JPH01111851A - Manufacture of aluminum alloy excellent in baking hardenability and formability - Google Patents
Manufacture of aluminum alloy excellent in baking hardenability and formabilityInfo
- Publication number
- JPH01111851A JPH01111851A JP26771487A JP26771487A JPH01111851A JP H01111851 A JPH01111851 A JP H01111851A JP 26771487 A JP26771487 A JP 26771487A JP 26771487 A JP26771487 A JP 26771487A JP H01111851 A JPH01111851 A JP H01111851A
- Authority
- JP
- Japan
- Prior art keywords
- formability
- quenching
- temperature
- baking
- aluminum alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910000838 Al alloy Inorganic materials 0.000 title claims abstract description 26
- 238000004519 manufacturing process Methods 0.000 title claims description 12
- 238000001816 cooling Methods 0.000 claims abstract description 15
- 229910018464 Al—Mg—Si Inorganic materials 0.000 claims abstract 3
- 238000010438 heat treatment Methods 0.000 abstract description 13
- 238000000034 method Methods 0.000 abstract description 8
- 238000010791 quenching Methods 0.000 description 39
- 230000000171 quenching effect Effects 0.000 description 38
- 239000000463 material Substances 0.000 description 6
- 229910019064 Mg-Si Inorganic materials 0.000 description 5
- 229910019406 Mg—Si Inorganic materials 0.000 description 5
- 238000007796 conventional method Methods 0.000 description 5
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000004566 building material Substances 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000008094 contradictory effect Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005098 hot rolling Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 239000003973 paint Substances 0.000 description 2
- 238000010422 painting Methods 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910019094 Mg-S Inorganic materials 0.000 description 1
- 229910019397 Mg—S Inorganic materials 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000005097 cold rolling Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 238000001192 hot extrusion Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Landscapes
- Shaping Metal By Deep-Drawing, Or The Like (AREA)
Abstract
Description
(産業上の利用分野)
本発明はアルミニウム合金の製造に係り、より詳細には
、自動車部品、家電部品、機械部品、建材等に用いられ
るアルミニウム合金であって、焼付塗装(ベーキング)
などの短時間加熱により強度の向上が期待できる焼付硬
化型のアルミニウム合金の製造法に関する。
(従来の技術及び解決しようとする問題点)従来より、
自動車部品、家電部品、機械部品。
建材等に用いられるアルミニウム合金には、成形加工し
、焼付塗装等の短時間加熱によって硬化し得るアルミニ
ウム合金が用いられているが、か)るアルミニウム合金
としては、成形加工時は強度が低く成形加工がし易いこ
と、しかし成形加工後は焼付塗装等の短時間加熱によっ
て強度が著しく向上する材料であることが理想とされ、
主としてAfl−Mg−Si系アルミニウム合金が使用
されている。
しかし、従来、この種の用途に用いられているAQ−M
g−5i系アルミニウム合金の製造法では。
成形性を重視して強度を低くすると焼付硬化後の強度も
低くなり、逆に焼付硬化後の強度を重視して強度を高く
すると成形加工時の強度を高くせざるを得す、成形性が
劣るなど、相反する特性(成形性、焼付硬化性)を同時
に向上させることが極めて困難であった。
一方、特に最近の焼付塗装の焼付条件としては。
省エネルギー化及び生産性向上のため、更には樹脂など
高温にさらさせたくない部品との組合せで焼付する場合
が多くなってきていることがら、塗料の進歩と相俟って
焼付温度がより低温側に移行してきており、例えば、自
動車部品用のアルミニウム合金の焼付温度は、従来は約
200℃の高温であったものが170℃前後の低温側に
シフトしている。このため、従来のAQ−Mg−3i系
アルミニウム合金の製造法ではこのような低い温度側で
の焼付硬化性が極めて低いという問題があった。
本発明は、上記従来技術の問題点を解決するためにさな
れたものであって、AQ−Mg−8L系アルミニウム合
金において、相反する特性である成形性と焼付硬化性を
同時に満足でき、しかも従来より比較的低い温度で且つ
より短い処理時間での焼付塗装等の熱処理によっても優
れた焼付硬化性を具備し得るアルミニウム合金の製造法
を提供することを目的とするものである。
(問題点を解決するための手段)
上記目的を達成するため1本発明者は、まず、従来のA
Q−Mg−Si系アルミニウム合金の製造法において成
形性及び焼付硬化性が低下する原因について調べた。そ
の結果、AQ−Mg−Si系アルミニウム合金に適用さ
れる溶体化焼入は、溶体化機常温まで水冷や空冷等で冷
却して焼入されていたが、この製造法では、焼入直後で
は強度が低く成形性に優れていると共に低い温度での焼
付でも焼付硬化性に優れているが、焼入後数10分乃至
は数時間経過すると、この望ましい特長がたちまち消失
してしまい、したがって、このような製造法は工業製品
の製造法としては不適当であることが判明した。
そこで、本発明者は、溶体化処理後において焼入直後の
みならず、焼入後数百日経過しても成形性に優れ、且つ
低い温度の焼付温度でも優れた焼付硬化性が得られる製
造法を見い出すべく鋭意研究を重ねた結果、AQ−Mg
−Si系での化学成分の調整のもとで特に溶体化処理後
の熱処理条件をコントロールするならば、焼入後の経時
変化がなく、成形性と焼付硬化性のいずれも著しく向上
できることを見い出したものである。
すなわち、本発明は、Mg:0.3〜1.5%及びSi
:0.2〜2.0%を含むAfi−Mg−Si系7)L
lミニウム合金につき、溶体化処理後、60〜130℃
までを100℃/+*in以上の冷却速度で冷却し、そ
のまま60〜130℃の範囲の温度に0゜5〜48時間
保持することを特徴とする成形性及び比較的低い温度で
の焼付硬化性に優れたアルミニウム合金の製造法を要旨
とするものである。
以下に本発明を更に詳細に説明する。
まず、本発明における化学成分の限定理由を示す。
MgはSiと共同して強度を付与する元素であるが、M
g含有量が0.3%未満では焼付などの熱処理を施した
後の強度が低く、焼付硬化性が低下することになり、一
方、1.5%を超えると伸びが低くなって靭性が劣るよ
うになる。したがって、Mg含有量は0.3〜1.5%
の範囲とする。
SiはMgと共同して強度を付与する元素である。
しかしSi含有量が0.2%未満では焼付などの熱処理
を施した後の強度が低く、焼付硬化性が低下することに
なり、一方、2.0%を超えると伸びが低くなって靭性
が劣るようになる。したがって。
Si含有量は0.2〜2.0%の範囲とする。
なお、本発明におけるAQ−Mg−3i系アルミニウム
合金は上記Mg及びSiを必須成分とすれば足りるが、
他の合金元素を必要に応じて添加し、或いは不純物も含
有されるが1本発明の効果を損なわない限度で含有させ
ることが許容される。例えば、Cuは多くなると耐食性
が劣るので0.8%以下で許容され、Mn、Cr、Zr
、V、Ti及びFeはそれぞれ多くなると成形性が劣る
ので、Mnは0.8%以下、Crは0.2%以下、Zr
は0.2%以下、■は0.2%以下、Tiは0.1%以
下、 Feは0.5%以下で許容され、Znは多くなる
と耐食性が劣るので0.5%以下で許容される。
か)るAQ−Mg−Si系アルミニウム合金は、常法に
より溶解、鋳造し、鋳塊を面削り後、加熱又は均質化処
理を施し、熱間圧延、中間焼鈍及び冷間圧延等を行い、
次いで溶体化処理が施される。
これらの各工程の条件は特に制限はされない。
溶体化処理後は、従来は単に常温まで水冷、空冷等で冷
却して焼入が行われていたが、本発明においては焼入−
保持の新規プロセスを採用し、焼入温度並びにこの温度
での保持時間をコントロールするものである。
焼入温度(すなわち、焼入終了温度)が60℃未満では
、170℃位の低い温度での焼付硬化性が焼入機常温に
放置する時間が長くなると共に消失し、また成形性も同
様に放置時間が長くなると共に劣化する。一方、焼入温
度が130℃を超えると低い温度での焼付硬化性が焼入
機常温に放置する時間には影響されないものの劣り、ま
た成形性も同様に劣る。したがって、焼入温度は60〜
130℃の範囲とする。
この焼入温度(60〜130℃)に焼入れるときの冷却
速度は、100℃、/++in未満では焼入後の強度も
低く、シかも低い温度での焼付硬化性が著しく劣るので
、好ましくない、したがって、100℃/win以上の
冷却速度とする。
次に、保持条件については、60’Cのような低い焼入
温度で短かい時間保持し、また130℃のような高い温
度で長い時間保持すると本発明の目的とする特性が得ら
れない。
すなわち、保持温度が60’C未満では48時間を超え
て長時間保持しても低い温度での焼付硬化性が焼入機常
温に放置する時間が長くなるにつれて消失し、また成形
性も同様に放置する時間が長くなるにつれて劣化する。
一方、保持温度が130℃を超えると0.5時間未満の
保持を行っても低い温度での焼付硬化性が焼入機常温に
放置する時間には影響されないものの劣り、また成形性
も同様に劣る。
したがって、保持時間は60〜13Q℃の温度範囲で0
.5〜24時間の範囲とする。なお、同様の組成の場合
は、成形性並びに焼付硬化性の点からすると、比較的低
い保持温度で比較的長い時間保持する条件(例、70℃
〜100℃X24hr〜4 hr)が好ましく、また同
様の焼入条件の場合は、成形性並びに焼付硬化性の点か
らすると。
Mg及びSiの各含有量が多い(例、Mg:0.6〜1
゜2%、Si:0.8〜1.5%)ことが好ましい。
なお、上記プロセスにより得られたアルミニウム合金は
、従来と同様、適用部材に応じて各種の成形加工に供さ
れ、必要に応じて表面処理等が施され、更に焼付硬化処
理が施される。焼付硬化処理は、150℃の如く比較的
低い温度から200℃の如く高い温度に至る各種温度で
実施でき、他の焼付硬化処理条件は特に制限されない。
(実施例)
次に本発明の実施例を示す。
失血孤上
第1表に示す化学成分を有するAQ合金を常法により溶
解、鋳造し、得られた500mm厚鋳塊に500℃X4
hrの均質化処理を施した後、50〜250℃間で板厚
5mmまで熱間圧延を行った。
このA9合金冷延板を500℃の溶体化温度に加熱して
20秒間保持し、次いで第2表に示す焼入条件、すなわ
ち、常温〜500℃間の平均冷却速度を50〜b
50〜150℃の範囲の温度まで焼入れ、その後焼入温
度のままで0.5〜72時間の範囲で保持した後、常温
まで冷却した。なお、Al11合金Nαと焼入条件との
組合せは第3表に示すとおりである。
得られた材料について、焼入直後及び焼入60日後の機
械的性質(成形性)を調べると共に、170℃、200
℃で30分ベーキングした時の機械的性質(焼付硬化性
)を調べた。それらの結果を第3表に併記する。
第3表より、本発明例はいずれも焼入後の強度が低く成
形性(δ、Er)に優れており、しかも焼入機長時間放
置しても経時変化がなく、且っベーキングによる強度向
上率が著しく優れており、低い温度での焼付でも焼付硬
化性も優れていることがわかる。
一方、本発明範囲外の化学成分或いは本発明範囲外の焼
入条件のいずれかによる比較例は、いずれも焼入機長時
間放置することにより成形性が低下し、しかも焼付硬化
性が劣り、特に低い温度での焼付硬化性が劣っている。(Industrial Application Field) The present invention relates to the production of aluminum alloys, more specifically aluminum alloys used for automobile parts, home appliance parts, machine parts, building materials, etc.
This invention relates to a method for producing a bake-hardenable aluminum alloy whose strength can be expected to be improved by short-term heating. (Conventional technology and problems to be solved) Conventionally,
Auto parts, home appliance parts, mechanical parts. Aluminum alloys used for building materials, etc., are aluminum alloys that can be formed and hardened by short-term heating such as baking paint. Ideally, the material should be easy to process, but after forming, its strength can be significantly improved by short-term heating such as baking painting.
Afl-Mg-Si aluminum alloy is mainly used. However, AQ-M, which has been conventionally used for this type of application,
In the method for producing g-5i aluminum alloy. If you place emphasis on formability and lower the strength, the strength after bake hardening will also be lower, and conversely, if you place emphasis on the strength after bake hardening and increase the strength, you will have to increase the strength during molding, which will result in lower formability. It has been extremely difficult to simultaneously improve contradictory properties such as poor moldability and bake hardenability. On the other hand, especially as for the baking conditions of recent baking coatings. In order to save energy and improve productivity, and because baking is becoming more common in combination with parts that do not want to be exposed to high temperatures, such as resin, the baking temperature has become lower due to advances in paints. For example, the baking temperature of aluminum alloys for automobile parts, which used to be about 200°C, has shifted to a lower temperature of about 170°C. For this reason, the conventional method for producing AQ-Mg-3i aluminum alloys has had the problem of extremely low bake hardenability at such low temperatures. The present invention was developed to solve the problems of the prior art described above, and is capable of simultaneously satisfying formability and bake hardenability, which are contradictory properties, in an AQ-Mg-8L aluminum alloy. It is an object of the present invention to provide a method for producing an aluminum alloy that can have excellent bake hardenability even through heat treatment such as baking painting at a relatively lower temperature and shorter treatment time than conventional methods. (Means for Solving the Problems) In order to achieve the above object, the inventors first developed the conventional A.
The cause of the decrease in formability and bake hardenability in the manufacturing method of Q-Mg-Si aluminum alloy was investigated. As a result, in solution quenching applied to AQ-Mg-Si aluminum alloys, quenching was performed by cooling the solution machine to room temperature using water or air cooling, but in this manufacturing method, immediately after quenching, It has low strength and excellent formability, and has excellent bake hardenability even when baked at low temperatures, but this desirable feature quickly disappears after several tens of minutes or hours after quenching. It has been found that such a manufacturing method is unsuitable for manufacturing industrial products. Therefore, the present inventor has developed a manufacturing method that has excellent formability not only immediately after quenching but also several hundred days after quenching after solution treatment, and that provides excellent bake hardenability even at low baking temperatures. As a result of intensive research to find a method, AQ-Mg
- It was discovered that if the heat treatment conditions after solution treatment are controlled by adjusting the chemical composition of the Si system, there will be no change over time after quenching, and both formability and bake hardenability can be significantly improved. It is something that That is, in the present invention, Mg: 0.3 to 1.5% and Si
: Afi-Mg-Si system containing 0.2 to 2.0% 7)L
60-130°C after solution treatment for aluminum alloy
Formability and bake hardening at relatively low temperatures, characterized by cooling at a cooling rate of 100°C/+*in or more, and holding at a temperature in the range of 60 to 130°C for 0° to 48 hours. The gist of this paper is a method for producing aluminum alloys with excellent properties. The present invention will be explained in more detail below. First, the reason for limiting the chemical components in the present invention will be explained. Mg is an element that works together with Si to impart strength, but Mg
If the g content is less than 0.3%, the strength after heat treatment such as baking will be low and the bake hardenability will be reduced, while if it exceeds 1.5%, the elongation will be low and the toughness will be poor. It becomes like this. Therefore, the Mg content is 0.3-1.5%
The range shall be . Si is an element that works together with Mg to impart strength. However, if the Si content is less than 0.2%, the strength after heat treatment such as baking will be low and the bake hardenability will decrease, while if it exceeds 2.0%, the elongation will be low and the toughness will decrease. become inferior. therefore. The Si content is in the range of 0.2 to 2.0%. Note that the AQ-Mg-3i-based aluminum alloy in the present invention only needs to have the above-mentioned Mg and Si as essential components;
Other alloying elements may be added as necessary, or impurities may be included, but they may be included within the limits that do not impair the effects of the present invention. For example, if Cu increases, corrosion resistance deteriorates, so 0.8% or less is allowed, and Mn, Cr, Zr
, V, Ti, and Fe deteriorate in formability as they increase, so Mn is 0.8% or less, Cr is 0.2% or less, and Zr
is allowed at 0.2% or less, ■ is allowed at 0.2% or less, Ti is allowed at 0.1% or less, Fe is allowed at 0.5% or less, and Zn is allowed at 0.5% or less since corrosion resistance deteriorates as the amount increases. Ru. The AQ-Mg-Si-based aluminum alloy is melted and cast using conventional methods, and the ingot is face-milled, heated or homogenized, and subjected to hot rolling, intermediate annealing, cold rolling, etc.
A solution treatment is then performed. The conditions for each of these steps are not particularly limited. After solution treatment, quenching was conventionally performed by simply cooling to room temperature by water cooling, air cooling, etc., but in the present invention, quenching
A new holding process is used to control the quenching temperature and the holding time at this temperature. If the quenching temperature (that is, the quenching end temperature) is less than 60°C, the bake hardenability at temperatures as low as 170°C will disappear as the time the quenching machine is left at room temperature increases, and the formability will also deteriorate. The longer it is left unused, the more it deteriorates. On the other hand, when the quenching temperature exceeds 130° C., the bake hardenability at low temperatures is not affected by the time the product is left in the quenching machine at room temperature, but it is inferior, and the formability is similarly inferior. Therefore, the quenching temperature is 60~
The temperature should be in the range of 130°C. The cooling rate when quenching to this quenching temperature (60 to 130°C) is undesirable because if the cooling rate is less than 100°C, /++in, the strength after quenching will be low and the bake hardenability at low temperatures will be significantly inferior. , Therefore, the cooling rate is set to 100° C./win or more. Next, regarding the holding conditions, if the quenching temperature is held at a low quenching temperature such as 60'C for a short period of time, or if it is held at a high temperature such as 130'C for a long period of time, the characteristics aimed at by the present invention cannot be obtained. In other words, if the holding temperature is less than 60'C, the bake hardenability at low temperatures will disappear as the time left in the quenching machine at room temperature increases, and the formability will also decrease even if held for a long time exceeding 48 hours. The longer it is left unused, the worse it will deteriorate. On the other hand, when the holding temperature exceeds 130°C, the bake hardenability at low temperatures is not affected by the time the quenching machine is left at room temperature, but it is inferior, and the formability is also affected. Inferior. Therefore, the holding time is 0 in the temperature range of 60-13Q℃.
.. The period is between 5 and 24 hours. In addition, in the case of similar compositions, from the viewpoint of formability and bake hardenability, conditions of holding at a relatively low holding temperature for a relatively long time (e.g., 70°C
~100°C x 24 hr ~ 4 hr) is preferable, and in the case of similar quenching conditions, from the viewpoint of formability and bake hardenability. Each content of Mg and Si is high (e.g., Mg: 0.6 to 1
2%, Si: 0.8 to 1.5%). Note that the aluminum alloy obtained by the above process is subjected to various forming processes depending on the member to which it is applied, as well as surface treatment and the like as required, and is further subjected to a bake hardening treatment, as in the past. The bake hardening treatment can be carried out at various temperatures ranging from a relatively low temperature such as 150°C to a high temperature such as 200°C, and other bake hardening treatment conditions are not particularly limited. (Example) Next, an example of the present invention will be shown. An AQ alloy having the chemical composition shown in Table 1 was melted and cast using a conventional method, and the resulting 500 mm thick ingot was heated at 500°C x 4.
After homogenization treatment for hr, hot rolling was performed at 50 to 250°C to a plate thickness of 5 mm. This A9 alloy cold-rolled sheet was heated to a solution temperature of 500°C and held for 20 seconds, and then the quenching conditions shown in Table 2, that is, the average cooling rate between room temperature and 500°C, were set to 50-b 50-150. After quenching to a temperature in the range of °C, the quenching temperature was maintained for 0.5 to 72 hours, and then cooled to room temperature. Note that the combinations of Al11 alloy Nα and quenching conditions are as shown in Table 3. The mechanical properties (formability) of the obtained material were examined immediately after quenching and 60 days after quenching, and the material was
The mechanical properties (bake hardenability) when baked at ℃ for 30 minutes were examined. The results are also listed in Table 3. From Table 3, all of the examples of the present invention have low strength after quenching and are excellent in formability (δ, Er).Moreover, there is no change over time even if the quenching machine is left for a long time, and the strength is improved by baking. It can be seen that the hardening properties are excellent even when baked at low temperatures. On the other hand, in all of the comparative examples using either chemical components outside the scope of the present invention or quenching conditions outside the scope of the present invention, the formability deteriorates due to being left in the quenching machine for a long time, and the bake hardenability is also poor. Poor bake hardenability at low temperatures.
去J011
第1表に示した合金翫2と&10のAQ合金を常法によ
り溶解、鋳造し、得られた190*mφのビレット鋳塊
に520℃X4hrの均質化処理を施した後、肉厚4m
mXl1li150t+++の型材に熱間押出を行った
。
この型材を520℃の溶体化温度に加熱して30分保持
し1次いで第2表に示した焼入条件A、D、E、F又は
Gにて焼入処理を行った後、常温まで冷却した。
得られた材料について、焼入60日後の機械的性質(成
形性)を調べると共に、170℃、200℃で30分ベ
ーキングした時の機械的性質(焼入硬化性)を調べた。
それらの結果を第4表に示す。
第4表より明らかなとおり、比較例はいずれも低い温度
及び高い温度での焼付硬化性が劣っているのに対し、本
発明例はいずれも焼付硬化性が優九でおり、特に低い温
度での強度向上率も著しく、焼付硬化性が優れている。J011 The AQ alloys 2 and 10 shown in Table 1 were melted and cast using a conventional method, and the resulting 190*mφ billet ingot was homogenized at 520°C for 4 hours. 4m
Hot extrusion was performed on a mold material of mXl1li150t+++. This mold material was heated to a solution temperature of 520°C, held for 30 minutes, then quenched under the quenching conditions A, D, E, F, or G shown in Table 2, and then cooled to room temperature. did. The obtained material was examined for mechanical properties (formability) after 60 days of quenching, and also for mechanical properties (quench hardenability) when baked at 170°C and 200°C for 30 minutes. The results are shown in Table 4. As is clear from Table 4, all of the comparative examples have poor bake hardenability at low and high temperatures, whereas all of the inventive examples have excellent bake hardenability, especially at low temperatures. The strength improvement rate is also remarkable and the bake hardenability is excellent.
(発明の効果)
以上詳述したように、本発明によれば、AQ−Mg−S
i系アルミニウム合金のMg、Si含有量を調整し、且
つ溶体化処理後の焼入条件をコントロールするので、成
形性及び焼付硬化性が共に優れ、特に焼入後の経時変化
がなく成形性を維持でき。
しかも比較的低い温度の短時間加熱による焼付等の熱処
理によっても強度向上率が顕著である。したがって1本
発明法は、各種用途のアルミニウム合金を工業的且つ経
済的に製造する方法としてその実用上の効果は極めて大
きい。
特許出願人 株式会社神戸製鋼所代理人弁理士
中 村 尚(Effects of the Invention) As detailed above, according to the present invention, AQ-Mg-S
By adjusting the Mg and Si contents of the i-series aluminum alloy and controlling the quenching conditions after solution treatment, both formability and bake hardenability are excellent, and there is no change over time after quenching, resulting in improved formability. Can be maintained. Moreover, the rate of strength improvement is remarkable even when heat treatment such as baking is performed by heating at a relatively low temperature for a short time. Therefore, the method of the present invention has extremely great practical effects as a method for industrially and economically producing aluminum alloys for various uses. Patent applicant Kobe Steel Co., Ltd. Patent attorney
Takashi Nakamura
Claims (1)
%及びSi:0.2〜2.0%を含むAl−Mg−Si
系アルミニウム合金につき、溶体化処理後、60〜13
0℃までを100℃/min以上の冷却速度で冷却し、
そのまま60〜130℃の範囲の温度に0.5〜48時
間保持することを特徴とする焼付硬化性及び成形性に優
れたアルミニウム合金の製造法。(1) In weight% (the same applies hereinafter), Mg: 0.3 to 1.5
% and Si: 0.2-2.0% Al-Mg-Si
For series aluminum alloys, after solution treatment, 60 to 13
Cool down to 0°C at a cooling rate of 100°C/min or more,
A method for producing an aluminum alloy with excellent bake hardenability and formability, which comprises maintaining the aluminum alloy at a temperature in the range of 60 to 130°C for 0.5 to 48 hours.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26771487A JPH01111851A (en) | 1987-10-23 | 1987-10-23 | Manufacture of aluminum alloy excellent in baking hardenability and formability |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26771487A JPH01111851A (en) | 1987-10-23 | 1987-10-23 | Manufacture of aluminum alloy excellent in baking hardenability and formability |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01111851A true JPH01111851A (en) | 1989-04-28 |
Family
ID=17448531
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26771487A Pending JPH01111851A (en) | 1987-10-23 | 1987-10-23 | Manufacture of aluminum alloy excellent in baking hardenability and formability |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01111851A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04147951A (en) * | 1990-10-09 | 1992-05-21 | Sumitomo Light Metal Ind Ltd | Manufacture of aluminum alloy material for forming excellent in formability, shape freezability and baking hardenability of painting |
JPH05112839A (en) * | 1991-10-21 | 1993-05-07 | Kobe Steel Ltd | Aluminum alloy sheet for forming excellent in low temperature baking hardenability and its manufacture |
JPH05247610A (en) * | 1991-03-18 | 1993-09-24 | Sumitomo Light Metal Ind Ltd | Production of aluminum alloy material excellent in moldability, shape freezability and hardenability in coating/baking and small in anisotropy |
JPH06136478A (en) * | 1992-10-23 | 1994-05-17 | Kobe Steel Ltd | Baking hardening type al alloy sheet excellent in formability and its production |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62177143A (en) * | 1986-01-30 | 1987-08-04 | Kobe Steel Ltd | Aluminum alloy sheet excellent in formability and baking hardening and its production |
-
1987
- 1987-10-23 JP JP26771487A patent/JPH01111851A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62177143A (en) * | 1986-01-30 | 1987-08-04 | Kobe Steel Ltd | Aluminum alloy sheet excellent in formability and baking hardening and its production |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04147951A (en) * | 1990-10-09 | 1992-05-21 | Sumitomo Light Metal Ind Ltd | Manufacture of aluminum alloy material for forming excellent in formability, shape freezability and baking hardenability of painting |
JPH05247610A (en) * | 1991-03-18 | 1993-09-24 | Sumitomo Light Metal Ind Ltd | Production of aluminum alloy material excellent in moldability, shape freezability and hardenability in coating/baking and small in anisotropy |
JPH0747804B2 (en) * | 1991-03-18 | 1995-05-24 | 住友軽金属工業株式会社 | Manufacturing method of aluminum alloy material with excellent anisotropy and excellent formability, shape freezing property and paint bake hardenability |
JPH05112839A (en) * | 1991-10-21 | 1993-05-07 | Kobe Steel Ltd | Aluminum alloy sheet for forming excellent in low temperature baking hardenability and its manufacture |
JPH06136478A (en) * | 1992-10-23 | 1994-05-17 | Kobe Steel Ltd | Baking hardening type al alloy sheet excellent in formability and its production |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2614686B2 (en) | Manufacturing method of aluminum alloy for forming process excellent in shape freezing property and paint bake hardenability | |
JPH0127146B2 (en) | ||
CN102498229B (en) | Almgsi strip for applications having high plasticity requirements | |
US4718948A (en) | Rolled aluminum alloy sheets for forming and method for making | |
JPS62177143A (en) | Aluminum alloy sheet excellent in formability and baking hardening and its production | |
US5662750A (en) | Method of manufacturing aluminum articles having improved bake hardenability | |
CN1082098C (en) | Bake hardenable vanadium contg. steel | |
JPS62207851A (en) | Rolled aluminum alloy sheet for forming and its production | |
JPH06240424A (en) | Production of aluminum alloy sheet excellent in formability and baking hardenability | |
JPS6289852A (en) | Manufacture of aluminum alloy plate having superior burning hardenability | |
JPH01111851A (en) | Manufacture of aluminum alloy excellent in baking hardenability and formability | |
JPH03294456A (en) | Production of aluminum alloy sheet excellent in formability and baking hardenability | |
JPS61272342A (en) | Aluminum alloy sheet excelling in formability and baking hardening and its production | |
JP2599861B2 (en) | Manufacturing method of aluminum alloy material for forming process excellent in paint bake hardenability, formability and shape freezing property | |
JPH05112839A (en) | Aluminum alloy sheet for forming excellent in low temperature baking hardenability and its manufacture | |
JPS61201748A (en) | Rolled aluminum alloy sheet for forming and its manufacture | |
JP2613466B2 (en) | Manufacturing method of aluminum alloy sheet excellent in bake hardenability | |
JPS61288056A (en) | Manufacture of aluminum alloy sheet for deep drawing | |
JPS61201749A (en) | Rolled aluminum alloy sheet for forming and its manufacture | |
JPH06272000A (en) | Production of al alloy sheet excellent in formability and baking hardenability | |
JPH07252616A (en) | Production of aluminum-magnesium-silicon alloy sheet | |
JPH0247234A (en) | High strength aluminum alloy for forming having suppressed age hardenability at room temperature and its manufacture | |
JPH0480979B2 (en) | ||
JP3686146B2 (en) | Method for producing aluminum alloy sheet for forming | |
JPH0222446A (en) | Manufacture of high formability aluminum alloy hard plate |