JPH0222446A - Manufacture of high formability aluminum alloy hard plate - Google Patents
Manufacture of high formability aluminum alloy hard plateInfo
- Publication number
- JPH0222446A JPH0222446A JP17348688A JP17348688A JPH0222446A JP H0222446 A JPH0222446 A JP H0222446A JP 17348688 A JP17348688 A JP 17348688A JP 17348688 A JP17348688 A JP 17348688A JP H0222446 A JPH0222446 A JP H0222446A
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- rolling
- annealing
- heat treatment
- cold rolling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910000838 Al alloy Inorganic materials 0.000 title claims abstract description 13
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 9
- 238000010438 heat treatment Methods 0.000 claims abstract description 36
- 238000000137 annealing Methods 0.000 claims abstract description 31
- 238000001816 cooling Methods 0.000 claims abstract description 16
- 238000005098 hot rolling Methods 0.000 claims abstract description 15
- 238000005097 cold rolling Methods 0.000 claims abstract description 11
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 5
- 229910052802 copper Inorganic materials 0.000 claims abstract description 4
- 239000012535 impurity Substances 0.000 claims abstract description 4
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 4
- 238000000265 homogenisation Methods 0.000 claims description 6
- 238000000034 method Methods 0.000 abstract description 8
- 238000005096 rolling process Methods 0.000 abstract description 7
- 229910052742 iron Inorganic materials 0.000 abstract description 3
- 229910052748 manganese Inorganic materials 0.000 abstract description 3
- 229910052782 aluminium Inorganic materials 0.000 abstract description 2
- 239000000463 material Substances 0.000 description 12
- 230000000694 effects Effects 0.000 description 11
- 230000007423 decrease Effects 0.000 description 9
- 239000002244 precipitate Substances 0.000 description 8
- 239000000047 product Substances 0.000 description 7
- 229910000765 intermetallic Inorganic materials 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 5
- 238000010409 ironing Methods 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000004881 precipitation hardening Methods 0.000 description 4
- 239000002699 waste material Substances 0.000 description 4
- 229910002551 Fe-Mn Inorganic materials 0.000 description 3
- 238000005452 bending Methods 0.000 description 2
- 235000013361 beverage Nutrition 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229910001020 Au alloy Inorganic materials 0.000 description 1
- 229910017818 Cu—Mg Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 235000013405 beer Nutrition 0.000 description 1
- 235000014171 carbonated beverage Nutrition 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000005755 formation reaction Methods 0.000 description 1
- 239000003353 gold alloy Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000007665 sagging Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Landscapes
- Metal Rolling (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
Description
(産業上の利用分野)
本発明はアルミニウム合金硬質板の製造法に係り、更に
詳しくは、耳率が低く、成形性に優れ、特に飲料缶胴等
の材料に適するアルミニウム合金硬質板の製造法に関す
るものである。
(従来の技術)
従来より、ビール、炭酸飲料用等の飲料缶体や食缶缶体
用の材料としてはAl−Mn−Mg系の3004合金硬
質材が用いられており、近年の缶軽量化では高強度高成
形性化の要望が強い。そのため、本発明者等は先に析出
硬化型の缶体用材料(以後、「キャンボディ」と呼ぶ)
を開発した(特公昭61−7465号は力つ、しかし乍
ら、更に高強度高成形性化の要望が強くなってきている
。
また、その製造法としては、鋳塊を均熱した後、熱間圧
延されてコイル状に巻上げられ、その後、そのまま焼鈍
され或いは冷間圧延後に焼鈍され、更に製品板厚まで冷
間圧延される方法が一般的である。
ところで、従来、この焼鈍はバッチ炉で行なわれており
、−殻内には、加熱冷却速度40℃/hr前後、加熱温
度350℃程度で数時間保持と云われている。
一方、最近では、生産性の向上を目的として、連続焼鈍
炉を使用する連続焼鈍技術(CAL:コイルを巻きほど
きながら急速加熱し、短時間保持して冷却する焼鈍)が
用いられ始めており、例えば、特公昭61−7465号
、同62−37705号、同62−674Q号、同62
−13421号等で提案されている。但し、現状では加
熱前のコイル温度は低温でなければならない。それは、
アルミニウム材の場合、CALに必須のアキュムレータ
ーとしてゴムロールが使用されているためであり、ゴム
の性能上、コイル温度は150℃以下である必要がある
からである。
更に、そのために熱延コイルでは放冷し焼鈍する必要が
あり、時間及びエネルギーの無駄である。
(発明が解決しようとする課題)
前述の特公昭61−7465号に開示されている析出硬
化型キャンボディ材は、高強度で、かつ高成形性を有す
るが、薄肉化に伴う成形性の低下に対しては更に高成形
性化が必要である。
すなわち、素材の薄肉化は絞り性、張出し性及び曲げ性
の低下を招き、キャンボディの成形工程において不具合
を生じ昌い。
また、生産性の向上を目的とした連続焼鈍の使用に対し
ては、前述の如く時間及びエネルギーの無駄がある。
本発明は、更なる高強度高成形性化の要請に応えるべく
なされたものであって、高強度であると共に耳率が低く
、特に成形性に優れたアルミニウム合金硬質板を、時間
及びエネルギーの無駄を少なくして製造し得る方法を提
供することを目的とするものである。
(課題を解決するための手段)
前記問題点を解決するため、本発明者等は、まず、成形
性と析出物の関係について詳しく調査した。
その結果、成形性の低下には200℃以下において形成
される微細析出物が影響していることを見い出した。す
なわち、熱延後、放冷中に析出するものが成形性の低下
につながる。通常の熱延終了温度は300℃前後であり
、放冷する時間を調べたところ、20℃/hrの冷却速
度であった。この冷却速度では200℃から室温までに
約10時間を要し、微細析出物の形成に充分なものであ
るから、成形性の低下をもたらしている9このため、熱
延後の放冷に伴う問題を解決する必要があることを確認
した。
一方、成形性の向上には少なくとも150℃以上で焼鈍
を開始する必要があるが、この時の問題はアキュムレー
ターのゴムロールの性能である。
本発明者等はアキュムレーターのロールに関し、特に熱
の影響について詳しく調査した結果、特殊な鋼製ロール
と形状を選定すると共に、その配置の検討により、高温
で焼鈍を開始できることを見い出した。
また、熱間圧延速度は焼鈍速度に比べて速いため、熱延
コイルを保温することが必要であることを考え、各種保
温炉を検討した。その結果、簡易な保温炉、例えば加熱
のないものにおいても充分に保温される(この場合、5
〜b
速度となる)こと、好ましくは若干加熱することが好ま
しいことを確認した。更に200〜300℃に保温した
時に午じる析出物は成形性にとっては逆に好ましいこと
も見い出した。
以上の知見に基づき、本発明者等は、化学成分の調整並
びに熱延、焼鈍条件等について更に詳細に研究を重ね、
ここに優れた成形性と生産性を兼ねたアルミニウム合金
硬質板を製造し得る方法を発明したのである。
すなわち、本発明に係る高成形性アルミニウム合金硬質
板の製造法は、Mn:0.5〜2.0%、Mg:0.5
〜3.0%及びCu:0.05〜0.50%を含有し、
更にFe:Q、2〜0.7%、Si:0.1〜0.5%
及びZn:0.05〜1.0%のうちの1種又は2種以
上を含有し、残部がAlと不可避的不純物からなるAl
金合金つき、500〜600℃の温度で1時間以上の均
質化熱処理を施して280℃以上で熱間圧延を終了し、
その後、放冷することなく直ちに、或いは放冷すること
なく200〜300℃の温度範囲に1時間以上保持加熱
し、次に150℃以下に下げることなく、100℃/l
1lin以上の加熱冷却速度で400〜600℃に10
分以内保持の急速焼鈍を行い、更に仕上冷延率70%の
冷間圧延を施すことを特徴とするものである。
以下に本発明を更に詳細に説明する。
まず、本発明における化学成分の限定理由を説明する。
Mnは強度の向上に効果があり、またAl−Fe−Mn
系の金属間化合物の生成によるしごき加工性の向上に効
果がある元素である。しかし、O85%未満ではその効
果が小さく、また2、0%を超える場合にはAl−’F
e−Mn系の巨大金属間化合物が形成され、加工性の低
下を促すので好ましくない。したがって、Mnjlは0
.5〜2.0%の範囲とする。
MgもMnと同様、強度向上に効果があり、特にCuと
の組合せにおいて、塗装印刷時のベーキングに際してA
l−Cu−Mg系の金属間化合物の析出硬化による強度
向上が著しい。しかし、0.5%未満ではその効果が小
さく、また3、0%を超える場合には造塊及び熱延時に
割れが生じ易くなると共にしごき加工時に焼付き易くな
り1、好ましくない。したがって、Mg量は0.5〜3
.0%の範囲とする。
CuもMgと同様の効果を示し、0.05%未満ではそ
の効果が小さく、また0、50%を超える場合には造塊
及び熱延時に割れが生じ易くなり、耐食性も低下する。
したがって、Cu量は0.05〜0.50%の範囲とす
る。
FeはMnとの組合せにてAl−Fe−Mn系の金属間
化合物を形成し、しごき加工性の向上に効果があるが、
0.2%未満ではその効果が少なく、0.7%を超える
場合には巨大な金属間化合物を形成して加工性の低下を
招く。したがって、Fe量は0.2〜0.7%の範囲と
する。
SiはAl−Fe−Mn系の金属間化合物に相変態を生
じさせ、いわゆるAl−Fe−Mn−3iのα相を形成
させる元素である。このα相は硬度が高く、特にしごき
加工性の向上に効果がある。しかし、0.1%未満では
その効果が少なく、また0、5%を超える場合には圧延
時に耳割れが生じ易くなる。したがって、Si量は0.
1〜0.5%の範囲とする。
Znは絞り及びしごき加工並びにその後のフランジ成形
性の向上に効果があるが、0.05%未満ではその効果
が少なく、しかし、1.0%を超える場合には特に問題
はないが、耐食性が低下する傾向となり、またコスト的
に不利である。したがって、Zn量は0.05〜1.0
%の範囲とする。
但し、上記Fe、Si及びZnはこれらのうち少なくと
も1種を含有させれば充分である。
なお、不純物としては本発明の効果を損なわない限度で
許容でき、例えば、Crは0.3%以下、Tiは0.2
%以下、Bは0.05%以下、Zrは0゜1%以下であ
れば、特に問題はないゆ
次に本発明の製造法について説明する。
上記化学成分を有するアルミニウム合金は常法により溶
解、鋳造し、得られた鋳塊について熱間圧延前に均質化
熱処理を施すが、この均質化熱処理は500℃以上の温
度で行う必要がある。5゜0℃未満では製品における特
性(絞り耳率、成形性)が劣るので好ましくない。なお
、保持時間は特に制限されないが、加熱温度が550℃
未満の場合はlhr以上、550°C以上の場合は保持
時間なしでもよいが、好ましくはlhr以上である。
引き続いて行われる熱間圧延では、特に圧延終了時の温
度が重要であり、材料特性では絞り耳率に影響を及ぼす
。圧延終了温度が280℃未満では、その後の焼鈍にお
いて形成される0−90゜耳(立方体集合組!6)が不
足し、その後の冷延による45″耳形成によっても結果
的には製品での低耳率が得られ難い。したがって、熱間
圧延は280”C以上で終了する必要がある。この場合
、コイル状で巻き上げることが次の熱処理の遂行上必要
である。なお、熱間圧延板厚は4m+m以下が好ましい
。
次いで、熱延コイルに熱処理を施すが、これが本発明の
最大の特徴である。
すなわち、コイル状の熱延板(以下、ホットコイルとい
う)は、280℃以上(通常、300〜350℃)で巻
上げられ、通常は放冷(或いはファン冷却)される、こ
の際、上記組成のホットコイルは200℃以下の温度領
域にて熱延中に固溶されていた元素が析出してくる。こ
れら析出物はその後の熱処理においても固溶され難く、
製品板における成形性低下を招く。また、この放冷は熱
及び時間の無駄である。したがって、本発明では、ホッ
トコイルを200°C以下、少なくとも150℃以下に
下げることなく、熱処理を行うようにしたものである。
この点、従来及び最近の熱処理炉では、前述の如く熱処
理前に温度を下げる必要があるという問題があるが、本
発明では、ホットコイルを1.50℃以下に下げること
なく連続焼鈍炉に装入し、連続的に加熱する熱処理を施
すので、そのような問題がない。
そのためには、熱間圧延後放冷することなく直ちに(こ
の場合、150℃以下にならない)連続焼鈍炉に装入す
るか、或いは放冷することなくホットコイルを保温加熱
し150℃以下に下げることなく連続焼鈍炉に装入する
必要がある。後者の場合、保温加熱温度が200℃以下
では前記の如く成形性の低下を招き、また300℃を超
えると比較的大きな析出物が形成され、これもまた成形
性の低下を促す。したがって、200〜300℃の温度
範囲に保持加熱することが必要であり、1時間以上の保
持にて成形性の向上を得ることができる。
次に、急速焼鈍、すなわち、急速加熱冷却焼鈍を施すが
、炉装入時に150’C以下になると成形性の低下を招
くので、前述のアキュムレーターのロール等の改善によ
り150℃以下に下げることなく焼鈍を行う。この急速
加熱冷却焼鈍は結晶粒の微細化、生産性向上及び析出硬
化に必須である。
加熱冷却速度が100℃/min未満ではいずれに対し
ても逆効果である。また、400℃未満の加熱では短時
間による再結晶が難しく、しかし600℃を超える場合
にはバーニングが生じ易くなる。
更に保持時間が10+++inを超える場合にはいずれ
に対しても好ましくない。したがって、最終工程の焼鈍
は、100℃/sin以上の昇降温速度で、400〜6
0o℃の温度ic10min以内保持する条件とする。
更に、冷却されたコイルは冷間圧延にて製品とされる。
この冷間圧延は加工硬化による強度向上に効果があるが
、仕上圧延率が70%未満では強度不足となるので、仕
上圧延率は70%以上とする。
なお、その後、必要に応じて安定化焼鈍を施すことがあ
り、これは包装容器を成形する際に張出し性が要求され
る場合である。この焼鈍条件は特に制限されず、例えば
、焼鈍温度100〜200℃でlhr以上保持する。
次に本発明の実施例を示す。
(実施例)
第1表に示す化学成分を有するアルミニウム合金鋳塊に
580℃X6hrの均質化熱処理を施し、熱間圧延(終
了温度250℃と300℃目標の2種類)にて板厚2.
5mmを得た。その後、第2表に示す条件で熱処理を施
し、製品板厚0.4mmとした。なお、焼鈍前板温の保
持は2時間である。
得られた製品について、圧延上り強度及びベーキング(
200℃X 20+1in)後強度を調べると共に、耳
率の測定、成形性を評価した。材料特性を第3表に示す
。
なお、耳率の測定、Er値及びLDRの調査にはエリク
セン試験機を使用し、耳率は33φポンチ、ブランク径
55φ(絞り率40%)にて求めた。
Er値はエリクセン試験A法により求めた。またLDR
は、33φポンチを用い、ブランク径を変化させ、次式
により求めた。更に曲げ性は90’曲げ、曲げ半径3R
にて行った。(Industrial Application Field) The present invention relates to a method for manufacturing an aluminum alloy hard plate, and more specifically, a method for manufacturing an aluminum alloy hard plate that has a low selvage rate, has excellent formability, and is particularly suitable for materials such as beverage can bodies. It is related to. (Prior art) Al-Mn-Mg-based 3004 alloy hard material has been used as a material for beverage can bodies and food can bodies for beer and carbonated beverages, etc., and recent efforts have been made to reduce the weight of cans. There is a strong demand for high strength and high formability. Therefore, the present inventors first developed a precipitation hardening type can body material (hereinafter referred to as "can body").
(Japanese Patent Publication No. 7465/1986 was published in 1987), but at the same time, there is a growing demand for higher strength and higher formability. Generally, the material is hot rolled and wound into a coil shape, then annealed as is, or cold rolled and then annealed, and further cold rolled to the product thickness. Conventionally, this annealing is carried out in a batch furnace. It is said that the heating and cooling rate is around 40°C/hr and the heating temperature is maintained at around 350°C for several hours. Continuous annealing technology (CAL: annealing in which a coil is rapidly heated while unwinding, held for a short time and then cooled) using an annealing furnace has begun to be used, for example, Japanese Patent Publications No. 61-7465 and No. 62-37705. , No. 62-674Q, No. 62
-13421 etc. is proposed. However, currently the coil temperature must be low before heating. it is,
This is because in the case of aluminum material, a rubber roll is used as an essential accumulator for CAL, and the coil temperature needs to be 150° C. or lower in terms of rubber performance. Furthermore, for this purpose, the hot-rolled coil must be allowed to cool and be annealed, which is a waste of time and energy. (Problems to be Solved by the Invention) The precipitation hardening type canvas body material disclosed in the aforementioned Japanese Patent Publication No. 61-7465 has high strength and high formability, but the formability decreases due to thinning. It is necessary to further improve moldability. That is, thinning of the material leads to a decrease in drawability, stretchability, and bendability, resulting in problems in the process of molding the canvas body. Further, as mentioned above, the use of continuous annealing for the purpose of improving productivity wastes time and energy. The present invention was made in response to the demand for higher strength and higher formability, and it is possible to produce an aluminum alloy hard plate that has high strength, low selvage rate, and particularly excellent formability, and requires less time and energy. The purpose is to provide a method that can be manufactured with less waste. (Means for Solving the Problems) In order to solve the above problems, the present inventors first investigated in detail the relationship between formability and precipitates. As a result, it was found that fine precipitates formed at temperatures below 200° C. were responsible for the decline in formability. That is, what precipitates during cooling after hot rolling leads to a decrease in formability. The normal hot rolling end temperature is around 300°C, and when the cooling time was investigated, the cooling rate was 20°C/hr. At this cooling rate, it takes about 10 hours from 200°C to room temperature, which is sufficient for the formation of fine precipitates, resulting in a decrease in formability9. Confirmed that the problem needed to be resolved. On the other hand, in order to improve formability, it is necessary to start annealing at a temperature of at least 150°C or higher, but the problem at this time is the performance of the rubber roll of the accumulator. The present inventors conducted a detailed investigation regarding the rolls of the accumulator, particularly regarding the effects of heat, and found that by selecting a special steel roll and shape and considering its arrangement, it was possible to start annealing at a high temperature. In addition, since the hot rolling speed is faster than the annealing speed, we considered that it is necessary to keep the hot rolled coil warm, so we investigated various heat insulating furnaces. As a result, even simple insulated ovens, such as those without heating, can be kept sufficiently warm (in this case,
It has been confirmed that it is preferable to slightly heat the sample, preferably at a speed of ~b. Furthermore, it has been found that the precipitates that form when kept at 200 to 300°C are favorable for moldability. Based on the above knowledge, the present inventors conducted further detailed research on the adjustment of chemical components, hot rolling, annealing conditions, etc.
Here, we have invented a method for manufacturing aluminum alloy hard plates that have both excellent formability and productivity. That is, the method for manufacturing a highly formable aluminum alloy hard plate according to the present invention includes Mn: 0.5 to 2.0%, Mg: 0.5%.
~3.0% and Cu:0.05~0.50%,
Furthermore, Fe: Q, 2-0.7%, Si: 0.1-0.5%
and Zn: 0.05 to 1.0%, and the remainder is Al and inevitable impurities.
With gold alloy, subjected to homogenization heat treatment at a temperature of 500 to 600 ° C for 1 hour or more and finished hot rolling at 280 ° C or higher,
Thereafter, immediately without cooling, or without cooling, hold and heat at a temperature range of 200 to 300℃ for more than 1 hour, and then heat to 100℃/l without lowering to 150℃ or less.
10 to 400-600℃ at a heating and cooling rate of 1 lin or more
It is characterized by performing rapid annealing for less than 1 minute and then cold rolling at a finish cold rolling rate of 70%. The present invention will be explained in more detail below. First, the reason for limiting the chemical components in the present invention will be explained. Mn is effective in improving strength, and Al-Fe-Mn
It is an element that is effective in improving ironing workability by forming intermetallic compounds. However, the effect is small when O is less than 85%, and when it exceeds 2.0%, Al-'F
This is undesirable because a giant e-Mn-based intermetallic compound is formed, which impairs workability. Therefore, Mnjl is 0
.. The range is 5 to 2.0%. Like Mn, Mg is also effective in improving strength, and especially in combination with Cu, it increases A during baking during coating printing.
The strength is significantly improved by precipitation hardening of l-Cu-Mg based intermetallic compounds. However, if it is less than 0.5%, the effect will be small, and if it exceeds 3.0%, cracks will easily occur during ingot formation and hot rolling, and seizing will occur during ironing, which is not preferable. Therefore, the Mg amount is 0.5 to 3
.. The range is 0%. Cu also exhibits the same effect as Mg, and if it is less than 0.05%, the effect is small, and if it exceeds 0.50%, cracks tend to occur during ingot formation and hot rolling, and corrosion resistance also decreases. Therefore, the amount of Cu is in the range of 0.05 to 0.50%. Fe forms an Al-Fe-Mn-based intermetallic compound in combination with Mn, and is effective in improving ironing workability.
If it is less than 0.2%, the effect will be small, and if it exceeds 0.7%, a huge intermetallic compound will be formed, leading to a decrease in workability. Therefore, the amount of Fe is set in the range of 0.2 to 0.7%. Si is an element that causes a phase transformation in an Al-Fe-Mn-based intermetallic compound to form the so-called α phase of Al-Fe-Mn-3i. This α phase has high hardness and is particularly effective in improving ironing workability. However, if it is less than 0.1%, the effect is small, and if it exceeds 0.5%, edge cracking tends to occur during rolling. Therefore, the amount of Si is 0.
The range is 1% to 0.5%. Zn is effective in improving drawing and ironing processing and subsequent flange formability, but if it is less than 0.05%, the effect is small; however, if it exceeds 1.0%, there is no particular problem, but corrosion resistance may be reduced. This tends to decrease the cost and is disadvantageous in terms of cost. Therefore, the amount of Zn is 0.05 to 1.0
% range. However, it is sufficient that at least one of the above-mentioned Fe, Si, and Zn is contained. Note that impurities are permissible as long as they do not impair the effects of the present invention; for example, Cr is 0.3% or less, Ti is 0.2% or less, and Ti is 0.2% or less.
% or less, B is 0.05% or less, and Zr is 0.1% or less, there is no particular problem.Next, the manufacturing method of the present invention will be explained. The aluminum alloy having the above chemical components is melted and cast by a conventional method, and the resulting ingot is subjected to homogenization heat treatment before hot rolling, but this homogenization heat treatment must be performed at a temperature of 500° C. or higher. If the temperature is less than 5.0°C, the properties of the product (squeezing rate, moldability) will be poor, which is not preferable. Note that the holding time is not particularly limited, but the heating temperature is 550°C.
If the temperature is less than 1hr, no holding time may be required, and if the temperature is 550°C or higher, the holding time is preferably 1hr or more. In the subsequent hot rolling, the temperature at the end of rolling is particularly important, and the material properties affect the draw edge ratio. If the rolling end temperature is less than 280°C, the 0-90° lugs (cubic set! 6) formed in the subsequent annealing will be insufficient, and the formation of 45″ lugs in the subsequent cold rolling will result in poor quality in the product. It is difficult to obtain a low edge ratio.Therefore, hot rolling must be completed at a temperature of 280''C or higher. In this case, it is necessary to wind it up into a coil to carry out the next heat treatment. Note that the hot rolled plate thickness is preferably 4 m+m or less. Next, the hot rolled coil is subjected to heat treatment, which is the most distinctive feature of the present invention. That is, a coiled hot-rolled sheet (hereinafter referred to as hot coil) is wound up at 280°C or higher (usually 300 to 350°C), and is usually left to cool (or fan-cooled). In hot coils, elements dissolved in solid solution during hot rolling precipitate in a temperature range of 200° C. or lower. These precipitates are difficult to be dissolved in the subsequent heat treatment,
This leads to a decrease in formability in the product plate. Also, this cooling is a waste of heat and time. Therefore, in the present invention, heat treatment is performed without lowering the temperature of the hot coil to 200° C. or lower, or at least 150° C. or lower. In this regard, conventional and recent heat treatment furnaces have the problem that it is necessary to lower the temperature before heat treatment as described above, but in the present invention, the hot coil can be loaded into the continuous annealing furnace without lowering the temperature to 1.50°C or lower. There is no such problem because the heat treatment is carried out by heating the material continuously. To do this, you can either charge the hot coil into a continuous annealing furnace immediately without allowing it to cool after hot rolling (in this case, the temperature will not drop below 150°C), or heat the hot coil in an insulating manner without allowing it to cool down to below 150°C. It is necessary to charge the continuous annealing furnace without any damage. In the latter case, if the insulating heating temperature is 200°C or less, the moldability will be reduced as described above, and if it exceeds 300°C, relatively large precipitates will be formed, which will also promote a reduction in the moldability. Therefore, it is necessary to maintain and heat the material within a temperature range of 200 to 300° C., and the moldability can be improved by maintaining it for one hour or more. Next, rapid annealing, that is, rapid heating and cooling annealing, is performed, but if the temperature falls below 150'C when charging into the furnace, formability will deteriorate, so the temperature should be lowered to below 150°C by improving the accumulator rolls, etc. mentioned above. Annealing is performed without This rapid heating, cooling, and annealing is essential for grain refinement, productivity improvement, and precipitation hardening. A heating/cooling rate of less than 100° C./min has the opposite effect on both. Furthermore, heating at a temperature below 400°C makes recrystallization difficult in a short period of time, but heating at a temperature exceeding 600°C tends to cause burning. Furthermore, any holding time exceeding 10+++ inches is not preferred. Therefore, the final step of annealing is performed at a heating and cooling rate of 100°C/sin or higher, and at a temperature of 400°C to 60°C.
The condition is to maintain the temperature at 0°C within 10 min. Furthermore, the cooled coil is made into a product by cold rolling. This cold rolling is effective in improving strength through work hardening, but if the finishing rolling rate is less than 70%, the strength will be insufficient, so the finishing rolling rate should be 70% or more. Note that after that, stabilization annealing may be performed as necessary, and this is when extensibility is required when forming a packaging container. The annealing conditions are not particularly limited, and for example, the annealing temperature is maintained at 100 to 200°C for 1hr or more. Next, examples of the present invention will be shown. (Example) An aluminum alloy ingot having the chemical composition shown in Table 1 was subjected to homogenization heat treatment at 580°C for 6 hours, and hot rolled (two types of finishing temperatures: 250°C and 300°C target) to a plate thickness of 2.
5 mm was obtained. Thereafter, heat treatment was performed under the conditions shown in Table 2 to give a product board thickness of 0.4 mm. Note that the plate temperature was maintained for 2 hours before annealing. The resulting product was tested for rolling strength and baking (
After heating at 200° C. x 20+1 inch, the strength was examined, and the selvedge ratio and moldability were evaluated. Material properties are shown in Table 3. An Erichsen testing machine was used to measure the selvage ratio and investigate the Er value and LDR, and the selvage ratio was determined using a 33φ punch and a blank diameter of 55φ (reduction rate of 40%). The Er value was determined by Erichsen test A method. Also LDR
was determined by the following formula using a 33φ punch and varying the blank diameter. Furthermore, the bendability is 90' bending, bending radius 3R
I went there.
第3表より1本発明例Nα2は、高強度(ベーキング後
耐力28kgf/■”以上)、低耳(耳率3%以下)で
優れた成形性が得られている。これに対し、圧延終了温
度が低い比較例Nα1は高耳で成形性が不十分である。
焼鈍前温度が高い比較例No 3と低い比較例はいずれ
も成形性が不十分である。また加熱冷却速度が遅い比較
例Nα5は強度不足であり、生産性が低い。また焼鈍温
度が高い比較例魔6は高耳率で成形性が劣っている。
(発明の効果)
以上詳述したように、本発明によれば、アルミニウム合
金の化学成分を適切に調整すると共に、均質化熱処理、
熱間圧延、焼鈍前加熱、焼鈍更には冷間圧延の各条件を
関連させて規制するので、高強度、低耳で、特に優れた
成形性を有するアルミニウム合金硬質板が時間及びエネ
ルギーの無駄なく得られる。したがって、本発明は缶の
軽量化及び板製造の生産性向上に寄与するところが大き
い。From Table 3, inventive example Nα2 has excellent formability with high strength (yield strength after baking of 28 kgf/■'' or more), low selvage (selvage ratio of 3% or less). Comparative Example No. 1, which has a low temperature, has a high selvage and has insufficient formability. Both Comparative Example No. 3, which has a high pre-annealing temperature, and Comparative Example No. 3, which has a low temperature, have insufficient formability. Also, the comparative example has a slow heating and cooling rate. Nα5 lacks strength and has low productivity. Comparative Example 6, which has a high annealing temperature, has a high selvage rate and poor formability. (Effects of the Invention) As detailed above, according to the present invention, , while properly adjusting the chemical composition of the aluminum alloy, homogenization heat treatment,
Since the conditions of hot rolling, heating before annealing, annealing, and even cold rolling are regulated in relation to each other, aluminum alloy hard plates with high strength, low sagging, and especially excellent formability can be produced without wasting time and energy. can get. Therefore, the present invention greatly contributes to reducing the weight of cans and improving the productivity of plate manufacturing.
Claims (1)
g:0.5〜3.0%及びCu:0.05〜0.50%
を含有し、更にFe:0.2〜0.7%、Si:0.1
〜0.5%及びZn:0.05〜1.0%のうちの1種
又は2種以上を含有し、残部がAlと不可避的不純物か
らなるAl合金につき、500〜600℃の温度で1時
間以上の均質化熱処理を施して280℃以上で熱間圧延
を終了し、その後、放冷することなく直ちに、或いは放
冷することなく200〜300℃の温度範囲に1時間以
上保持加熱し、次に150℃以下に下げることなく、1
00℃/min以上の加熱冷却速度で400〜600℃
に10分以内保持の急速焼鈍を行い、更に仕上冷延率7
0%の冷間圧延を施すことを特徴とする高成形性アルミ
ニウム合金硬質板の製造法。In weight% (the same applies hereinafter), Mn: 0.5 to 2.0%, M
g: 0.5-3.0% and Cu: 0.05-0.50%
Contains Fe: 0.2 to 0.7%, Si: 0.1
0.5% and Zn: 0.05 to 1.0%, and the balance is Al and inevitable impurities. Homogenization heat treatment is performed for more than 1 hour to finish hot rolling at 280°C or more, and then, immediately without being left to cool, or without being left to cool, the product is held and heated in a temperature range of 200 to 300°C for more than 1 hour, Next, without lowering the temperature below 150℃,
400-600℃ at a heating and cooling rate of 00℃/min or more
Then, rapid annealing was performed for less than 10 minutes, and the finishing cold rolling rate was 7.
A method for producing a highly formable aluminum alloy hard plate, characterized by subjecting it to 0% cold rolling.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63173486A JP2521330B2 (en) | 1988-07-12 | 1988-07-12 | Manufacturing method of high formability aluminum alloy hard plate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63173486A JP2521330B2 (en) | 1988-07-12 | 1988-07-12 | Manufacturing method of high formability aluminum alloy hard plate |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0222446A true JPH0222446A (en) | 1990-01-25 |
JP2521330B2 JP2521330B2 (en) | 1996-08-07 |
Family
ID=15961397
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63173486A Expired - Lifetime JP2521330B2 (en) | 1988-07-12 | 1988-07-12 | Manufacturing method of high formability aluminum alloy hard plate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2521330B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0488145A (en) * | 1990-07-31 | 1992-03-23 | Kobe Steel Ltd | Thin and high strength aluminum material for blind and its manufacture |
JPH04143243A (en) * | 1990-10-04 | 1992-05-18 | Kobe Steel Ltd | Aluminum alloy sheet excellent in formability and its production |
JPH04224651A (en) * | 1990-12-26 | 1992-08-13 | Sky Alum Co Ltd | Aluminum two-piece can body and its manufacture |
JPH06501057A (en) * | 1990-09-05 | 1994-01-27 | ゴールデン アルミナム カンパニー | aluminum alloy sheet material |
JP2007277587A (en) * | 2006-04-03 | 2007-10-25 | Furukawa Sky Kk | Aluminum alloy rolled sheet for battery case having excellent multistage workability, and its production method |
JP2007277588A (en) * | 2006-04-03 | 2007-10-25 | Furukawa Sky Kk | Aluminum alloy rolled sheet for battery case having excellent multistage workability, and its production method |
-
1988
- 1988-07-12 JP JP63173486A patent/JP2521330B2/en not_active Expired - Lifetime
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0488145A (en) * | 1990-07-31 | 1992-03-23 | Kobe Steel Ltd | Thin and high strength aluminum material for blind and its manufacture |
JPH06501057A (en) * | 1990-09-05 | 1994-01-27 | ゴールデン アルミナム カンパニー | aluminum alloy sheet material |
JPH04143243A (en) * | 1990-10-04 | 1992-05-18 | Kobe Steel Ltd | Aluminum alloy sheet excellent in formability and its production |
JPH04224651A (en) * | 1990-12-26 | 1992-08-13 | Sky Alum Co Ltd | Aluminum two-piece can body and its manufacture |
JP2007277587A (en) * | 2006-04-03 | 2007-10-25 | Furukawa Sky Kk | Aluminum alloy rolled sheet for battery case having excellent multistage workability, and its production method |
JP2007277588A (en) * | 2006-04-03 | 2007-10-25 | Furukawa Sky Kk | Aluminum alloy rolled sheet for battery case having excellent multistage workability, and its production method |
Also Published As
Publication number | Publication date |
---|---|
JP2521330B2 (en) | 1996-08-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0127146B2 (en) | ||
JP3600022B2 (en) | Manufacturing method of aluminum base alloy sheet for deep drawing | |
JPS6119705B2 (en) | ||
JPH0222446A (en) | Manufacture of high formability aluminum alloy hard plate | |
JP2004263253A (en) | Aluminum alloy hard sheet for can barrel, and production method therefor | |
JP3409195B2 (en) | Aluminum alloy hard plate for forming and manufacturing method thereof | |
JP2005076041A (en) | Method for manufacturing hard aluminum alloy sheet for can body | |
JPH07166285A (en) | Hardened al alloy sheet by baking and production thereof | |
JPH01123054A (en) | Hard-baked-type high-strength can material and its production | |
JPH0365409B2 (en) | ||
JPH10330897A (en) | Production of aluminum base alloy sheet for deep drawing | |
JPH02267242A (en) | Low carbon aluminum killed cold rolled steel sheet having excellent workability, roughening resistance on the surface and earing properties and its manufacture | |
JP3587993B2 (en) | Manufacturing method of aluminum alloy sheet for deep drawing | |
JPH02205660A (en) | Manufacture of aluminum alloy sheet having excellent baking hardenability of paint | |
JPS5943986B2 (en) | Manufacturing method of aluminum alloy hard plate with excellent strength and anisotropy | |
JPH062090A (en) | Manufacture of high strength aluminum alloy sheet for forming small in anisotropy | |
JP3600021B2 (en) | Manufacturing method of aluminum base alloy sheet for deep drawing | |
JPS593528B2 (en) | Manufacturing method of galvanized steel sheet for deep drawing with excellent formability | |
JPH0617140A (en) | Production of cold rolled steel sheet for deep drawing | |
JPH0681045A (en) | Production of cold rolled steel sheet excellent in workability and baking hardenability | |
JPH0390549A (en) | Production of hard aluminum alloy sheet excellent in formability | |
JPH07238355A (en) | Production of hard al alloy sheet for forming | |
JPH062069A (en) | High strength cold rolled steel sheet and galvanized steel sheet excellent in deep drawability | |
JPH10330898A (en) | Production of aluminum base alloy sheet for deep drawing | |
JPS5956528A (en) | Manufacture of high-tension cold-rolled steel plate with superior formability |