本発明はかかる観点からなされたものであ
り、冷間鍛造前に焼鈍処理を必要とせず、また冷間鍛造
後に溶体化焼入れしなくても高強度を得ることができ、
さらに、プレス焼入れ後冷間鍛造までに長期間室温放置
していても機械的性質の変動が少なく冷間鍛造性が低下
しない(すなわち遅効性をもつ)冷間鍛造用アルミニウ
ム合金を提供することを目的とする。
The present invention has been made from such a viewpoint, and does not require annealing before cold forging, and can achieve high strength without solution quenching after cold forging.
Further, it is an object of the present invention to provide an aluminum alloy for cold forging in which the mechanical properties do not fluctuate and the cold forgeability does not decrease (that is, it has a delayed effect) even when left for a long time at room temperature after press quenching and before cold forging. Aim.

【0006】[0006]

【課題を解決するための手段】本発明者らは、上記の特
性を持つ冷間鍛造用アルミニウム合金を開発すべく、種
々の研究を行い、その結果、必要な冷間鍛造性を得るた
めにはMg、Siの添加量を所定の値以下に制限する必
要があること、また、その冷間鍛造性の経時変化を防ぐ
遅効性に対してはMg/Si比が大きく影響すること、
そしてMg2Siの化学量論比よりSiリッチ側の特定
の組成領域で室温時効の進行が抑制されることを見い出
した。また、冷間鍛造後の強度を向上させるためには、
熱処理後の析出物(Mg2Si)の分布を均一微細にす
る効果のあるCuの添加が有効であることを見い出し、
本発明を完成した。
The present inventors have conducted various studies to develop an aluminum alloy for cold forging having the above-mentioned characteristics, and as a result, have obtained the necessary cold forgeability. Is that it is necessary to limit the amount of addition of Mg and Si to a predetermined value or less, and that the Mg / Si ratio has a large effect on the delayed effect of preventing the cold forging property from changing over time;
Then, it has been found that the progress of room temperature aging is suppressed in a specific composition region on the Si-rich side from the stoichiometric ratio of Mg 2 Si. Also, in order to improve the strength after cold forging,
It has been found that the addition of Cu, which has the effect of making the distribution of precipitates (Mg 2 Si) after heat treatment uniform and fine, is effective.
The present invention has been completed.

【0007】本発明に係る冷間鍛造用アルミニウム合金
は、Mg0.4〜0.8重量%、Si0.4〜1.0重
量%、Cu0.15〜0.5重量%、Ti0.005〜
0.2重量%を含有し、残部Al及び不可避不純物から
なり、さらに、Mg含有重量%をX、Si含有重量%を
Yとしたとき、Y≧(1/1.73)X+0.15の関
係を満たすことを特徴とする。この合金は、必要に応
じ、Mn0.05〜0.6重量%、Cr0.05〜0.
3重量%、Zr0.05〜0.3重量%の内1種以上を
合計で0.9重量%以下含有する。また、不可避不純物
としては少ない方がよいが、Fe0.35重量%以下、
その他の不純物は単体で0.05重量%以下(総量で
0.15%以下)が許容される。
The aluminum alloy for cold forging according to the present invention comprises 0.4 to 0.8% by weight of Mg, 0.4 to 1.0% by weight of Si, 0.15 to 0.5% by weight of Cu, and 0.005 to 0.5% by weight of Ti.
0.2% by weight, with the balance being Al and unavoidable impurities. Further, when the weight percentage of Mg is X and the weight percentage of Si is Y, the relationship of Y ≧ (1 / 1.73) X + 0.15 Is satisfied. This alloy contains 0.05 to 0.6% by weight of Mn and 0.05 to 0.
One or more of 3% by weight and Zr of 0.05 to 0.3% by weight are contained in a total of 0.9% by weight or less. Further, it is better that the inevitable impurities are small, but Fe 0.35% by weight or less,
Other impurities are allowed to be 0.05% by weight or less (0.15% or less in total) by itself.

【0008】また、本発明に係る冷間鍛造用アルミニウ
ム合金の製造方法は、上記組成のアルミニウム合金を4
40〜560℃で押出加工し、押出直後にプレス焼き入
れすることを特徴とする。そして、このプレス焼入れさ
れた押出材を冷間鍛造用素材とし、これを冷間鍛造し、
次いで通常の時効処理又は短時間加熱処理をすることに
より高強度の冷間鍛造品を得ることができる。
Further, the method for producing an aluminum alloy for cold forging according to the present invention comprises:
It is characterized by extruding at 40 to 560 ° C and press hardening immediately after extrusion. Then, the extruded material that has been press-quenched is used as a material for cold forging, and this is cold forged,
Subsequently, a high-strength cold forged product can be obtained by performing normal aging treatment or short-time heating treatment.

【0009】[0009]

【発明の実施の形態】以下、本発明に係る冷間鍛造用ア
ルミニウム合金の成分添加理由及び組成限定理由につい
て説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The reasons for adding components and limiting the composition of the aluminum alloy for cold forging according to the present invention will be described below.

【0010】Mg、Si 先に述べたように、Mg2Siの化学量論比に対してS
iを相当量過剰に添加したとき、室温時効が抑制され遅
効性が発現する。そのMg、Siの割合は、Mg含有重
%をX、Si含有重量%をYとしたときY≧(1/1.
73)X+0.15を満たす範囲である。これよりMg
リッチ側、すなわちY<(1/1.73)X+0.15
の範囲では、Siによる室温時効の抑制効果が不十分で
あり、室温時効が進行してしまう。
Mg, Si As mentioned above, the stoichiometric ratio of Mg 2 Si to S
When i is added in an excessively large amount, aging at room temperature is suppressed and a delayed effect is exhibited. The ratio of Mg and Si is represented by Y ≧ (1/1.
73) It is a range satisfying X + 0.15. From this Mg
Rich side, that is, Y <(1 / 1.73) X + 0.15
In the range, the effect of suppressing the aging at room temperature by Si is insufficient, and the aging at room temperature proceeds.

【0011】一方、MgはSiと結合し、Mg2Siを
形成することにより合金強度を向上させる。この効果を
発揮するには、Mgの添加量は0.4重量%以上とする
必要がある。しかし、Mgの含有量が0.8重量%を越
えると、上記の範囲を満たしていても、Mgの拡散によ
り室温時効が進行してしまい、また、常温での変形抵抗
が上昇し冷間鍛造性を低下させる。従って、Mgの含有
量は0.4重量%以上、0.8重量%以下とする。ま
た、Siは、上述したようにMg2Siを形成して合金
強度を向上させる効果がある。しかし、Siの添加量が
0.4重量%未満では材料の強度を向上させることがで
きず、1.0重量%以上では材料の延性が阻害されると
ともに、常温での変形抵抗が上昇し冷間鍛造性が低下す
る。さらに、SiはMg2Si析出の核となるが、その
添加量が多くなると析出の核が多くなる結果、析出が進
行しやすくなり、遅効性が失われる。従って、Siの含
有量は0.4重量%以上、1.0重量%以下とする。
On the other hand, Mg combines with Si to form Mg 2 Si, thereby improving alloy strength. In order to exhibit this effect, the amount of Mg needs to be 0.4% by weight or more. However, if the content of Mg exceeds 0.8% by weight, even if the above range is satisfied, aging at room temperature proceeds due to the diffusion of Mg, and deformation resistance at room temperature increases, resulting in cold forging. Reduce the nature. Therefore, the content of Mg is set to 0.4% by weight or more and 0.8% by weight or less. In addition, Si has the effect of forming Mg 2 Si and improving the alloy strength as described above. However, if the added amount of Si is less than 0.4% by weight, the strength of the material cannot be improved, and if it is 1.0% by weight or more, the ductility of the material is hindered, and the deformation resistance at room temperature increases and the coldness increases. The forgeability decreases. Further, Si acts as a nucleus for Mg 2 Si precipitation. When the amount of Si increases, the number of nuclei of the precipitation increases. As a result, the precipitation proceeds easily, and the slow effect is lost. Therefore, the content of Si is set to 0.4% by weight or more and 1.0% by weight or less.

【0012】なお、上記範囲内では、Mgが少ない領域
の方が優れた遅効性が得られ、また、冷間鍛造性が向上
して複雑な形状の部材を成形することができ本発明合金
の適用範囲が広がる。従って、Mg含有量は好ましくは
0.65重量%以下であり、この範囲内で際だって優れ
た遅効性を示す。より好ましくはMg含有量は0.6重
量%以下であり、同時にSiを0.5〜0.7重量%の
範囲とすることにより、優れた冷間鍛造性及び遅効性を
示す冷間鍛造素材を得ることができる。図1に本発明の
Mg及びSiの組成範囲を図示する。なお、Y=(1/
1.73)Xのラインは、Mg2Siの化学量論比のラ
インである。
[0012] In the above range, a region having a lower content of Mg provides a better delayed effect, and a cold forgeability is improved, whereby a member having a complicated shape can be formed. The range of application expands. Accordingly, the Mg content is preferably not more than 0.65% by weight, and within this range, it exhibits a remarkably excellent retarding effect. More preferably, the Mg content is 0.6% by weight or less, and at the same time, the content of Si is in the range of 0.5 to 0.7% by weight. Can be obtained. FIG. 1 illustrates the composition ranges of Mg and Si of the present invention. Note that Y = (1 /
1.73) The line of X is a line of the stoichiometric ratio of Mg 2 Si.

【0013】Cu Cuは析出硬化により合金強度を向上させるとともに材
料の延性を向上させる。また、Cuを添加することによ
り、Mg、Siによって生成される析出物Mg2Siを
均一微細に分布させる効果がある。しかし、Cuの添加
量が0.15重量%未満では前記効果を発揮することが
できない。一方、0.5重量%を超えるとプレス焼入れ
性を低下させ、かつ変形抵抗を上昇させる。従って、C
uの含有量は0.15重量%以上、0.5重量%以下と
する。
Cu Cu improves the alloy strength by precipitation hardening and improves the ductility of the material. Further, by adding Cu, there is an effect of uniformly and finely distributing the precipitate Mg 2 Si generated by Mg and Si. However, if the added amount of Cu is less than 0.15% by weight, the above effect cannot be exhibited. On the other hand, if it exceeds 0.5% by weight, press hardenability is reduced and deformation resistance is increased. Therefore, C
The content of u is 0.15% by weight or more and 0.5% by weight or less.

【0014】Mn、Cr、Zr Mn、Cr、Zrはビレットの均質化処理時において微
細な金属間化合物として析出し、結晶粒を微細化させる
ことにより、強度、延性を向上させる。しかし、これら
の元素は添加量が増えるとともに焼入れ感受性を鋭く
し、プレス焼入れ性を低下させる作用がある。Mn、C
r、Zrの添加量がそれぞれ0.05重量%未満では前
記効果を発揮し得ない。一方、Mn、Cr、Zrの添加
量がそれぞれ0.6重量%、0.3重量%、0.3重量
%を超えるか、これらの合計が0.9重量%を超える
と、粗大な金属間化合物が晶出してしまうとともに焼入
れ感受性を鋭くし、所定の合金強度の向上が計れない。
従ってMn、Cr、Zrの含有量は、Mn0.05〜
0.6重量%、Cr0.05〜0.3重量%、Zr0.
05〜0.3重量%の内1種以上を合計で0.9重量%
以下とする。
Mn, Cr, Zr Mn, Cr, Zr precipitate as fine intermetallic compounds during the billet homogenization treatment and refine the crystal grains to improve the strength and ductility. However, these elements have the effect of increasing the quenching sensitivity and increasing the press quenching property as the added amount increases. Mn, C
If the amount of each of r and Zr is less than 0.05% by weight, the above effect cannot be exerted. On the other hand, if the addition amounts of Mn, Cr, and Zr exceed 0.6% by weight, 0.3% by weight, and 0.3% by weight, respectively, or if the total of these exceeds 0.9% by weight, coarse metal The compound is crystallized and the quenching sensitivity is sharpened, and the improvement of the predetermined alloy strength cannot be achieved.
Therefore, the content of Mn, Cr, and Zr is from Mn 0.05 to
0.6% by weight, Cr 0.05 to 0.3% by weight, Zr0.
At least 0.9% by weight in total of at least one of 0.05 to 0.3% by weight
The following is assumed.

【0015】Ti Tiは鋳造時における結晶粒を微細化することにより合
金強度を向上させる。この効果を発揮させるにはTi添
加量は0.005重量%以上とすることが必要である。
一方、Ti添加量が0.2重量%を超えると前記効果が
飽和してしまい、また粗大な金属間化合物が晶出し所定
の合金強度が得られない。従ってTiの含有量は0.0
05〜0.2重量%とする。
Ti Ti improves alloy strength by refining crystal grains during casting. In order to exhibit this effect, the amount of Ti added must be 0.005% by weight or more.
On the other hand, if the added amount of Ti exceeds 0.2% by weight, the above effect is saturated, and a coarse intermetallic compound is crystallized and a predetermined alloy strength cannot be obtained. Therefore, the content of Ti is 0.0
0.5 to 0.2% by weight.

【0016】不可避不純物 Fe Feはアルミ地金に最も多く存在する不純物であり、
0.35重量%を超えて合金中に存在すると鋳造時に粗
大な金属間化合物を晶出し、合金の機械的性質を損な
う。従って、Feの含有量は0.35重量%以下とす
る。
Inevitable impurities Fe Fe is the most abundant impurity in aluminum ingots.
If present in the alloy in an amount exceeding 0.35% by weight, coarse intermetallic compounds are crystallized during casting, which impairs the mechanical properties of the alloy. Therefore, the content of Fe is set to 0.35% by weight or less.

【0017】その他 アルミニウム合金を鋳造する際には地金、添加元素の中
間合金等様々な経路より不純物が混入する。また、混入
する元素も様々であるが、Fe以外の不純物はそれぞれ
の単体で0.05重量%以下、総量で0.15%以下で
あれば合金の特性にほとんど影響を及ぼさない。従っ
て、これらの不純物は単体で0.05重量%以下(総量
で0.15%以下)とする。
Others When casting an aluminum alloy, impurities are mixed through various routes such as a base metal and an intermediate alloy of an additional element. Although various elements are mixed, impurities other than Fe alone have little effect on the properties of the alloy as long as the content of each element is 0.05% by weight or less and the total amount is 0.15% or less. Therefore, these impurities alone are set to 0.05% by weight or less (0.15% or less in total).

【0018】上記の組成のアルミニウム合金鋳塊を、5
00〜600℃×2〜10hrの条件で均質化処理を行
い、ついで440〜560℃で押出加工し、押出直後に
例えば水冷又はファン空冷によるプレス焼入れして、冷
間鍛造用素材を得ることができる。なお、均質化処理温
度を上記のように設定するのは、500℃未満では鋳造
時に生じた偏析をマトリックス中に拡散させるには不十
分であり、600℃を超えると局部溶解が発生し、押出
時に欠陥となるためである。また、押出加工の温度を上
記のように設定するのは、440℃未満では均質化処理
後の冷却過程で生じた析出物を分解させ固溶体状態とす
るには不十分であり、560℃を超えると押出時の加工
発熱により局部溶解が生じるためである。
The aluminum alloy ingot having the above composition is
A homogenization treatment is carried out at a temperature of 00 to 600 ° C. × 2 to 10 hours, followed by extrusion at 440 to 560 ° C., and immediately after extrusion, for example, press quenching by water cooling or fan air cooling to obtain a material for cold forging. it can. When the homogenization temperature is set as described above, if it is less than 500 ° C., it is insufficient to diffuse the segregation generated during casting into the matrix, and if it exceeds 600 ° C., local melting occurs, and This is because it sometimes becomes a defect. When the temperature of the extrusion process is set as described above, if the temperature is lower than 440 ° C., it is not sufficient to decompose the precipitates generated in the cooling process after the homogenization treatment into a solid solution state, and exceeds 560 ° C. This is because local melting occurs due to heat generated during processing during extrusion.

【0019】この素材は所定長に切断されて冷間鍛造に
供され、冷間鍛造後、通常の条件(例えば180〜19
0℃×3〜8hr)で時効処理を施される(図2(b)
参照)。なお、この冷間鍛造用アルミニウム合金は、冷
間鍛造後、ごく短時間の加熱を施すだけで、上記時効処
理後のほぼ9割以上に達する高い強度を得ることができ
る。これは、冷間鍛造による加工歪が加わっているため
析出が促進され、短時間で時効が進行するためである。
従って、上記時効処理の代わりに、190〜250℃×
5〜30minの条件でこの短時間加熱を施すようにし
てもよい。
This material is cut to a predetermined length and subjected to cold forging. After cold forging, the material is subjected to ordinary conditions (for example, 180 to 19).
Aging treatment is performed at 0 ° C. × 3 to 8 hours (FIG. 2B).
reference). It should be noted that the aluminum alloy for cold forging can obtain a high strength of about 90% or more after the above-mentioned aging treatment only by heating for a very short time after cold forging. This is because precipitation is promoted due to the addition of working strain due to cold forging, and aging proceeds in a short time.
Therefore, instead of the above aging treatment, 190-250 ° C. ×
This short-time heating may be performed under the condition of 5 to 30 minutes.

【0020】次に、本発明に規定する組成をもつアルミ
ニウム合金押出材が優れた遅効性をもつことを、実例を
もって具体的に説明する。まず、表1に示す組成の16
0φ×150hのアルミニウム合金ビレットに580℃
×2hrの均質化処理を行った。そのビレットを再加熱
し、ビレット温度500℃、押出速度5m/minで押
し出した。このとき、プレス焼き入れをNo.18(J
IS6061)のみ水冷を用い、その他についてはファ
ン空冷にて行った。押出材の断面形状は40×40×2
tの角パイプにて押し出した。
Next, the fact that the extruded aluminum alloy having the composition specified in the present invention has an excellent retardation effect will be specifically described by way of examples. First, 16 of the composition shown in Table 1
580 ℃ for aluminum alloy billet of 0φ × 150h
A homogenization treatment of × 2 hr was performed. The billet was reheated and extruded at a billet temperature of 500 ° C. and an extrusion speed of 5 m / min. At this time, the press hardening was performed for No. 18 (J
IS6061) was performed using water cooling, and the others were performed using fan air cooling. The cross-sectional shape of the extruded material is 40 × 40 × 2
It was extruded with a square pipe of t.

【0021】[0021]

【表1】 [Table 1]

【0022】押出材からJIS5号引張試験片を採取
し、押出直後(3日以内)及び室温放置120日後に引
っ張り試験を行い、供試材の機械的性質を調査した。そ
の結果を表2に示す。また、表3には押出直後の押出材
に対し190℃×3hrの人工時効を施した後(T5調
質)、同様にJIS5号引張試験片により機械的性質を
調査した結果を示す。
A JIS No. 5 tensile test piece was sampled from the extruded material and subjected to a tensile test immediately after extrusion (within 3 days) and after 120 days at room temperature to examine the mechanical properties of the test material. Table 2 shows the results. In addition, Table 3 shows the results of similarly examining the mechanical properties of the extruded material immediately after extrusion by subjecting the extruded material to artificial aging at 190 ° C. for 3 hours (T5 tempering), using a JIS No. 5 tensile test piece.

【0023】[0023]

【表2】 [Table 2]

【0024】[0024]

【表3】 [Table 3]

【0025】本発明合金No.1〜7は、従来品No.
18に比べ長期の室温放置によっても機械的性質の変化
が小さく、Mn等を含まないNo.7を除いてT5状態
での強度は従来品と同等となっている。一方、比較合金
No.8、9の結果をみると、Tiの含有量が0.00
5重量%未満のNo.9はT5状態での強度が低く、逆
に0.20重量%を超えるNo.8は粗大な金属間化合
物のために強度、伸び共に低い。
According to the alloy No. 1 of the present invention, Nos. 1 to 7 are conventional product Nos.
Compared with No. 18, the change in mechanical properties was small even after prolonged standing at room temperature, and No. Except for 7, the strength in the T5 state is equal to that of the conventional product. On the other hand, Comparative Alloy No. Looking at the results of 8 and 9, the Ti content was 0.00
No. less than 5% by weight. No. 9 has low strength in the T5 state, and conversely exceeds 0.20% by weight. 8 has low strength and low elongation due to a coarse intermetallic compound.

【0026】Mn、Cr、Zrの含有量が0.90重量
%を超える比較合金No.10の結果をみると、粗大な
金属間化合物とプレス焼き入れ性の低下のために、T5
状態での強度、伸びは共に低い。比較合金No.11、
12の結果をみると、Mgの含有量が0.40重量%未
満のNo.12はT5状態での強度が低く、逆に0.8
0重量%を超えるNo.11は120日経過後の機械的
性質の変化が大きく、室温時効が進行していることが分
かる。
The comparative alloy No. having a content of Mn, Cr and Zr exceeding 0.90% by weight. According to the results of Example No. 10, it was found that T5
Both strength and elongation in the state are low. Comparative alloy No. 11,
Looking at the results of No. 12, No. 12 containing less than 0.40% by weight of Mg was used. 12 has low strength in T5 state, and conversely 0.8
No. exceeding 0% by weight. No. 11 shows that the change in mechanical properties is large after 120 days, and that the aging at room temperature is progressing.

【0027】比較合金No.13、14の結果をみる
と、Cuの含有量が0.15重量%未満のNo.14は
T5状態での強度が低く、逆に0.50重量%を超える
No.13は強度、伸びが共に低く、室温時効も進行し
ている。比較合金No.15、16の結果をみると、S
iの含有量が0.40重量%未満であるNo.16はT
5状態での強度が低く、逆に0.80重量%を超えるN
o.15は伸びが低い。比較合金No.17は、Y≧
(1/1.73)X+0.15の範囲内になく、120
日経過後の機械的性質の変化が大きく、Siによる室温
時効の抑制効果が不十分で室温時効が進行していること
が分かる。
Comparative alloy No. Looking at the results of Nos. 13 and 14, No. 13 containing less than 0.15% by weight of Cu was used. No. 14 has low strength in the T5 state, and conversely, No. 14 exceeds 0.50% by weight. 13 has low strength and low elongation, and aging at room temperature is also progressing. Comparative alloy No. Looking at the results of 15 and 16, S
No. i having a content of less than 0.40% by weight. 16 is T
5 Strength in low state, conversely more than 0.80 wt% N
o. 15 has low elongation. Comparative alloy No. 17 is Y ≧
(1 / 1.73) X + 0.15
It can be seen that the change in mechanical properties after a lapse of days is large, and the effect of suppressing the aging by room temperature with Si is insufficient, and the aging at room temperature is progressing.

【0028】このように、プレス焼入れした本発明合金
の押出材は遅効性に優れている。本願発明はこの組成の
押出材を冷間鍛造用素材として用いようというもので、
この冷間鍛造用素材は変形抵抗が大きくなく、かつ長期
の室温放置によっても機械的性質が変動せず、そのため
冷間鍛造性に優れ、さらにその後の時効処理により高い
強度を得ることができる利点をもっている。
As described above, the extruded material of the alloy of the present invention which has been subjected to press quenching has excellent long-acting properties. The present invention is to use the extruded material of this composition as a material for cold forging,
The advantage of this cold forging material is that it does not have a large deformation resistance, and its mechanical properties do not fluctuate even after being left at room temperature for a long period of time. Therefore, it is excellent in cold forgeability and can obtain high strength by subsequent aging treatment. Have.

【0029】[0029]

【実施例】以下、本発明の実施例について、JIS60
61を比較例として説明する。
EXAMPLES Hereinafter, examples of the present invention will be described in accordance with JIS60.
61 is described as a comparative example.

【0030】表4に示す組成の160φ×150hのア
ルミニウム合金ビレットを鋳造し、580℃×2hrの
均質化処理を行った。そのビレットを再加熱して、ビレ
ット温度500℃、押出速度5m/minで押し出し
た。このとき水冷にてプレス焼入れを行った。押出材の
断面形状はφ20の丸棒にて押し出した。押し出した丸
棒は、引張矯正にて曲がりを取り除いた。JIS606
1合金については一部を、矯正後、空気炉にて420℃
×2hr保持した後、100℃まで炉冷し、焼鈍処理を
行った。
An aluminum alloy billet having a composition shown in Table 4 and having a diameter of 160φ × 150 hours was cast and homogenized at 580 ° C. × 2 hours. The billet was reheated and extruded at a billet temperature of 500 ° C. and an extrusion speed of 5 m / min. At this time, press hardening was performed with water cooling. The cross-sectional shape of the extruded material was extruded with a φ20 round bar. The extruded round bar was removed from bending by tensile straightening. JIS606
After straightening one alloy, 420 ° C in an air furnace
After holding for 2 hours, the furnace was cooled to 100 ° C. and an annealing treatment was performed.

【0031】[0031]

【表4】 [Table 4]

【0032】プレス焼鈍後30日経過後、上記供試材を
20mmにカットし、常温落槌試験にて変形抵抗を測定
するとともに、30ton圧縮試験機にて加工率65%
まで据込み鍛造し、表面に割れが起こっていないか目視
にて判定し、割れの起こっていないものを○と評価し
た。次に、据込み鍛造を行った供試材について、一部は
空気炉にて180℃×8hrの時効処理を施し、他は2
20℃×15minの短時間加熱を行い、それぞれにつ
いてビッカース硬度を測定した。なお、据え込み鍛造を
行ったJIS6061合金の一部については時効処理又
は短時間加熱を行う前に、空気炉にて530℃×2hr
の保持後直ちに水槽中に浸漬し水焼き入れを行った。以
上の製造条件を表5に、試験結果を表6に示す。
Thirty days after the press annealing, the test material was cut into 20 mm, the deformation resistance was measured by a normal temperature hammer test, and the working ratio was 65% with a 30 ton compression tester.
Upset forging was performed, and it was visually determined whether or not cracks occurred on the surface, and those without cracks were evaluated as ○. Next, some of the specimens subjected to the upsetting forging were subjected to aging treatment at 180 ° C. for 8 hours in an air furnace, and
Short-time heating at 20 ° C. × 15 min was performed, and the Vickers hardness was measured for each. A part of the JIS 6061 alloy subjected to the upsetting forging was subjected to 530 ° C. × 2 hr in an air furnace before aging treatment or heating for a short time.
Was immediately immersed in a water tank and water-quenched. Table 5 shows the above manufacturing conditions, and Table 6 shows the test results.

【0033】[0033]

【表5】 [Table 5]

【0034】[0034]

【表6】 [Table 6]

【0035】表6に示すように、JIS6061合金で
は焼鈍を行わなければ、変形抵抗が高すぎて圧縮試験機
の力量を超えてしまい、40%しか据込み鍛造ができな
かった。これよりJIS6061合金では室温時効が進
行しており、焼鈍を行わなければ鍛造性が著しく劣るこ
とが分かる。一方、本発明例は焼鈍工程なしでもJIS
6061焼鈍材と同等の変形抵抗、冷間鍛造性であるこ
とが分かる。
As shown in Table 6, if JIS6061 alloy was not annealed, the deformation resistance was too high to exceed the capacity of the compression tester, and upset forging could be performed only 40%. From this, it can be seen that the aging of the JIS6061 alloy has progressed at room temperature, and the forgeability is extremely poor unless annealing is performed. On the other hand, the example of the present invention is JIS even without an annealing step.
It turns out that it has the same deformation resistance and cold forgeability as the 6061 annealed material.

【0036】また、JIS6061合金では溶体化焼入
れを行わなければその後の時効処理を行っても所定の強
度を発揮しないのに対し、本発明例は焼入れ工程なしで
時効処理のみでも、JIS6061合金T6相当の強度
を発揮することが分かる。さらに、本発明例では、22
0℃×15minの短時間加熱においても、時効処理後
の9割以上の強度を有することが分かる。
In the case of the JIS6061 alloy, if the solution quenching is not performed, the predetermined strength is not exhibited even if the subsequent aging treatment is performed. On the other hand, in the present invention example, even if only the aging treatment without the quenching process, the JIS6061 alloy T6 is equivalent. It can be seen that it exerts the strength of. Furthermore, in the example of the present invention, 22
It can be seen that even with the short-time heating at 0 ° C. × 15 min, it has 90% or more strength after the aging treatment.

【0037】[0037]

【発明の効果】本発明によれば、所定の組成を有するア
ルミニウム合金を用いて高強度の冷間鍛造素材を得るこ
とができる。また、前記アルミニウム合金を冷間鍛造に
用いることにより、鍛造前の焼鈍処理、鍛造後の焼き入
れ処理を省略することが可能であり、製造工程のコスト
ダウンを行うことができる。
According to the present invention, a high-strength cold forged material can be obtained using an aluminum alloy having a predetermined composition. In addition, by using the aluminum alloy for cold forging, it is possible to omit the annealing process before forging and the quenching process after forging, and the cost of the manufacturing process can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】冷間鍛造の従来工程と本発明工程を説明する図
である。
FIG. 1 is a diagram illustrating a conventional process of cold forging and a process of the present invention.

【図2】本発明合金のMg、Si範囲を示す図である。FIG. 2 is a diagram showing a range of Mg and Si of the alloy of the present invention.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C22F 1/00 691 C22F 1/00 691B 691A 694 694B ──────────────────────────────────────────────────の Continuation of front page (51) Int.Cl. 6 Identification code FI C22F 1/00 691 C22F 1/00 691B 691A 694 694B

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 Mg0.4〜0.8重量%、Si0.4
〜1.0重量%、Cu0.15〜0.5重量%、Ti
0.005〜0.2重量%を含有し、残部Al及び不可
避不純物からなり、さらに、Mg含有重量%をX、Si
含有重量%をYとしたとき、Y≧(1/1.73)X+
0.15の関係を満たすことを特徴とする冷間鍛造用ア
ルミニウム合金。
1. 0.4 to 0.8% by weight of Mg, 0.4% of Si
To 1.0% by weight, Cu 0.15 to 0.5% by weight, Ti
0.005 to 0.2% by weight, the balance consisting of Al and unavoidable impurities.
When the content weight% is Y, Y ≧ (1 / 1.73) X +
An aluminum alloy for cold forging, characterized by satisfying a relationship of 0.15.
【請求項2】 Mn0.05〜0.6重量%、Cr0.
05〜0.3重量%、Zr0.05〜0.3重量%の内
1種以上を合計で0.9重量%以下含有することを特徴
とする請求項1に記載された冷間鍛造用アルミニウム合
金。
2. Mn 0.05-0.6% by weight, Cr0.
2. The aluminum for cold forging according to claim 1, wherein a total of 0.9% by weight or less of at least one of 0.05 to 0.3% by weight and 0.05 to 0.3% by weight of Zr is contained. alloy.
【請求項3】 プレス焼入れされた押出材であることを
特徴とする請求項1又は2に記載された冷間鍛造用アル
ミニウム合金。
3. The aluminum alloy for cold forging according to claim 1, wherein the extruded material is press-quenched.
【請求項4】 請求項1又は2に記載された組成のアル
ミニウム合金を440〜560℃で押出加工し、押出直
後にプレス焼き入れすることを特徴とする冷間鍛造用ア
ルミニウム合金の製造方法。
4. A method for producing an aluminum alloy for cold forging, comprising extruding an aluminum alloy having the composition according to claim 1 or 2 at 440 to 560 ° C., and press hardening immediately after the extrusion.
【請求項5】 請求項1又は2に記載された組成のアル
ミニウム合金を440〜560℃で押出加工し、押出直
後にプレス焼き入れし、これを素材として冷間鍛造し、
続いて時効処理を行うことを特徴とする冷間鍛造品の製
造方法。
5. An aluminum alloy having the composition described in claim 1 or 2 is extruded at 440 to 560 ° C., press-quenched immediately after extrusion, and cold forged as a material.
Subsequently, an aging treatment is performed.
【請求項6】 請求項1又は2に記載された組成のアル
ミニウム合金を440〜560℃で押出加工し、押出直
後にプレス焼き入れし、これを素材として冷間鍛造し、
続いて190〜250℃×5〜30minの短時間加熱
処理を行うことを特徴とする冷間鍛造品の製造方法。
6. An aluminum alloy having the composition described in claim 1 or 2 is extruded at 440 to 560 ° C., press-quenched immediately after extrusion, and cold forged as a material.
Subsequently, a short-time heat treatment at 190 to 250 ° C. × 5 to 30 minutes is performed.
JP35479896A 1996-12-22 1996-12-22 Aluminum alloy for cold forging and its manufacturing method Expired - Fee Related JP3516566B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35479896A JP3516566B2 (en) 1996-12-22 1996-12-22 Aluminum alloy for cold forging and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35479896A JP3516566B2 (en) 1996-12-22 1996-12-22 Aluminum alloy for cold forging and its manufacturing method

Publications (2)

Publication Number Publication Date
JPH10183287A true JPH10183287A (en) 1998-07-14
JP3516566B2 JP3516566B2 (en) 2004-04-05

Family

ID=18439982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35479896A Expired - Fee Related JP3516566B2 (en) 1996-12-22 1996-12-22 Aluminum alloy for cold forging and its manufacturing method

Country Status (1)

Country Link
JP (1) JP3516566B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007254833A (en) * 2006-03-24 2007-10-04 Kobe Steel Ltd Aluminum alloy extruded material for tube expanding
JP2008019483A (en) * 2006-07-13 2008-01-31 Kobe Steel Ltd Aluminum alloy sheet for warm-forming and warm-forming method
JP2009185388A (en) * 1999-06-16 2009-08-20 Nippon Light Metal Co Ltd COLD FORGED PRODUCT OF Al-Mg-Si-BASED ALUMINUM ALLOY WITH EXCELLENT APPEARANCE QUALITY
WO2011046196A1 (en) * 2009-10-16 2011-04-21 昭和電工株式会社 Process for producing brake piston
JP2013542320A (en) * 2010-09-08 2013-11-21 アルコア インコーポレイテッド Improved 6XXX aluminum alloy and method for producing the same
WO2015129304A1 (en) * 2014-02-28 2015-09-03 アイシン軽金属株式会社 High-strength aluminum alloy extrudate with excellent formability
CN107097043A (en) * 2017-04-13 2017-08-29 广西大学 A kind of manufacture method of 6101 aluminium alloy extrusions
JP2020169351A (en) * 2019-04-02 2020-10-15 株式会社神戸製鋼所 Producing method and producing facility for aluminum alloy part
CN113684401A (en) * 2021-08-25 2021-11-23 航桥新材料科技(滨州)有限公司 Aluminum alloy for high-service transmission shaft and preparation method thereof

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009185388A (en) * 1999-06-16 2009-08-20 Nippon Light Metal Co Ltd COLD FORGED PRODUCT OF Al-Mg-Si-BASED ALUMINUM ALLOY WITH EXCELLENT APPEARANCE QUALITY
JP2007254833A (en) * 2006-03-24 2007-10-04 Kobe Steel Ltd Aluminum alloy extruded material for tube expanding
JP2008019483A (en) * 2006-07-13 2008-01-31 Kobe Steel Ltd Aluminum alloy sheet for warm-forming and warm-forming method
JP5715062B2 (en) * 2009-10-16 2015-05-07 昭和電工株式会社 Brake piston manufacturing method
WO2011046196A1 (en) * 2009-10-16 2011-04-21 昭和電工株式会社 Process for producing brake piston
CN102686763A (en) * 2009-10-16 2012-09-19 昭和电工株式会社 Process for producing brake piston
US20120241055A1 (en) * 2009-10-16 2012-09-27 Showa Denko K.K. Process for producing brake piston
KR101356243B1 (en) * 2009-10-16 2014-01-28 쇼와 덴코 가부시키가이샤 Process for producing brake piston
JP2013542320A (en) * 2010-09-08 2013-11-21 アルコア インコーポレイテッド Improved 6XXX aluminum alloy and method for producing the same
WO2015129304A1 (en) * 2014-02-28 2015-09-03 アイシン軽金属株式会社 High-strength aluminum alloy extrudate with excellent formability
JPWO2015129304A1 (en) * 2014-02-28 2017-03-30 アイシン軽金属株式会社 High-strength aluminum alloy extruded material with excellent formability
CN107097043A (en) * 2017-04-13 2017-08-29 广西大学 A kind of manufacture method of 6101 aluminium alloy extrusions
JP2020169351A (en) * 2019-04-02 2020-10-15 株式会社神戸製鋼所 Producing method and producing facility for aluminum alloy part
CN113684401A (en) * 2021-08-25 2021-11-23 航桥新材料科技(滨州)有限公司 Aluminum alloy for high-service transmission shaft and preparation method thereof

Also Published As

Publication number Publication date
JP3516566B2 (en) 2004-04-05

Similar Documents

Publication Publication Date Title
JP5421613B2 (en) High strength aluminum alloy wire rod excellent in softening resistance and manufacturing method thereof
EP0610006A1 (en) Superplastic aluminum alloy and process for producing same
JP3540812B2 (en) Low density and high strength aluminum-lithium alloy with high toughness at high temperature
EP1340825A2 (en) Ni-base alloy, heat-resistant spring made of the alloy, and process for producing the spring
US20080078480A1 (en) Hot-and cold-formed aluminum alloy
EP1702995A1 (en) METHOD FOR PRODUCING Al-Mg-Si ALLOY EXCELLENT IN BAKE-HARDENABILITY AND HEMMABILITY
EP1144703B1 (en) Process for the production of a free-cutting alloy
JPH0372147B2 (en)
EP0480402B1 (en) Process for manufacturing aluminium alloy material with excellent formability, shape fixability and bake hardenability
JPS6326191B2 (en)
JP2001517735A (en) Aluminum alloy and heat treatment method thereof
JP3516566B2 (en) Aluminum alloy for cold forging and its manufacturing method
JPH1112705A (en) Production of high strength aluminum alloy forging excellent in machinability
JP3681822B2 (en) Al-Zn-Mg alloy extruded material and method for producing the same
JPS61163233A (en) Non-heat treatment type free-cutting aluminum alloy
JPH11286758A (en) Production of forged product using aluminum casting material
EP2006404A1 (en) 6000 aluminum extrudate excelling in paint-baking hardenability and process for producing the same
JPH06330264A (en) Production of aluminum alloy forged material excellent in strength and toughness
JPH08232035A (en) High strength aluminum alloy material for bumper, excellent in bendability, and its production
KR100519721B1 (en) High strength magnesium alloy and its preparation method
JPH07150312A (en) Manufacture of aluminum alloy forged base stock
JPH11350058A (en) Aluminum alloy sheet excellent in formability and baking hardenability and its production
JPH08269608A (en) High strength aluminum alloy excellent in formability and corrosion resistance
JPH05132745A (en) Production of aluminum alloy excellent in formability
CN114901845A (en) Aluminum alloy, aluminum alloy wire, aluminum alloy member, and bolt

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20040120

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20040120

Free format text: JAPANESE INTERMEDIATE CODE: A61

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20080130

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20090130

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100130

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees