JP4633994B2 - Aluminum alloy plate excellent in bending workability and paint bake hardenability and manufacturing method - Google Patents

Aluminum alloy plate excellent in bending workability and paint bake hardenability and manufacturing method Download PDF

Info

Publication number
JP4633994B2
JP4633994B2 JP2002077795A JP2002077795A JP4633994B2 JP 4633994 B2 JP4633994 B2 JP 4633994B2 JP 2002077795 A JP2002077795 A JP 2002077795A JP 2002077795 A JP2002077795 A JP 2002077795A JP 4633994 B2 JP4633994 B2 JP 4633994B2
Authority
JP
Japan
Prior art keywords
aluminum alloy
less
temperature
alloy plate
bending workability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002077795A
Other languages
Japanese (ja)
Other versions
JP2003277870A (en
Inventor
秀俊 内田
好和 小関
正 箕田
峰生 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2002077795A priority Critical patent/JP4633994B2/en
Application filed by Sumitomo Light Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to US10/468,971 priority patent/US20040094249A1/en
Priority to CA2712356A priority patent/CA2712356C/en
Priority to CA2440666A priority patent/CA2440666C/en
Priority to KR1020077028761A priority patent/KR100833145B1/en
Priority to DE60239088T priority patent/DE60239088D1/en
Priority to CN2008100916008A priority patent/CN101302592B/en
Priority to EP08157601.9A priority patent/EP1967598B2/en
Priority to EP08157604A priority patent/EP1967599B1/en
Priority to KR1020077028759A priority patent/KR100870164B1/en
Priority to CA2712316A priority patent/CA2712316C/en
Priority to KR1020077028760A priority patent/KR100861036B1/en
Priority to CN2008100912011A priority patent/CN101260491B/en
Priority to EP20020705498 priority patent/EP1375691A4/en
Priority to PCT/JP2002/002900 priority patent/WO2002079533A1/en
Priority to DE60236771T priority patent/DE60236771D1/en
Priority to KR1020037012489A priority patent/KR100831637B1/en
Publication of JP2003277870A publication Critical patent/JP2003277870A/en
Priority to US12/077,854 priority patent/US20080178968A1/en
Priority to US12/077,862 priority patent/US20080178973A1/en
Priority to US12/077,853 priority patent/US20080178967A1/en
Publication of JP4633994B2 publication Critical patent/JP4633994B2/en
Application granted granted Critical
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、曲げ加工性および塗装焼付硬化性に優れ、とくに自動車用外板に適したアルミニウム合金板およびその製造方法に関する。
【0002】
【従来の技術】
地球環境問題である温暖化対策として、自動車の燃費向上のために、軽量化を目的として自動車部品用材料は従来の鋼鈑からアルミニウム合金板置換され使用されている。その中でも自動車外板に各種アルミニウム合金が開発され、実用化されている。
【0003】
自動車用外板としては、1)成形性、2)形状凍結性(プレス加工時にプレス型の形状が正確に出ること)、3)耐デント性、4)耐食性 5)製品面質等が要求されている。これらの特性の中で形状凍結性は、耐力が小さいほど良好となるのに対して、耐デント性は耐力が大きいほど良好となり、耐力に関して両者は相反する。この相反する課題の解決のために、6000系(Al-Mg-Si系)アルミニウム合金においては、形状凍結性に優れた耐力の低い段階でプレス成形を行い、その後塗装焼付時に硬化させて耐力を高め、耐デント性を向上させるという手法が行われている(特開平4-147951号公報、特開平5-247610号公報、特開平5-279822号公報、特開平6-17208 号公報)。
【0004】
耐食性や製品面質が外板には厳しく要求される部位、とくにボンネットアウターでは、プレス加工後、肌荒れやリジングマーク(塑性加工によって発生する圧延方向に長い筋状欠陥)が生じ製品面質が劣ることがある。この様な製品面質は、化学成分や製造条件の調整、管理により解決が図られており、例えば、リジングマークの抑制のために、500℃以上の温度で均質化処理した後、450〜350℃まで冷却し、この温度域で熱間圧延を開始することにより粗大析出物の生成を防止することは提案されている(特開平7-228956号公報)が、この手法においては、Mg2Si の析出、凝集化が起こることがあり、そのため、溶体化処理が高温で長時間必要となり、工業的には能率を低下させるという問題がある。
【0005】
また、アウタ−用材料は、インナーとアセンブルする際にヘム加工が行なわれ、フラットヘムが可能であることが望まれているが、アルミニウム合金は、鋼鈑に比べ曲げ加工性に劣り、さらに従来の6000系アルミニウム合金は、5000系アルミニウム合金より曲げ加工性が劣り、プレス加工度が大きな部位では、フラットヘムができないという課題がある。さらに成形形状が厳しかったり、寸法精度の厳しい部位ではフラットヘム以上の曲げ(内側曲げ半径が0.5mm より小さい加工)が望まれている。
【0006】
発明者らは、6000系(Al−Mg−Si系)アルミニウム合金材の成形性、とくに曲げ加工性に及ぼす要因について、試験、検討を重ねた結果、曲げ加工性は集合組織のCube方位{100}〈001〉の強度比(ランダム比)と相関があり、曲げ加工性を向上させるためには、Cube方位の集積度の高い集合組織とすることが必要であることを見出し、そのためには、6000系アルミニウム合金の主要添加元素であるSi量、Mg量の最適化を図り、且つ製造工程の最適化、とくに均質化処理後の冷却速度を適正に制御することが重要であることを知見した。
【0007】
【発明が解決しようとする課題】
本発明は、6000系(Al−Mg−Si系)アルミニウム合金板を自動車用外板として適用する場合における上記従来の問題点を解消するために、上記の知見をベースとして、さらに試験、検討を行った結果としてなされたものであり、その目的は、フラットヘム加工が可能な優れた曲げ加工性をそなえ、耐デント性の問題を解決し得る優れた塗装焼付硬化性を有し、耐食性にも優れたアルミニウム合金板およびその製造方法を提供することにある。
【0008】
【課題を解決するための手段】
上記の目的を達成するための本発明の請求項1による曲げ加工性および塗装焼付硬化性に優れたアルミニウム合金板は、Si:0.5〜2.0%、Mg:0.2〜1.5%を含有し、さらにTi:0.1%以下、B:50ppm以下のうち少なくとも1種を含有し、残部Alおよび不可避的不純物からなるアルミニウム合金の圧延板であって、形成された集合組織でのCube方位の強度比が38以上であり、15%引張変形後の180°曲げ加工における内側限界曲げ半径が0.2mm以下であることを特徴とする。
【0009】
請求項2による曲げ加工性および塗装焼付硬化性に優れたアルミニウム合金板は、請求項1において、前記アルミニウム合金が、Si:0.5〜2.0%、Mg:0.2〜1.5%を含有し、さらにTi:0.1 %以下、B:50ppm以下のうち少なくとも1種を含有し、0.7Si%+Mg%≦2.2%を満足し、残部Alおよび不可避的不純物からなるアルミニウム合金であることを特徴とする。
【0010】
請求項3による曲げ加工性および塗装焼付硬化性に優れたアルミニウム合金板は、請求項1または2において、アルミニウム合金板がさらにZn:0.5%以下を含有することを特徴とする。
【0011】
請求項4による曲げ加工性および塗装焼付硬化性に優れたアルミニウム合金板は、請求項1〜3のいずれかにおいて、アルミニウム合金板がさらにCu:1.0 %以下を含有することを特徴とする。
【0012】
請求項5による曲げ加工性および塗装焼付硬化性に優れたアルミニウム合金板は、請求項1〜4のいずれかにおいて、アルミニウム合金板がさらにMn:1.0%以下、Cr:0.3%以下、V:0.2%以下、Zr:0.2%以下のうちの1種または2種以上を含有することを特徴とする。
【0015】
請求項による曲げ加工性および塗装焼付硬化性に優れたアルミニウム合金板の製造方法は、請求項1〜5のいずれかに記載のアルミニウム合金板の製造方法であって、請求項1〜5のいずれかに記載の組成を有するアルミニウム合金の鋳塊を450℃以上の温度で均質化処理後、100℃/h以上の冷却速度で350℃未満の温度まで冷却し、さらに300〜500℃の温度に再加熱して圧延を開始する熱間圧延を行い、さらに冷間圧延した後、450℃以上の温度で溶体化処理を行い、溶体化処理後、120℃までを5℃/s以上の冷却速度で冷却する焼入れを行い、焼入れ後60分以内に40〜120℃の温度で50h以内の熱処理を行うことを特徴とする。
【0016】
請求項による曲げ加工性および塗装焼付硬化性に優れたアルミニウム合金板の製造方法は、請求項1〜5のいずれかに記載のアルミニウム合金板の製造方法であって、請求項1〜5のいずれかに記載の組成を有するアルミニウム合金の鋳塊を450℃以上の温度で均質化処理後、100℃/h以上の冷却速度で350℃未満の温度まで冷却し、さらに室温まで冷却し、ついで300〜500℃の温度に再加熱して圧延を開始する熱間圧延を行い、さらに冷間圧延した後、450℃以上の温度で溶体化処理を行い、溶体化処理後、120℃までを5℃/s以上の冷却速度で冷却する焼入れを行い、焼入れ後60分以内に40〜120℃の温度で50h以内の熱処理を行うことを特徴とする。
【0017】
請求項による曲げ加工性および塗装焼付硬化性に優れたアルミニウム合金板の製造方法は、請求項6または7において、熱間圧延の終了温度を300℃以下とすることを特徴とする。
【0019】
【発明の実施の形態】
本発明のAl−Mg−Si系合金板における合金成分の意義および限定理由について説明する。
Si:強度および高BH性を得るために必要で、Mg-Si 系化合物を形成して強度を高めるよう機能する。好ましい含有量は0.5 〜2.0 %の範囲であり、0.5 %未満では塗装焼付時の加熱で十分な強度が得らず、さらに成形性が劣ることがあり、また、2.0 %を越えると、プレス加工時の耐力が高く、成形性及び形状凍結性が劣り、塗装後の耐食性も劣化する。さらに好ましい含有量は0.8 〜1.2 %の範囲である。
【0020】
Mg:Siと同様に強度を高めるよう機能する。好ましい含有量は0.2 〜1.5 %の範囲であり、0.2 %未満では塗装焼付時の加熱で十分な強度が得られない。また、1.5 %を越えると、溶体化処理後もしくは最終熱処理完了後の耐力が高く成形性及び形状凍結性が劣る。さらに好ましい含有量は、0.3 〜0.7 %の範囲である。
【0021】
本発明においては、主要成分のSi量とMg量との関係を0.7Si %+Mg%≦2.2 %とすることが重要であり、この関係を満足するMgおよびSiの含有で、溶体化処理後、集合組織が形成され、集合組織のCube方位の強度比が大きくなり、適正な強度が得られ、曲げ加工性が良好となる。さらに好ましいMgおよびSi量の関係は、0.7Si %+Mg%≦1.8 %である。
【0022】
Zn:表面処理時のりん酸亜鉛処理性を向上させるが、好ましい含有量は0.5 %以下の範囲であり、0.5 %を越えると耐食性を劣化させる。さらに好ましくは、0.1 〜0.3 %の範囲で添加する。
【0023】
Cu:強度、成形性を向上させる。好ましい含有量は1.0 %以下であり、0.1 %を越えると耐食性を劣化させる。さらに好ましくは、0.3 〜0.8 %の範囲で添加される。
【0024】
Mn、Cr、V、Zr:強度を向上し、結晶粒を微細化して成形加工時の肌荒れを防止するよう機能する。好ましい含有量は、Mn0.3 %以下、Cr0.3 %以下、V0.2 %以下およびZr0.15%以下の範囲であり、それぞれ上限を越えると、粗大な金属間化合物が生成して成形性が劣化する。さらに好ましくは、Mn:0.05〜0.15%、Cr:0.05〜0.15%、V:0.05〜0.15%、Zr:0.05〜0.12%の範囲で添加する。
【0025】
Ti、B:鋳造組織を微細化し、成形性が向上させる。好ましい含有量は、Ti0.1 %以下、B50ppm 以下の範囲であり、それぞれ上限を越えて含有すると、粗大な金属間化合物が増加して成形性が低下する。なお、その他不純物として、Feを0.5 %以下、好ましくは0.3 %以下に規制することが望ましい。
【0026】
つぎに本発明のアルミニウム合金板の製造工程について説明する。
均質化処理条件:450 ℃以上の温度で行うことが必要であり、加熱温度が450 ℃未満では、鋳塊偏析の除去や均質化が不十分で、強度に寄与するMg2Si 成分の固溶が不十分となり、成形性が劣ることがある。
【0027】
均質化処理後の冷却:冷却速度を100 ℃/h以上、より好ましくは、300 ℃/h以上の冷却速度で冷却とすることにより良好な特性が得られる。冷却速度を早めるためには大がかりな設備が必要とすることから、実用上は300 〜1000℃/hで管理することが望ましい。冷却速度が遅いとMg-Si 系化合物が析出し、凝集化する。従来の冷却方法では、大型スラブの場合、冷却速度は30℃/ h程度であり、このような低い冷却速度では、冷却中にMg-Si 系化合物が析出、凝集粗大化し、Cube方位の大きな材料を得ることはできない。粗大な析出物となると溶体化処理時の再結晶が抑制され、Cube方位の集積度が低くなる。
【0028】
均質化処理後の冷却は、350 ℃未満の温度域までを100 ℃/ ℃以上、好ましくは300 ℃/ ℃以上の冷却速度で冷却する必要があり、部分的でも350 ℃以上の場所があると特性に影響する。このため、全体が250 ℃以下になるまで上記の速度で冷却するのが、さらに好ましい。均質化処理された鋳塊の冷却方法は、水冷、ファン冷却、ミスト冷却、ヒートシンク接触など、必要冷却速度が得られるものであればよく、とくに限定されない。
【0029】
冷却の開始温度は、必ずしも均質化処理温度である必要はなく、析出が顕著に起こらない温度まで徐冷した後、100 ℃/h以上の冷却速度での冷却を開始しても、同様の効果を得ることができる。例えば、500 ℃以上の温度で均質化処理を行った場合には、500 ℃までの冷却は遅くてもよい。
【0030】
熱間圧延:熱間圧延は、350℃未満の温度まで冷却し、350〜500℃の温度に再加熱して熱間圧延を開始する。300℃未満の温度まで冷却し、さらに室温まで冷却した後、300〜500℃の温度に再加熱して熱間圧延を開始してもよい。
【0031】
熱延開始温度が300 ℃以下では、変形抵抗が大きくなり、圧延能率が悪化するため好ましくない。500 ℃越えると圧延中の結晶粒が粗大化し、リジングマークが発生し易い材料となるため、圧延開始温度は300 〜500 ℃に規制する必要がある。変形抵抗や加工組織の均一性を考慮すると、圧延開始温度は380 〜450 ℃が好ましい。
【0032】
熱延終了温度が300 ℃を越えると、Mg-Si 系化合物の析出が起こり易く、成形性が低下し易いとともに再結晶粒が粗大となり、リジングマークの原因となることがあるため、熱間圧延の終了温度は300 ℃以下とするのが望ましく、熱間圧延時の材料の変形抵抗、クーラントによるオイルステン残留などを考慮すると200 ℃以上とするのが好ましい。
【0033】
溶体化処理:好ましい溶体化処理温度は450 ℃以上である。450 ℃未満では、Mg−Si系析出物の固溶が不十分となり十分な強度、成形性が得られないか、必要な強度、成形性を得るために、非常に長時間の熱処理が必要となり工業的に好ましくない。溶体化処理時間は、強度が得られる範囲で行われればよく、とくに限定されないが、工業的には通常120 s以内の保持が一般的である。
【0034】
焼入時の冷却速度:溶体化処理温度から120 ℃以下までを5 ℃/s以上で冷却することが必要でであり、10℃/s以上の冷却速度で冷却するのが望ましい。焼入れ速度が遅すぎると溶出元素の析出が起こり、強度、BH性、成形性が劣化するとともに耐食性も低下する。
【0035】
最終熱処理:焼入後60分以内に、40〜120 ℃で50h以内の熱処理を行う。この処理によってBH化性が向上する。40℃未満では、BH性の向上が不十分で、120 ℃を超える温度もしくは50hを越える時間では、初期耐力が高くなり過ぎ成形性の低下もしくは塗装焼付硬化性が低下することがある。
【0036】
上記の組成を有するアルミニウム合金に、上記の製造工程を適用することにより、溶体化処理、焼入れ後、Cube方位の集積度の高い集合組織が得られ、集合組織のCube方位の強度比(ランダム比)が20以上となり、優れた曲げ加工性をそなえた板材が得られる。さらに好ましくは、合金成分、とくにSi、Mg量の調整、製造条件の調整により、Cube方位の強度比を50以上とする。当該アルミニウム合金板は、例えばヘム加工が行われる自動車用フード、トランクリッドドアなど、形状が複雑でかつ軽量な自動車用部材として好適に使用され、またヘム加工が行われないフェンダー、ルーフなどに適用した場合においても、曲げ加工性が優れていることで、複雑形状にプレス加工した後、曲げ半径の小さい厳しい加工が可能となり、自動車用材料へのアルミニウム材の適用の範囲が広がり、車体の軽量化に寄与することが可能となる。
【0037】
【実施例】
以下、本発明の実施例を比較例と対比して説明する。これらの実施例は、本発明の一実施態様を示すものであり、本発明はこれに限定されるものではない。
【0038】
実施例1
表1に示す組成を有するアルミニウム合金をDC鋳造により造塊し、得られた鋳塊を、550 ℃で6 hの均質化処理した後、200 ℃まで450 ℃/hの冷却速度で冷却した。さらに室温まで冷却し、420 ℃の温度に再加熱して熱間圧延を開始し、厚さ4.5 mmまで圧延した。熱間圧延の終了温度は250 ℃とした。
【0039】
続いて、冷間圧延を行って厚さ1 mmの板とし、さらに、540 ℃で20s の溶体化処理を行い、30℃/sの冷却速度で120 ℃まで焼入した。焼き入れ後、3min後に100 ℃で3hの熱処理を施した。
【0040】
最終熱処理から10日後のアルミニウム合金板について、引張試験を行い、以下の方法で、塗装焼付硬化性(BH性)、Cube方位の強度比(ランダム比)、曲げ加工性を評価した。結果を表2に示す。
【0041】
Cube方位の強度比:ODF解析装置を使用し、Bungeの提唱した級数展開法により偶数項の展開次数を22次、奇数項の展開次数を19次として計算する。
【0042】
塗装焼付硬化性(BH性):2 %の引張変形を加え、170 ℃-20minの加熱処理を行った後、耐力を測定し200MPa以上を合格とする。
曲げ加工性:15%引張予歪後に、限界曲げ半径を調査する180 ゜曲げ試験を行い、内側限界曲げ半径0.2mm 以下を合格とした。
【0043】
【表1】

Figure 0004633994
【0044】
【表2】
Figure 0004633994
【0045】
表2にみられるように、本発明に従う試験材No.1〜7はいずれも、強度、BH性に優れ、Cube方位の強度比は20を越えており、優れた限界曲げ特性をそなえている。
【0046】
比較例1
表3に示す組成を有するアルミニウム合金をDC鋳造により造塊し、得られた鋳塊を、実施例1と同一の工程で処理し、最終熱処理から10日後のアルミニウム合金板について、実施例1と同じ方法で、引張性能、塗装焼付硬化性(BH性)、Cube方位の強度比、曲げ加工性を評価した。結果を表4に示す。
【0047】
【表3】
Figure 0004633994
【0048】
【表4】
Figure 0004633994
【0049】
表4に示すように、試験材No.8はSi量が少なく、また試験材No.10はMg量が少ないため、いずれも強度が低く、BH性が劣る。試験材No.9はSi量が多く、また試験材No.11はMg量が多く、0.7 Si%+Mg%の値が2.2%を越えるため、いずれも強度が高く、Cube方位の集積度が低くなり、曲げ加工性が劣っている。
【0050】
試験材12〜16は、それぞれ、Cu量、Mn量、Cr量、V 量、Zr量が多すぎるため、Cube方位の集積度が低くなり、曲げ加工性が劣っている。
【0051】
実施例2、比較例2
表1に示す合金BをDC鋳造し、得られた鋳塊を、550 ℃で5 hの均質化処理後、表5に示す冷却速度で250 ℃まで冷却し、続いて、表5に示す温度に加熱して熱間圧延を行ない、厚さ4.4 mmまで圧延した。熱間圧延の終了温度は250 ℃であった。さらに冷間圧延を経て、厚さ1 mmの板とした。条件26のみ熱間圧延後に400 ℃-2h の中間焼鈍を行った。
【0052】
その後、550 ℃で5sの溶体化処理を行い、30℃/sの冷却速度で120 ℃まで焼入した。焼き入れ後3 min 後に100 ℃で3hの熱処理を施した。以上の工程により製造したアルミニウム合金板について、実施例1と同様の方法で、引張性能、BH性、Cube方位の強度比、曲げ加工性の評価を行った。
【0053】
さらに、リジングマークの評価として、圧延90°方向に引張試験片を採取し、10%引張変形を加え、電着塗装後のリジングマークの有無を判定した。
これらの結果を第6表に示す。
【0054】
【表5】
Figure 0004633994
【0055】
【表6】
Figure 0004633994
【0056】
表6に示すように、本発明に従う試験材No.17〜21はいずれも、強度、BH性に優れ、Cube方位の強度比は20を越えており、優れた限界曲げ特性をそなえている。
【0057】
これに対して、試験材No.24は均質化処理後の冷却速度が小さいため、Cube方位の集積度が低くなり、曲げ加工性が劣る。試験材No.25は、熱間圧延温度が高く、均質化処理後の冷却速度が小さいため、リジングマークが発生し、Cube方位の集積度が低くなって曲げ加工性が劣る。試験材No.26は、中間焼鈍を行ったため、Cube方位の集積度が低くなり、曲げ加工性が劣る。
【0058】
【発明の効果】
本発明によれば、フラットヘム加工が可能な優れた曲げ加工性、塗装焼付硬化性を有し、耐食性にも優れたアルミニウム合金板およびその製造方法が提供される。当該アルミニウム合金板は、例えばヘム加工が行われる自動車用フード、トランクリッド,ドアなど、形状が複雑でかつ軽量な自動車用部材として好適に使用される。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an aluminum alloy plate excellent in bending workability and paint bake hardenability, and particularly suitable for an automobile outer plate, and a method for producing the same.
[0002]
[Prior art]
As a countermeasure against global warming, which is a global environmental problem, materials for automobile parts have been replaced with aluminum alloy plates from conventional steel plates for the purpose of weight reduction in order to improve automobile fuel efficiency. Among them, various aluminum alloys have been developed and put into practical use for automobile outer plates.
[0003]
As automotive outer panels, 1) formability, 2) shape freezing properties (the shape of the press die appears accurately during pressing), 3) dent resistance, 4) corrosion resistance, and 5) product surface quality are required. ing. Among these characteristics, the shape freezing property is better as the yield strength is smaller, whereas the dent resistance is better as the yield strength is larger. In order to solve this conflicting problem, in 6000 series (Al-Mg-Si series) aluminum alloys, press forming is performed at a low yield strength stage with excellent shape freezing properties, and then cured at the time of paint baking to increase the yield strength. Techniques for improving and improving dent resistance have been carried out (Japanese Patent Laid-Open Nos. 4-147951, 5-247610, 5-279822, and 6-17208).
[0004]
In parts where corrosion resistance and product surface quality are strictly required for the outer plate, especially bonnet outers, rough surface and ridging marks (streaks that are long in the rolling direction caused by plastic processing) occur after press processing, resulting in poor product surface quality. Sometimes. Such product surface quality is solved by adjustment and management of chemical components and manufacturing conditions. For example, in order to suppress ridging marks, after homogenizing at a temperature of 500 ° C. or higher, 450 to 350 It has been proposed to prevent the formation of coarse precipitates by cooling to 0 ° C. and starting hot rolling in this temperature range (Japanese Patent Laid-Open No. 7-228956), but in this method, Mg 2 Si Precipitation and agglomeration may occur, so that a solution treatment is required for a long time at a high temperature, and there is a problem that the efficiency is reduced industrially.
[0005]
In addition, the outer material is hemmed when assembled with the inner, and it is desired that flat hem is possible. However, aluminum alloys are inferior in bending workability compared to steel plates, and more The 6000 series aluminum alloy has a problem that bending workability is inferior to that of the 5000 series aluminum alloy, and flat hem cannot be formed at a portion where the degree of press work is large. Furthermore, in areas where the molding shape is severe or dimensional accuracy is severe, bending beyond flat hem (processing where the inner bending radius is smaller than 0.5 mm) is desired.
[0006]
The inventors have conducted tests and examinations on factors affecting the formability of the 6000 series (Al-Mg-Si series) aluminum alloy material, in particular bending workability. As a result, the bending workability is determined by the Cube orientation {100 } There is a correlation with the strength ratio (random ratio) of <001>, and in order to improve bending workability, it has been found that it is necessary to have a texture with a high degree of Cube orientation integration. It was found that it is important to optimize the Si and Mg contents, which are the main additive elements of 6000 series aluminum alloys, and to optimize the manufacturing process, especially to properly control the cooling rate after homogenization. .
[0007]
[Problems to be solved by the invention]
In order to solve the above-mentioned conventional problems in the case where a 6000 series (Al-Mg-Si series) aluminum alloy plate is applied as an automobile outer plate, the present invention is further tested and examined based on the above knowledge. The purpose of the test was to provide excellent bending processability that can solve the problem of dent resistance, as well as excellent resistance to corrosion and corrosion resistance. An object of the present invention is to provide an excellent aluminum alloy plate and a method for producing the same.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, an aluminum alloy plate excellent in bending workability and paint bake hardenability according to claim 1 of the present invention is Si: 0.5 to 2.0%, Mg: 0.2 to 1. An aluminum alloy rolled sheet containing 5%, further containing at least one of Ti: 0.1% or less, B: 50ppm or less, and comprising the balance Al and unavoidable impurities, the formed texture The strength ratio of the Cube orientation at 38 is 38 or more , and the inner limit bending radius in 180 ° bending after 15% tensile deformation is 0.2 mm or less .
[0009]
The aluminum alloy plate excellent in bending workability and paint bake hardenability according to claim 2 is the aluminum alloy plate according to claim 1, wherein the aluminum alloy is Si: 0.5 to 2.0 %, Mg: 0.2 to 1.5. Further, at least one of Ti: 0.1% or less and B: 50ppm or less is satisfied , 0.7Si% + Mg% ≦ 2.2% is satisfied, and the balance is composed of Al and inevitable impurities. It is an aluminum alloy.
[0010]
The aluminum alloy plate excellent in bending workability and paint bake hardenability according to claim 3 is characterized in that, in claim 1 or 2, the aluminum alloy plate further contains Zn: 0.5% or less.
[0011]
The aluminum alloy plate excellent in bending workability and paint bake hardenability according to claim 4 is characterized in that in any one of claims 1 to 3, the aluminum alloy plate further contains Cu: 1.0% or less. .
[0012]
The aluminum alloy plate excellent in bending workability and paint bake hardenability according to claim 5 is the aluminum alloy plate according to any one of claims 1 to 4, wherein the aluminum alloy plate is further Mn: 1.0% or less, Cr: 0.3% or less V: 0.2% or less, Zr: 0.2% or less, or one or more of them are contained.
[0015]
The method for producing an aluminum alloy plate excellent in bending workability and paint bake hardenability according to claim 6 is the method for producing an aluminum alloy plate according to any one of claims 1 to 5, wherein The aluminum alloy ingot having the composition described in any one of the above is homogenized at a temperature of 450 ° C. or higher, then cooled to a temperature of less than 350 ° C. at a cooling rate of 100 ° C./h or higher, and a temperature of 300 to 500 ° C. After performing the hot rolling to reheat to start rolling and further cold rolling, solution treatment is performed at a temperature of 450 ° C. or higher, and after the solution treatment, cooling to 120 ° C. is performed at 5 ° C./s or higher. It is characterized in that quenching is performed at a rate and heat treatment is performed at a temperature of 40 to 120 ° C. within 50 hours within 60 minutes after quenching.
[0016]
The process according to claim 7 by bending workability and bake hardenability excellent in the aluminum alloy sheet, a manufacturing method of an aluminum alloy plate according to claim 1, of claims 1 to 5 An aluminum alloy ingot having a composition described in any one of the above is homogenized at a temperature of 450 ° C. or higher, then cooled to a temperature of less than 350 ° C. at a cooling rate of 100 ° C./h or higher, and further cooled to room temperature. After performing hot rolling to reheat to a temperature of 300 to 500 ° C. to start rolling, and further cold rolling, solution treatment is performed at a temperature of 450 ° C. or higher, and after solution treatment, up to 120 ° C. It is characterized in that quenching is performed at a cooling rate of ° C / s or more, and heat treatment is performed at a temperature of 40 to 120 ° C within 50 hours within 60 minutes after quenching.
[0017]
The method for producing an aluminum alloy plate excellent in bending workability and paint bake hardenability according to claim 8 is characterized in that, in claim 6 or 7 , the end temperature of hot rolling is 300 ° C. or less.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
The significance and reasons for limitation of the alloy components in the Al—Mg—Si alloy plate of the present invention will be described.
Si: Necessary for obtaining strength and high BH property, and functions to increase the strength by forming an Mg-Si compound. The preferred content is in the range of 0.5 to 2.0%. If it is less than 0.5%, sufficient strength cannot be obtained by heating during paint baking, and the formability may be inferior. The yield strength is high, the moldability and the shape freezing property are inferior, and the corrosion resistance after painting is also deteriorated. A more preferred content is in the range of 0.8 to 1.2%.
[0020]
Similar to Mg: Si, it functions to increase strength. The preferred content is in the range of 0.2 to 1.5%, and if it is less than 0.2%, sufficient strength cannot be obtained by heating during paint baking. On the other hand, if it exceeds 1.5%, the yield strength after solution treatment or after completion of the final heat treatment is high, and the moldability and shape freezeability are poor. A more preferable content is in the range of 0.3 to 0.7%.
[0021]
In the present invention, it is important that the relationship between the Si content and the Mg content of the main component is 0.7 Si% + Mg% ≦ 2.2%, and the content of Mg and Si satisfying this relationship, after the solution treatment, A texture is formed, the strength ratio of the Cube orientation of the texture is increased, an appropriate strength is obtained, and the bending workability is improved. A more preferable relationship between Mg and Si content is 0.7 Si% + Mg% ≦ 1.8%.
[0022]
Zn: Improves zinc phosphate treatability during surface treatment, but the preferred content is in the range of 0.5% or less, and if it exceeds 0.5%, the corrosion resistance deteriorates. More preferably, it is added in the range of 0.1 to 0.3%.
[0023]
Cu: Improves strength and formability. The preferable content is 1.0% or less, and if it exceeds 0.1%, the corrosion resistance is deteriorated. More preferably, it is added in the range of 0.3 to 0.8%.
[0024]
Mn, Cr, V, Zr: functions to improve strength and refine crystal grains to prevent rough skin during molding. Preferable contents are in the ranges of Mn 0.3% or less, Cr 0.3% or less, V0.2% or less and Zr0.15% or less. When the upper limit is exceeded, coarse intermetallic compounds are formed and formability is reached. Deteriorates. More preferably, Mn: 0.05 to 0.15%, Cr: 0.05 to 0.15%, V: 0.05 to 0.15%, Zr: 0.05 to 0.12% are added.
[0025]
Ti, B: The cast structure is refined and the formability is improved. Preferable contents are in the range of Ti 0.1% or less and B50 ppm or less. When the content exceeds each upper limit, coarse intermetallic compounds increase and formability deteriorates. As other impurities, it is desirable to regulate Fe to 0.5% or less, preferably 0.3% or less.
[0026]
Next, the manufacturing process of the aluminum alloy plate of the present invention will be described.
Homogenization treatment conditions: Must be performed at a temperature of 450 ° C or higher. If the heating temperature is less than 450 ° C, the ingot segregation and homogenization are insufficient, and the solid solution of the Mg 2 Si component that contributes to strength Becomes insufficient, and the moldability may be inferior.
[0027]
Cooling after homogenization treatment: Good characteristics can be obtained by cooling at a cooling rate of 100 ° C./h or more, more preferably 300 ° C./h or more. In order to increase the cooling rate, a large-scale facility is required. Therefore, in practice, it is desirable to manage at 300 to 1000 ° C./h. When the cooling rate is slow, Mg-Si compounds precipitate and aggregate. In the conventional cooling method, in the case of a large slab, the cooling rate is about 30 ° C./h. At such a low cooling rate, a Mg-Si compound precipitates and agglomerates and coarsens during cooling, and a material having a large Cube orientation. Can't get. When the precipitate is coarse, recrystallization during the solution treatment is suppressed, and the degree of accumulation of the Cube orientation is lowered.
[0028]
The cooling after the homogenization treatment must be performed at a cooling rate of 100 ° C / ° C or higher, preferably 300 ° C / ° C or higher, to a temperature range of less than 350 ° C. Affects properties. For this reason, it is more preferable to cool at the above speed until the whole becomes 250 ° C. or less. The method for cooling the homogenized ingot is not particularly limited as long as the required cooling rate can be obtained, such as water cooling, fan cooling, mist cooling, and heat sink contact.
[0029]
The cooling start temperature does not necessarily need to be the homogenization treatment temperature, and the same effect can be obtained even if cooling is started at a cooling rate of 100 ° C / h or higher after slow cooling to a temperature at which precipitation does not occur significantly. Can be obtained. For example, when homogenization is performed at a temperature of 500 ° C. or higher, cooling to 500 ° C. may be slow.
[0030]
Hot rolling: Hot rolling is performed by cooling to a temperature of less than 350 ° C., reheating to a temperature of 350 to 500 ° C., and starting hot rolling . After cooling to a temperature of less than 300 ° C. and further cooling to room temperature, hot rolling may be started by reheating to a temperature of 300 to 500 ° C.
[0031]
A hot rolling start temperature of 300 ° C. or lower is not preferable because deformation resistance increases and rolling efficiency deteriorates. If the temperature exceeds 500 ° C., the crystal grains during rolling become coarse and a ridging mark is likely to be generated. Therefore, the rolling start temperature must be regulated to 300 to 500 ° C. In consideration of deformation resistance and uniformity of the processed structure, the rolling start temperature is preferably 380 to 450 ° C.
[0032]
When the hot rolling finish temperature exceeds 300 ° C, Mg-Si compounds are likely to precipitate, formability is likely to deteriorate, and recrystallized grains become coarse, which may cause ridging marks. The finishing temperature is preferably 300 ° C. or lower, and is preferably 200 ° C. or higher in consideration of deformation resistance of the material during hot rolling, oil stainless residue due to coolant, and the like.
[0033]
Solution treatment: The preferred solution treatment temperature is 450 ° C or higher. Below 450 ° C, Mg-Si-based precipitates are not sufficiently dissolved, and sufficient strength and formability cannot be obtained, or very long heat treatment is required to obtain the required strength and formability. Industrially unfavorable. The solution treatment time is not particularly limited as long as it is performed within a range in which strength can be obtained, but in general, it is generally held within 120 s.
[0034]
Cooling rate during quenching: It is necessary to cool from the solution treatment temperature to 120 ° C or lower at 5 ° C / s or higher, and it is desirable to cool at a cooling rate of 10 ° C / s or higher. If the quenching speed is too slow, the eluted elements are precipitated, and the strength, BH property and moldability are deteriorated and the corrosion resistance is also lowered.
[0035]
Final heat treatment: Within 60 minutes after quenching, heat treatment is performed at 40 to 120 ° C. for 50 hours. This treatment improves the BH property. If the temperature is lower than 40 ° C, the BH property is not sufficiently improved. If the temperature exceeds 120 ° C or the time exceeds 50 hours, the initial yield strength becomes too high, and the moldability may deteriorate or the paint bake hardenability may decrease.
[0036]
By applying the above manufacturing process to an aluminum alloy having the above composition, after solution treatment and quenching, a texture with a high degree of Cube orientation accumulation is obtained , and the strength ratio (random ratio) of the Cube orientation of the texture is obtained. ) Is 20 or more, and a plate material having excellent bending workability is obtained. More preferably, the strength ratio of the Cube orientation is set to 50 or more by adjusting the amounts of alloy components, particularly Si and Mg, and adjusting the manufacturing conditions. The aluminum alloy plate is suitably used as an automotive hood, trunk lid , door, etc., which is hemmed, and has a complicated and lightweight shape, and is also used for fenders, roofs, etc. where hemming is not performed. Even when applied, the excellent bending workability allows for severe processing with a small bending radius after pressing into a complex shape, expanding the range of application of aluminum materials to automotive materials, It becomes possible to contribute to weight reduction.
[0037]
【Example】
Examples of the present invention will be described below in comparison with comparative examples. These examples show one embodiment of the present invention, and the present invention is not limited thereto.
[0038]
Example 1
An aluminum alloy having the composition shown in Table 1 was formed by DC casting, and the resulting ingot was homogenized at 550 ° C. for 6 hours, and then cooled to 200 ° C. at a cooling rate of 450 ° C./h. Furthermore, it cooled to room temperature, reheated to the temperature of 420 degreeC, the hot rolling was started, and it rolled to thickness 4.5mm. The end temperature of hot rolling was 250 ° C.
[0039]
Subsequently, cold rolling was performed to obtain a plate having a thickness of 1 mm, followed by solution treatment at 540 ° C. for 20 s, and quenching to 120 ° C. at a cooling rate of 30 ° C./s. After quenching, 3 minutes later, heat treatment was performed at 100 ° C. for 3 hours.
[0040]
Ten days after the final heat treatment, an aluminum alloy plate was subjected to a tensile test, and paint bake hardenability (BH property), strength ratio of Cube orientation (random ratio), and bending workability were evaluated by the following methods. The results are shown in Table 2.
[0041]
Intensity ratio of Cube orientation: Using an ODF analyzer, the expansion order of the even term is calculated as 22nd order and the expansion order of the odd term is calculated as 19th order by the series expansion method proposed by Bunge.
[0042]
Paint bake hardenability (BH property): Apply 2% tensile deformation, heat treatment at 170 ° C for 20 min, measure proof stress, and pass 200 MPa or more.
Bending workability: After 15% tensile pre-strain, a 180 ° bending test was conducted to investigate the limit bending radius, and an inner limit bending radius of 0.2 mm or less was accepted.
[0043]
[Table 1]
Figure 0004633994
[0044]
[Table 2]
Figure 0004633994
[0045]
As can be seen in Table 2, the test material No. Each of Nos. 1 to 7 is excellent in strength and BH properties, and the strength ratio of the Cube orientation exceeds 20, and has excellent limit bending characteristics.
[0046]
Comparative Example 1
An aluminum alloy having the composition shown in Table 3 was ingoted by DC casting, and the resulting ingot was treated in the same process as in Example 1. For the aluminum alloy plate 10 days after the final heat treatment, In the same manner, tensile performance, paint bake hardenability (BH property), strength ratio of Cube orientation, and bending workability were evaluated. The results are shown in Table 4.
[0047]
[Table 3]
Figure 0004633994
[0048]
[Table 4]
Figure 0004633994
[0049]
As shown in Table 4, the test material No. No. 8 has a small amount of Si. Since No. 10 has a small amount of Mg, all have low strength and inferior BH properties. Test material No. No. 9 has a large amount of Si. No. 11 has a large amount of Mg, and the value of 0.7 Si% + Mg% exceeds 2.2%. Therefore, the strength is high, the degree of integration of the Cube orientation is low, and the bending workability is inferior.
[0050]
Since each of the test materials 12 to 16 has an excessive amount of Cu, Mn, Cr, V, and Zr, the degree of accumulation of the Cube orientation is low, and the bending workability is inferior.
[0051]
Example 2 and Comparative Example 2
Alloy B shown in Table 1 was DC casted, and the resulting ingot was cooled to 250 ° C. at a cooling rate shown in Table 5 after homogenization treatment at 550 ° C. for 5 h, and then the temperature shown in Table 5 And then hot-rolled to a thickness of 4.4 mm. The end temperature of hot rolling was 250 ° C. Furthermore, it cold-rolled and set it as the board of thickness 1mm. Only condition 26 was subjected to intermediate annealing at 400 ° C. for 2 hours after hot rolling.
[0052]
Thereafter, solution treatment was performed at 550 ° C. for 5 s, and quenched to 120 ° C. at a cooling rate of 30 ° C./s. 3 minutes after quenching, heat treatment was performed at 100 ° C. for 3 hours. About the aluminum alloy plate manufactured by the above process, the tensile performance, the BH property, the strength ratio of the Cube orientation, and the bending workability were evaluated in the same manner as in Example 1.
[0053]
Furthermore, as an evaluation of the ridging mark, a tensile test piece was taken in the 90 ° direction of rolling, and 10% tensile deformation was applied to determine the presence or absence of the ridging mark after electrodeposition coating.
These results are shown in Table 6.
[0054]
[Table 5]
Figure 0004633994
[0055]
[Table 6]
Figure 0004633994
[0056]
As shown in Table 6, the test material No. Nos. 17 to 21 are excellent in strength and BH properties, and the strength ratio of the Cube orientation is over 20, and has excellent limit bending characteristics.
[0057]
In contrast, test material No. No. 24 has a low cooling rate after the homogenization treatment, so that the degree of accumulation of the Cube orientation is low, and the bending workability is poor. Test material No. No. 25 has a high hot rolling temperature and a low cooling rate after the homogenization treatment, so that ridging marks are generated, the degree of accumulation of the Cube orientation is lowered, and the bending workability is inferior. Test material No. Since No. 26 was subjected to intermediate annealing, the degree of accumulation of the Cube orientation was lowered, and the bending workability was inferior.
[0058]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the aluminum alloy plate which has the outstanding bending workability which can perform flat hem processing, paint bake hardenability, and was excellent also in corrosion resistance, and its manufacturing method are provided. The aluminum alloy plate is suitably used as an automobile member having a complicated shape and a light weight, such as an automobile hood, a trunk lid, and a door that are hemmed.

Claims (8)

Si:0.5〜2.0%(質量%、以下同じ)、Mg:0.2〜1.5%を含有し、さらにTi:0.1%以下、B:50ppm以下のうち少なくとも1種を含有し、残部Alおよび不可避的不純物からなるアルミニウム合金の圧延板であって、形成された集合組織でのCube方位の強度比が38以上であり、15%引張変形後の180°曲げ加工における内側限界曲げ半径が0.2mm以下であることを特徴とする曲げ加工性および塗装焼付硬化性に優れたアルミニウム合金板。Si: 0.5 to 2.0% (mass%, the same shall apply hereinafter), Mg: 0.2 to 1.5%, Ti: 0.1% or less, B: at least one of 50 ppm or less An aluminum alloy rolled plate comprising the balance Al and inevitable impurities, the strength ratio of the Cube orientation in the formed texture is 38 or more , and in 180 ° bending after 15% tensile deformation An aluminum alloy plate excellent in bending workability and paint bake hardenability, characterized in that the inner limit bending radius is 0.2 mm or less . 前記アルミニウム合金が、Si:0.5〜2.0%、Mg:0.2〜1.5%を含有し、さらにTi:0.1%以下、B:50ppm以下のうち少なくとも1種を含有し、0.7Si%+Mg%≦2.2%を満足し、残部Alおよび不可避的不純物からなるアルミニウム合金であることを特徴とする請求項1記載の曲げ加工性および塗装焼付硬化性に優れたアルミニウム合金板。  The aluminum alloy contains Si: 0.5 to 2.0%, Mg: 0.2 to 1.5%, and further contains at least one of Ti: 0.1% or less and B: 50 ppm or less. 2. An aluminum alloy satisfying 0.7 Si% + Mg% ≦ 2.2% and comprising the balance Al and inevitable impurities, and having excellent bending workability and paint bake hardenability according to claim 1 Aluminum alloy plate. 前記アルミニウム合金板がさらにZn:0.5%以下(0%を含まず、以下同じ)を含有することを特徴とする請求項1または2に記載の曲げ加工性および塗装焼付硬化性に優れたアルミニウム合金板。  The aluminum alloy plate further contains Zn: 0.5% or less (excluding 0%, the same applies hereinafter), and excellent in bending workability and paint bake hardenability according to claim 1 or 2 Aluminum alloy plate. 前記アルミニウム合金板がさらにCu:1.0%以下を含有することを特徴とする請求項1〜3のいずれかに記載の曲げ加工性および塗装焼付硬化性に優れたアルミニウム合金板。  The aluminum alloy plate according to any one of claims 1 to 3, wherein the aluminum alloy plate further contains Cu: 1.0% or less. 前記アルミニウム合金板がさらにMn:1.0%以下、Cr:0.3%以下、V:0.2%以下、Zr:0.2%以下のうちの1種または2種以上を含有することを特徴とする請求項1〜4のいずれかに記載の曲げ加工性および塗装焼付硬化性に優れたアルミニウム合金板。  The aluminum alloy plate further contains one or more of Mn: 1.0% or less, Cr: 0.3% or less, V: 0.2% or less, Zr: 0.2% or less. An aluminum alloy plate excellent in bending workability and paint bake hardenability according to any one of claims 1 to 4. 請求項1〜5のいずれかに記載のアルミニウム合金板の製造方法であって、請求項1〜5のいずれかに記載の組成を有するアルミニウム合金の鋳塊を450℃以上の温度で均質化処理後、100℃/h以上の冷却速度で350℃未満の温度まで冷却し、さらに300〜500℃の温度に再加熱して圧延を開始する熱間圧延を行い、さらに冷間圧延した後、450℃以上の温度で溶体化処理を行い、溶体化処理後、120℃までを5℃/s以上の冷却速度で冷却する焼入れを行い、焼入れ後60分以内に40〜120℃の温度で50h以内の熱処理を行うことを特徴とする曲げ加工性および塗装焼付硬化性に優れたアルミニウム合金板の製造方法。  It is a manufacturing method of the aluminum alloy plate in any one of Claims 1-5, Comprising: The ingot of the aluminum alloy which has a composition in any one of Claims 1-5 is homogenized at the temperature of 450 degreeC or more. Thereafter, it is cooled to a temperature of less than 350 ° C. at a cooling rate of 100 ° C./h or more, and is further heated to a temperature of 300 to 500 ° C. to start rolling and further cold-rolled. Solution treatment is performed at a temperature of ℃ or higher, and after solution treatment, quenching is performed by cooling to 120 ℃ with a cooling rate of 5 ℃ / s or more, and within 60 minutes at a temperature of 40 to 120 ℃ within 60 minutes after quenching. A method for producing an aluminum alloy plate excellent in bending workability and paint bake hardenability, characterized by performing heat treatment. 請求項1〜5のいずれかに記載のアルミニウム合金板の製造方法であって、請求項1〜5のいずれかに記載の組成を有するアルミニウム合金の鋳塊を450℃以上の温度で均質化処理後、100℃/h以上の冷却速度で350℃未満の温度まで冷却し、さらに室温まで冷却し、ついで300〜500℃の温度に再加熱して圧延を開始する熱間圧延を行い、さらに冷間圧延した後、450℃以上の温度で溶体化処理を行い、溶体化処理後、120℃までを5℃/s以上の冷却速度で冷却する焼入れを行い、焼入れ後60分以内に40〜120℃の温度で50h以内の熱処理を行うことを特徴とする曲げ加工性および塗装焼付硬化性に優れたアルミニウム合金板の製造方法。  It is a manufacturing method of the aluminum alloy plate in any one of Claims 1-5, Comprising: The ingot of the aluminum alloy which has a composition in any one of Claims 1-5 is homogenized at the temperature of 450 degreeC or more. Then, it is cooled to a temperature of less than 350 ° C. at a cooling rate of 100 ° C./h or more, further cooled to room temperature, then re-heated to a temperature of 300 to 500 ° C. and subjected to hot rolling to start rolling, and further cooled. After the hot rolling, a solution treatment is performed at a temperature of 450 ° C. or higher, and after the solution treatment, quenching is performed by cooling to 120 ° C. at a cooling rate of 5 ° C./s or more, and 40 to 120 within 60 minutes after the quenching. A method for producing an aluminum alloy plate excellent in bending workability and paint bake hardenability, characterized by performing a heat treatment within 50 hours at a temperature of ° C. 前記熱間圧延の終了温度を300℃以下とすることを特徴とする請求項6または7記載の曲げ加工性および塗装焼付硬化性に優れたアルミニウム合金板の製造方法。The method for producing an aluminum alloy plate excellent in bending workability and paint bake hardenability according to claim 6 or 7, wherein an end temperature of the hot rolling is 300 ° C or lower.
JP2002077795A 2001-03-28 2002-03-20 Aluminum alloy plate excellent in bending workability and paint bake hardenability and manufacturing method Expired - Fee Related JP4633994B2 (en)

Priority Applications (20)

Application Number Priority Date Filing Date Title
JP2002077795A JP4633994B2 (en) 2002-03-20 2002-03-20 Aluminum alloy plate excellent in bending workability and paint bake hardenability and manufacturing method
CN2008100912011A CN101260491B (en) 2001-03-28 2002-03-26 Aluminum alloy sheet with excellent formability and paint bake hardenability, and method for production thereof
CA2440666A CA2440666C (en) 2001-03-28 2002-03-26 Aluminum alloy sheet with excellent formability and paint bake hardenability and method for production thereof
KR1020077028761A KR100833145B1 (en) 2001-03-28 2002-03-26 Method for producing aluminum alloy sheet with excellent bendability and paint bake hardenability
DE60239088T DE60239088D1 (en) 2001-03-28 2002-03-26 Aluminum alloy sheet with excellent ductility and bake hardenability, and manufacturing method therefor
CN2008100916008A CN101302592B (en) 2001-03-28 2002-03-26 Aluminum alloy sheet having excellent bending workability and hardenability in coating/baking, and production method thereof
EP08157601.9A EP1967598B2 (en) 2001-03-28 2002-03-26 Aluminum alloy sheet with excellent formability and paint bake hardenability and method for production thereof
EP08157604A EP1967599B1 (en) 2001-03-28 2002-03-26 Aluminum alloy sheet with excellent formability and paint bake hardenability and method for production thereof
KR1020077028759A KR100870164B1 (en) 2001-03-28 2002-03-26 Aluminum alloy sheet with excellent formability and paint bake hardenability
CA2712316A CA2712316C (en) 2001-03-28 2002-03-26 Aluminum alloy sheet with excellent formability and paint bake hardenability and method for production thereof
US10/468,971 US20040094249A1 (en) 2001-03-28 2002-03-26 Aluminum alloy sheet excellent in formability and hardenability during baking of coating and method for production thereof
KR1020077028760A KR100861036B1 (en) 2001-03-28 2002-03-26 Aluminum alloy sheet with excellent formability and paint bake hardenability
DE60236771T DE60236771D1 (en) 2001-03-28 2002-03-26 Aluminum alloy sheet with excellent formability and bake hardenability, and manufacturing method therefor
PCT/JP2002/002900 WO2002079533A1 (en) 2001-03-28 2002-03-26 Aluminum alloy sheet excellent in formability and hardenability during baking of coating and method for production thereof
EP20020705498 EP1375691A4 (en) 2001-03-28 2002-03-26 Aluminum alloy sheet excellent in formability and hardenability during baking of coating and method for production thereof
KR1020037012489A KR100831637B1 (en) 2001-03-28 2002-03-26 Aluminum alloy sheet having excellent formability and paint bake hardenability
CA2712356A CA2712356C (en) 2001-03-28 2002-03-26 Aluminum alloy sheet with excellent formability and paint bake hardenability and method for production thereof
US12/077,854 US20080178968A1 (en) 2001-03-28 2008-03-21 Aluminum alloy sheet with excellent formability and paint bake hardenability and method for production thereof
US12/077,862 US20080178973A1 (en) 2001-03-28 2008-03-21 Aluminum alloy sheet with excellent formability and paint bake hardenability and method for production thereof
US12/077,853 US20080178967A1 (en) 2001-03-28 2008-03-21 Aluminum alloy sheet with excellent formability and paint bake hardenability and method for production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002077795A JP4633994B2 (en) 2002-03-20 2002-03-20 Aluminum alloy plate excellent in bending workability and paint bake hardenability and manufacturing method

Publications (2)

Publication Number Publication Date
JP2003277870A JP2003277870A (en) 2003-10-02
JP4633994B2 true JP4633994B2 (en) 2011-02-16

Family

ID=29228120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002077795A Expired - Fee Related JP4633994B2 (en) 2001-03-28 2002-03-20 Aluminum alloy plate excellent in bending workability and paint bake hardenability and manufacturing method

Country Status (1)

Country Link
JP (1) JP4633994B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4499369B2 (en) * 2003-03-27 2010-07-07 株式会社神戸製鋼所 Al-Mg-Si-based alloy plate with excellent surface properties with reduced generation of ridging marks
JP5113318B2 (en) * 2004-04-13 2013-01-09 古河スカイ株式会社 Aluminum alloy plate for forming and method for producing the same
JP5059423B2 (en) * 2007-01-18 2012-10-24 株式会社神戸製鋼所 Aluminum alloy plate
JP5148930B2 (en) * 2007-06-11 2013-02-20 住友軽金属工業株式会社 Method for producing Al-Mg-Si aluminum alloy plate for press forming, and Al-Mg-Si aluminum alloy plate for press forming
JP5432439B2 (en) * 2007-06-27 2014-03-05 株式会社神戸製鋼所 Aluminum alloy sheet for warm forming
JP5820315B2 (en) * 2012-03-08 2015-11-24 株式会社神戸製鋼所 Aluminum alloy sheet with excellent hemmability and bake hardenability after aging at room temperature
JP6301095B2 (en) * 2013-09-27 2018-03-28 株式会社Uacj Al-Mg-Si aluminum alloy plate for automobile panel and method for producing the same
JP6208389B1 (en) 2016-07-14 2017-10-04 株式会社Uacj Method for producing rolled aluminum alloy material for forming comprising aluminum alloy having excellent bending workability and ridging resistance

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3490955A (en) * 1967-01-23 1970-01-20 Olin Mathieson Aluminum base alloys and process for obtaining same
JPH06136478A (en) * 1992-10-23 1994-05-17 Kobe Steel Ltd Baking hardening type al alloy sheet excellent in formability and its production
JP2823797B2 (en) * 1994-02-16 1998-11-11 住友軽金属工業株式会社 Manufacturing method of aluminum alloy sheet for forming
JP2000239811A (en) * 1999-02-24 2000-09-05 Kobe Steel Ltd Manufacture for aluminum alloy sheet excellent in formability

Also Published As

Publication number Publication date
JP2003277870A (en) 2003-10-02

Similar Documents

Publication Publication Date Title
EP1967598B1 (en) Aluminum alloy sheet with excellent formability and paint bake hardenability and method for production thereof
CN102498229B (en) Almgsi strip for applications having high plasticity requirements
JP5148930B2 (en) Method for producing Al-Mg-Si aluminum alloy plate for press forming, and Al-Mg-Si aluminum alloy plate for press forming
CN103842550A (en) Method for producing almgsi aluminum strip
JPH05263203A (en) Production of rolled sheet of aluminum alloy for forming
JP3590685B2 (en) Manufacturing method of aluminum alloy sheet for automobile outer panel
JP3563323B2 (en) Aluminum alloy plate excellent in thread rust resistance and method for producing the same
JP4633993B2 (en) Aluminum alloy plate excellent in bending workability and paint bake hardenability and manufacturing method
JP4633994B2 (en) Aluminum alloy plate excellent in bending workability and paint bake hardenability and manufacturing method
JP2006257475A (en) Al-Mg-Si ALLOY SHEET SUPERIOR IN PRESS FORMABILITY, MANUFACTURING METHOD THEREFOR AND AUTOMOTIVE SKIN PLATE OBTAINED FROM THE SHEET MATERIAL
JP2006241548A (en) Al-Mg-Si ALLOY SHEET SUPERIOR IN BENDABILITY, MANUFACTURING METHOD THEREFOR, AND AUTOMOTIVE SKIN PLATE OBTAINED FROM THE SHEET
JP2003105471A (en) Aluminum alloy sheet, and production method therefor
JP4248796B2 (en) Aluminum alloy plate excellent in bending workability and corrosion resistance and method for producing the same
JP3740086B2 (en) A method for producing an aluminum alloy plate that is excellent in hemmability after aging at room temperature and is hemmed after stretch forming
JP2003105472A (en) Aluminum alloy sheet, and production method therefor
JP2000239811A (en) Manufacture for aluminum alloy sheet excellent in formability
JP2006307241A (en) Al-Mg-Si ALLOY SHEET SUPERIOR IN DEEP-DRAWABILITY AND MANUFACTURING METHOD THEREFOR
JP2004238657A (en) Method of manufacturing aluminum alloy plate for outer panel
JP3749627B2 (en) Al alloy plate with excellent press formability
JP2004124213A (en) Aluminum alloy sheet for panel forming, and its manufacturing method
JPH0257655A (en) Foamable aluminum alloy having excellent surface treating characteristics and its manufacture
JP4175818B2 (en) Aluminum alloy plate excellent in formability and paint bake hardenability and method for producing the same
JP2001262265A (en) Hot rolling stock of high formability aluminum alloy sheet
JP2678404B2 (en) Manufacturing method of aluminum alloy sheet for forming
JPH0247234A (en) High strength aluminum alloy for forming having suppressed age hardenability at room temperature and its manufacture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080428

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101025

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101118

R150 Certificate of patent or registration of utility model

Ref document number: 4633994

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees