JP2006241548A - Al-Mg-Si ALLOY SHEET SUPERIOR IN BENDABILITY, MANUFACTURING METHOD THEREFOR, AND AUTOMOTIVE SKIN PLATE OBTAINED FROM THE SHEET - Google Patents

Al-Mg-Si ALLOY SHEET SUPERIOR IN BENDABILITY, MANUFACTURING METHOD THEREFOR, AND AUTOMOTIVE SKIN PLATE OBTAINED FROM THE SHEET Download PDF

Info

Publication number
JP2006241548A
JP2006241548A JP2005060221A JP2005060221A JP2006241548A JP 2006241548 A JP2006241548 A JP 2006241548A JP 2005060221 A JP2005060221 A JP 2005060221A JP 2005060221 A JP2005060221 A JP 2005060221A JP 2006241548 A JP2006241548 A JP 2006241548A
Authority
JP
Japan
Prior art keywords
less
bending workability
sheet
alloy sheet
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005060221A
Other languages
Japanese (ja)
Inventor
Tadashi Minoda
正 箕田
Kaoru Ueda
薫 上田
Mineo Asano
峰生 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP2005060221A priority Critical patent/JP2006241548A/en
Publication of JP2006241548A publication Critical patent/JP2006241548A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an Al-Mg-Si alloy sheet which inhibits a crack from occurring when being bent after having been press-formed, and has enough superior bendability after having been press-formed to be applied to an automotive skin plate. <P>SOLUTION: This sheet is a T4-tempered material of a continuously cast-rolled plate of an aluminum alloy having a composition comprising 0.4-1.5% Si, 0.2-1.2% Mg, 1.0% or less Fe as an impurity, and the balance Al with unavoidable impurities; and includes an Al-Fe-Si compound coexisting with a Mg<SB>2</SB>Si compound in an amount of 50% or less by a ratio with respect to all Al-Fe-Si compounds existing in the sheet. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、溶湯圧延法(連続鋳造圧延法ともいう)により作製したアルミニウム合金板材のT4調質材であり、特に曲げ加工性に優れたAl−Mg−Si系アルミニウム合金板材とその製造方法および該板材より得られる自動車外板に関する。   The present invention is an aluminum alloy sheet T4 tempered material produced by a molten metal rolling method (also referred to as a continuous casting rolling method), particularly an Al—Mg—Si based aluminum alloy sheet material excellent in bending workability, and a method for producing the same. The present invention relates to an automobile outer plate obtained from the plate material.

従来、自動車外板用アルミニウム合金板材として、5000系合金(Al−Mg系合金)が使用されてきた。5000系合金は強度および延性に優れ、良好な成形性を示すが、Mg含有量が多くなると熱間加工性が劣化するとともに、成形時にS−Sマーク(ストレッチャ・ストレインマーク)が発生しやすくなり、外観不良となることがあるため、近年では6000系合金(Al−Mg−Si系合金)の使用が拡大している。   Conventionally, 5000 series alloys (Al-Mg series alloys) have been used as aluminum alloy sheet materials for automobile outer plates. 5000 series alloys are excellent in strength and ductility and show good formability. However, as the Mg content increases, hot workability deteriorates and SS marks (stretcher / strain marks) tend to occur during forming. In recent years, the use of 6000 series alloys (Al-Mg-Si alloys) has been expanding because of the appearance defects.

6000系合金は成形性に優れ、塗装焼付け処理を行うことにより強度が上昇し、耐デント性に優れているが、冷延鋼板に比べてコスト高となるという問題があり、使用される範囲が制限されている。このため、6000系合金においては、製造コストの低減が課題となっており、従来のDC鋳造/熱間圧延法に代わる低コストの製造工程の検討が行われてきた。   The 6000 series alloy has excellent formability, and the strength is increased by performing the coating baking process, and the dent resistance is excellent, but there is a problem that the cost is higher than that of the cold-rolled steel sheet, and the range of use is limited. Limited. For this reason, in the 6000 series alloy, reduction of manufacturing cost has been an issue, and studies have been conducted on low-cost manufacturing processes that replace the conventional DC casting / hot rolling method.

従来のDC鋳造/熱間圧延法に代わる工程として、双ロール溶湯圧延法による板材の製造が提案されており、例えば、特に表層部の金属組織における連続した晶出物の最大長さを50μm以下にすることで、成形性と表面性状に優れた6000系板材を得る手法(特許文献1)や、Mg,Si,Mnなどの含有量が規定されるAl−Mg−Si合金溶湯を、150℃/sec以上の凝固速度で連続鋳造し、冷間圧延により所定の板厚とした後、520〜560℃で溶体化処理を行い、30秒以内に急冷することで強度、成形性等に優れたAl−Mg−Si系合金板を得る方法(特許文献2)が提案されている。また、特定量のMg,Si,Feなどを含有するAl−Mg−Si合金を連続鋳造し、熱間圧延後に冷間圧延を行って、不溶性化合物の最大長さを2μm以下、かつその体積分率を2.0%以下に制御することにより、プレス成形性における割れ限界が高く、かつ焼付塗装硬化性にも優れ、さらに連鋳・直送圧延法に適用することのできる自動車パネル用Al−Mg−Si 系合金板を得る技術手法も提案されている(特許文献3)。
特開平10−130766号公報 特開平10−259464号公報 特開平07−252570号公報
As a process replacing the conventional DC casting / hot rolling method, the production of a plate material by a twin roll molten metal rolling method has been proposed. For example, the maximum length of a continuous crystallized material in the metal structure of the surface layer portion is 50 μm or less. By making it, the method (patent document 1) which obtains 6000 type | system | group board | plate material excellent in the moldability and surface property, and Al-Mg-Si alloy molten metal with which content, such as Mg, Si, and Mn, is prescribed | regulated is 150 degreeC. Continuous casting at a solidification rate of at least / sec. After cold rolling to a predetermined plate thickness, solution treatment is performed at 520 to 560 ° C., and quenching within 30 seconds is excellent in strength, formability, etc. A method for obtaining an Al—Mg—Si based alloy sheet (Patent Document 2) has been proposed. In addition, an Al—Mg—Si alloy containing a specific amount of Mg, Si, Fe, etc. is continuously cast, cold rolled after hot rolling, the maximum length of the insoluble compound is 2 μm or less, and its volume fraction By controlling the rate to 2.0% or less, the crack limit in press formability is high, the bake coating curability is excellent, and Al-Mg for automobile panels that can be applied to the continuous casting / direct rolling method. A technical technique for obtaining a Si-based alloy plate has also been proposed (Patent Document 3).
JP-A-10-130766 Japanese Patent Laid-Open No. 10-259464 Japanese Patent Application Laid-Open No. 07-252570

しかしながら、本発明者等が、上記提案の技術手法に従って、6000系アルミニウム合金板材を作製し、その特性について検討を行ったところ、一般的には成形性に優れたアルミニウム合金板材が得られるものの、自動車外板用として供するための特殊成形、すなわち、プレス後にインナー材を外周部で包み込むように曲げ加工(ヘム加工ともいう)を行うと、曲げ加工部表面に割れが発生し、自動車車体の外板に用いるには品質上問題があることが認められた。   However, the present inventors made a 6000 series aluminum alloy sheet according to the above-described technical technique and examined its characteristics. In general, although an aluminum alloy sheet having excellent formability is obtained, Special molding for use as an automobile outer plate, that is, if the bending process (also called hem processing) is performed so that the inner material is wrapped around the outer periphery after pressing, cracks occur on the surface of the bending process, and the outside of the automobile body It was recognized that there was a quality problem for use on the board.

発明者等は、上記の問題点を解明するために、6000系アルミニウム合金溶湯圧延材の曲げ加工時の割れ発生メカニズムについて検討を重ねた結果、板材中に存在するAl−Fe−Si系化合物のうち、特にMgSi化合物と共存するAl−Fe−Si系化合物が曲げ加工時の割れの伝播経路として作用することを見出した。 In order to elucidate the above problems, the inventors have studied the crack generation mechanism during bending of a 6000 series aluminum alloy molten rolled material, and as a result, the Al-Fe-Si based compound present in the plate material has been studied. Among these, it has been found that an Al—Fe—Si based compound coexisting with the Mg 2 Si compound acts as a crack propagation path during bending.

本発明は、上記の知見に基いてさらに試験、検討を行った結果としてなされたものであり、その目的は、プレス加工後の曲げ加工における割れの発生を抑制し、自動車外板として適用可能なプレス加工後の曲げ加工性に優れたAl−Mg−Si系合金板材とその製造方法および自動車外板を提供することにある。   The present invention was made as a result of further testing and examination based on the above knowledge, and its purpose is to suppress the occurrence of cracks in bending after press working, and can be applied as an automobile outer plate. An object of the present invention is to provide an Al—Mg—Si alloy plate material excellent in bending workability after press working, a manufacturing method thereof, and an automobile outer plate.

上記の目的を達成するための本発明の請求項1によるプレス成形後の曲げ加工性に優れたAl−Mg−Si系合金板材は、Si:0.4〜1.5%、Mg:0.2〜1.2%を含有し、不純物として含有するFeが1.0%以下であり、残部Alおよび不可避不純物からなる組成を有するアルミニウム合金溶湯圧延板材のT4調質材であって、板材中に存在するAl−Fe−Si系化合物のうち、MgSi化合物と共存するAl−Fe−Si系化合物の量的割合が50%以下であることを特徴とする。 In order to achieve the above object, the Al—Mg—Si based alloy sheet material excellent in bending workability after press forming according to claim 1 of the present invention is Si: 0.4 to 1.5%, Mg: 0.00. 2 to 1.2% Fe containing 1.0% or less as an impurity, and a T4 tempered material of a rolled aluminum alloy sheet having a composition comprising the balance Al and inevitable impurities, Among the Al—Fe—Si compounds present in the above, the quantitative ratio of Al—Fe—Si compounds coexisting with the Mg 2 Si compound is 50% or less.

請求項2による曲げ加工性に優れたAl−Mg−Si系合金板材は、請求項1において、アルミニウム合金板材が、さらにMn:0.3%以下、Cr:0.3%以下、Zr:0.15%以下のうちの1種以上を含有することを特徴とする。   The Al—Mg—Si based alloy sheet excellent in bending workability according to claim 2 is the aluminum alloy sheet according to claim 1, wherein Mn: 0.3% or less, Cr: 0.3% or less, Zr: 0 It contains at least one of 15% or less.

請求項3による曲げ加工性に優れたAl−Mg−Si系合金板材は、請求項1または2において、アルミニウム合金板材が、さらにZn:0.5%以下を含有することを特徴とする。   The Al—Mg—Si based alloy sheet material excellent in bending workability according to claim 3 is characterized in that, in claim 1 or 2, the aluminum alloy sheet material further contains Zn: 0.5% or less.

請求項4による曲げ加工性に優れたAl−Mg−Si系合金板材は、請求項1〜3のいずれかにおいて、アルミニウム合金板材が、さらにCu:1.0%以下を含有することを特徴とする。   The Al—Mg—Si based alloy sheet having excellent bending workability according to claim 4 is characterized in that in any one of claims 1 to 3, the aluminum alloy sheet further contains Cu: 1.0% or less. To do.

請求項5による曲げ加工性に優れたAl−Mg−Si系合金板材は、請求項1〜4のいずれかにおいて、アルミニウム合金板材が、さらにTi:0.1%以下、B:50ppm以下のうちの少なくとも1種を含有することを特徴とする。   The Al—Mg—Si-based alloy plate material excellent in bending workability according to claim 5 is the aluminum alloy plate material according to any one of claims 1 to 4, further comprising Ti: 0.1% or less and B: 50 ppm or less. It contains at least 1 sort (s) of this, It is characterized by the above-mentioned.

また、請求項6によるプレス加工後の曲げ加工性に優れたAl−Mg−Si系合金板材の製造方法は、請求項1〜5のいずれかに記載のアルミニウム合金を、溶湯圧延後、500℃以上の温度に1時間以上保持する均質化処理を行い、均質化処理温度から350℃までを5℃/s以上の平均冷却速度で冷却し、その後室温まで冷却して、さらに冷間圧延、溶体化処理、焼入れの処理することを特徴とする。   Moreover, the manufacturing method of the Al-Mg-Si type alloy plate material excellent in the bending workability after the press work by Claim 6 is 500 degreeC after melt-rolling the aluminum alloy in any one of Claims 1-5. A homogenization treatment is performed at the above temperature for 1 hour or longer, and the temperature from the homogenization treatment temperature to 350 ° C. is cooled at an average cooling rate of 5 ° C./s or more, and then cooled to room temperature. It is characterized in that it is subjected to chemical treatment and quenching.

請求項7による曲げ加工性に優れたAl−Mg−Si系合金板材の製造方法は、請求項1〜5のいずれかに記載のアルミニウム合金を、溶湯圧延後、冷間圧延を行い、ついで500℃以上の温度に1時間以上保持する均質化処理を行い、均質化処理温度から350℃までを5℃/s以上の平均冷却速度で冷却し、その後室温まで冷却して、さらに冷間圧延、溶体化処理、焼入れ処理することを特徴とする。   According to a seventh aspect of the present invention, there is provided a method for producing an Al-Mg-Si based alloy sheet having excellent bending workability. The aluminum alloy according to any one of the first to fifth aspects is subjected to cold rolling after molten metal rolling, and then to 500 Perform a homogenization treatment for holding at a temperature of ℃ or more for 1 hour or more, cool from the homogenization treatment temperature to 350 ℃ at an average cooling rate of 5 ℃ / s or more, then cool to room temperature, and further cold rolling, It is characterized by solution treatment and quenching treatment.

請求項8による自動車外板は、請求項1〜5のいずれかに記載のAl−Mg−Si系合金板材を成形加工することにより得られることを特徴とする。   An automobile outer plate according to claim 8 is obtained by molding the Al—Mg—Si alloy plate material according to any one of claims 1 to 5.

本発明によれば、プレス加工後の曲げ加工における割れの発生を抑制し、自動車外板として適用可能なプレス加工後の曲げ加工性に優れたAl−Mg−Si系合金板材とその製造方法および自動車外板が提供される。   ADVANTAGE OF THE INVENTION According to this invention, generation | occurrence | production of the crack in the bending process after press work is suppressed, the Al-Mg-Si type alloy plate material excellent in the bending workability after press work applicable as a motor vehicle outer plate, its manufacturing method, and An automobile skin is provided.

本発明は、溶湯圧延法(連続鋳造圧延法ともいう)により作製したT4調質(溶体化処理、焼入れ処理、常温時効処理)で使用する6000系アルミニウム合金板材に関するものであり、その合金組成は自動車外板として好適に使用することが可能な範囲である。   The present invention relates to a 6000 series aluminum alloy sheet material used in T4 tempering (solution treatment, quenching treatment, normal temperature aging treatment) produced by a molten metal rolling method (also referred to as a continuous casting rolling method), and its alloy composition is This is a range that can be suitably used as an automobile outer plate.

まず、本発明における合金成分の意義および限定理由について説明すると、Siは、Mgと共存してMg−Si系化合物を形成して強度を向上させるとともに、高い塗装焼付け硬化性を与えるよう機能する。Siの好ましい含有範囲は0.4〜1.5%であり、0.4%未満では塗装焼付け時の加熱で十分な強度が得られず、1.5%を超えて含有すると、曲げ加工性の低下を招くため、実用上問題になることがある。Siのさらに好ましい含有範囲は0.6〜1.3%であり、最も好ましい含有範囲は0.8〜1.2%である。   First, the significance and reasons for limitation of the alloy components in the present invention will be described. Si functions to coexist with Mg to form an Mg-Si compound to improve strength and to provide high paint bake hardenability. The preferable content range of Si is 0.4 to 1.5%. If it is less than 0.4%, sufficient strength cannot be obtained by heating at the time of coating baking. May cause a problem in practical use. The more preferable content range of Si is 0.6 to 1.3%, and the most preferable content range is 0.8 to 1.2%.

Mgは、Siと共存してMgSi化合物を形成して強度を向上させる。Mgの好ましい含有量は、0.2〜1.2%であり、0.2%未満では十分な強度が得られず、1.2%を超えると、Al−Fe−Si系化合物と共存するMgSi化合物の量的割合が増加し、曲げ加工性が低下する。Mgのさらに好ましい範囲は0.3〜0.8%であり、最も好ましい範囲は0.4〜0.7%である。 Mg coexists with Si to form an Mg 2 Si compound to improve the strength. The preferable content of Mg is 0.2 to 1.2%, and if it is less than 0.2%, sufficient strength cannot be obtained, and if it exceeds 1.2%, it coexists with an Al-Fe-Si compound. The quantitative ratio of the Mg 2 Si compound increases and bending workability decreases. A more preferable range of Mg is 0.3 to 0.8%, and a most preferable range is 0.4 to 0.7%.

Feは基本的には不純物として含有され、鋳造時にAl−Fe−Si系の晶出物を形成する。Al−Fe−Si系化合物が過剰に形成されると、耐食性が低下するとともに、曲げ加工性の低下を招くことから、その含有量は1.0%以下であることが好ましい。さらに好ましいFeの含有量は0.5%以下である。   Fe is basically contained as an impurity and forms an Al-Fe-Si-based crystallized product during casting. If the Al—Fe—Si based compound is excessively formed, the corrosion resistance is lowered and the bending workability is lowered. Therefore, the content is preferably 1.0% or less. A more preferable Fe content is 0.5% or less.

Mn、Cr、Zrはいずれも選択的に含有される元素であり、結晶粒微細化による成形加工時の肌荒れ防止に機能する。好ましい含有範囲は、Mn:0.3%以下、Cr:0.3%以下、Zr:0.15%以下の範囲であり、それぞれ上記の範囲を超えると、粗大な金属間化合物が生成して曲げ加工性が低下する。さらに好ましい含有範囲は、Mn:0.05〜0.15%、Cr:0.05〜0.15%、Zr:0.05〜0.12%である。   Mn, Cr, and Zr are all elements that are selectively contained, and function to prevent rough skin during molding by crystal grain refinement. Preferable content ranges are Mn: 0.3% or less, Cr: 0.3% or less, and Zr: 0.15% or less. When the above ranges are exceeded, coarse intermetallic compounds are formed. Bending workability is reduced. Further preferable content ranges are Mn: 0.05 to 0.15%, Cr: 0.05 to 0.15%, Zr: 0.05 to 0.12%.

Znは選択的に含有される元素であるが、0.5%以下の範囲で含有されると、表面処理性を改善するよう機能する。含有量が0.5%を超えると、塗装後の耐食性の低下を招く。さらに好ましい含有範囲は0.3%以下である。   Zn is an element that is selectively contained, but if contained in a range of 0.5% or less, it functions to improve surface treatment properties. If the content exceeds 0.5%, the corrosion resistance after coating is reduced. A more preferable content range is 0.3% or less.

Cuは選択的に含有される元素であるが、1.0%以下の範囲で含有されると成形性を改善するよう機能する。含有量が1.0%を超えると塗装後の耐食性の低下を招くとともに、曲げ加工性も低下する。成形性の観点からは0.3〜0.8%、耐食性が重視される場合には0.1%以下が好ましい。   Cu is an element that is selectively contained, but if contained in a range of 1.0% or less, it functions to improve formability. When the content exceeds 1.0%, the corrosion resistance after coating is lowered and the bending workability is also lowered. From the viewpoint of moldability, 0.3 to 0.8% is preferable, and when corrosion resistance is important, 0.1% or less is preferable.

TiおよびBは、鋳造組織を微細化して、成形性を向上させるよう機能する。好ましい含有量は、Ti:0.1%以下、B:50ppm以下の範囲であり、それぞれ上記の範囲を超えて含有されると、粗大な金属間化合物が増加して曲げ加工性が低下する。   Ti and B function to refine the cast structure and improve formability. Preferable contents are in the ranges of Ti: 0.1% or less and B: 50 ppm or less. When the content exceeds each of the above ranges, coarse intermetallic compounds increase and bending workability deteriorates.

本発明においては、板材中に存在するAl−Fe−Si系化合物のうち、MgSi化合物と共存するAl−Fe−Si系化合物の量的割合を50%以下に抑制することが重要であり、これににより曲げ加工性の改善が達成される。板材中に存在するAl−Fe−Si系化合物のうち、MgSi化合物と共存するAl−Fe−Si系化合物の量的割合が50%を超えると、曲げ加工性が低下し、自動車外板として用いる場合に問題になることがある。 In the present invention, among the Al—Fe—Si based compounds present in the plate material, it is important to suppress the quantitative ratio of the Al—Fe—Si based compound coexisting with the Mg 2 Si compound to 50% or less. This improves the bending workability. When the quantitative ratio of the Al—Fe—Si compound coexisting with the Mg 2 Si compound out of the Al—Fe—Si compound present in the plate material exceeds 50%, the bending workability decreases, and the automobile outer plate When using as, there is a problem.

次に、製造工程について説明すると、まず、上記の組成を有するアルミニウム合金を溶解し、板連続鋳造を行う。板連続鋳造法としては、双ロール法(TRC法)と双ベルト法(TBC法)があるが、本発明においては、どちらのプロセスを用いてもよい。   Next, the manufacturing process will be described. First, an aluminum alloy having the above composition is melted and plate continuous casting is performed. As the continuous plate casting method, there are a twin roll method (TRC method) and a twin belt method (TBC method). In the present invention, either process may be used.

溶湯圧延により作製された板材は、冷間圧延、溶体化処理、焼入れ処理、常温時効処理を行ってT4調質材とされるが、冷間圧延前、または冷間圧延の途中で均質化処理を行う。均質化処理は、500℃以上の温度に1時間以上の保持する条件で行うことが好ましい。   The plate material produced by molten metal rolling is cold rolled, solution heat treated, quenched, and tempered at room temperature to become a T4 tempered material, but is homogenized before cold rolling or during cold rolling. I do. The homogenization treatment is preferably performed under a condition that the temperature is maintained at 500 ° C. or higher for 1 hour or longer.

均質化処理前の状態で、板材中に存在するAl−Fe−Si系化合物のうち、MgSi化合物と共存するAl−Fe−Si系化合物の量的割合が50%を超えていても、均質化処理を行うことにより、50%以下に低減できる。均質化処理温度が500℃未満の場合、あるいは均質化処理時間が1時間未満の場合には、MgSi化合物と共存するAl−Fe−Si系化合物の量的割合を50%以下にできないことがある。均質化処理のさらに好ましい温度は540℃以上、最も好ましい温度は560℃以上であり、均質化処理のさらに好ましい時間は5時間以上、最も好ましい時間は10時間以上である。 Even if the quantitative ratio of the Al—Fe—Si compound coexisting with the Mg 2 Si compound out of the Al—Fe—Si compound present in the plate material in a state before the homogenization treatment exceeds 50%, By performing the homogenization treatment, it can be reduced to 50% or less. When the homogenization temperature is less than 500 ° C. or when the homogenization time is less than 1 hour, the quantitative ratio of the Al—Fe—Si compound coexisting with the Mg 2 Si compound cannot be reduced to 50% or less. There is. The more preferable temperature of the homogenization treatment is 540 ° C. or more, the most preferable temperature is 560 ° C. or more, the more preferable time of the homogenization treatment is 5 hours or more, and the most preferable time is 10 hours or more.

均質化処理後、均質化処理温度から350℃までを5℃/s以上の平均冷却速度で冷却し、その後室温まで冷却する。均質化処理温度から350℃までの冷却において、徐冷を行うとMgSi化合物が粗大に析出しやすく、粗大に析出したMgSi化合物は曲げ加工性を低下させることから、この温度範囲での冷却速度を速くする必要がある。このため、均質化処理温度から350℃までを5℃/s以上の平均冷却速度で冷却する。350℃以下(350℃から常温まで)では5℃/s未満の冷却速度で徐冷を行っても、MgSi化合物が粗大に析出せず、溶体化処理で分解されることから、特に冷却速度は規定しない。 After the homogenization treatment, the material is cooled from the homogenization treatment temperature to 350 ° C. at an average cooling rate of 5 ° C./s or more, and then cooled to room temperature. In the cooling from the homogenization temperature to 350 ° C., when slow cooling is performed, the Mg 2 Si compound tends to precipitate coarsely, and the coarsely precipitated Mg 2 Si compound decreases bending workability. It is necessary to increase the cooling rate. For this reason, it cools from the homogenization process temperature to 350 degreeC with the average cooling rate of 5 degrees C / s or more. Especially when cooling at 350 ° C. or lower (from 350 ° C. to room temperature), the Mg 2 Si compound does not precipitate coarsely and is decomposed by solution treatment even if it is slowly cooled at a cooling rate of less than 5 ° C./s. Speed is not specified.

均質化処理後、所定の板厚まで冷間圧延を行う。冷間圧延の加工度は特に規定しないが、加工度が大きいほど最終板材の結晶粒径が小さくなり、成形時の肌荒れが発生しにくくなる。一般的には、冷間圧延の加工度は50%以上が好ましい。また、冷間圧延の途中で、必要に応じて中間焼鈍を行っても良い。中間焼鈍を行うことで、冷間圧延での板端縁部の割れを抑制することができ、生産性を向上できる。   After the homogenization treatment, cold rolling is performed to a predetermined plate thickness. The workability of cold rolling is not particularly specified, but the larger the workability, the smaller the crystal grain size of the final plate material, and the rougher the surface during molding becomes less likely to occur. Generally, the workability of cold rolling is preferably 50% or more. Moreover, you may perform intermediate annealing as needed in the middle of cold rolling. By performing the intermediate annealing, it is possible to suppress the cracking of the edge portion of the plate in the cold rolling, and the productivity can be improved.

冷間圧延後、溶体化処理および焼入れ処理を行う。溶体化処理および焼入れについては、詳細な条件は規定しないが、たとえば溶体化処理を行う場合には、材料が溶解しない範囲でなるべく高温域で行うことが好ましく、Al−Mg−Si系合金の場合には、500℃以上、580℃以下で行うことが好ましい。また、溶体化処理の保持時間は、溶湯圧延材の場合には比較的短時間で十分な固溶量が得られることから、300秒以下で十分である。溶体化処理時の昇温速度は5℃/s以上が好ましく、焼入れ処理速度は5℃/s以上で行うのが好ましい。   After cold rolling, solution treatment and quenching treatment are performed. For the solution treatment and quenching, detailed conditions are not stipulated. However, for example, when solution treatment is performed, it is preferably performed in a high temperature range as long as the material does not dissolve. In the case of an Al-Mg-Si alloy Is preferably performed at 500 ° C. or higher and 580 ° C. or lower. In addition, as for the holding time of the solution treatment, a sufficient amount of solid solution can be obtained in a relatively short time in the case of a molten rolled material, so that it is sufficient to be 300 seconds or less. The temperature rising rate during the solution treatment is preferably 5 ° C./s or more, and the quenching rate is preferably 5 ° C./s or more.

なお、焼入れ処理後、ベークハード性の付与を目的として、予備時効処理を行ってもよい。予備時効処理条件としては焼入れ後60分以内に、40℃〜120℃の温度で50時間以内の処理を行うことが好ましい。さらに、予備時効処理を行った後、3日以内に170℃〜230℃の温度で60秒以内の復元処理を行うことができ、この復元処理によって塗装焼付け硬化性をさらに向上させることができる。   In addition, you may perform a preliminary aging treatment for the purpose of provision | providing bake hard property after a hardening process. As pre-aging treatment conditions, it is preferable to perform the treatment within 40 hours at a temperature of 40 ° C. to 120 ° C. within 60 minutes after quenching. Further, after the preliminary aging treatment, the restoration treatment within 60 seconds can be carried out at a temperature of 170 ° C. to 230 ° C. within 3 days, and the paint baking curability can be further improved by this restoration treatment.

本発明においては、板材中に存在するAl−Fe−Si系化合物のうち、MgSi化合物と共存するAl−Fe−Si系化合物の量的割合を50%以下とするが重要であり、板材中に存在するAl−Fe−Si系化合物にMgSi化合物が共存している場合には、曲げ加工を行うと、Al−Fe−Si系化合物とMgSi化合物の界面で亀裂が発生し、曲げ加工時の割れの伝播経路として作用する。MgSi化合物と共存するAl−Fe−Si系化合物の量的割合を50%以下にすることで、曲げ加工性が改善される。MgSi化合物と共存するAl−Fe−Si系化合物のさらに好ましい量的割合は30%以下であり、最も好ましい割合は10%以下である。 In the present invention, it is important that the quantitative ratio of the Al—Fe—Si compound coexisting with the Mg 2 Si compound in the Al—Fe—Si compound present in the plate material is 50% or less. When the Mg 2 Si compound coexists with the Al—Fe—Si compound existing in the inside, cracking occurs at the interface between the Al—Fe—Si compound and the Mg 2 Si compound when bending is performed. It acts as a propagation path for cracks during bending. Bending workability is improved by making the quantitative ratio of the Al—Fe—Si compound coexisting with the Mg 2 Si compound 50% or less. A more preferable quantitative ratio of the Al—Fe—Si based compound coexisting with the Mg 2 Si compound is 30% or less, and a most preferable ratio is 10% or less.

上記の工程により得られた本発明によるAl−Mg−Si系合金板材は、プレス成形後に優れた曲げ加工性を有することから、自動車外板に好適に使用できる。   Since the Al—Mg—Si based alloy sheet material according to the present invention obtained by the above-described process has excellent bending workability after press forming, it can be suitably used for an automobile outer sheet.

以下、本発明の実施例を比較例と対比して説明するとともに、それに基づいてその効果を実証する。なお、これらの実施例は、本発明の好ましい一実施形態を説明するためのものであって、本発明はこれに限定されるものではない。   Examples of the present invention will be described below in comparison with comparative examples, and the effects will be demonstrated based on the examples. These examples are for explaining a preferred embodiment of the present invention, and the present invention is not limited thereto.

実施例1
表1に示す化学成分を有するアルミニウム合金を溶解し、双ロール式溶湯圧延法により、鋳造速度を1m/minとして、溶湯圧延を行った。このとき、溶湯圧延の上がり板厚を5.0mmとした。
Example 1
An aluminum alloy having the chemical components shown in Table 1 was melted, and molten metal rolling was performed at a casting speed of 1 m / min by a twin roll molten metal rolling method. At this time, the rising plate thickness of the molten metal rolling was set to 5.0 mm.

得られた溶湯圧延板材について、560℃の温度に10時間保持する均質化処理を行った後、常温の水道水で焼入れ処理(均質化処理温度から350℃までの平均冷却速度:>500℃/s)を行い、さらに板厚1.0mmまで冷間圧延を行った後、25℃/sの昇温速度で550℃まで加熱し、550℃で20秒間保持する溶体化処理を行い、常温の水道水で水焼入れし、T4調質材とした。   The obtained molten rolled sheet material was subjected to a homogenization treatment that was maintained at a temperature of 560 ° C. for 10 hours, and then quenched with normal temperature tap water (average cooling rate from the homogenization treatment temperature to 350 ° C .:> 500 ° C. / s), and further cold-rolled to a plate thickness of 1.0 mm, heated to 550 ° C. at a rate of temperature increase of 25 ° C./s, and subjected to a solution treatment that was held at 550 ° C. for 20 seconds. It was water-quenched with tap water to obtain a T4 tempered material.

得られたT4調質材を試験材として、以下の方法によって、焼入れから7日後のMgSi化合物と共存するAl−Fe−Si系化合物の量的割合を測定するとともに、引張性質、曲げ加工性および耐食性を評価した。結果を表2に示す。 Using the obtained T4 tempered material as a test material, the following method was used to measure the quantitative ratio of the Al—Fe—Si compound coexisting with the Mg 2 Si compound 7 days after quenching, as well as tensile properties and bending work. And corrosion resistance were evaluated. The results are shown in Table 2.

MgSi化合物と共存するAl−Fe−Si系化合物の量的割合の測定:試験材から長さ10mm、幅10mmのミクロ組織観察用試料を切り出し、L−ST断面を観察(板幅方向からの観察)するよう樹脂埋めを行い、ペーパー研磨およびバフ研磨後、EMPA面分析により、Fe、Si、Mg元素のマッピング像を測定し、MgSi化合物と共存するAl−Fe−Si系化合物の量的割合を測定した。 Measurement of quantitative ratio of Al—Fe—Si based compound coexisting with Mg 2 Si compound: A specimen for microstructure observation having a length of 10 mm and a width of 10 mm is cut out from a test material, and an L-ST cross section is observed (from the plate width direction). ), And after polishing with paper and buffing, the mapping image of Fe, Si, and Mg elements was measured by EMPA surface analysis, and the Al-Fe-Si compound coexisting with the Mg 2 Si compound was measured. The quantitative ratio was measured.

引張性質の評価:引張試験方向が板幅方向に一致するよう、JIS 5号試験片を成形し、JIS Z 2241に従って、引張強さ(σB)、耐力(σ0.2)、伸び(δ)を測定する。   Evaluation of tensile properties: JIS No. 5 test piece was molded so that the tensile test direction coincided with the plate width direction, and the tensile strength (σB), proof stress (σ0.2), and elongation (δ) were determined according to JIS Z2241. taking measurement.

曲げ加工性の評価:圧延方向に25mm、板幅方向に200mmの大きさの試験片を切り出し、JIS H 7701に従って、板幅方向に引張予ひずみを8%導入後、試験片を50mm長さに切断し、180°の密着曲げ(インナー材の挟み込み無し)を行い、曲げ試験後、試験片湾曲部の外側の割れの発生有無を肉眼で観察することにより評価した。   Evaluation of bending workability: A test piece having a size of 25 mm in the rolling direction and a size of 200 mm in the plate width direction was cut out, and after 8% of tensile prestrain was introduced in the plate width direction according to JIS H 7701, the test piece was made 50 mm long. It cut | disconnected, 180 degree | times contact | adherence bending (the inner material was not inserted | pinched) was performed, and it evaluated by observing with the naked eye whether the crack of the outer side of a test piece curved part generate | occur | produced after a bending test.

耐食性の評価:試験材について、市販の化成処理液でリン酸亜鉛処理および電着塗装を行い、アルミニウムの素地まで達するクロスカットを施して、JIS Z 2371に従って塩水噴霧試験を24時間行い、その後50℃−95%の湿潤雰囲気に1ヶ月放置した後、クロスカット部から発生する最大糸錆長さを測定し、最大糸錆長さ4mm以下のものを合格とする。   Corrosion resistance evaluation: The test material was subjected to zinc phosphate treatment and electrodeposition coating with a commercially available chemical conversion solution, cross cut reaching the aluminum base, and a salt spray test was conducted for 24 hours in accordance with JIS Z 2371, followed by 50 After being left in a moist atmosphere at -95% for 1 month, the maximum thread rust length generated from the crosscut portion is measured, and a maximum thread rust length of 4 mm or less is accepted.

Figure 2006241548
Figure 2006241548

Figure 2006241548
Figure 2006241548

表2にみられるように、本発明に従う試験材1〜9はいずれも、MgSi化合物と共存するAl−Fe−Si系化合物の量的割合が50%以下であり、高い強度特性を示すとともに、曲げ加工による割れの発生がみられず、良好な耐食性を示した。 As can be seen from Table 2, all of the test materials 1 to 9 according to the present invention have a high strength characteristic in which the quantitative ratio of the Al—Fe—Si based compound coexisting with the Mg 2 Si compound is 50% or less. At the same time, no cracks were observed due to bending, and good corrosion resistance was exhibited.

実施例2
表1に示す化学成分を有するアルミニウム合金を溶解し、双ロール式溶湯圧延法により、鋳造速度を1m/minとして、溶湯圧延を行った。このとき、溶湯圧延の上がり板厚を5.0mmとした。
Example 2
An aluminum alloy having the chemical components shown in Table 1 was melted, and molten metal rolling was performed at a casting speed of 1 m / min by a twin roll molten metal rolling method. At this time, the rising plate thickness of the molten metal rolling was set to 5.0 mm.

得られた溶湯圧延板材について、板厚2.5mmまで冷間圧延を行い、560℃の温度に10時間保持する均質化処理を行った後、常温の水道水で焼入れ(均質化処理温度から350℃までの平均冷却速度:>500℃/s)を行い、さらに板厚1.0mmまで冷間圧延した後、25℃/sの昇温速度で550℃まで加熱し、550℃で20秒間保持する溶体化処理を行い、常温の水道水で水焼入れし、T4調質材とした。   The obtained molten rolled sheet material was cold-rolled to a thickness of 2.5 mm, subjected to a homogenization treatment that was held at a temperature of 560 ° C. for 10 hours, and then quenched with normal temperature tap water (from the homogenization treatment temperature to 350 ° C.). The average cooling rate to ℃:> 500 ℃ / s), and further cold-rolled to a plate thickness of 1.0 mm, then heated to 550 ℃ at a temperature increase rate of 25 ℃ / s and held at 550 ℃ for 20 seconds The solution was subjected to solution treatment and quenched with normal temperature tap water to obtain a T4 tempered material.

得られたT4調質材を試験材として、実施例1と同じ方法で、焼入れから7日後のMgSi化合物と共存するAl−Fe−Si系化合物の量的割合を測定するとともに、引張性質、曲げ加工性および耐食性を評価した。結果を表3に示す。 Using the obtained T4 tempered material as a test material, the quantitative ratio of the Al—Fe—Si compound coexisting with the Mg 2 Si compound 7 days after quenching was measured in the same manner as in Example 1, and the tensile properties were measured. The bending workability and the corrosion resistance were evaluated. The results are shown in Table 3.

Figure 2006241548
Figure 2006241548

表3にみられるように、試験材10〜18はいずれも、MgSi化合物と共存するAl−Fe−Si系化合物の量的割合が50%以下であり、高い強度特性を示すとともに、曲げ加工による割れの発生がみられず、良好な耐食性を示した。 As can be seen from Table 3, all of the test materials 10 to 18 have a high proportion of the Al-Fe-Si-based compound coexisting with the Mg 2 Si compound, exhibiting high strength characteristics and bending. No cracking due to processing was observed, and good corrosion resistance was exhibited.

実施例3
表1に示す合金Aの化学成分を有するアルミニウム合金を溶解し、双ロール式溶湯圧延法により、鋳造速度を1m/minとして、溶湯圧延を行った。このとき、溶湯圧延の上がり板厚を5.0mmとした。
Example 3
An aluminum alloy having a chemical component of alloy A shown in Table 1 was melted, and molten metal rolling was performed at a casting speed of 1 m / min by a twin roll molten metal rolling method. At this time, the rising plate thickness of the molten metal rolling was set to 5.0 mm.

得られた溶湯圧延板材について、表4に示す条件で、均質化処理、冷間圧延、溶体化処理、焼入れを行い、板厚1.0mmのT4調質材を得た。   The obtained molten rolled sheet material was subjected to homogenization treatment, cold rolling, solution treatment, and quenching under the conditions shown in Table 4 to obtain a T4 tempered material having a plate thickness of 1.0 mm.

得られたT4調質材を試験材として、実施例1と同じ方法で、焼入れから7日後のMgSi化合物と共存するAl−Fe−Si系化合物の量的割合を測定するとともに、引張性質、曲げ加工性および耐食性を評価した。結果を表5に示す。 Using the obtained T4 tempered material as a test material, the quantitative ratio of the Al—Fe—Si compound coexisting with the Mg 2 Si compound 7 days after quenching was measured in the same manner as in Example 1, and the tensile properties were measured. The bending workability and the corrosion resistance were evaluated. The results are shown in Table 5.

Figure 2006241548
Figure 2006241548

Figure 2006241548
Figure 2006241548

表5にみられるように、試験材19〜23はいずれも、MgSi化合物と共存するAl−Fe−Si系化合物の量的割合が50%以下であり、高い強度特性を示すとともに、曲げ加工による割れの発生がみられず、良好な耐食性を示した。 As can be seen from Table 5, all of the test materials 19 to 23 have an Al—Fe—Si-based compound coexisting with the Mg 2 Si compound in a quantitative ratio of 50% or less, exhibit high strength characteristics, and bend. No cracking due to processing was observed, and good corrosion resistance was exhibited.

比較例1
表6に示す合金I〜Sの化学成分を有するアルミニウム合金を溶解し、双ロール式溶湯圧延法により、鋳造速度を1m/minとして、溶湯圧延を行った。このとき、溶湯圧延の上がり板厚を5.0mmとした。
Comparative Example 1
Aluminum alloys having chemical components of Alloys I to S shown in Table 6 were melted, and molten metal rolling was performed at a casting speed of 1 m / min by a twin roll molten metal rolling method. At this time, the rising plate thickness of the molten metal rolling was set to 5.0 mm.

得られた溶湯圧延板材について、560℃の温度に10時間保持する均質化処理を行った後、常温の水道水で焼入れ(均質化処理温度から350℃までの平均冷却速度:>500℃/s)を行い、さらに板厚1.0mmまで冷間圧延した後、25℃/sの昇温速度で550℃まで加熱し、550℃で20秒間保持する溶体化処理を行い、常温の水道水で水焼入れし、T4調質材とした。   The obtained molten rolled sheet material was homogenized by holding at a temperature of 560 ° C. for 10 hours, and then quenched with normal temperature tap water (average cooling rate from homogenization temperature to 350 ° C .:> 500 ° C./s ) And further cold-rolled to a plate thickness of 1.0 mm, heated to 550 ° C. at a temperature increase rate of 25 ° C./s, and subjected to a solution treatment for 20 seconds at 550 ° C. Water quenching was performed to obtain a T4 tempered material.

得られたT4調質材を試験材として、実施例1と同じ方法で、焼入れから7日後のMgSi化合物と共存するAl−Fe−Si系化合物の量的割合を測定するとともに、引張性質、曲げ加工性および耐食性を評価した。結果を表7に示す。 Using the obtained T4 tempered material as a test material, the quantitative ratio of the Al—Fe—Si compound coexisting with the Mg 2 Si compound 7 days after quenching was measured in the same manner as in Example 1, and the tensile properties were measured. The bending workability and the corrosion resistance were evaluated. The results are shown in Table 7.

Figure 2006241548
Figure 2006241548

Figure 2006241548
Figure 2006241548

表7に示すように、試験材24はSi量が上限を超えたため曲げ加工で割れが発生した。試験材25はSi量が下限を下回ったため強度が低い。試験材26はMg量が上限を超えたため、MgSi化合物と共存するAl−Fe−Si系化合物の量的割合が50%を超えてしまい、曲げ加工時に割れが発生した。試験材27はMg量が下限を下回ったため、強度が低い。試験材28はFe量が上限を超えたため、曲げ加工時に割れが発生した。 As shown in Table 7, since the amount of Si exceeded the upper limit, the test material 24 was cracked by bending. The test material 25 has low strength because the Si amount is below the lower limit. Since the amount of Mg in the test material 26 exceeded the upper limit, the quantitative ratio of the Al—Fe—Si compound coexisting with the Mg 2 Si compound exceeded 50%, and cracking occurred during bending. Since the amount of Mg was less than the lower limit, the test material 27 has low strength. Since the test material 28 had an Fe amount exceeding the upper limit, cracking occurred during bending.

試験材29、30、31はそれぞれ、Mn、Cr、Zr量が上限を超えたため、曲げ加工時に割れが発生した。試験材32はZn量が上限を超えたため、耐食性が低下した。試験材33はCu量が上限を超えたため、曲げ加工で割れが発生し、さらに耐食性が低下した。試験材34はTiおよびBが上限を超えたため、曲げ加工時に割れが発生した。   Since each of the test materials 29, 30, and 31 exceeded the upper limit, the amount of Mn, Cr, and Zr was cracked during bending. Since the amount of Zn exceeded the upper limit of the test material 32, the corrosion resistance decreased. Since the amount of Cu exceeded the upper limit for the test material 33, cracking occurred during bending, and the corrosion resistance further decreased. In the test material 34, since Ti and B exceeded the upper limit, cracks occurred during bending.

比較例2
表1に示す合金Aの化学成分を有するアルミニウム合金を溶解し、双ロール式溶湯圧延法により、鋳造速度を1m/minとして、溶湯圧延を行った。このとき、溶湯圧延の上がり板厚を5.0mmとした。
Comparative Example 2
An aluminum alloy having a chemical component of alloy A shown in Table 1 was melted, and molten metal rolling was performed at a casting speed of 1 m / min by a twin roll molten metal rolling method. At this time, the rising plate thickness of the molten metal rolling was set to 5.0 mm.

得られた溶湯圧延板材について、表8に示す条件で、均質化処理、冷間圧延、溶体化処理、焼入れを行い、板厚1.0mmのT4調質材を得た。   The obtained molten rolled sheet material was subjected to homogenization treatment, cold rolling, solution treatment, and quenching under the conditions shown in Table 8 to obtain a T4 tempered material having a sheet thickness of 1.0 mm.

得られたT4調質材を試験材として、実施例1と同じ方法で、焼入れから7日後のMgSi化合物と共存するAl−Fe−Si系化合物の量的割合を測定するとともに、引張性質、曲げ加工性および耐食性を評価した。結果を表9に示す。 Using the obtained T4 tempered material as a test material, the quantitative ratio of the Al—Fe—Si compound coexisting with the Mg 2 Si compound 7 days after quenching was measured in the same manner as in Example 1, and the tensile properties were measured. The bending workability and the corrosion resistance were evaluated. The results are shown in Table 9.

Figure 2006241548
Figure 2006241548

Figure 2006241548
Figure 2006241548

表9に示すように、試験材35、36、37はそれぞれ、均質化処理温度が下限未満、均質化処理時間が下限未満、均質化処理後の冷却速度が下限未満のため、MgSi化合物と共存するAl−Fe−Si系化合物の量的割合が50%を超えてしまい、曲げ加工時に割れが発生した。 As shown in Table 9, respectively test materials 35, 36, 37, the homogenization temperature is less than the lower limit, less than the homogenization treatment time is lower, the cooling rate after homogenization is less than the lower limit, Mg 2 Si compound The quantity ratio of the Al—Fe—Si based compound coexisting with the sample exceeded 50%, and cracking occurred during bending.

Claims (8)

Si:0.4〜1.5%(質量%、以下同じ)、Mg:0.2〜1.2%を含有し、不純物として含有するFeが1.0%以下であり、残部Alおよび不可避不純物からなる組成を有するアルミニウム合金溶湯圧延板材のT4調質材であって、該板材中に存在するAl−Fe−Si系化合物のうち、MgSi化合物と共存するAl−Fe−Si系化合物の量的割合が50%以下であることを特徴とする曲げ加工性に優れたAl−Mg−Si系合金板材。 Si: 0.4 to 1.5% (mass%, the same shall apply hereinafter), Mg: 0.2 to 1.2%, Fe contained as impurities is 1.0% or less, the balance being Al and inevitable a T4 tempered material molten aluminum alloy rolled sheet having a composition consisting of impurities, among Al-Fe-Si based compounds are present in the plate material, Al-Fe-Si based compounds coexisting with Mg 2 Si compound An Al—Mg—Si based alloy sheet having excellent bending workability, characterized in that the quantitative ratio of is less than 50%. 前記アルミニウム合金溶湯圧延板材が、さらにMn:0.3%以下(0%を含まず、以下同じ)、Cr:0.3%以下、Zr:0.15%以下のうちの1種以上を含有することを特徴とする請求項1に記載の曲げ加工性に優れたAl−Mg−Si系合金板材。 The aluminum alloy molten rolled sheet material further contains one or more of Mn: 0.3% or less (excluding 0%, the same shall apply hereinafter), Cr: 0.3% or less, Zr: 0.15% or less. The Al-Mg-Si alloy plate material excellent in bending workability according to claim 1. 前記アルミニウム合金溶湯圧延板材が、さらにZn:0.5%以下を含有することを特徴とする、請求項1または2に記載の曲げ加工性に優れたAl−Mg−Si系合金板材。 3. The Al—Mg—Si based alloy sheet excellent in bending workability according to claim 1, wherein the molten aluminum alloy sheet further contains Zn: 0.5% or less. 前記アルミニウム合金溶湯圧延板材が、さらにCu:1.0%以下を含有することを特徴とする、請求項1〜3のいずれかに記載の曲げ加工性に優れたAl−Mg−Si系合金板材。 The Al-Mg-Si-based alloy sheet excellent in bending workability according to any one of claims 1 to 3, wherein the molten aluminum alloy sheet further contains Cu: 1.0% or less. . 前記アルミニウム合金溶湯圧延板材が、さらにTi:0.1%以下、B:50ppm以下のうちの少なくとも1種を含有することを特徴とする請求項1〜4のいずれかに記載の曲げ加工性に優れたAl−Mg−Si系合金板材。 The bending workability according to any one of claims 1 to 4, wherein the molten aluminum alloy sheet further contains at least one of Ti: 0.1% or less and B: 50 ppm or less. Excellent Al-Mg-Si based alloy sheet. 請求項1〜5のいずれかに記載の組成を有するアルミニウム合金を溶湯圧延後、500℃以上の温度に1時間以上保持する均質化処理を行い、均質化処理温度から350℃までを5℃/s以上の平均冷却速度で冷却し、その後室温まで冷却して、さらに冷間圧延、溶体化処理、焼入れ処理することを特徴とする曲げ加工性に優れたAl−Mg−Si系合金板材の製造方法。 After the aluminum alloy having the composition according to any one of claims 1 to 5 is melt-rolled, a homogenization treatment is performed at a temperature of 500 ° C or higher for 1 hour or more, and the temperature from the homogenization treatment temperature to 350 ° C is increased to 5 ° C / Production of an Al-Mg-Si alloy sheet having excellent bending workability, characterized by cooling at an average cooling rate of s or more and then cooling to room temperature, followed by cold rolling, solution treatment, and quenching treatment Method. 請求項1〜5のいずれかに記載の組成を有するアルミニウム合金を溶湯圧延後、冷間圧延し、ついで500℃以上の温度に1時間以上保持する均質化処理を行い、均質化処理温度から350℃までを5℃/s以上の平均冷却速度で冷却し、その後室温まで冷却して、さらに冷間圧延、溶体化処理、焼入れ処理することを特徴とする曲げ加工性に優れたAl−Mg−Si系合金板材の製造方法。 The aluminum alloy having the composition according to any one of claims 1 to 5 is melt-rolled, cold-rolled, and then subjected to a homogenization treatment of holding at a temperature of 500 ° C or higher for 1 hour or more. Al-Mg- excellent in bending workability, characterized in that it is cooled to 5 ° C / s at an average cooling rate of 5 ° C / s or more, then cooled to room temperature, and further subjected to cold rolling, solution treatment, and quenching treatment. A method for producing a Si-based alloy sheet. 請求項1〜5のいずれかに記載の曲げ加工性に優れたAl−Mg−Si系合金板材を成形することにより得られる自動車外板。 An automobile outer plate obtained by molding the Al-Mg-Si alloy plate material excellent in bending workability according to any one of claims 1 to 5.
JP2005060221A 2005-03-04 2005-03-04 Al-Mg-Si ALLOY SHEET SUPERIOR IN BENDABILITY, MANUFACTURING METHOD THEREFOR, AND AUTOMOTIVE SKIN PLATE OBTAINED FROM THE SHEET Withdrawn JP2006241548A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005060221A JP2006241548A (en) 2005-03-04 2005-03-04 Al-Mg-Si ALLOY SHEET SUPERIOR IN BENDABILITY, MANUFACTURING METHOD THEREFOR, AND AUTOMOTIVE SKIN PLATE OBTAINED FROM THE SHEET

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005060221A JP2006241548A (en) 2005-03-04 2005-03-04 Al-Mg-Si ALLOY SHEET SUPERIOR IN BENDABILITY, MANUFACTURING METHOD THEREFOR, AND AUTOMOTIVE SKIN PLATE OBTAINED FROM THE SHEET

Publications (1)

Publication Number Publication Date
JP2006241548A true JP2006241548A (en) 2006-09-14

Family

ID=37048241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005060221A Withdrawn JP2006241548A (en) 2005-03-04 2005-03-04 Al-Mg-Si ALLOY SHEET SUPERIOR IN BENDABILITY, MANUFACTURING METHOD THEREFOR, AND AUTOMOTIVE SKIN PLATE OBTAINED FROM THE SHEET

Country Status (1)

Country Link
JP (1) JP2006241548A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2110235A1 (en) * 2008-10-22 2009-10-21 Aleris Aluminum Duffel BVBA Al-Mg-Si alloy rolled sheet product with good hemming
JP2012214846A (en) * 2011-03-31 2012-11-08 Kobe Steel Ltd Aluminum alloy sheet for molding process and method for producing the same
WO2018011245A1 (en) 2016-07-14 2018-01-18 Constellium Neuf-Brisach Method of making 6xxx aluminium sheets
WO2019141693A1 (en) 2018-01-16 2019-07-25 Constellium Neuf-Brisach Method of making 6xxx aluminium sheets with high surface quality
JP2020521885A (en) * 2017-06-06 2020-07-27 ノベリス・インコーポレイテッドNovelis Inc. Aluminum alloy article with less texture and method of making the same
CN111733342A (en) * 2020-07-08 2020-10-02 西安工业大学 Smelting process of fusion cast aluminum bar for aluminum profile
CN115449658A (en) * 2022-08-16 2022-12-09 洛阳龙鼎铝业有限公司 8011L alloy cast-rolling blank crack-free production process

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2110235A1 (en) * 2008-10-22 2009-10-21 Aleris Aluminum Duffel BVBA Al-Mg-Si alloy rolled sheet product with good hemming
JP2012214846A (en) * 2011-03-31 2012-11-08 Kobe Steel Ltd Aluminum alloy sheet for molding process and method for producing the same
US11053576B2 (en) 2016-07-14 2021-07-06 Uacj Corporation Method for producing aluminum alloy rolled material for molding having excellent bending workability and ridging resistance
WO2018012532A1 (en) 2016-07-14 2018-01-18 株式会社Uacj Method for producing aluminum alloy rolled material for molding processing having superior bending workability and ridging resistance
WO2018012597A1 (en) 2016-07-14 2018-01-18 株式会社Uacj Aluminum alloy rolled material for molding processing having superior press formability, bending workability, and ridging resistance
KR101868309B1 (en) 2016-07-14 2018-06-15 가부시키가이샤 유에이씨제이 Process for producing an aluminum alloy rolled material for forming process comprising an aluminum alloy excellent in bending workability and anti-ridging property
WO2018011245A1 (en) 2016-07-14 2018-01-18 Constellium Neuf-Brisach Method of making 6xxx aluminium sheets
JP2020521885A (en) * 2017-06-06 2020-07-27 ノベリス・インコーポレイテッドNovelis Inc. Aluminum alloy article with less texture and method of making the same
JP7009514B2 (en) 2017-06-06 2022-02-10 ノベリス・インコーポレイテッド Aluminum alloy articles with less texture and their manufacturing methods
WO2019141693A1 (en) 2018-01-16 2019-07-25 Constellium Neuf-Brisach Method of making 6xxx aluminium sheets with high surface quality
CN111733342A (en) * 2020-07-08 2020-10-02 西安工业大学 Smelting process of fusion cast aluminum bar for aluminum profile
CN115449658A (en) * 2022-08-16 2022-12-09 洛阳龙鼎铝业有限公司 8011L alloy cast-rolling blank crack-free production process
CN115449658B (en) * 2022-08-16 2023-10-24 洛阳龙鼎铝业有限公司 Production process for 8011L alloy cast-rolled blank without edge cracking

Similar Documents

Publication Publication Date Title
JP7321828B2 (en) High-strength 6xxx aluminum alloy and method for making same
JP5203772B2 (en) Aluminum alloy sheet excellent in paint bake hardenability and suppressing room temperature aging and method for producing the same
EP3485055B1 (en) Method of making 6xxx aluminium sheets
JP4794862B2 (en) Method for producing 6000 series aluminum alloy plate excellent in paint bake hardenability
JP5709298B2 (en) Method for producing Al-Mg-Si based aluminum alloy plate excellent in paint bake hardenability and formability
WO2015034024A1 (en) Aluminum alloy plate having excellent bake hardening properties
CA2950075C (en) Method for manufacturing aluminum alloy member and aluminum alloy member manufactured by the same
JP2006241548A (en) Al-Mg-Si ALLOY SHEET SUPERIOR IN BENDABILITY, MANUFACTURING METHOD THEREFOR, AND AUTOMOTIVE SKIN PLATE OBTAINED FROM THE SHEET
JP6224550B2 (en) Aluminum alloy sheet for forming
JP5148930B2 (en) Method for producing Al-Mg-Si aluminum alloy plate for press forming, and Al-Mg-Si aluminum alloy plate for press forming
JP3590685B2 (en) Manufacturing method of aluminum alloy sheet for automobile outer panel
JP2015067857A (en) Al-Mg-Si-BASED ALUMINUM ALLOY SHEET FOR AUTOMOBILE PANEL AND MANUFACTURING METHOD THEREFOR
JP2006257475A (en) Al-Mg-Si ALLOY SHEET SUPERIOR IN PRESS FORMABILITY, MANUFACTURING METHOD THEREFOR AND AUTOMOTIVE SKIN PLATE OBTAINED FROM THE SHEET MATERIAL
JP6224549B2 (en) Aluminum alloy plate with excellent rust resistance
JP5111966B2 (en) Method for manufacturing aluminum alloy panel
JP4248796B2 (en) Aluminum alloy plate excellent in bending workability and corrosion resistance and method for producing the same
JP4633993B2 (en) Aluminum alloy plate excellent in bending workability and paint bake hardenability and manufacturing method
JP2000282163A (en) Al-Mg-Si ALLOY SHEET EXCELLENT IN BULGE FORMABILITY AND BENDABILITY
JPH06340940A (en) Aluminum alloy sheet excellent in press formability and baking hardenability and its production
JP4633994B2 (en) Aluminum alloy plate excellent in bending workability and paint bake hardenability and manufacturing method
JP4175818B2 (en) Aluminum alloy plate excellent in formability and paint bake hardenability and method for producing the same
JP2012025976A (en) METHOD OF MANUFACTURING Al-Mg-Si BASED ALUMINUM ALLOY PLATE EXCELLENT IN COAT BAKING HARDENABILITY AND FORMABILITY, AND HAVING AGING SUPPRESSION EFFECT AT ROOM TEMPERATURE
JP3749627B2 (en) Al alloy plate with excellent press formability
JP6585436B2 (en) Aluminum alloy plate for automobile body panel excellent in yarn rust resistance, paint bake hardenability and processability, and production method thereof, and automobile body panel using the same and production method thereof
JP2001262265A (en) Hot rolling stock of high formability aluminum alloy sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20071227

Free format text: JAPANESE INTERMEDIATE CODE: A621

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090813