JPH06136478A - Baking hardening type al alloy sheet excellent in formability and its production - Google Patents

Baking hardening type al alloy sheet excellent in formability and its production

Info

Publication number
JPH06136478A
JPH06136478A JP4309584A JP30958492A JPH06136478A JP H06136478 A JPH06136478 A JP H06136478A JP 4309584 A JP4309584 A JP 4309584A JP 30958492 A JP30958492 A JP 30958492A JP H06136478 A JPH06136478 A JP H06136478A
Authority
JP
Japan
Prior art keywords
temperature
formability
alloy
strength
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4309584A
Other languages
Japanese (ja)
Inventor
Takeo Sakurai
櫻井健夫
Akinori Yoshizawa
吉澤成則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP4309584A priority Critical patent/JPH06136478A/en
Publication of JPH06136478A publication Critical patent/JPH06136478A/en
Pending legal-status Critical Current

Links

Landscapes

  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

PURPOSE:To make excellent the formability of an Al alloy sheet even when the producing method for obtaining the increase of the strength of the stock corresponding to its thinning to accompany its lightening and for obtaining sufficient hardenability even under the baking conditions in baking/coating at a low temp. in a short time is applied thereto. CONSTITUTION:The baking hardening type Al-Mg-Cu-Mn alloy sheet having a compsn. contg., by weight, 0.3 to 1.0% Mg, 0.5 to 2.0% Si (contg. 0.4 to 1.5% MgSi and 0.4 to 1.2% residual Si), 0.3 to 2.0% Cu and 0.05 to 1.0% Mn, and the balance Al with impurities and excellent in formability is obtd. This Al alloy ingot is homogenized at the burning temp. or below, is hot-rolled, is thereafter annealed at 350 to 450 deg.C for 5 to 10hr and is then cold-rolled to regulate its sheet thickness into a desired one, and solution treatment is executed. After that, it is hardened at 50 to 120 deg.C at >=300 deg.C/min cooling rate and, as it is, holding is executed at 50 to 120 deg.C for 1 to 48hr.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、成形加工性に優れた焼
付硬化型Al合金板及びその製造方法に係り、より詳し
くは、自動車用、家電用、機械部品用等パネル材に用い
られるAl合金板で、プレスや曲げ等の加工時の成形加
工性が優れ、これらの製造工程にある焼付塗装(ベーキ
ング)などの短時間加熱処理において強度が向上するAl
合金板及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bake hardenable Al alloy sheet having excellent formability and a method for producing the same, and more specifically, Al used for panel materials for automobiles, home appliances, machine parts, etc. An alloy plate that has excellent formability during processing such as pressing and bending, and has improved strength during short-time heat treatment such as baking coating (baking) in these manufacturing processes.
The present invention relates to an alloy plate and a manufacturing method thereof.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】従来、
自動車用、家電用、機械部品用等の軽量化を主体として
使用されているAl合金板は、プレスや曲げ等の成形加
工が行われ、加工後の塗装工程において塗装膜に強度を
与えるために加熱処理(焼付塗装:ベーキング)が行わ
れ、その際の加熱温度を利用してAl合金板の強度を向
上させる方法が行われている。
2. Description of the Related Art Conventionally, the problems to be solved by the invention
In order to give strength to the coating film in the coating process after processing, the Al alloy plate, which is mainly used for automobiles, home appliances, mechanical parts, etc. for weight reduction, is subjected to forming processing such as pressing and bending. A heat treatment (baking coating: baking) is performed, and a method of improving the strength of an Al alloy plate by utilizing the heating temperature at that time is used.

【0003】かかるAl合金板としては、プレス等の成
形加工時には強度を低くし、成形が容易で、成形加工後
は焼付塗装の加熱処理により強度が著しく向上する材料
であることが理想とされ、主としてAl−Mg−Si系ア
ルミニウム合金が使用されている。このようなAl合金
として本出願人は先に特開平1−111851号を提案
した。
It is ideal that such an Al alloy plate is a material that has a low strength during forming such as pressing, is easy to form, and whose strength is remarkably improved by heat treatment of baking after forming. Al-Mg-Si based aluminum alloys are mainly used. As such an Al alloy, the present applicant has previously proposed Japanese Patent Laid-Open No. 11-11851.

【0004】しかし、従来、この種の用途に使用される
Al−Mg−Si系アルミニウム合金及びその製造方法に
おいては、成形性或いは形状凍結性の重視により、T4
状態での強度が極めて低く、更には焼付硬化後に強度が
向上したとしても十分な強度が得られず、軽度な外力を
加えただけで変形してしまうという欠点があった。
However, in the Al-Mg-Si system aluminum alloy and the manufacturing method thereof which have been conventionally used for this kind of application, T4 is emphasized due to the importance of formability or shape fixability.
The strength in the state is extremely low, and further, even if the strength is improved after bake-hardening, sufficient strength cannot be obtained, and there is a drawback that it is deformed only by applying a slight external force.

【0005】一方、自動車用部品においては、自動車の
低燃費規制により、更に軽量化が促進する傾向にある。
これにより、Al合金板の薄肉化が要求されるが、従来
のAl合金板及びその製造方法では、T4状態での素材
強度が低くし成形性を向上させているか、或いは薄肉化
のため素材強度を高くすると成形性が著しく劣る等の問
題があった。
On the other hand, the weight of automobile parts tends to be further reduced due to the regulation of low fuel consumption of automobiles.
As a result, it is required to reduce the thickness of the Al alloy sheet. However, in the conventional Al alloy sheet and its manufacturing method, the material strength in the T4 state is low to improve the formability, or the material strength is reduced for thinning. There was a problem that the moldability was remarkably deteriorated when the value was increased.

【0006】更に、最近の焼付塗装時の焼付条件は、省
エネルギー化及び生産性向上のため、加えて樹脂などの
高温に処理できない部品の多用化が進み、塗料の進歩し
たこと等により低温化してきている。例えば、自動車用
部品に用いられるAl合金の焼付温度は、従来は約20
0℃であったが、近年、160〜170℃の低温で処理
されるようになっている。このため、従来のAl−Mg−
Si系アルミニウム合金板及びその製造方法において、
従来法でなく、低温・短時間処理において焼付硬化性を
向上させるための製造方法が提案されているが、この処
理法を行うと、殆どのAl合金において成形加工性が著
しく低下するという問題があった。
Further, recent baking conditions at the time of baking coating have become lower due to the progress of coating materials and the like because of the increasing use of parts such as resin which cannot be treated at high temperature in order to save energy and improve productivity. ing. For example, the baking temperature of Al alloy used for automobile parts is about 20 in the past.
Although it was 0 degreeC, in recent years, it has come to be processed at the low temperature of 160-170 degreeC. Therefore, the conventional Al-Mg-
In the Si-based aluminum alloy plate and its manufacturing method,
Although not a conventional method, a manufacturing method has been proposed for improving the bake hardenability at a low temperature / short time treatment, but when this treatment method is performed, there is a problem that the formability of most Al alloys is significantly reduced. there were.

【0007】本発明は、上記従来技術の問題点を解決し
て、軽量化に伴う薄肉化に対応した素材強度の高強度
化、かつ低温・短時間の焼付塗装の焼付条件において十
分な焼付硬化性を得るための製造方法を適用しても、成
形加工性が優れるAl合金板及びその製造方法を提供す
ることを目的とするものである。
The present invention solves the above-mentioned problems of the prior art, increases the strength of the material corresponding to the thinning of the material with the weight reduction, and has sufficient bake hardening under the baking conditions of low temperature and short time bake coating. It is an object of the present invention to provide an Al alloy plate excellent in formability and a manufacturing method thereof even if a manufacturing method for obtaining the property is applied.

【0008】[0008]

【課題を解決するための手段】前記目的を達成するため
に、本発明者は、先の提案に係る方法を改良するべく鋭
意研究を重ねた。その結果、従来のAl−Mg−Si系合
金の強化機構は、次のような時効硬化機構に基づくもの
であることが判明した。
[Means for Solving the Problems] In order to achieve the above-mentioned object, the inventor of the present invention has conducted extensive studies to improve the method according to the above proposal. As a result, it was found that the strengthening mechanism of the conventional Al-Mg-Si based alloy is based on the following age hardening mechanism.

【0009】S.S.(固溶体)→G.P.ゾーン(T4状態)
→β′−Mg2Si(焼付塗装後)
SS (solid solution) → GP zone (T4 state)
→ β'-Mg 2 Si (after baking coating)

【0010】すなわち、素材強度を高強度化する機構
は、この時効析出物によるものであり、低温・短時間の
焼付塗装処理において焼付硬化性を増加させる製造方法
を適用すると、素材がT4状態で核成長サイト或いは上
記のGPゾーンが析出しているため、強度は増加するも
のの、成形性は著しく低下する。よって、Mg、Si量が
適正でないと強度と成形性の関係が双方ともに良好な値
をとることが難しい。また、6009や6010で知ら
れるAl−Mg−Si系合金にCuを添加すると、時効析出
物S′−CuMgAl2が析出し、強度を増加させ、更にC
uはAl−Mg−Si系合金の集合組織を変化させ、成形性
の良い方位にする効果がある。かつ、5000系合金に
見られる転位ループにMgの固着があるように、Cuも転
位ループに固着し成形性の向上に寄与する。
That is, the mechanism for increasing the strength of the material is due to this aging precipitate, and when the manufacturing method for increasing the bake hardenability in the low temperature and short time bake coating treatment is applied, the material is in the T4 state. Since the nucleus growth site or the GP zone is precipitated, the strength is increased, but the formability is significantly reduced. Therefore, if the amounts of Mg and Si are not proper, it is difficult to obtain good values for both the strength and the formability. Further, the addition of Cu to Al-Mg-Si alloys, known for 6009 and 6010, aging precipitates S'-CuMgAl 2 is deposited, increasing the strength, further C
u has the effect of changing the texture of the Al-Mg-Si based alloy and making it an orientation with good formability. Moreover, as in the case of the 5000 series alloy, where Mg is fixed in the dislocation loop, Cu is also fixed in the dislocation loop and contributes to the improvement of formability.

【0011】本発明は、かかる原因究明並びに知見に基
づき、更にその含有成分や製造条件について詳細に研究
を重ね、ここに完成したものである。
The present invention has been completed on the basis of the investigation of the cause and the knowledge, and further detailed research on the contained components and manufacturing conditions.

【0012】すなわち、本発明は、Mg:0.3〜1.0
%、Si:0.5〜2.0%を含有し(但し、MgとSiの
関係について、Mg2Si量として0.4〜1.5%を含有
し、かつ、残留するSi量が0.4〜1.2%である)、
更にCu:0.3〜2.0%及びMn:0.05〜1.0%を
含有し、必要に応じて更にTi:0.1%以下、Cr:0.
4%以下、Fe:0.5%以下のうちの少なくとも1種を
含有し、残部がAl及び不純物からなることを特徴とす
る成形加工性に優れた焼付硬化型Al−Mg−Si−Cu−
Mn系Al合金板を要旨としている。
That is, according to the present invention, Mg: 0.3 to 1.0.
%, Si: 0.5-2.0% (however, regarding the relationship between Mg and Si, the content of Mg 2 Si is 0.4-1.5%, and the amount of residual Si is 0). .4 to 1.2%),
Further, it contains Cu: 0.3 to 2.0% and Mn: 0.05 to 1.0%, Ti: 0.1% or less, Cr: 0.0% if necessary.
4% or less, Fe: 0.5% or less, at least one of which is Al and impurities, and the balance is Al and Mg-Si-Cu-
The main point is Mn-based Al alloy plates.

【0013】また、更に高成形性を有する場合には、板
材の組織が、結晶粒径で30μm以下に制御され、集合
組織は(100)面<001>方向に高いピークを持つも
のであることを特徴としている。
Further, in the case of having higher formability, the structure of the plate material is controlled to have a crystal grain size of 30 μm or less, and the texture has a high peak in the (100) plane <001> direction. Is characterized by.

【0014】また、その好ましい製造方法は、上記化学
成分を有するAl合金鋳塊にバーニング温度以下の温度
で均質化処理を施した後、熱間圧延を行い、熱間圧延
後、350〜450℃の温度で5〜10時間の焼鈍処理
を行い、次いで冷間圧延を行って所望の板厚とした後、
溶体化処理を施し、その後、冷却速度を300℃/分以
上で50〜120℃の温度に焼入れし、そのまま50〜
120℃の温度で1〜48時間の温度に保持することを
特徴としている。
Further, the preferable manufacturing method is as follows. The Al alloy ingot having the above chemical composition is homogenized at a temperature not higher than the burning temperature, hot-rolled, and hot-rolled at 350 to 450 ° C. After annealing at a temperature of 5 to 10 hours and then cold rolling to a desired plate thickness,
After solution treatment, quenching is performed at a cooling rate of 300 ° C./min or more to a temperature of 50 to 120 ° C., and then 50 to
It is characterized in that it is maintained at a temperature of 120 ° C. for 1 to 48 hours.

【0015】以下に本発明を更に詳細に説明する。The present invention will be described in more detail below.

【0016】[0016]

【作用】[Action]

【0017】まず、本発明における化学成分の限定理由
について説明する。
First, the reasons for limiting the chemical components in the present invention will be explained.

【0018】Mg:Mgは、それ自体の固溶体強化と、S
iと共同して強度を付与する元素で、時効析出物β′−
Mg2Siを析出し、Mgの添加量によりこの量が依存す
る。更に後述するようにCuと結合した場合、時効析出
物S′−CuMgAl2を析出し、その析出硬化により強度
を付与するものである。しかし、0.3%未満では十分
な強度(以下、強度とは、素材及び170℃の焼付塗装
後の強度をいう。)が得られず、また、1.0%を超えて
添加すると、鋳造時に平衡相Mg2Siが晶出物として成
長し、伸びの低下が見られることにより成形性が著しく
低下する。よって、Mg含有量は0.3〜1.0%の範囲
とする。
Mg: Mg is the solid solution strengthening of itself and S
An element that imparts strength in cooperation with i. Aged precipitate β'-
Mg 2 Si is deposited, and this amount depends on the amount of Mg added. Further, as described later, when combined with Cu, an aging precipitate S'-CuMgAl 2 is precipitated and its precipitation hardening imparts strength. However, if it is less than 0.3%, sufficient strength (hereinafter, the strength means the material and the strength after baking at 170 ° C.) cannot be obtained. At the same time, the equilibrium phase Mg 2 Si grows as a crystallized substance, and a decrease in elongation is observed, so that the formability is remarkably reduced. Therefore, the Mg content is set to the range of 0.3 to 1.0%.

【0019】Si:SiはMgと共同し主として時効析出
物β′−Mg2Siの析出による析出硬化で強度を付与す
る元素で、Siの添加量によりこの量は依存する。しか
し、0.5%未満では十分な強度が得られず、また2.0
%を超えると平衡相Mg2Siが晶出し、伸びが大きく低
下させ、すなわち、成形性の劣化を生ずる。よって、S
i含有量は0.5〜2.0%の範囲とする。
Si: Si is an element which, together with Mg, imparts strength by precipitation hardening mainly by precipitation of the aging precipitate β'-Mg 2 Si, and this amount depends on the amount of Si added. However, if it is less than 0.5%, sufficient strength cannot be obtained, and it is 2.0
If it exceeds 0.1%, the equilibrium phase Mg 2 Si is crystallized and the elongation is greatly reduced, that is, the formability is deteriorated. Therefore, S
The i content is in the range of 0.5 to 2.0%.

【0020】但し、強度及び成形性はMg、Siの添加量
に依存され、強度及び焼付塗装における強度上昇に寄与
するのがこれらによって造られるMg2Siによるもので
ある。しかし、このMg2Siが0.4%未満では強度が非
常に低く、焼付硬化性も殆どない。また、1.5%を超
えると伸びが低下し、成形性が著しく低下する。よっ
て、Mg、Si量はMg2Siとして0.4〜1.5%の範囲
となるように配合する。
However, the strength and formability depend on the added amounts of Mg and Si, and it is the Mg 2 Si produced by these that contributes to the increase in strength and strength in baking coating. However, if the Mg 2 Si content is less than 0.4%, the strength is very low and the bake hardenability is almost zero. On the other hand, if it exceeds 1.5%, the elongation is lowered and the formability is remarkably lowered. Therefore, the amounts of Mg and Si are mixed so as to be in the range of 0.4 to 1.5% as Mg 2 Si.

【0021】更に、Siは過剰に添加するとMg2Siとし
て造られずに残ったSiが転位ループに固着し成形性を
上昇させる効果があり、かつ、この残Siが、T4状態
で固溶していると、固溶体硬化により強度は上昇する。
しかし、残留Si量が0.4%未満では、強度は十分得ら
れず、また、1.2%を超えると強度が増加し、成形性
は劣化する。ゆえに、残留Si量は0.5〜1.2%の範
囲とする。このようなMg2Si量と残留Si量を考慮し
て、Mg及びSi量を適正に配合する。
Further, if Si is added excessively, Si that has not been produced as Mg 2 Si and has the effect of sticking to the dislocation loops and increasing the formability, and this residual Si forms a solid solution in the T4 state. If so, the strength increases due to solid solution hardening.
However, if the residual Si content is less than 0.4%, sufficient strength cannot be obtained, and if it exceeds 1.2%, the strength increases and the formability deteriorates. Therefore, the amount of residual Si is set in the range of 0.5 to 1.2%. The Mg and Si amounts are properly mixed in consideration of the Mg 2 Si amount and the residual Si amount.

【0022】Cu:Cuは時効析出物S′−CuMgAl2
より強度を付与する元素である。本発明では、MgはSi
だけでなくCuとも結合し、複合析出硬化作用をもたら
し、強度の向上並びに低温焼付で焼付硬化性を向上させ
る。しかし、0.3%未満では低温焼付時に十分な強度
が得られず、また2.0%を超えるとS′系の核成長サ
イトやGPゾーンの形成があるためβ′系のそれらと混
合し、急激に強度が上がり、伸びと成形性が低下する。
よって、Cu含有量は、0.3〜2.0%の範囲とし、よ
り好ましくは0.6〜1.0%の範囲とする。更にCuは
転位ループに固着し成形性を上昇させる効果があり、し
かも、Cuを添加するとAl−Mg−Si系合金の集合組織
をキュービックの位置((100)面、<001>方向)に
変化させ、成形性を向上させる。
Cu: Cu is an element which imparts strength by the aging precipitate S'-CuMgAl 2 . In the present invention, Mg is Si
Not only does it bond with Cu to bring about a complex precipitation hardening action, which improves strength and bake hardenability by low temperature baking. However, if it is less than 0.3%, sufficient strength cannot be obtained at low temperature baking, and if it exceeds 2.0%, S'-based nucleus growth sites and GP zones are formed, so that it is mixed with those of β'-based. , The strength rapidly increases, and the elongation and the formability decrease.
Therefore, the Cu content is set in the range of 0.3 to 2.0%, and more preferably in the range of 0.6 to 1.0%. Furthermore, Cu has the effect of sticking to dislocation loops and increasing formability, and when Cu is added, the texture of the Al-Mg-Si alloy changes to the cubic position ((100) plane, <001> direction). And improve moldability.

【0023】Mn:MnはCuと同様に第二層析出物とし
てMnAl6が析出し、溶体化処理を十分に行い、固溶さ
せて強度を上昇させることができ、しかも、合金組織の
再結晶を抑制して結晶粒を微細化する効果がある。その
ため、成形向上に付与する元素である。しかし、0.0
5%未満では、結晶粒微細化効果が現れず、しかも、第
二層析出物MnAl6の析出が顕著でないため成形加工性
の向上が認められない。また、1.0%を超えて含有す
ると粗大な晶出物を生成し、成形性を低下させる。よっ
て、Mnの含有量は0.05〜1.0%の範囲とする。こ
の範囲でMnを添加することにより、溶体化処理を十分
に行い素材強度を上げても、結晶粒が30μm以下とな
るため、成形性の劣化は認められない。
Mn: Mn is similar to Cu, and MnAl 6 is deposited as a second-layer precipitate, which can be sufficiently solution-treated to form a solid solution to increase the strength and to re-create the alloy structure. It has the effect of suppressing the crystals and refining the crystal grains. Therefore, it is an element imparted to the improvement of molding. But 0.0
If it is less than 5%, the effect of refining crystal grains does not appear, and further, the precipitation of the second layer precipitate MnAl 6 is not remarkable, so that the improvement of the molding workability is not recognized. Further, if the content is more than 1.0%, coarse crystallized substances are formed, and the formability is lowered. Therefore, the content of Mn is set to the range of 0.05 to 1.0%. By adding Mn in this range, even if the solution treatment is sufficiently performed and the strength of the material is increased, the crystal grain becomes 30 μm or less, and therefore the moldability is not deteriorated.

【0024】なお、本発明におけるAl−Mg−Si−Cu
−Mn系アルミニウム合金は、上述のMg、Si、Cu及び
Mnを必須成分とすれば、その効果は十分得られるが、
他の元素を本発明の効果を損なわない限度で必要に応じ
て含有させることができる。例えば、Ti、Cr、Feの
うち少なくとも1種以上を含有させることができる。
In the present invention, Al-Mg-Si-Cu is used.
If the above-mentioned Mg, Si, Cu and Mn are essential components, the effect of the -Mn-based aluminum alloy is sufficiently obtained,
Other elements may be contained as necessary as long as the effects of the present invention are not impaired. For example, at least one of Ti, Cr and Fe can be contained.

【0025】Ti:Tiは鋳塊の結晶粒を微細にし、かつ
成形性を向上させる元素であるが、0.1%を超えて含
有すると、粗大な晶出物を生成し、成形性を低下させ
る。よって、Tiの含有量は0.1%以下とする。
Ti: Ti is an element that makes the crystal grains of the ingot finer and improves the formability, but if it is contained in excess of 0.1%, coarse crystallized substances are formed and the formability is lowered. Let Therefore, the content of Ti is set to 0.1% or less.

【0026】Cr:Crは強度を向上させる効果がある元
素であるが、含有量が増加すると粗大な晶出物を生成し
て成形性を低下させることになる。よって、Cr含有量
は0.4%以下とする。
Cr: Cr is an element which has the effect of improving the strength, but when the content increases, coarse crystallized substances are formed and the formability is lowered. Therefore, the Cr content is 0.4% or less.

【0027】Fe:Feは強度向上効果は小さいが、含有
量が多くなると晶出物の生成が著しく、成形性を低下さ
せることになる。よって、Fe含有量は0.5%以下とす
る。
Fe: Fe has a small effect of improving the strength, but when the content thereof is large, the formation of crystallized substances is remarkable and the formability is deteriorated. Therefore, the Fe content is set to 0.5% or less.

【0028】次に本発明合金板の好ましい製造条件につ
いて説明する。
Next, preferable manufacturing conditions for the alloy sheet of the present invention will be described.

【0029】上記Al−Mg−Si−Cu−Mn系アルミニ
ウム合金は、常法により、溶解→鋳造→均質化処理→熱
間圧延を行い、熱間圧延後、組織制御のため焼鈍処理を
行う。本発明では、この焼鈍を行うことにより、合金中
の析出物を微細で、かつ、均一分散させ、再結晶を抑制
することによって、冷間圧延→溶体化処理後の結晶粒組
織を微細にする効果があり、結晶粒の微細化により成形
性の増加を得るための処理である。しかし、その温度が
350℃未満では、結晶粒の微細化効果がなく、成形性
は向上しない。また450℃を超えると、溶体化処理温
度に近づき固溶体強化が起き、強度が上がるため、その
後の冷間圧延で耳割れ等を起こす原因となる。よって、
熱間圧延後の焼鈍温度は、350〜450℃の範囲とす
る。またこの焼鈍温度での保持時間は5〜10時間が適
当である。
The above Al-Mg-Si-Cu-Mn type aluminum alloy is melted, cast, homogenized, and hot-rolled by a conventional method. After hot-rolling, an annealing treatment is performed to control the structure. In the present invention, by performing this annealing, the precipitates in the alloy are finely and uniformly dispersed, and by suppressing recrystallization, the grain structure after cold rolling → solution treatment is made fine. This is an effective treatment for obtaining an increase in moldability due to the refinement of crystal grains. However, if the temperature is less than 350 ° C., there is no effect of refining the crystal grains and the formability is not improved. On the other hand, if the temperature exceeds 450 ° C., the solution heat treatment temperature is approached, solid solution strengthening occurs, and the strength increases, which causes ear cracks and the like in the subsequent cold rolling. Therefore,
The annealing temperature after hot rolling is in the range of 350 to 450 ° C. Further, the holding time at this annealing temperature is appropriately 5 to 10 hours.

【0030】その後、冷間圧延を行い所定の板厚とした
後、溶体化処理を施す。冷間圧延→溶体化処理の工程の
条件は、特に制限されない。
After that, cold rolling is performed to a predetermined plate thickness, and then solution treatment is performed. The conditions of the step of cold rolling → solution treatment are not particularly limited.

【0031】溶体化処理後は、従来は常温まで水冷或い
は空冷により焼入れが行われていたが、本発明では、焼
入れ−保持の新規プロセスを採用し、以下に示すよう
に、焼入温度、焼入時の冷却速度並びに焼入温度での保
持時間をコントロールするものである。
Conventionally, after the solution treatment, quenching was performed by water cooling or air cooling to room temperature, but in the present invention, a new quenching-holding process is adopted. The cooling rate at the time of quenching and the holding time at the quenching temperature are controlled.

【0032】焼入温度(すなわち、焼入終了温度)が5
0℃未満では、150℃程度の非常に低い温度での焼付
塗装で焼付硬化性が殆どなく、更に常温に放置する時間
の経過と共に消失する。一方、焼入温度が120℃を超
えると、Mg2Siの析出により、T4での強度が上がり
すぎ、成形性が劣化並びに焼付硬化性が認められない。
したがって、焼入温度の範囲は50〜120℃とする。
The quenching temperature (that is, the quenching end temperature) is 5
If it is less than 0 ° C., it has almost no bake hardenability by baking at a very low temperature of about 150 ° C., and it disappears with the passage of time at room temperature. On the other hand, when the quenching temperature exceeds 120 ° C., the strength at T4 is too high due to the precipitation of Mg 2 Si, the moldability is deteriorated and the bake hardenability is not observed.
Therefore, the quenching temperature range is 50 to 120 ° C.

【0033】この焼入温度(50〜120℃)に焼入れる
ときの冷却速度は、300℃/min未満では焼入後の強
度が低くなり、かつ、低温(150℃)での焼付硬化性が
認められなくなる。したがって、この冷却速度は300
℃/min以上とする。
When the cooling rate at the quenching temperature (50 to 120 ° C.) is less than 300 ° C./min, the strength after quenching is low and the bake hardenability at low temperature (150 ° C.) is low. Will not be recognized. Therefore, this cooling rate is 300
℃ / min or more.

【0034】次に、焼入保持温度については、70℃と
いう低温焼入れの場合、短時間保持では目的とする低温
での焼付硬化性の向上は認められず、また、120℃の
長時間保持するとMg2Siが析出し、T4での強度が上
がりすぎ、焼付硬化性は認められなくなる。また、焼入
温度が50℃未満の時、48時間を超えて長時間保持す
ると、低温焼付硬化性は消失し、120℃を超える温度
で0.5時間未満の短時間保持を行ってもMg2Siが既に
析出しているため、焼付硬化性は認められない。したが
って、焼入条件としては、温度は50〜120℃、保持
時間は0.5〜48時間とする。
As for the holding temperature for quenching, in the case of low temperature quenching of 70 ° C., improvement in bake hardenability at the target low temperature is not recognized by holding for a short time, and when holding at 120 ° C. for a long time. Mg 2 Si precipitates, the strength at T4 increases too much, and bake hardenability is not observed. Further, when the quenching temperature is lower than 50 ° C., the low temperature bake hardenability disappears when it is held for a long time exceeding 48 hours, and even if the temperature is kept higher than 120 ° C. for a short time of less than 0.5 hours, Mg No bake hardenability is observed because 2Si has already precipitated. Therefore, the quenching conditions are a temperature of 50 to 120 ° C. and a holding time of 0.5 to 48 hours.

【0035】更に、高成形性を有する場合のAl合金板
材の組織について説明する。
Further, the structure of the Al alloy sheet material having high formability will be described.

【0036】結晶粒径は、成形性、SSマーク、肌荒れ
性、曲げ加工性等を左右する重要なファクターである。
成形性、特に張出性は結晶粒径が小さいと向上し、肌荒
れ性、曲げ加工性についても、結晶粒径が小さい程良好
となる。SSマークについては、Al−Mg系合金等に見
られるような結晶粒の微細による劣化は、本発明合金系
であるAl−Mg−Si系合金では殆ど認められず、結晶
粒径は、微細化してもSSマークは発生しない。したが
って、結晶粒径は30μm以下とする。
The crystal grain size is an important factor that influences moldability, SS mark, surface roughness, bending workability and the like.
Formability, especially bulging property, is improved when the crystal grain size is small, and skin roughness and bending workability are also better as the crystal grain size is smaller. Regarding the SS mark, deterioration due to fine crystal grains, which is seen in Al-Mg alloys and the like, is hardly recognized in the Al-Mg-Si alloys of the present invention, and the crystal grain size is reduced. However, the SS mark does not occur. Therefore, the crystal grain size is 30 μm or less.

【0037】集合組織は、その合金の優先する面、方向
を示すもので、この組織のもので、成形性を支配する一
つの因子である。Alのような面心立方構造を持つ金属
では、すべり面である(111)がその組織で高い強度を
持っていれば、成形性は最も優れるが、圧延板材では、
通常(111)面に強度を得ることはなく、キュービッ
ク、すなわち(100)面<001>方向にピークを持つ
組織となる。しかし、Al−Mg−Si系合金では(10
0)面<001>方向にピークを持つ場合があり、この
時の成形性は低くなる。よって、本発明のAl−Mg−S
i−Cu−Mn系合金は、この合金系において(100)面
<001>方向にピークを持つ組織であることを特徴と
するものである。
The texture shows the preferential planes and directions of the alloy, and is one of the factors that govern the formability of this texture. For metals with a face-centered cubic structure such as Al, if the slip surface (111) has high strength in its structure, formability is the best, but for rolled sheet material,
Normally, strength is not obtained in the (111) plane, and the structure is cubic, that is, has a peak in the <001> direction of the (100) plane. However, in the Al-Mg-Si system alloy (10
There may be a peak in the <001> direction of the (0) plane, and the formability at this time is low. Therefore, the Al-Mg-S of the present invention
The i-Cu-Mn-based alloy is characterized by having a structure having a peak in the (001) plane <001> direction in this alloy system.

【0038】次に本発明の実施例を示す。Next, examples of the present invention will be described.

【0039】[0039]

【実施例1】表1に示す化学成分を有するアルミニウム
合金を常法により溶解→鋳造し得られた50mm厚鋳塊に
510℃×4hrの均質化処理を施した後、480℃以下
の温度で板厚5mmまでの熱間圧延を行った。熱間圧延材
を室温まで放置した後、昇温速度40℃/hrで450℃
×5hrの条件にて焼鈍を行い、その後、常温にて冷間圧
延を施し、板厚1mmとし、実験に供した。
Example 1 A 50 mm thick ingot obtained by melting and casting an aluminum alloy having the chemical composition shown in Table 1 by a conventional method was subjected to a homogenizing treatment at 510 ° C. for 4 hours and then at a temperature of 480 ° C. or lower. Hot rolling was performed up to a plate thickness of 5 mm. After leaving the hot-rolled material to room temperature, the temperature rise rate is 40 ℃ / hr and 450 ℃
Annealing was performed under the condition of × 5 hr, and then cold rolling was performed at room temperature to a plate thickness of 1 mm, which was then subjected to an experiment.

【0040】この冷延材を530℃の溶体化処理温度に
加熱して20秒間保持し、次いで表2に示す焼入条件、
すなわち、530℃〜常温の範囲内の温度(焼入温度)に
冷却する時の平均冷却速度を50〜800℃/minの範
囲で変化させ、その後、その焼入温度のまま0.5〜6
0時間の範囲で保持した後、常温まで冷却した。
This cold rolled material was heated to a solution treatment temperature of 530 ° C. and held for 20 seconds, and then the quenching conditions shown in Table 2
That is, the average cooling rate at the time of cooling to a temperature (quenching temperature) in the range of 530 ° C. to room temperature is changed in the range of 50 to 800 ° C./min, and then the quenching temperature is kept at 0.5 to 6
After holding in the range of 0 hours, it was cooled to room temperature.

【0041】得られた材料について、焼入れ後室温にて
5日間放置後の機械的性質を調べると共に、170℃×
20分のベーキング処理した時の機械的性質(焼付硬化
性)を調べた。それらの結果を表3に示す。
The obtained material was examined for mechanical properties after being left to stand at room temperature for 5 days after quenching and at 170 ° C.
The mechanical properties (bake hardenability) when baked for 20 minutes were examined. The results are shown in Table 3.

【0042】表3より明らかなように、本発明例は、本
発明範囲内の条件(表2)の焼入法を行うことにより、1
70℃でのベーキング処理で焼付硬化性が非常に優れて
いることがわかる。更に、本発明例は、表2に示す焼入
条件で処理しても成形性が優れていることがわかる。一
方、本発明範囲外の化学成分では、本発明範囲内の焼入
条件を採用しても、焼付硬化性は全く認められない。以
上のことから、本発明合金は、本発明範囲内の焼入条件
(本発明法)を施すことにより、低温(170℃)での焼付
硬化性が大きい。
As is apparent from Table 3, the examples of the present invention were obtained by carrying out the quenching method under the conditions (Table 2) within the scope of the present invention.
It can be seen that the baking treatment at 70 ° C. is very excellent in bake hardenability. Furthermore, it can be seen that the inventive examples have excellent formability even when treated under the quenching conditions shown in Table 2. On the other hand, with chemical components outside the scope of the present invention, bake hardenability is not observed at all even when the quenching conditions within the scope of the present invention are adopted. From the above, the alloy of the present invention, the quenching conditions within the scope of the present invention
By applying (the method of the present invention), the bake hardenability at a low temperature (170 ° C.) is large.

【0043】[0043]

【表1】 [Table 1]

【0044】[0044]

【表2】 [Table 2]

【0045】[0045]

【表3】 [Table 3]

【0046】[0046]

【実施例2】実施例1の表1に示したNo.3のAl合金
(本発明範囲内の化学成分)と、No.11のAl合金(本発
明範囲外の化学成分)を常法で溶解、鋳造し、得られた
鋳塊について、加熱速度40℃/hrで510℃の温度に
4時間保持する均質化熱処理を施した後、熱間圧延を行
い、厚さ5mmの板とした。得られた熱間圧延材を表4に
示す焼鈍処理し、その後冷間圧延を行って厚さ1.0mm
の板とした。
Example 2 Al alloy No. 3 shown in Table 1 of Example 1
(Chemical composition within the range of the present invention) and Al alloy No. 11 (Chemical composition outside the range of the present invention) were melted and cast by a conventional method, and the obtained ingot was heated at a heating rate of 40 ° C./hr for 510 minutes. After carrying out a homogenizing heat treatment of holding at a temperature of 4 ° C. for 4 hours, hot rolling was performed to obtain a plate having a thickness of 5 mm. The obtained hot-rolled material was annealed as shown in Table 4 and then cold-rolled to a thickness of 1.0 mm.
It was a plate.

【0047】次いで、得られた板を加熱速度400℃/
minで530℃の温度に20秒間保持し、800℃/min
の冷却速度で50℃の温度に焼入れし、そのまま50℃
の温度に24時間保持し、実験に供した。この熱処理を
施した材料につき、強度、成形性、結晶粒の測定を行っ
た。結晶粒は、上記した熱処理を施した厚さ1.0mmの
板をエメリー紙(320〜1200番)、バフ(アルミナ
粒径50μm)により鏡面研磨し、フッ化水素酸による電
界腐食し、その後、光学顕微鏡にて組織観察をし、切片
法によりその大きさを測定した。
Then, the obtained plate was heated at a heating rate of 400 ° C. /
Hold at 530 ℃ for 20 seconds at 800 ℃ / min
Quenching at a temperature of 50 ℃ at a cooling rate of
The temperature was maintained for 24 hours and used for the experiment. The strength, formability, and crystal grains of the heat-treated material were measured. As for the crystal grains, a plate having a thickness of 1.0 mm that has been subjected to the above heat treatment is mirror-polished with emery paper (No. 320 to 1200) and buff (alumina particle size 50 μm), and then electrolytically corroded by hydrofluoric acid, and then, The tissue was observed with an optical microscope, and the size was measured by the section method.

【0048】得られた素材の特性と結晶粒径並びに焼付
(170℃×20分)後の焼付硬化性を表5に示すと共
に、No.3の合金(表1)で(i)の焼鈍(表4)を行ったも
のと、No.11の合金で(iv)の焼鈍を行った材料の結晶
組織写真をそれぞれ図1及び図2に示す。
Characteristic and crystal grain size of the obtained material and baking
The bake hardenability after (170 ° C x 20 minutes) is shown in Table 5, and the alloy No. 3 (Table 1) was annealed (i) (Table 4) and the alloy No. 11 was used. Crystal structure photographs of the material annealed in (iv) are shown in FIGS. 1 and 2, respectively.

【0049】表5及び図1、図2より明らかなように、
本発明合金は熱間圧延材に本発明範囲内の条件で焼鈍を
行い、冷間圧延することで、結晶粒が20μm以下とな
り、比較合金及び比較焼鈍法に比べ微細化していること
がわかる。更に本発明合金は、成形性が優れ、焼付硬化
性にも効果がある。
As is clear from Table 5 and FIGS. 1 and 2,
It can be seen that the alloy of the present invention has a grain size of 20 μm or less when annealed to the hot-rolled material under the conditions within the scope of the present invention and cold-rolled, which is finer than that of the comparative alloy and the comparative annealing method. Further, the alloy of the present invention has excellent formability and is effective in bake hardenability.

【0050】[0050]

【表4】 [Table 4]

【0051】[0051]

【表5】 [Table 5]

【0052】[0052]

【実施例3】実施例1の表1に示したNo.3のAl合金
(本発明範囲内の化学成分)と、No.11のAl合金(本発
明範囲外の化学成分)を常法で溶解、鋳造し、得られた
鋳塊について、加熱速度40℃/hrで510℃の温度に
4時間保持をする均質化熱処理を施した後、熱間圧延を
行い、厚さ5mmの板とした。得られた熱間圧延材を室温
まで放置した後、昇温速度40℃/hrで450℃×5hr
の条件にて焼鈍処理を行い、その後、常温にて冷間圧延
を施し、板厚1mmとし、実験に供した。
Example 3 Al alloy No. 3 shown in Table 1 of Example 1
(Chemical composition within the range of the present invention) and Al alloy No. 11 (Chemical composition outside the range of the present invention) were melted and cast by a conventional method, and the obtained ingot was heated at a heating rate of 40 ° C./hr for 510 minutes. After carrying out a homogenizing heat treatment of holding at a temperature of 4 ° C. for 4 hours, hot rolling was performed to obtain a plate having a thickness of 5 mm. After leaving the obtained hot-rolled material up to room temperature, the temperature rising rate is 40 ° C / hr and 450 ° C x 5 hr.
Annealing treatment was performed under the conditions described above, and then cold rolling was performed at room temperature to obtain a plate thickness of 1 mm, which was then subjected to an experiment.

【0053】この冷延材を530℃の溶体化処理温度に
加熱して20秒間保持し、次いで、得られた板を加熱速
度400℃/minで530℃の温度に20秒間保持し、
800℃/minの冷却速度で50℃の温度に焼入れし、
そのまま50℃の温度に24時間保持し、実験に供し
た。得られた材料について、ディフラクトメータ法によ
り集合組織を観察した。その結果を図3、図4に示す。
Cu及びMnを添加した合金は(100)面<001>方位
に高い分布を持ち、これらの無添加合金に比べて方位は
全く異なる。この集合組織を持つ本発明材と、異形の集
合組織を持つ比較材の成形性をみると、本発明合金は成
形性が良好であることがわかる。
This cold rolled material was heated to a solution treatment temperature of 530 ° C. and held for 20 seconds, and then the obtained plate was held at a temperature of 530 ° C. for 20 seconds at a heating rate of 400 ° C./min.
Quench at a temperature of 50 ° C at a cooling rate of 800 ° C / min,
The sample was kept at the temperature of 50 ° C. for 24 hours and used for the experiment. The texture of the obtained material was observed by the diffractometer method. The results are shown in FIGS. 3 and 4.
The alloys containing Cu and Mn have a high distribution in the (100) plane <001> orientation, and the orientations are completely different from those of these additive-free alloys. Looking at the formability of the material of the present invention having this texture and the comparative material having a heteromorphic texture, it can be seen that the alloy of the present invention has good formability.

【0054】[0054]

【発明の効果】以上詳述したように、本発明によれば、
Al−Mg−Si−Cu−Mn合金板のMg、Siの含有量を
調整し、最適なMg2Si量及び残留Si量にし、更に強度
及び成形性を向上させる効果のあるCu、Mnを添加する
ことにより、優れた成形加工性と低温での焼付硬化性に
優れたAl合金板材を得ることができる。更には結晶粒
を20μm以下にし、かつ集合組織を(100)面、<0
01>方向に方位を持たせることにより、更に成形加工
性に優れたものとすることができる。また、熱間圧延後
に焼鈍処理を行い、この焼鈍処理を制御することによ
り、結晶粒を20μm以下にすることにより、更に優れ
た成形性が得られ、更には溶体化処理後の焼入処理を制
御することにより、低温での焼付硬化性に優れたAl合
金板材を得ることができる。よって、Al合金板の薄肉
化が可能となり、更には成形性が良好なため、自動車、
家電製品、機械部品の軽量化に寄与し、工業的に使用頻
度を向上させることが可能となり、その効果は極めて高
い。
As described in detail above, according to the present invention,
Al-Mg-Si-Cu- Mn alloy plate Mg, and adjusting the content of Si, the optimal Mg 2 Si content and the residual Si content, further strength and an effect of improving the formability Cu, addition of Mn By doing so, it is possible to obtain an Al alloy sheet material having excellent formability and bake hardenability at low temperature. Furthermore, the crystal grain is set to 20 μm or less, and the texture is (100) plane, <0.
By providing the azimuth in the 01> direction, the moldability can be further improved. Further, an annealing treatment is performed after hot rolling, and by controlling this annealing treatment, the crystal grain is set to 20 μm or less, so that further excellent formability can be obtained, and further, the quenching treatment after the solution treatment is performed. By controlling, it is possible to obtain an Al alloy plate material having excellent bake hardenability at low temperature. Therefore, it becomes possible to reduce the thickness of the Al alloy plate, and since the formability is good,
It contributes to the weight reduction of home electric appliances and mechanical parts, and the frequency of use can be increased industrially, and the effect is extremely high.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例2における本発明合金の金属組織を示す
写真である。
FIG. 1 is a photograph showing a metallographic structure of an alloy of the present invention in Example 2.

【図2】実施例2における比較合金の金属組織を示す写
真である。
2 is a photograph showing a metallographic structure of a comparative alloy in Example 2. FIG.

【図3】実施例3における本発明合金の集合組織と成形
性を示す図である。
FIG. 3 is a diagram showing the texture and formability of the alloy of the present invention in Example 3.

【図4】実施例3における比較合金の集合組織と成形性
を示す図である。
FIG. 4 is a diagram showing a texture and formability of a comparative alloy in Example 3.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 重量%で(以下、同じ)、Mg:0.3〜
1.0%、Si:0.5〜2.0%を含有し(但し、Mgと
Siの関係について、Mg2Si量として0.4〜1.5%を
含有し、かつ、残留するSi量が0.4〜1.2%であ
る)、更にCu:0.3〜2.0%及びMn:0.05〜1.
0%を含有し、残部がAl及び不純物からなることを特
徴とする成形加工性に優れた焼付硬化型Al−Mg−Si
−Cu−Mn系Al合金板。
1. In weight% (hereinafter the same), Mg: 0.3-
1.0%, Si: 0.5-2.0% (however, regarding the relationship between Mg and Si, the content of Mg 2 Si is 0.4-1.5% and the remaining Si The amount is 0.4 to 1.2%), and further Cu: 0.3 to 2.0% and Mn: 0.05 to 1.
Bake hardening type Al-Mg-Si excellent in moldability characterized by containing 0% and the balance Al and impurities.
-Cu-Mn Al alloy plate.
【請求項2】 Ti:0.1%以下、Cr:0.4%以下、
Fe:0.5%以下のうちの少なくとも1種を含有してい
る請求項1に記載のAl合金板。
2. Ti: 0.1% or less, Cr: 0.4% or less,
Fe: The Al alloy plate according to claim 1, containing at least one of Fe: 0.5% or less.
【請求項3】 板材の組織が、結晶粒径で30μm以下
に制御され、集合組織は(100)面<001>方向に高
いピークを持つものであることを特徴とする請求項1又
は2に記載のAl合金板。
3. The sheet material according to claim 1, wherein the texture of the plate material is controlled to be 30 μm or less in terms of crystal grain size, and the texture has a high peak in the (100) plane <001> direction. The described Al alloy plate.
【請求項4】 請求項1又は2に記載の化学成分を有す
るAl合金鋳塊にバーニング温度以下の温度で均質化処
理を施した後、熱間圧延を行い、熱間圧延後、350〜
450℃の温度で5〜10時間の焼鈍処理を行い、次い
で冷間圧延を行って所望の板厚とした後、溶体化処理を
施し、その後、冷却速度を300℃/分以上で50〜1
20℃の温度に焼入れし、そのまま50〜120℃の温
度で1〜48時間の温度に保持することを特徴とする成
形加工性に優れた焼付硬化型Al−Mg−Si−Cu−Mn
系Al合金板の製造方法。
4. The Al alloy ingot having the chemical composition according to claim 1 or 2 is homogenized at a temperature not higher than the burning temperature, then hot-rolled, and after hot-rolling, 350 to
Annealing treatment is performed at a temperature of 450 ° C. for 5 to 10 hours, then cold rolling is performed to obtain a desired plate thickness, solution treatment is performed, and then a cooling rate of 300 to 50 ° C./min.
Bake hardening type Al-Mg-Si-Cu-Mn excellent in molding processability, characterized by quenching to a temperature of 20 ° C and holding at a temperature of 50 to 120 ° C for 1 to 48 hours.
For manufacturing a series Al alloy plate.
JP4309584A 1992-10-23 1992-10-23 Baking hardening type al alloy sheet excellent in formability and its production Pending JPH06136478A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4309584A JPH06136478A (en) 1992-10-23 1992-10-23 Baking hardening type al alloy sheet excellent in formability and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4309584A JPH06136478A (en) 1992-10-23 1992-10-23 Baking hardening type al alloy sheet excellent in formability and its production

Publications (1)

Publication Number Publication Date
JPH06136478A true JPH06136478A (en) 1994-05-17

Family

ID=17994797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4309584A Pending JPH06136478A (en) 1992-10-23 1992-10-23 Baking hardening type al alloy sheet excellent in formability and its production

Country Status (1)

Country Link
JP (1) JPH06136478A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08325663A (en) * 1995-05-31 1996-12-10 Kobe Steel Ltd Aluminum alloy sheet excellent in press formability and its production
US5858134A (en) * 1994-10-25 1999-01-12 Pechiney Rhenalu Process for producing alsimgcu alloy products with improved resistance to intercrystalline corrosion
JP2001295008A (en) * 2000-04-13 2001-10-26 Nissan Motor Co Ltd Aluminum alloy sheet excellent in filiform erosion resistance and its producing method
US6461454B2 (en) 2000-04-20 2002-10-08 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Aluminum alloy plate for automobile and manufacturing method thereof
JP2003277869A (en) * 2002-03-20 2003-10-02 Sumitomo Light Metal Ind Ltd Aluminum alloy sheet having excellent bending workability and hardenability in coating/baking, and production method thereof
JP2003277870A (en) * 2002-03-20 2003-10-02 Sumitomo Light Metal Ind Ltd Aluminum alloy sheet having excellent bending workability and hardenability in coating/baking, and production method thereof
JP2004124175A (en) * 2002-10-02 2004-04-22 Furukawa Sky Kk Method for manufacturing 6000 system alloy plate for forming excellent in formability, baking hardenability, and springback characteristic
JP2004527658A (en) * 2001-05-03 2004-09-09 アルキャン・インターナショナル・リミテッド Method of manufacturing aluminum alloy sheet with improved bending characteristics and aluminum alloy sheet manufactured by the method
JP2015096650A (en) * 2013-10-07 2015-05-21 日本軽金属株式会社 High strength aluminum alloy sheet excellent in moldability and manufacturing method therefor
JP2018513916A (en) * 2015-12-18 2018-05-31 ノベリス・インコーポレイテッドNovelis Inc. High strength 6XXX aluminum alloy and manufacturing method thereof
US10513766B2 (en) 2015-12-18 2019-12-24 Novelis Inc. High strength 6XXX aluminum alloys and methods of making the same
JP2020537039A (en) * 2017-10-23 2020-12-17 ノベリス・インコーポレイテッドNovelis Inc. High-strength and highly moldable aluminum alloy and its manufacturing method
WO2024124736A1 (en) * 2022-12-14 2024-06-20 中铝材料应用研究院有限公司 6xxx-series aluminum alloy plate suitable for hot stamping forming and formability integrated process, and preparation method therefor and use thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58224141A (en) * 1982-06-21 1983-12-26 Sumitomo Light Metal Ind Ltd Cold roller aluminum alloy plate for forming and its manufacture
JPS60258454A (en) * 1984-06-05 1985-12-20 Furukawa Alum Co Ltd Manufacture of aluminum alloy rigid plate for molding
JPS62177143A (en) * 1986-01-30 1987-08-04 Kobe Steel Ltd Aluminum alloy sheet excellent in formability and baking hardening and its production
JPH01111851A (en) * 1987-10-23 1989-04-28 Kobe Steel Ltd Manufacture of aluminum alloy excellent in baking hardenability and formability
JPH03294456A (en) * 1990-04-13 1991-12-25 Kobe Steel Ltd Production of aluminum alloy sheet excellent in formability and baking hardenability
JPH04231434A (en) * 1990-12-27 1992-08-20 Furukawa Alum Co Ltd Aluminum alloy for forming excellent in baking hardenability

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58224141A (en) * 1982-06-21 1983-12-26 Sumitomo Light Metal Ind Ltd Cold roller aluminum alloy plate for forming and its manufacture
JPS60258454A (en) * 1984-06-05 1985-12-20 Furukawa Alum Co Ltd Manufacture of aluminum alloy rigid plate for molding
JPS62177143A (en) * 1986-01-30 1987-08-04 Kobe Steel Ltd Aluminum alloy sheet excellent in formability and baking hardening and its production
JPH01111851A (en) * 1987-10-23 1989-04-28 Kobe Steel Ltd Manufacture of aluminum alloy excellent in baking hardenability and formability
JPH03294456A (en) * 1990-04-13 1991-12-25 Kobe Steel Ltd Production of aluminum alloy sheet excellent in formability and baking hardenability
JPH04231434A (en) * 1990-12-27 1992-08-20 Furukawa Alum Co Ltd Aluminum alloy for forming excellent in baking hardenability

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5858134A (en) * 1994-10-25 1999-01-12 Pechiney Rhenalu Process for producing alsimgcu alloy products with improved resistance to intercrystalline corrosion
JPH08325663A (en) * 1995-05-31 1996-12-10 Kobe Steel Ltd Aluminum alloy sheet excellent in press formability and its production
JP2001295008A (en) * 2000-04-13 2001-10-26 Nissan Motor Co Ltd Aluminum alloy sheet excellent in filiform erosion resistance and its producing method
US6461454B2 (en) 2000-04-20 2002-10-08 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Aluminum alloy plate for automobile and manufacturing method thereof
JP2004527658A (en) * 2001-05-03 2004-09-09 アルキャン・インターナショナル・リミテッド Method of manufacturing aluminum alloy sheet with improved bending characteristics and aluminum alloy sheet manufactured by the method
JP2003277869A (en) * 2002-03-20 2003-10-02 Sumitomo Light Metal Ind Ltd Aluminum alloy sheet having excellent bending workability and hardenability in coating/baking, and production method thereof
JP2003277870A (en) * 2002-03-20 2003-10-02 Sumitomo Light Metal Ind Ltd Aluminum alloy sheet having excellent bending workability and hardenability in coating/baking, and production method thereof
JP2004124175A (en) * 2002-10-02 2004-04-22 Furukawa Sky Kk Method for manufacturing 6000 system alloy plate for forming excellent in formability, baking hardenability, and springback characteristic
JP2015096650A (en) * 2013-10-07 2015-05-21 日本軽金属株式会社 High strength aluminum alloy sheet excellent in moldability and manufacturing method therefor
JP2018513916A (en) * 2015-12-18 2018-05-31 ノベリス・インコーポレイテッドNovelis Inc. High strength 6XXX aluminum alloy and manufacturing method thereof
US10513766B2 (en) 2015-12-18 2019-12-24 Novelis Inc. High strength 6XXX aluminum alloys and methods of making the same
US10538834B2 (en) 2015-12-18 2020-01-21 Novelis Inc. High-strength 6XXX aluminum alloys and methods of making the same
JP2020015981A (en) * 2015-12-18 2020-01-30 ノベリス・インコーポレイテッドNovelis Inc. High strength 6xxx aluminum alloy and manufacturing method therefor
US11920229B2 (en) 2015-12-18 2024-03-05 Novelis Inc. High strength 6XXX aluminum alloys and methods of making the same
JP2020537039A (en) * 2017-10-23 2020-12-17 ノベリス・インコーポレイテッドNovelis Inc. High-strength and highly moldable aluminum alloy and its manufacturing method
JP2022172234A (en) * 2017-10-23 2022-11-15 ノベリス・インコーポレイテッド High-strength, highly formable aluminum alloys and methods of making the same
WO2024124736A1 (en) * 2022-12-14 2024-06-20 中铝材料应用研究院有限公司 6xxx-series aluminum alloy plate suitable for hot stamping forming and formability integrated process, and preparation method therefor and use thereof

Similar Documents

Publication Publication Date Title
JP4577218B2 (en) Method for producing Al-Mg-Si alloy sheet excellent in bake hardness and hemmability
JP4901757B2 (en) Aluminum alloy plate and manufacturing method thereof
JPH06136478A (en) Baking hardening type al alloy sheet excellent in formability and its production
WO2015155911A1 (en) High-strength aluminum alloy plate having exceptional bendability and shape fixability, and method for manufacturing same
JPH083702A (en) Production of aluminum alloy sheet material excellent in formability and heating hardenability
CN113474479A (en) Method for producing a plate or strip from an aluminium alloy and plate, strip or shaped part produced thereby
JPH0874014A (en) Production of aluminum alloy sheet having high formability and good baking hardenability
JP2004263253A (en) Aluminum alloy hard sheet for can barrel, and production method therefor
JP2599861B2 (en) Manufacturing method of aluminum alloy material for forming process excellent in paint bake hardenability, formability and shape freezing property
JPH07166285A (en) Hardened al alloy sheet by baking and production thereof
JPH0138866B2 (en)
JPH05112839A (en) Aluminum alloy sheet for forming excellent in low temperature baking hardenability and its manufacture
JP3278119B2 (en) Method for producing Al-Mg-Si alloy sheet excellent in formability and bake hardenability
JPH07150282A (en) Al-mg-si alloy sheet excellent in formability and baking hardenability by crystalline grain control and its production
JPH04365834A (en) Aluminum alloy sheet for press forming excellent in hardenability by low temperature baking and its production
JPH0860283A (en) Aluminum alloy sheet for di can body and its production
JPH0672295B2 (en) Method for producing aluminum alloy material having fine crystal grains
JP4226208B2 (en) Al-Mn-Mg alloy annealed sheet reinforced by fine crystals and method for producing the same
JPH0639620B2 (en) Method for manufacturing thin steel sheet with excellent formability
JP2000054054A (en) Aluminum-magnesium-silicon forged part excellent in brightness and its production
JP3697539B2 (en) Al-Mg-Si alloy plate having excellent forming processability and method for producing the same
JP3359428B2 (en) Manufacturing method of aluminum alloy sheet for forming
JP3587993B2 (en) Manufacturing method of aluminum alloy sheet for deep drawing
JPH062090A (en) Manufacture of high strength aluminum alloy sheet for forming small in anisotropy
JPH0565586A (en) Aluminum alloy rooled sheet for forming and its production