JP2003277870A - Aluminum alloy sheet having excellent bending workability and hardenability in coating/baking, and production method thereof - Google Patents

Aluminum alloy sheet having excellent bending workability and hardenability in coating/baking, and production method thereof

Info

Publication number
JP2003277870A
JP2003277870A JP2002077795A JP2002077795A JP2003277870A JP 2003277870 A JP2003277870 A JP 2003277870A JP 2002077795 A JP2002077795 A JP 2002077795A JP 2002077795 A JP2002077795 A JP 2002077795A JP 2003277870 A JP2003277870 A JP 2003277870A
Authority
JP
Japan
Prior art keywords
aluminum alloy
temperature
bending workability
less
alloy sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002077795A
Other languages
Japanese (ja)
Other versions
JP4633994B2 (en
Inventor
Hidetoshi Uchida
秀俊 内田
Yoshikazu Koseki
好和 小関
Tadashi Minoda
正 箕田
Mineo Asano
峰生 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2002077795A priority Critical patent/JP4633994B2/en
Application filed by Sumitomo Light Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to PCT/JP2002/002900 priority patent/WO2002079533A1/en
Priority to US10/468,971 priority patent/US20040094249A1/en
Priority to CN2008100916008A priority patent/CN101302592B/en
Priority to EP20020705498 priority patent/EP1375691A4/en
Priority to CN2008100912011A priority patent/CN101260491B/en
Priority to KR1020037012489A priority patent/KR100831637B1/en
Priority to DE60236771T priority patent/DE60236771D1/en
Priority to CA2440666A priority patent/CA2440666C/en
Priority to KR1020077028760A priority patent/KR100861036B1/en
Priority to DE60239088T priority patent/DE60239088D1/en
Priority to EP08157604A priority patent/EP1967599B1/en
Priority to CA2712356A priority patent/CA2712356C/en
Priority to CA2712316A priority patent/CA2712316C/en
Priority to KR1020077028759A priority patent/KR100870164B1/en
Priority to EP08157601.9A priority patent/EP1967598B2/en
Priority to KR1020077028761A priority patent/KR100833145B1/en
Publication of JP2003277870A publication Critical patent/JP2003277870A/en
Priority to US12/077,862 priority patent/US20080178973A1/en
Priority to US12/077,854 priority patent/US20080178968A1/en
Priority to US12/077,853 priority patent/US20080178967A1/en
Publication of JP4633994B2 publication Critical patent/JP4633994B2/en
Application granted granted Critical
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an aluminum alloy sheet which has excellent bending workability capable of flatting hem working, has excellent hardenability in coating/baking, and further has excellent corrosion resistance, and to provide a production method thereof. <P>SOLUTION: The aluminum alloy sheet comprises 0.5 to 2.0% Si and 0.2 to 1.5% Mg, and satisfying 0.7Si%+Mg%≤2.2%, and the balance Al with impurities. Alternatively, the aluminum alloy sheet comprises one or more kinds of metals selected from ≤0.5% Zn, ≤1.0% Cu, ≤1.0% Mn, ≤0.3% Cr, ≤0.2% V, ≤0.2% Zr, ≤0.1% Ti and ≤50 ppm B in addition to the composition of the above aluminum alloy. The aluminum alloy sheet has the characteristics that the intensity ratio in the Cube orientation of the texture is ≥20. A cast ingot is homogenized at ≥450°C, is thereafter cooled to a prescribed temperature of <350°C at a cooling rate of ≥100°C/h, and is hot-rolled at the same prescribed temperature. The sheet is further cold-rolled, and is subsequently solution-treated and quenched at ≥500°C, so that the aluminum alloy sheet is produced. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、曲げ加工性および
塗装焼付硬化性に優れ、とくに自動車用外板に適したア
ルミニウム合金板およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aluminum alloy sheet which is excellent in bending workability and paint bake hardenability and is particularly suitable for an automobile outer panel, and a method for producing the same.

【0002】[0002]

【従来の技術】地球環境問題である温暖化対策として、
自動車の燃費向上のために、軽量化を目的として自動車
部品用材料は従来の鋼鈑からアルミニウム合金板置換さ
れ使用されている。その中でも自動車外板に各種アルミ
ニウム合金が開発され、実用化されている。
[Background Art] As a measure against global warming, which is a global environmental problem,
In order to improve the fuel efficiency of automobiles, the material for automobile parts is used by replacing the conventional steel plate with an aluminum alloy plate for the purpose of weight reduction. Among them, various aluminum alloys have been developed and put to practical use for automobile outer panels.

【0003】自動車用外板としては、1)成形性、2)
形状凍結性(プレス加工時にプレス型の形状が正確に出
ること)、3)耐デント性、4)耐食性 5)製品面質
等が要求されている。これらの特性の中で形状凍結性
は、耐力が小さいほど良好となるのに対して、耐デント
性は耐力が大きいほど良好となり、耐力に関して両者は
相反する。この相反する課題の解決のために、6000
系(Al-Mg-Si系)アルミニウム合金においては、形状凍
結性に優れた耐力の低い段階でプレス成形を行い、その
後塗装焼付時に硬化させて耐力を高め、耐デント性を向
上させるという手法が行われている(特開平4-147951号
公報、特開平5-247610号公報、特開平5-279822号公報、
特開平6-17208 号公報)。
For automobile outer panels, 1) formability, 2)
Freezing of the shape (the shape of the press die should appear accurately during pressing), 3) Dent resistance, 4) Corrosion resistance 5) Product surface quality, etc. are required. Among these characteristics, the shape fixability becomes better as the yield strength becomes smaller, whereas the dent resistance becomes better as the yield strength becomes larger, and both sides are in conflict with each other. To solve these conflicting issues,
In the case of Al-Mg-Si based aluminum alloys, a method of performing press forming at a stage where the proof strength is excellent and low yielding strength, and then hardening during coating baking to increase the yield strength and improve the dent resistance Has been carried out (JP-A-4-147951, JP-A-5-247610, JP-A-5-279822,
JP-A-6-17208).

【0004】耐食性や製品面質が外板には厳しく要求さ
れる部位、とくにボンネットアウターでは、プレス加工
後、肌荒れやリジングマーク(塑性加工によって発生す
る圧延方向に長い筋状欠陥)が生じ製品面質が劣ること
がある。この様な製品面質は、化学成分や製造条件の調
整、管理により解決が図られており、例えば、リジング
マークの抑制のために、500℃以上の温度で均質化処
理した後、450〜350℃まで冷却し、この温度域で
熱間圧延を開始することにより粗大析出物の生成を防止
することは提案されている(特開平7-228956号公報)
が、この手法においては、Mg2Si の析出、凝集化が起こ
ることがあり、そのため、溶体化処理が高温で長時間必
要となり、工業的には能率を低下させるという問題があ
る。
Corrosion resistance and product surface quality are strictly required for the outer plate, especially in the bonnet outer, after press working, rough skin and ridging marks (long streaky defects in the rolling direction caused by plastic working) occur. May be of poor quality. Such product quality is solved by adjusting and controlling chemical components and manufacturing conditions. For example, in order to suppress ridging marks, after homogenizing at a temperature of 500 ° C. or higher, 450-350. It has been proposed to prevent the formation of coarse precipitates by cooling to ℃ and starting hot rolling in this temperature range (JP-A-7-228956).
However, in this method, precipitation and agglomeration of Mg 2 Si may occur, so that solution treatment is required at high temperature for a long time, and there is a problem in that efficiency is reduced industrially.

【0005】また、アウタ−用材料は、インナーとアセ
ンブルする際にヘム加工が行なわれ、フラットヘムが可
能であることが望まれているが、アルミニウム合金は、
鋼鈑に比べ曲げ加工性に劣り、さらに従来の6000系
アルミニウム合金は、5000系アルミニウム合金より
曲げ加工性が劣り、プレス加工度が大きな部位では、フ
ラットヘムができないという課題がある。さらに成形形
状が厳しかったり、寸法精度の厳しい部位ではフラット
ヘム以上の曲げ(内側曲げ半径が0.5mm より小さい加
工)が望まれている。
Further, it is desired that the outer material is hem-processed when it is assembled with the inner, so that a flat hem is possible.
Bending workability is inferior to that of steel plate, and further, the conventional 6000 series aluminum alloy is inferior to the 5000 series aluminum alloy in bending workability, and there is a problem that flat hem cannot be formed in a portion having a large degree of press working. Furthermore, bending in flat hem or more (machining with an inner bending radius of less than 0.5 mm) is desired in areas where the forming shape is strict or where dimensional accuracy is strict.

【0006】発明者らは、6000系(Al−Mg−S
i系)アルミニウム合金材の成形性、とくに曲げ加工性
に及ぼす要因について、試験、検討を重ねた結果、曲げ
加工性は集合組織のCube方位{100}〈001〉
の強度比(ランダム比)と相関があり、曲げ加工性を向
上させるためには、Cube方位の集積度の高い集合組
織とすることが必要であることを見出し、そのために
は、6000系アルミニウム合金の主要添加元素である
Si量、Mg量の最適化を図り、且つ製造工程の最適化、と
くに均質化処理後の冷却速度を適正に制御することが重
要であることを知見した。
The inventors of the present invention have found that the 6000 series (Al-Mg-S
As a result of repeated tests and examinations regarding the factors that affect the formability of the (i) aluminum alloy material, in particular, the bending workability, the bending workability shows that the Cube orientation of the texture is {100} <001>.
It has been found that a texture having a high degree of integration of Cube orientations is required to improve bending workability, which is related to the strength ratio (random ratio) of 6000 series aluminum alloy. Is the main additive element of
We have found that it is important to optimize the amounts of Si and Mg and to optimize the manufacturing process, especially to control the cooling rate after the homogenization treatment properly.

【0007】[0007]

【発明が解決しようとする課題】本発明は、6000系
(Al−Mg−Si系)アルミニウム合金板を自動車用
外板として適用する場合における上記従来の問題点を解
消するために、上記の知見をベースとして、さらに試
験、検討を行った結果としてなされたものであり、その
目的は、フラットヘム加工が可能な優れた曲げ加工性を
そなえ、耐デント性の問題を解決し得る優れた塗装焼付
硬化性を有し、耐食性にも優れたアルミニウム合金板お
よびその製造方法を提供することにある。
DISCLOSURE OF THE INVENTION The present invention has been made in order to solve the above-mentioned conventional problems in the case of applying a 6000 series (Al-Mg-Si series) aluminum alloy plate as an automobile outer plate. It was made as a result of further tests and examinations based on the above, and the purpose is to have excellent bending workability capable of flat hem processing and to solve the problem of dent resistance. An object of the present invention is to provide an aluminum alloy plate having curability and excellent corrosion resistance and a method for producing the same.

【0008】[0008]

【課題を解決するための手段】上記の目的を達成するた
めの本発明の請求項1による曲げ加工性および塗装焼付
硬化性に優れたアルミニウム合金板は、Al−Mg−S
i系アルミニウム合金の圧延板であって、形成された集
合組織でのCube方位の強度比が20以上であること
を特徴とする。
An aluminum alloy sheet excellent in bending workability and paint bake hardenability according to claim 1 of the present invention for achieving the above object is formed of Al-Mg-S.
A rolled plate of an i-based aluminum alloy, characterized in that the formed texture has a Cube orientation strength ratio of 20 or more.

【0009】請求項2による曲げ加工性および塗装焼付
硬化性に優れたアルミニウム合金板は、請求項1におい
て、Al−Mg−Si系アルミニウム合金が、Si:0.
5 %〜2.0 %(質量%、以下同じ)、Mg:0.2 〜1.5
%を含有し、0.7Si %+Mg%≦2.2 %を満足し、残部Al
および不純物からなるアルミニウム合金であることを特
徴とする。
The aluminum alloy plate excellent in bending workability and paint bake hardenability according to claim 2 is the aluminum alloy plate according to claim 1, wherein the Al--Mg--Si based aluminum alloy is Si: 0.
5% to 2.0% (mass%, the same below), Mg: 0.2 to 1.5
%, 0.7Si% + Mg% ≤ 2.2%, balance Al
And an aluminum alloy containing impurities.

【0010】請求項3による曲げ加工性および塗装焼付
け硬化性に優れたアルミニウム合金板は、請求項1また
は2において、アルミニウム合金板がさらに Zn:0.5
%以下を含有することを特徴とする。
The aluminum alloy plate excellent in bending workability and paint bake hardenability according to claim 3 is the aluminum alloy plate according to claim 1 or 2, further comprising: Zn: 0.5
% Or less is contained.

【0011】請求項4による曲げ加工性および塗装焼付
け硬化性に優れたアルミニウム合金板は、請求項1〜3
にいずれかにおいて、アルミニウム合金板がさらに Cu
:1.0 %以下を含有することを特徴とする。
An aluminum alloy plate excellent in bending workability and paint bake hardenability according to claim 4 is claimed in claims 1 to 3.
In either case, the aluminum alloy plate is further Cu
: 1.0% or less is contained.

【0012】請求項5による曲げ加工性および塗装焼付
け硬化性に優れたアルミニウム合金板は、請求項1〜4
のいずれかにおいて、アルミニウム合金板がさらにM
n:1.0 %以下、Cr:0.3 %以下、V:0.2 %以下、
Zr:0.2 %以下のうちの1種または2種以上を含有す
ることを特徴とする。
An aluminum alloy plate excellent in bending workability and paint bake hardenability according to claim 5 is provided by claims 1 to 4.
In any of the above, the aluminum alloy plate is further M
n: 1.0% or less, Cr: 0.3% or less, V: 0.2% or less,
Zr: It is characterized by containing one or more of 0.2% or less.

【0013】請求項6による曲げ加工性および塗装焼付
け硬化性に優れたアルミニウム合金板は、請求項1〜5
のいずれかにおいて、アルミニウム合金板がさらに T
i:0.1 %以下、B :50ppm以下のうち少なくとも1
種を含有することを特徴とする。
An aluminum alloy plate excellent in bending workability and paint bake hardenability according to claim 6 is provided by claim 1.
In any of the
i: 0.1% or less, B: 50ppm or less, at least 1
It is characterized by containing a seed.

【0014】本発明の目的を達成するための本発明の請
求項7による曲げ加工性および焼付け硬化性に優れたア
ルミニウム合金板の製造方法は、請求項1〜6のいずれ
かに記載のアルミニウム合金板の製造方法であって、請
求項1〜6のいずれかに記載の組成を有するアルミニウ
ム合金の鋳塊を450 ℃以上の温度で均質化処理後、100
℃/h以上の冷却速度で350 ℃未満の所定温度まで冷却
し、該所定温度で熱間圧延を行い、さらに冷間圧延した
後、450 ℃以上の温度で溶体化処理、焼入れを行うこと
を特徴とする。
A method for producing an aluminum alloy sheet excellent in bending workability and bake hardenability according to claim 7 of the present invention for achieving the object of the present invention is the aluminum alloy according to any one of claims 1 to 6. A method for producing a plate, which comprises homogenizing an ingot of an aluminum alloy having the composition according to any one of claims 1 to 6 at a temperature of 450 ° C or higher,
Cooling to a predetermined temperature of less than 350 ° C at a cooling rate of ° C / h or more, hot rolling at the predetermined temperature, cold rolling, and then solution treatment and quenching at a temperature of 450 ° C or more. Characterize.

【0015】請求項8による曲げ加工性および焼付け硬
化性に優れたアルミニウム合金板の製造方法は、請求項
1〜6のいずれかに記載のアルミニウム合金板の製造方
法であって、請求項1〜6のいずれかに記載の組成を有
するアルミニウム合金の鋳塊を450 ℃以上の温度で均質
化処理後、100 ℃/ h以上の冷却速度で350 ℃未満の温
度まで冷却し、さらに300 〜500 ℃の温度に再加熱して
圧延を開始する熱間圧延を行い、さらに冷間圧延した
後、450 ℃以上の温度で溶体化処理、焼入れを行うこと
を特徴とする。
A method for producing an aluminum alloy sheet excellent in bending workability and bake hardenability according to claim 8 is the method for producing an aluminum alloy sheet according to any one of claims 1 to 6, wherein The ingot of the aluminum alloy having the composition according to any one of 6 above is homogenized at a temperature of 450 ° C or higher, cooled to a temperature of less than 350 ° C at a cooling rate of 100 ° C / h or more, and further 300 to 500 ° C. It is characterized in that hot rolling is performed by reheating to the temperature of 2 to start rolling, further cold rolling is performed, and then solution treatment and quenching are performed at a temperature of 450 ° C. or higher.

【0016】請求項9による曲げ加工性および焼付け硬
化性に優れたアルミニウム合金板の製造方法は、請求項
1〜6のいずれかに記載のアルミニウム合金板の製造方
法であって、請求項1〜6のいずれかに記載の組成を有
するアルミニウム合金の鋳塊を450 ℃以上の温度で均質
化処理後、100 ℃/ h以上の冷却速度で350 ℃未満の温
度まで冷却し、さらに室温まで冷却し、ついで300 〜50
0 ℃の温度に再加熱して圧延を開始する熱間圧延を行
い、さらに冷間圧延した後、450 ℃以上の温度で溶体化
処理、焼入れを行うことを特徴とする。
A method for producing an aluminum alloy sheet excellent in bending workability and bake hardenability according to claim 9 is the method for producing an aluminum alloy sheet according to any one of claims 1 to 6, wherein The aluminum alloy ingot having the composition according to any of 6 above is homogenized at a temperature of 450 ° C or higher, cooled to a temperature of less than 350 ° C at a cooling rate of 100 ° C / h or more, and further cooled to room temperature. , Then 300-50
It is characterized in that hot rolling is performed to reheat to a temperature of 0 ° C. to start rolling, cold rolling is further performed, and then solution treatment and quenching are performed at a temperature of 450 ° C. or higher.

【0017】請求項10による曲げ加工性および焼付け
硬化性に優れたアルミニウム合金の製造方法は、請求項
7〜9のいずれかにおいて、熱間圧延の終了温度を300
℃以下とすることを特徴とする。
According to a tenth aspect of the present invention, in the method for producing an aluminum alloy excellent in bending workability and bake hardenability, the hot rolling finish temperature is 300.
It is characterized in that the temperature is below ℃.

【0018】請求項11による曲げ加工性および焼付け
硬化性に優れたアルミニウム合金板の製造方法は、請求
項7〜10のいずれかにおいて、溶体化処理後、120 ℃
までを5 ℃/ s以上の冷却速度で冷却する焼入れを行
い、焼入れ後60分以内に40〜120 ℃の温度で50h以内の
熱処理を行うことを特徴とする。
A method for producing an aluminum alloy sheet excellent in bending workability and bake hardenability according to claim 11 is the method according to any one of claims 7 to 10, which is 120 ° C. after solution treatment.
It is characterized in that quenching is performed at a cooling rate of 5 ° C / s or more, and heat treatment is performed within 60 minutes after quenching at a temperature of 40 to 120 ° C for 50 hours or less.

【0019】[0019]

【発明の実施の形態】本発明のAl−Mg−Si系合金
板における合金成分の意義および限定理由について説明
する。Si:強度および高BH性を得るために必要で、
Mg-Si 系化合物を形成して強度を高めるよう機能する。
好ましい含有量は0.5 〜2.0 %の範囲であり、0.5 %未
満では塗装焼付時の加熱で十分な強度が得らず、さらに
成形性が劣ることがあり、また、2.0 %を越えると、プ
レス加工時の耐力が高く、成形性及び形状凍結性が劣
り、塗装後の耐食性も劣化する。さらに好ましい含有量
は0.8 〜1.2 %の範囲である。
BEST MODE FOR CARRYING OUT THE INVENTION The meanings and reasons for limitation of alloy components in the Al-Mg-Si alloy sheet of the present invention will be described. Si: Necessary for obtaining strength and high BH property,
It functions to form Mg-Si compounds and increase strength.
The preferable content is in the range of 0.5 to 2.0%. If the content is less than 0.5%, sufficient strength may not be obtained by heating during coating baking, and the formability may be deteriorated. Yield strength is high, moldability and shape fixability are poor, and corrosion resistance after coating is also deteriorated. A more preferable content is in the range of 0.8 to 1.2%.

【0020】Mg:Siと同様に強度を高めるよう機能
する。好ましい含有量は0.2 〜1.5%の範囲であり、0.2
%未満では塗装焼付時の加熱で十分な強度が得られな
い。また、1.5 %を越えると、溶体化処理後もしくは最
終熱処理完了後の耐力が高く成形性及び形状凍結性が劣
る。さらに好ましい含有量は、0.3 〜0.7 %の範囲であ
る。
Like Mg: Si, it functions to increase strength. The preferred content is in the range of 0.2-1.5%, 0.2
If it is less than%, sufficient strength cannot be obtained by heating during baking of the coating. On the other hand, if it exceeds 1.5%, the yield strength after solution treatment or after completion of the final heat treatment is high and the formability and shape fixability are poor. A more preferable content is in the range of 0.3 to 0.7%.

【0021】本発明においては、主要成分のSi量とM
g量との関係を0.7Si %+Mg%≦2.2 %とすることが重
要であり、この関係を満足するMgおよびSiの含有で、溶
体化処理後、集合組織が形成され、集合組織のCube
方位の強度比が大きくなり、適正な強度が得られ、曲げ
加工性が良好となる。さらに好ましいMgおよびSi量の関
係は、0.7Si %+Mg%≦1.8 %である。
In the present invention, the amount of Si as the main component and M
It is important to set the relationship with the g amount to be 0.7Si% + Mg% ≦ 2.2%. With the content of Mg and Si satisfying this relationship, a texture is formed after the solution treatment, and the Cube of the texture is formed.
The strength ratio of the azimuth is increased, proper strength is obtained, and bending workability is improved. A more preferable relationship between the amounts of Mg and Si is 0.7Si% + Mg% ≦ 1.8%.

【0022】Zn:表面処理時のりん酸亜鉛処理性を向
上させるが、好ましい含有量は0.5%以下の範囲であ
り、0.5 %を越えると耐食性を劣化させる。さらに好ま
しくは、0.1 〜0.3 %の範囲で添加する。
Zn: Improves zinc phosphate treatability during surface treatment, but the preferable content is in the range of 0.5% or less, and if it exceeds 0.5%, corrosion resistance deteriorates. More preferably, it is added within the range of 0.1 to 0.3%.

【0023】Cu:強度、成形性を向上させる。好まし
い含有量は1.0 %以下であり、0.1%を越えると耐食性
を劣化させる。さらに好ましくは、0.3 〜0.8 %の範囲
で添加される。
Cu: Improves strength and formability. The preferable content is 1.0% or less, and if it exceeds 0.1%, the corrosion resistance is deteriorated. More preferably, it is added in the range of 0.3 to 0.8%.

【0024】Mn、Cr、V、Zr:強度を向上し、結
晶粒を微細化して成形加工時の肌荒れを防止するよう機
能する。好ましい含有量は、Mn0.3 %以下、Cr0.3 %
以下、V0.2 %以下およびZr0.15%以下の範囲であり、
それぞれ上限を越えると、粗大な金属間化合物が生成し
て成形性が劣化する。さらに好ましくは、Mn:0.05〜
0.15%、Cr:0.05〜0.15%、V:0.05〜0.15%、Zr:0.
05〜0.12%の範囲で添加する。
Mn, Cr, V, Zr: Improves strength and makes crystal grains finer to prevent roughening of the surface during molding. The preferred contents are Mn 0.3% or less and Cr 0.3%
Below V0.2% and Zr0.15% range,
If the respective upper limits are exceeded, a coarse intermetallic compound is produced and the formability deteriorates. More preferably, Mn: 0.05-
0.15%, Cr: 0.05 to 0.15%, V: 0.05 to 0.15%, Zr: 0.
Add in the range of 05-0.12%.

【0025】Ti、B:鋳造組織を微細化し、成形性が
向上させる。好ましい含有量は、Ti0.1 %以下、B50
ppm 以下の範囲であり、それぞれ上限を越えて含有する
と、粗大な金属間化合物が増加して成形性が低下する。
なお、その他不純物として、Feを0.5 %以下、好ましく
は0.3 %以下に規制することが望ましい。
Ti, B: The cast structure is refined to improve the formability. The preferred content is Ti 0.1% or less, B50
The content is in the range of ppm or less, and when the content of each exceeds the upper limit, coarse intermetallic compounds increase and the formability decreases.
As other impurities, it is desirable to regulate Fe to 0.5% or less, preferably 0.3% or less.

【0026】つぎに本発明のアルミニウム合金板の製造
工程について説明する。均質化処理条件:450 ℃以上の
温度で行うことが必要であり、加熱温度が450℃未満で
は、鋳塊偏析の除去や均質化が不十分で、強度に寄与す
るMg2Si 成分の固溶が不十分となり、成形性が劣ること
がある。
Next, the manufacturing process of the aluminum alloy plate of the present invention will be described. Homogenization condition: It is necessary to perform at a temperature of 450 ° C or higher. If the heating temperature is lower than 450 ° C, the ingot ingot segregation and homogenization are insufficient, and the solid solution of the Mg 2 Si component that contributes to the strength is achieved. May be insufficient, resulting in poor moldability.

【0027】均質化処理後の冷却:冷却速度を100 ℃/h
以上、より好ましくは、300 ℃/h以上の冷却速度で冷却
とすることにより良好な特性が得られる。冷却速度を早
めるためには大がかりな設備が必要とすることから、実
用上は300 〜1000℃/hで管理することが望ましい。冷却
速度が遅いとMg-Si 系化合物が析出し、凝集化する。従
来の冷却方法では、大型スラブの場合、冷却速度は30℃
/ h程度であり、このような低い冷却速度では、冷却中
にMg-Si 系化合物が析出、凝集粗大化し、Cube方位
の大きな材料を得ることはできない。粗大な析出物とな
ると溶体化処理時の再結晶が抑制され、Cube方位の
集積度が低くなる。
Cooling after homogenization treatment: Cooling rate is 100 ° C./h
As described above, more preferable characteristics can be obtained by cooling at a cooling rate of 300 ° C./h or more. Since large-scale equipment is required to increase the cooling rate, it is desirable to control at 300-1000 ° C / h for practical use. If the cooling rate is slow, Mg-Si compounds will precipitate and agglomerate. With the conventional cooling method, the cooling rate is 30 ° C for large slabs.
/ h, and at such a low cooling rate, the Mg-Si 2 -based compound is precipitated and agglomerated and coarsened during cooling, and a material having a large Cube orientation cannot be obtained. If it becomes a coarse precipitate, recrystallization during solution treatment is suppressed, and the degree of integration of Cube orientation becomes low.

【0028】均質化処理後の冷却は、350 ℃未満の温度
域までを100 ℃/ ℃以上、好ましくは300 ℃/ ℃以上の
冷却速度で冷却する必要があり、部分的でも350 ℃以上
の場所があると特性に影響する。このため、全体が250
℃以下になるまで上記の速度で冷却するのが、さらに好
ましい。均質化処理された鋳塊の冷却方法は、水冷、フ
ァン冷却、ミスト冷却、ヒートシンク接触など、必要冷
却速度が得られるものであればよく、とくに限定されな
い。
For the cooling after the homogenization treatment, it is necessary to cool to a temperature range of less than 350 ° C. at a cooling rate of 100 ° C./° C. or higher, preferably 300 ° C./° C. or higher, and even in a partial location of 350 ° C. or higher If there is, it affects the characteristics. Therefore, the total is 250
It is more preferable to cool at the above rate until the temperature becomes not higher than 0 ° C. The method for cooling the homogenized ingot is not particularly limited as long as it can obtain the required cooling rate, such as water cooling, fan cooling, mist cooling, and heat sink contact.

【0029】冷却の開始温度は、必ずしも均質化処理温
度である必要はなく、析出が顕著に起こらない温度まで
徐冷した後、100 ℃/h以上の冷却速度での冷却を開始し
ても、同様の効果を得ることができる。例えば、500 ℃
以上の温度で均質化処理を行った場合には、500 ℃まで
の冷却は遅くてもよい。
The starting temperature of cooling does not necessarily have to be the homogenizing treatment temperature, and even after gradually cooling to a temperature at which precipitation does not occur remarkably, cooling at a cooling rate of 100 ° C./h or more is started. The same effect can be obtained. For example, 500 ° C
When the homogenization treatment is performed at the above temperature, cooling to 500 ° C may be slow.

【0030】熱間圧延:熱間圧延は、鋳塊を均質化処理
温度から350 ℃未満の所定温度まで冷却し、当該所定温
度で開始する。または、350 ℃未満の温度まで冷却し、
350〜500 ℃の温度に再加熱して熱間圧延を開始するこ
ともできる。300 ℃未満の温度まで冷却し、さらに室温
まで冷却した後、300 〜500 ℃の温度に再加熱して熱間
圧延を開始してもよい。
Hot rolling: In hot rolling, the ingot is cooled from the homogenization treatment temperature to a predetermined temperature of less than 350 ° C. and started at the predetermined temperature. Alternatively, cool to a temperature below 350 ° C,
It is also possible to reheat to a temperature of 350-500 ° C to start hot rolling. The hot rolling may be started by cooling to a temperature of less than 300 ° C, further cooling to room temperature, and then reheating to a temperature of 300 to 500 ° C.

【0031】熱延開始温度が300 ℃以下では、変形抵抗
が大きくなり、圧延能率が悪化するため好ましくない。
500 ℃越えると圧延中の結晶粒が粗大化し、リジングマ
ークが発生し易い材料となるため、圧延開始温度は300
〜500 ℃に規制する必要がある。変形抵抗や加工組織の
均一性を考慮すると、圧延開始温度は380 〜450 ℃が好
ましい。
When the hot rolling start temperature is 300 ° C. or lower, the deformation resistance becomes large and the rolling efficiency deteriorates, which is not preferable.
If the temperature exceeds 500 ° C, the crystal grains during rolling become coarse and the material tends to generate ridging marks.
It is necessary to regulate to ~ 500 ° C. Considering the deformation resistance and the uniformity of the worked structure, the rolling start temperature is preferably 380 to 450 ° C.

【0032】熱延終了温度が300 ℃を越えると、Mg-Si
系化合物の析出が起こり易く、成形性が低下し易いとと
もに再結晶粒が粗大となり、リジングマークの原因とな
ることがあるため、熱間圧延の終了温度は300 ℃以下と
するのが望ましく、熱間圧延時の材料の変形抵抗、クー
ラントによるオイルステン残留などを考慮すると200℃
以上とするのが好ましい。
When the hot rolling end temperature exceeds 300 ° C., Mg-Si
Precipitation of the system compound is likely to occur, formability is likely to decrease, and recrystallized grains become coarse, which may cause ridging marks.Therefore, it is desirable that the end temperature of hot rolling be 300 ° C or less. 200 ° C considering the deformation resistance of the material during hot rolling and oil stain retention due to coolant
The above is preferable.

【0033】溶体化処理:好ましい溶体化処理温度は45
0 ℃以上である。450 ℃未満では、Mg−Si系析出物
の固溶が不十分となり十分な強度、成形性が得られない
か、必要な強度、成形性を得るために、非常に長時間の
熱処理が必要となり工業的に好ましくない。溶体化処理
時間は、強度が得られる範囲で行われればよく、とくに
限定されないが、工業的には通常120 s以内の保持が一
般的である。
Solution heat treatment: Preferred solution heat treatment temperature is 45
It is 0 ° C or higher. If the temperature is lower than 450 ° C, the solid solution of Mg-Si-based precipitates becomes insufficient and sufficient strength and formability cannot be obtained, or a very long heat treatment is required to obtain the required strength and formability. Not industrially preferable. The solution heat treatment time is not particularly limited as long as it is performed within a range in which strength is obtained, but industrially it is generally maintained within 120 s.

【0034】焼入時の冷却速度:溶体化処理温度から12
0 ℃以下までを5 ℃/s以上で冷却することが必要でであ
り、10℃/s以上の冷却速度で冷却するのが望ましい。焼
入れ速度が遅すぎると溶出元素の析出が起こり、強度、
BH性、成形性が劣化するとともに耐食性も低下する。
Cooling rate during quenching: 12 from solution treatment temperature
It is necessary to cool down to 0 ° C or less at 5 ° C / s or more, and it is desirable to cool at a cooling rate of 10 ° C / s or more. If the quenching speed is too slow, precipitation of dissolved elements will occur and strength,
The BH property and moldability deteriorate, and the corrosion resistance also decreases.

【0035】最終熱処理:焼入後60分以内に、40〜120
℃で50h以内の熱処理を行う。この処理によってBH化
性が向上する。40℃未満では、BH性の向上が不十分
で、120 ℃を超える温度もしくは50hを越える時間で
は、初期耐力が高くなり過ぎ成形性の低下もしくは塗装
焼付硬化性が低下することがある。
Final heat treatment: 40-120 within 60 minutes after quenching
Heat treatment at ℃ for less than 50h. This treatment improves the BH conversion property. If the temperature is lower than 40 ° C, the BH property is not sufficiently improved, and if the temperature exceeds 120 ° C or the time exceeds 50 hours, the initial yield strength may be too high and the formability or the coating bake hardenability may be lowered.

【0036】上記の組成を有するアルミニウム合金に、
上記の製造工程を適用することにより、溶体化処理、焼
入れ後、Cube方位の集積度の高い集合組織返られ、
集合組織のCube方位の強度比(ランダム比)が20
以上となり、優れた曲げ加工性をそなえた板材が得られ
る。さらに好ましくは、合金成分、とくにSi、Mg量
の調整、製造条件の調整により、Cube方位の強度比
を50以上とする。当該アルミニウム合金板は、例えば
ヘム加工が行われる自動車用フード、トランクリッド,
ドアなど、形状が複雑でかつ軽量な自動車用部材として
好適に使用され、またヘム加工が行われないフェンダ
ー、ルーフなどに適用した場合においても、曲げ加工性
が優れていることで、複雑形状にプレス加工した後、曲
げ半径の小さい厳しい加工が可能となり、自動車用材料
へのアルミニウム材の適用の範囲が広がり、車体の軽量
化に寄与することが可能となる。
In addition to the aluminum alloy having the above composition,
By applying the above manufacturing process, after the solution treatment and quenching, a texture with a high degree of integration of Cube orientation is returned,
The intensity ratio (random ratio) of the Cube orientation of the texture is 20
As described above, a plate material having excellent bending workability can be obtained. More preferably, the intensity ratio of the Cube orientation is set to 50 or more by adjusting the alloy components, particularly Si and Mg, and adjusting the manufacturing conditions. The aluminum alloy plate is used for, for example, an automobile hood, a trunk lid,
It is suitable for use as a lightweight automobile member with a complicated shape such as a door, and even when applied to fenders, roofs, etc. where hemming is not performed, it has excellent bending workability, making it a complex shape After press working, strict working with a small bending radius becomes possible, the range of application of aluminum materials to automobile materials is expanded, and it becomes possible to contribute to weight reduction of vehicle bodies.

【0037】[0037]

【実施例】以下、本発明の実施例を比較例と対比して説
明する。これらの実施例は、本発明の一実施態様を示す
ものであり、本発明はこれに限定されるものではない。
EXAMPLES Examples of the present invention will be described below in comparison with comparative examples. These examples show one embodiment of the present invention, and the present invention is not limited thereto.

【0038】実施例1 表1に示す組成を有するアルミニウム合金をDC鋳造に
より造塊し、得られた鋳塊を、550 ℃で6 hの均質化処
理した後、200 ℃まで450 ℃/hの冷却速度で冷却した。
さらに室温まで冷却し、420 ℃の温度に再加熱して熱間
圧延を開始し、厚さ4.5 mmまで圧延した。熱間圧延の
終了温度は250 ℃とした。
Example 1 An aluminum alloy having the composition shown in Table 1 was cast by DC casting, and the obtained ingot was homogenized at 550 ° C. for 6 hours and then heated to 200 ° C. at 450 ° C./h. It cooled at the cooling rate.
Further, it was cooled to room temperature, reheated to a temperature of 420 ° C. to start hot rolling, and rolled to a thickness of 4.5 mm. The end temperature of hot rolling was 250 ° C.

【0039】続いて、冷間圧延を行って厚さ1 mmの板
とし、さらに、540 ℃で20s の溶体化処理を行い、30℃
/sの冷却速度で120 ℃まで焼入した。焼き入れ後、3min
後に100 ℃で3hの熱処理を施した。
Subsequently, cold rolling was performed to form a plate having a thickness of 1 mm, and further, solution treatment was performed at 540 ° C. for 20 s and 30 ° C.
Quenched to 120 ° C at a cooling rate of / s. 3 minutes after quenching
After that, heat treatment was performed at 100 ° C. for 3 hours.

【0040】最終熱処理から10日後のアルミニウム合金
板について、引張試験を行い、以下の方法で、塗装焼付
硬化性(BH性)、Cube方位の強度比(ランダム
比)、曲げ加工性を評価した。結果を表2に示す。
Ten days after the final heat treatment, the aluminum alloy plate was subjected to a tensile test, and the paint bake hardenability (BH property), the Cube orientation strength ratio (random ratio) and the bending workability were evaluated by the following methods. The results are shown in Table 2.

【0041】Cube方位の強度比:ODF解析装置を
使用し、Bungeの提唱した級数展開法により偶数項
の展開次数を22次、奇数項の展開次数を19次として
計算する。
Cube azimuth intensity ratio: An ODF analyzer is used to calculate the expansion order of even terms as 22nd and the expansion order of odd terms as 19th by the series expansion method proposed by Bunge.

【0042】塗装焼付硬化性(BH性):2 %の引張変
形を加え、170 ℃-20minの加熱処理を行った後、耐力を
測定し200MPa以上を合格とする。 曲げ加工性:15%引張予歪後に、限界曲げ半径を調査す
る180 ゜曲げ試験を行い、内側限界曲げ半径0.2mm 以下
を合格とした。
Coating bake hardenability (BH property): After applying a tensile deformation of 2% and performing a heat treatment at 170 ° C. for 20 minutes, the yield strength is measured and the result is 200 MPa or more. Bending workability: After a pre-strain of 15%, a 180 ° bending test was conducted to investigate the limit bending radius, and an inner limit bending radius of 0.2 mm or less was passed.

【0043】[0043]

【表1】 《表注》Bはppm[Table 1] << Table Note >> B is ppm

【0044】[0044]

【表2】 [Table 2]

【0045】表2にみられるように、本発明に従う試験
材No.1〜7はいずれも、強度、BH性に優れ、Cu
be方位の強度比は20を越えており、優れた限界曲げ
特性をそなえている。
As can be seen in Table 2, test material Nos. All of 1 to 7 are excellent in strength and BH property, and Cu
The strength ratio in the be direction exceeds 20, and it has excellent limit bending characteristics.

【0046】比較例1 表3に示す組成を有するアルミニウム合金をDC鋳造に
より造塊し、得られた鋳塊を、実施例1と同一の工程で
処理し、最終熱処理から10日後のアルミニウム合金板に
ついて、実施例1と同じ方法で、引張性能、塗装焼付硬
化性(BH性)、Cube方位の強度比、曲げ加工性を
評価した。結果を表4に示す。
Comparative Example 1 An aluminum alloy having the composition shown in Table 3 was cast by DC casting, the obtained ingot was treated in the same process as in Example 1, and an aluminum alloy plate 10 days after the final heat treatment was performed. The tensile performance, the paint bake hardenability (BH property), the Cube orientation strength ratio, and the bending workability were evaluated in the same manner as in Example 1. The results are shown in Table 4.

【0047】[0047]

【表3】 《表注》Bはppm[Table 3] << Table Note >> B is ppm

【0048】[0048]

【表4】 [Table 4]

【0049】表4に示すように、試験材No.8はSi
量が少なく、また試験材No.10はMg量が少ないた
め、いずれも強度が低く、BH性が劣る。試験材No.
9はSi量が多く、また試験材No.11はMg量が多
く、0.7 Si%+Mg%の値が2.2%を越えるため、
いずれも強度が高く、Cube方位の集積度が低くな
り、曲げ加工性が劣っている。
As shown in Table 4, the test material No. 8 is Si
The amount is small and the test material Since No. 10 has a small amount of Mg, all of them have low strength and poor BH property. Test material No.
No. 9 has a large amount of Si, and the test material No. 11 has a large amount of Mg, and the value of 0.7 Si% + Mg% exceeds 2.2%.
All of them have high strength, low degree of integration in Cube orientation, and poor bending workability.

【0050】試験材12〜16は、それぞれ、Cu量、Mn
量、Cr量、V 量、Zr量が多すぎるため、Cube方位の
集積度が低くなり、曲げ加工性が劣っている。
The test materials 12 to 16 are made of Cu and Mn, respectively.
Since the amount of Cr, the amount of Cr, the amount of V 2, and the amount of Zr are too large, the degree of integration in the Cube orientation becomes low and bending workability is poor.

【0051】実施例2、比較例2 表1に示す合金BをDC鋳造し、得られた鋳塊を、550
℃で5 hの均質化処理後、表5に示す冷却速度で250 ℃
まで冷却し、続いて、表5に示す温度に加熱して熱間圧
延を行ない、厚さ4.4 mmまで圧延した。熱間圧延の終
了温度は250 ℃であった。さらに冷間圧延を経て、厚さ
1 mmの板とした。条件26のみ熱間圧延後に400 ℃-2h
の中間焼鈍を行った。
Example 2, Comparative Example 2 Alloy B shown in Table 1 was DC cast, and the obtained ingot was cooled to 550
After homogenizing treatment for 5 h at ℃, 250 ℃ at the cooling rate shown in Table 5.
Then, it was heated to the temperature shown in Table 5 and hot-rolled to a thickness of 4.4 mm. The end temperature of hot rolling was 250 ° C. After cold rolling, thickness
The plate was 1 mm. Condition 26 only 400 ℃ -2h after hot rolling
Intermediate annealing was performed.

【0052】その後、550 ℃で5sの溶体化処理を行い、
30℃/sの冷却速度で120 ℃まで焼入した。焼き入れ後3
min 後に100 ℃で3hの熱処理を施した。以上の工程によ
り製造したアルミニウム合金板について、実施例1と同
様の方法で、引張性能、BH性、Cube方位の強度
比、曲げ加工性の評価を行った。
After that, a solution treatment for 5 s is performed at 550 ° C.,
Quenched to 120 ° C at a cooling rate of 30 ° C / s. After quenching 3
After min, heat treatment was performed at 100 ° C for 3 hours. With respect to the aluminum alloy plate manufactured by the above steps, the tensile performance, the BH property, the Cube orientation strength ratio, and the bending workability were evaluated by the same method as in Example 1.

【0053】さらに、リジングマークの評価として、圧
延90°方向に引張試験片を採取し、10%引張変形を加
え、電着塗装後のリジングマークの有無を判定した。こ
れらの結果を第6表に示す。
Further, as an evaluation of the ridging mark, a tensile test piece was sampled in the rolling 90 ° direction and subjected to 10% tensile deformation to determine the presence or absence of the ridging mark after electrodeposition coating. The results are shown in Table 6.

【0054】[0054]

【表5】 [Table 5]

【0055】[0055]

【表6】 《表注》リジングマーク ○:有り ×:無し[Table 6] << Table Note >> Rising mark ○: Yes ×: No

【0056】表6に示すように、本発明に従う試験材N
o.17〜21はいずれも、強度、BH性に優れ、Cu
be方位の強度比は20を越えており、優れた限界曲げ
特性をそなえている。
As shown in Table 6, test material N according to the present invention
o. 17 to 21 are all excellent in strength and BH property, and Cu
The strength ratio in the be direction exceeds 20, and it has excellent limit bending characteristics.

【0057】これに対して、試験材No.22、23
は、熱間圧延温度が高いため、リジングマークが発生し
た。試験材No.24は均質化処理後の冷却速度が小さ
いため、Cube方位の集積度が低くなり、曲げ加工性
が劣る。試験材No.25は、熱間圧延温度が高く、均
質化処理後の冷却速度が小さいため、リジングマークが
発生し、Cube方位の集積度が低くなって曲げ加工性
が劣る。試験材No.26は、中間焼鈍を行ったため、
Cube方位の集積度が低くなり、曲げ加工性が劣る。
On the other hand, the test material No. 22, 23
Caused a ridging mark because the hot rolling temperature was high. Test material No. In No. 24, since the cooling rate after the homogenization treatment is small, the degree of integration of Cube orientation is low and bending workability is poor. Test material No. In No. 25, the hot rolling temperature is high and the cooling rate after the homogenization treatment is low, so that ridging marks are generated, the degree of integration of Cube orientation is low, and bending workability is poor. Test material No. Since No. 26 was subjected to intermediate annealing,
The degree of integration of Cube orientation is low, and bending workability is poor.

【0058】[0058]

【発明の効果】本発明によれば、フラットヘム加工が可
能な優れた曲げ加工性、塗装焼付硬化性を有し、耐食性
にも優れたアルミニウム合金板およびその製造方法が提
供される。当該アルミニウム合金板は、例えばヘム加工
が行われる自動車用フード、トランクリッド,ドアな
ど、形状が複雑でかつ軽量な自動車用部材として好適に
使用される。
According to the present invention, there are provided an aluminum alloy sheet having excellent bending workability capable of flat hem processing, paint bake hardenability, and excellent corrosion resistance, and a method for producing the same. The aluminum alloy plate is suitably used as an automobile member having a complicated shape and a light weight, such as an automobile hood, a trunk lid, and a door, which are hem processed.

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22F 1/00 623 C22F 1/00 623 630 630K 682 682 683 683 685 685Z 686 686A 691 691B 692 692A 692B (72)発明者 箕田 正 東京都港区新橋5丁目11番3号 住友軽金 属工業株式会社内 (72)発明者 浅野 峰生 東京都港区新橋5丁目11番3号 住友軽金 属工業株式会社内Front page continuation (51) Int.Cl. 7 Identification code FI theme code (reference) C22F 1/00 623 C22F 1/00 623 630 630K 682 682 683 683 685 685Z 686 686A 691 691B 692 692A 692B (72) Inventor Tadashi Minota 5-11-3 Shimbashi, Minato-ku, Tokyo Within Sumitomo Light Metal Industry Co., Ltd. (72) Inventor Mineo Asano 5-11-3, Shimbashi, Minato-ku, Tokyo Sumitomo Light Metal Industry Co., Ltd.

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 Al−Mg−Si系アルミニウム合金の
圧延板であって、形成された集合組織でのCube方位
の強度比が20以上であることを特徴とする曲げ加工性
および塗装焼付硬化性に優れたアルミニウム合金板。
1. A bending plate and a paint bake-hardening property, which are rolled sheets of an Al—Mg—Si-based aluminum alloy, wherein the formed texture has a Cube orientation strength ratio of 20 or more. Excellent aluminum alloy plate.
【請求項2】 前記Al−Mg−Si系アルミニウム合
金が、Si:0.5 %〜2.0 %(質量%、以下同じ)、M
g:0.2 〜1.5 %を含有し、0.7Si %+Mg%≦2.2 %を
満足し、残部Alおよび不純物からなるアルミニウム合金
であることを特徴とする曲げ加工性および塗装焼付け硬
化性に優れたアルミニウム合金板。
2. The Al-Mg-Si-based aluminum alloy comprises: Si: 0.5% to 2.0% (mass%, the same applies hereinafter), M
g: An aluminum alloy containing 0.2 to 1.5%, satisfying 0.7Si% + Mg% ≦ 2.2%, and an aluminum alloy consisting of the balance Al and impurities and having excellent bending workability and paint bake hardenability. Board.
【請求項3】 前記アルミニウム合金板がさらに Zn:
0.5 %以下(0 %を含まず、以下同じ)を含有すること
を特徴とする請求項1または2に記載の曲げ加工性およ
び塗装焼付け硬化性に優れたアルミニウム合金板。
3. The aluminum alloy plate further comprises Zn:
The aluminum alloy sheet excellent in bending workability and paint bake hardenability according to claim 1 or 2, which contains 0.5% or less (not including 0%, the same applies hereinafter).
【請求項4】 前記アルミニウム合金板がさらに Cu :
1.0 %以下を含有することを特徴とする請求項1〜3の
いずれかに記載の曲げ加工性および塗装焼付け硬化性に
優れたアルミニウム合金板。
4. The aluminum alloy plate further comprises Cu:
The aluminum alloy sheet having excellent bending workability and paint bake hardenability according to any one of claims 1 to 3, which contains 1.0% or less.
【請求項5】 前記アルミニウム合金板がさらにMn:
1.0 %以下、Cr:0.3 %以下、V:0.2 %以下、Z
r:0.2 %以下のうちの1種または2種以上を含有する
ことを特徴とする請求項1〜4のいずれかに記載の曲げ
加工性および塗装焼付け硬化性に優れたアルミニウム合
金板。
5. The aluminum alloy plate further comprises Mn:
1.0% or less, Cr: 0.3% or less, V: 0.2% or less, Z
r: 0.2% or less and one or more of them are contained, and the aluminum alloy plate excellent in bending workability and paint bake hardenability according to any one of claims 1 to 4.
【請求項6】 前記アルミニウム合金板がさらに Ti:
0.1 %以下、B :50ppm以下のうち少なくとも1種を
含有することを特徴とする請求項1〜5のいずれかに記
載の曲げ加工性および焼付け硬化性に優れたアルミニウ
ム合金板。
6. The aluminum alloy plate further comprises Ti:
An aluminum alloy sheet having excellent bending workability and bake hardenability according to any one of claims 1 to 5, which contains at least one of 0.1% or less and B: 50 ppm or less.
【請求項7】 請求項1〜6のいずれかに記載のアルミ
ニウム合金板の製造方法であって、請求項1〜6のいず
れかに記載の組成を有するアルミニウム合金の鋳塊を45
0 ℃以上の温度で均質化処理後、100 ℃/h以上の冷却速
度で350 ℃未満の所定温度まで冷却し、該所定温度で熱
間圧延を行い、さらに冷間圧延した後、450 ℃以上の温
度で溶体化処理、焼入れを行うことを特徴とする曲げ加
工性および焼付け硬化性に優れたアルミニウム合金板の
製造方法。
7. A method for manufacturing an aluminum alloy plate according to claim 1, wherein the ingot of the aluminum alloy having the composition according to claim 1 is 45
After homogenizing at a temperature of 0 ° C or higher, it is cooled at a cooling rate of 100 ° C / h or higher to a predetermined temperature of lower than 350 ° C, hot-rolled at the predetermined temperature, and further cold-rolled, then 450 ° C or higher. A method for producing an aluminum alloy sheet having excellent bending workability and bake hardenability, which comprises performing solution treatment and quenching at the temperature of.
【請求項8】 請求項1〜6のいずれかに記載のアルミ
ニウム合金板の製造方法であって、請求項1〜6のいず
れかに記載の組成を有するアルミニウム合金の鋳塊を45
0 ℃以上の温度で均質化処理後、100 ℃/ h以上の冷却
速度で350 ℃未満の温度まで冷却し、さらに300 〜500
℃の温度に再加熱して圧延を開始する熱間圧延を行い、
さらに冷間圧延した後、450 ℃以上の温度で溶体化処
理、焼入れを行うことを特徴とする曲げ加工性および焼
付け硬化性に優れたアルミニウム合金板の製造方法。
8. A method for producing an aluminum alloy plate according to claim 1, wherein the ingot of the aluminum alloy having the composition according to claim 1 is 45
After homogenizing at a temperature of 0 ° C or higher, cool it to a temperature of less than 350 ° C at a cooling rate of 100 ° C / h or more, then 300-500
Perform hot rolling to reheat to ℃ temperature and start rolling,
A method for producing an aluminum alloy sheet having excellent bending workability and bake hardenability, which is characterized by performing solution treatment and quenching at a temperature of 450 ° C. or higher after cold rolling.
【請求項9】 請求項1〜6のいずれかに記載のアルミ
ニウム合金板の製造方法であって、請求項1〜6のいず
れかに記載の組成を有するアルミニウム合金の鋳塊を45
0 ℃以上の温度で均質化処理後、100 ℃/ h以上の冷却
速度で350 ℃未満の温度まで冷却し、さらに室温まで冷
却し、ついで300 〜500 ℃の温度に再加熱して圧延を開
始する熱間圧延を行い、さらに冷間圧延した後、450 ℃
以上の温度で溶体化処理、焼入れを行うことを特徴とす
る曲げ加工性および焼付け硬化性に優れたアルミニウム
合金板の製造方法。
9. A method for producing an aluminum alloy plate according to claim 1, wherein the ingot of the aluminum alloy having the composition according to any one of claims 1 to 6 is 45
After homogenizing at a temperature of 0 ℃ or more, cool to a temperature of less than 350 ℃ at a cooling rate of 100 ℃ / h or more, further cool to room temperature, then reheat to a temperature of 300 to 500 ℃ and start rolling. Hot rolling, then cold rolling, then 450 ℃
A method for producing an aluminum alloy sheet having excellent bending workability and bake hardenability, which comprises performing solution treatment and quenching at the above temperatures.
【請求項10】 前記熱間圧延の終了温度を300 ℃以下
とすることを特徴とする請求項7〜9のいずれかに記載
の曲げ加工性および焼付け硬化性に優れたアルミニウム
合金板の製造方法。
10. The method for producing an aluminum alloy sheet excellent in bending workability and bake hardenability according to claim 7, wherein the end temperature of the hot rolling is set to 300 ° C. or lower. .
【請求項11】 前記溶体化処理後、120 ℃までを5 ℃
/ s以上の冷却速度で冷却する焼入れを行い、焼入れ後
60分以内に40〜120 ℃の温度で50h以内の熱処理を行う
ことを特徴とする請求項7〜10のいずれかに記載の曲
げ加工性および焼付け硬化性に優れたアルミニウム合金
板の製造方法。
11. Up to 120 ° C. is 5 ° C. after the solution heat treatment.
After quenching by cooling at a cooling rate of / s or more, after quenching
The method for producing an aluminum alloy sheet having excellent bending workability and bake hardenability according to any one of claims 7 to 10, wherein heat treatment is performed within 60 minutes at a temperature of 40 to 120 ° C for 50 hours or less.
JP2002077795A 2001-03-28 2002-03-20 Aluminum alloy plate excellent in bending workability and paint bake hardenability and manufacturing method Expired - Fee Related JP4633994B2 (en)

Priority Applications (20)

Application Number Priority Date Filing Date Title
JP2002077795A JP4633994B2 (en) 2002-03-20 2002-03-20 Aluminum alloy plate excellent in bending workability and paint bake hardenability and manufacturing method
CA2712356A CA2712356C (en) 2001-03-28 2002-03-26 Aluminum alloy sheet with excellent formability and paint bake hardenability and method for production thereof
CN2008100916008A CN101302592B (en) 2001-03-28 2002-03-26 Aluminum alloy sheet having excellent bending workability and hardenability in coating/baking, and production method thereof
EP20020705498 EP1375691A4 (en) 2001-03-28 2002-03-26 Aluminum alloy sheet excellent in formability and hardenability during baking of coating and method for production thereof
CN2008100912011A CN101260491B (en) 2001-03-28 2002-03-26 Aluminum alloy sheet with excellent formability and paint bake hardenability, and method for production thereof
KR1020037012489A KR100831637B1 (en) 2001-03-28 2002-03-26 Aluminum alloy sheet having excellent formability and paint bake hardenability
DE60236771T DE60236771D1 (en) 2001-03-28 2002-03-26 Aluminum alloy sheet with excellent formability and bake hardenability, and manufacturing method therefor
CA2440666A CA2440666C (en) 2001-03-28 2002-03-26 Aluminum alloy sheet with excellent formability and paint bake hardenability and method for production thereof
KR1020077028760A KR100861036B1 (en) 2001-03-28 2002-03-26 Aluminum alloy sheet with excellent formability and paint bake hardenability
DE60239088T DE60239088D1 (en) 2001-03-28 2002-03-26 Aluminum alloy sheet with excellent ductility and bake hardenability, and manufacturing method therefor
PCT/JP2002/002900 WO2002079533A1 (en) 2001-03-28 2002-03-26 Aluminum alloy sheet excellent in formability and hardenability during baking of coating and method for production thereof
EP08157604A EP1967599B1 (en) 2001-03-28 2002-03-26 Aluminum alloy sheet with excellent formability and paint bake hardenability and method for production thereof
EP08157601.9A EP1967598B2 (en) 2001-03-28 2002-03-26 Aluminum alloy sheet with excellent formability and paint bake hardenability and method for production thereof
KR1020077028759A KR100870164B1 (en) 2001-03-28 2002-03-26 Aluminum alloy sheet with excellent formability and paint bake hardenability
CA2712316A CA2712316C (en) 2001-03-28 2002-03-26 Aluminum alloy sheet with excellent formability and paint bake hardenability and method for production thereof
KR1020077028761A KR100833145B1 (en) 2001-03-28 2002-03-26 Method for producing aluminum alloy sheet with excellent bendability and paint bake hardenability
US10/468,971 US20040094249A1 (en) 2001-03-28 2002-03-26 Aluminum alloy sheet excellent in formability and hardenability during baking of coating and method for production thereof
US12/077,862 US20080178973A1 (en) 2001-03-28 2008-03-21 Aluminum alloy sheet with excellent formability and paint bake hardenability and method for production thereof
US12/077,854 US20080178968A1 (en) 2001-03-28 2008-03-21 Aluminum alloy sheet with excellent formability and paint bake hardenability and method for production thereof
US12/077,853 US20080178967A1 (en) 2001-03-28 2008-03-21 Aluminum alloy sheet with excellent formability and paint bake hardenability and method for production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002077795A JP4633994B2 (en) 2002-03-20 2002-03-20 Aluminum alloy plate excellent in bending workability and paint bake hardenability and manufacturing method

Publications (2)

Publication Number Publication Date
JP2003277870A true JP2003277870A (en) 2003-10-02
JP4633994B2 JP4633994B2 (en) 2011-02-16

Family

ID=29228120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002077795A Expired - Fee Related JP4633994B2 (en) 2001-03-28 2002-03-20 Aluminum alloy plate excellent in bending workability and paint bake hardenability and manufacturing method

Country Status (1)

Country Link
JP (1) JP4633994B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004292899A (en) * 2003-03-27 2004-10-21 Kobe Steel Ltd Al-Mg-Si-BASED ALLOY SHEET HAVING EXCELLENT SURFACE PROPERTY, PRODUCTION METHOD THEREFOR, AND PRODUCTION INTERMEDIATE MATERIAL THEREOF
JP2005298922A (en) * 2004-04-13 2005-10-27 Furukawa Sky Kk Aluminum alloy plate to be formed, and manufacturing method therefor
JP2008174797A (en) * 2007-01-18 2008-07-31 Kobe Steel Ltd Aluminum alloy sheet
JP2008303455A (en) * 2007-06-11 2008-12-18 Sumitomo Light Metal Ind Ltd MANUFACTURING METHOD OF Al-Mg-Si BASED ALUMINUM ALLOY PLATE FOR PRESS MOLDING AND Al-Mg-Si BASED ALUMINUM ALLOY PLATE FOR PRESS MOLDING
JP2009007617A (en) * 2007-06-27 2009-01-15 Kobe Steel Ltd Aluminum alloy sheet for warm forming and manufacturing method therefor
JP2013185218A (en) * 2012-03-08 2013-09-19 Kobe Steel Ltd Aluminum alloy sheet excellent in baking finish hardenability
JP2015067857A (en) * 2013-09-27 2015-04-13 株式会社Uacj Al-Mg-Si-BASED ALUMINUM ALLOY SHEET FOR AUTOMOBILE PANEL AND MANUFACTURING METHOD THEREFOR
JP6208389B1 (en) * 2016-07-14 2017-10-04 株式会社Uacj Method for producing rolled aluminum alloy material for forming comprising aluminum alloy having excellent bending workability and ridging resistance

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS512049B1 (en) * 1967-01-23 1976-01-22
JPH06136478A (en) * 1992-10-23 1994-05-17 Kobe Steel Ltd Baking hardening type al alloy sheet excellent in formability and its production
JPH07228956A (en) * 1994-02-16 1995-08-29 Sumitomo Light Metal Ind Ltd Production of aluminum alloy sheet for forming work
JP2000239811A (en) * 1999-02-24 2000-09-05 Kobe Steel Ltd Manufacture for aluminum alloy sheet excellent in formability

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS512049B1 (en) * 1967-01-23 1976-01-22
JPH06136478A (en) * 1992-10-23 1994-05-17 Kobe Steel Ltd Baking hardening type al alloy sheet excellent in formability and its production
JPH07228956A (en) * 1994-02-16 1995-08-29 Sumitomo Light Metal Ind Ltd Production of aluminum alloy sheet for forming work
JP2000239811A (en) * 1999-02-24 2000-09-05 Kobe Steel Ltd Manufacture for aluminum alloy sheet excellent in formability

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004292899A (en) * 2003-03-27 2004-10-21 Kobe Steel Ltd Al-Mg-Si-BASED ALLOY SHEET HAVING EXCELLENT SURFACE PROPERTY, PRODUCTION METHOD THEREFOR, AND PRODUCTION INTERMEDIATE MATERIAL THEREOF
JP2005298922A (en) * 2004-04-13 2005-10-27 Furukawa Sky Kk Aluminum alloy plate to be formed, and manufacturing method therefor
JP2008174797A (en) * 2007-01-18 2008-07-31 Kobe Steel Ltd Aluminum alloy sheet
JP2008303455A (en) * 2007-06-11 2008-12-18 Sumitomo Light Metal Ind Ltd MANUFACTURING METHOD OF Al-Mg-Si BASED ALUMINUM ALLOY PLATE FOR PRESS MOLDING AND Al-Mg-Si BASED ALUMINUM ALLOY PLATE FOR PRESS MOLDING
JP2009007617A (en) * 2007-06-27 2009-01-15 Kobe Steel Ltd Aluminum alloy sheet for warm forming and manufacturing method therefor
JP2013185218A (en) * 2012-03-08 2013-09-19 Kobe Steel Ltd Aluminum alloy sheet excellent in baking finish hardenability
JP2015067857A (en) * 2013-09-27 2015-04-13 株式会社Uacj Al-Mg-Si-BASED ALUMINUM ALLOY SHEET FOR AUTOMOBILE PANEL AND MANUFACTURING METHOD THEREFOR
JP6208389B1 (en) * 2016-07-14 2017-10-04 株式会社Uacj Method for producing rolled aluminum alloy material for forming comprising aluminum alloy having excellent bending workability and ridging resistance
JP2018016879A (en) * 2016-07-14 2018-02-01 株式会社Uacj Method for producing aluminum alloy rolled material for forming having excellent bending workability and ridging resistance and composed of aluminum alloy
US11053576B2 (en) 2016-07-14 2021-07-06 Uacj Corporation Method for producing aluminum alloy rolled material for molding having excellent bending workability and ridging resistance

Also Published As

Publication number Publication date
JP4633994B2 (en) 2011-02-16

Similar Documents

Publication Publication Date Title
KR100870164B1 (en) Aluminum alloy sheet with excellent formability and paint bake hardenability
US4614552A (en) Aluminum alloy sheet product
CN102498229B (en) Almgsi strip for applications having high plasticity requirements
JP2008045192A (en) Aluminum alloy sheet showing excellent ridging-mark resistance at molding
WO2016190408A1 (en) High-strength aluminum alloy sheet
JP5148930B2 (en) Method for producing Al-Mg-Si aluminum alloy plate for press forming, and Al-Mg-Si aluminum alloy plate for press forming
JPH0747807B2 (en) Method for producing rolled aluminum alloy plate for forming
JP2009173973A (en) Aluminum alloy sheet having excellent ridging mark property upon forming
JP2003105471A (en) Aluminum alloy sheet, and production method therefor
JP4633993B2 (en) Aluminum alloy plate excellent in bending workability and paint bake hardenability and manufacturing method
JP2003277870A (en) Aluminum alloy sheet having excellent bending workability and hardenability in coating/baking, and production method thereof
JP3740086B2 (en) A method for producing an aluminum alloy plate that is excellent in hemmability after aging at room temperature and is hemmed after stretch forming
JP2003105472A (en) Aluminum alloy sheet, and production method therefor
JP2004010982A (en) Aluminum alloy sheet having excellent bending workability and press formability
CN103643092B (en) Large strain intensified index AlMgSi sheet alloy and preparation method thereof
JP2000239811A (en) Manufacture for aluminum alloy sheet excellent in formability
JP2004238657A (en) Method of manufacturing aluminum alloy plate for outer panel
JP2004124213A (en) Aluminum alloy sheet for panel forming, and its manufacturing method
JP3749627B2 (en) Al alloy plate with excellent press formability
JP2599861B2 (en) Manufacturing method of aluminum alloy material for forming process excellent in paint bake hardenability, formability and shape freezing property
JP2003171726A (en) Aluminum alloy sheet having excellent bending workability and corrosion resistance, and production method therefor
JP2678404B2 (en) Manufacturing method of aluminum alloy sheet for forming
JP2002356730A (en) Aluminum alloy sheet excellent in formability and hardenability during baking of coating and production method therefor
JP3278119B2 (en) Method for producing Al-Mg-Si alloy sheet excellent in formability and bake hardenability
JP3066091B2 (en) Aluminum alloy rolled plate for hole enlarging and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080428

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101025

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101118

R150 Certificate of patent or registration of utility model

Ref document number: 4633994

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees