JP2005076041A - Method for manufacturing hard aluminum alloy sheet for can body - Google Patents

Method for manufacturing hard aluminum alloy sheet for can body Download PDF

Info

Publication number
JP2005076041A
JP2005076041A JP2003304245A JP2003304245A JP2005076041A JP 2005076041 A JP2005076041 A JP 2005076041A JP 2003304245 A JP2003304245 A JP 2003304245A JP 2003304245 A JP2003304245 A JP 2003304245A JP 2005076041 A JP2005076041 A JP 2005076041A
Authority
JP
Japan
Prior art keywords
rolling
temperature
hot rolling
range
aluminum alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003304245A
Other languages
Japanese (ja)
Inventor
Akira Hibino
旭 日比野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Sky KK
Original Assignee
Furukawa Sky KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Sky KK filed Critical Furukawa Sky KK
Priority to JP2003304245A priority Critical patent/JP2005076041A/en
Publication of JP2005076041A publication Critical patent/JP2005076041A/en
Pending legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for inexpensively manufacturing a material for a DI can body, which is superior in the balance of strength, a low earing rate, ironing properties and flange formability. <P>SOLUTION: The manufacturing method comprises homogenizing an ingot of an Al-Mg-Mn alloy; hot-rolling it while controlling a starting temperature to 350 to 590°C, the distribution of surface temperatures in a width direction of a rolling roll contacting with a plate to be rolled to 100°C or lower, temperatures of the material during rolling it from the plate thickness of 50 mm to the final rolled sheet thickness to 280 to 450°C, the fluctuation widths of the material temperatures in a rolling direction and a transverse direction to 100°C or lower, the material temperature at the end of the hot rolling to 280 to 350°C, the final sheet thickness to 1.5 to 2.8 mm, and a cooling rate to room temperature to 100°C/h or lower; and subsequently cold-rolling it with a reduction of 65% or higher while skipping an intermediate annealing step. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明はDI成形(絞り−しごき加工)による2ピースアルミニウム缶用の缶胴に使用されるAl−Mg−Mn系アルミニウム合金の硬質板の製造方法に関し、特に深絞り耳が安定して低くかつ塗装焼付後の強度が高く、しかもDI加工時における成形性、例えばしごき加工性などが優れると同時に塗装焼付後の成形性、例えばフランジ成形性などが優れたDI缶胴用アルミニウム合金硬質板を製造する方法に関するものである。   The present invention relates to a method of manufacturing a hard plate of an Al-Mg-Mn aluminum alloy used in a can body for a two-piece aluminum can by DI molding (drawing-ironing process), and in particular, a deep drawing ear is stably low and Produces a hard aluminum alloy plate for DI cans that has high strength after paint baking and has excellent moldability during DI processing, such as ironing, and excellent moldability after baking, such as flange formability. It is about how to do.

一般に2ピースアルミニウム缶(DI缶)の製造工程としては、缶胴用素材に対して、深絞り加工およびしごき加工によるDI成形を施して缶胴形状とした後、所定の寸法、形状にトリミングを施して脱脂・洗浄処理を行ない、さらに塗装・印刷を行って焼付け(ベーキング)を行ない、その後に缶胴縁部に対してネッキング加工、フランジ加工を行ない、別に成形した缶蓋と合せてシーミング加工を行なうのが通常である。   In general, the manufacturing process for two-piece aluminum cans (DI cans) is to form can bodies by deep-drawing and ironing the can body material, and then trimming to the specified dimensions and shape. Apply and degrease, wash, paint, print, bake (baking), then neck and flange the can body edge, seaming with a separately formed can lid It is normal to perform.

このようにして製造されるDI缶胴用素材としては、従来からAl−Mg−Mn系合金からなるJIS3004合金の硬質板が広く使用されている。この3004合金は、しごき加工性に優れていて、強度を高めるために高圧延率で冷間圧延を施した場合でも比較的良好な成形性を示すところから、DI缶胴材として好適であるとされている。   As a material for a DI can body produced in this manner, a hard plate of JIS3004 alloy made of an Al—Mg—Mn alloy has been widely used. This 3004 alloy is excellent in ironing workability and exhibits relatively good formability even when cold-rolled at a high rolling rate in order to increase strength, and is therefore suitable as a DI can body. Has been.

なおこのような3004合金からなるDI缶胴用硬質板の製造方法としては、一般にDC鋳造法などによって鋳造した後、鋳塊に均質化処理を施し、さらに熱間圧延および冷間圧延によって所定の板厚とし、かつその過程における熱間圧延後の冷間圧延前、もしくは冷間圧延の中途において、再結晶のために中間焼鈍を施す方法が一般的である。   In addition, as a method of manufacturing such a hard plate for a DI can body made of 3004 alloy, in general, after casting by a DC casting method or the like, the ingot is subjected to homogenization treatment and further subjected to predetermined rolling by hot rolling and cold rolling. In general, a method is used in which intermediate thickness annealing is performed for recrystallization in the plate thickness and before cold rolling after hot rolling in the process or in the middle of cold rolling.

ところで2ピースアルミニウム缶胴(DI缶)については、主として材料コスト削減の観点から、薄肉化を図ることが強く望まれている。そしてこのように薄肉化を図る場合、薄肉化に伴なう缶の座屈強度低下の問題等を回避するため、材料の高強度化を図ることが不可欠である。   By the way, it is strongly desired to reduce the thickness of the two-piece aluminum can body (DI can) mainly from the viewpoint of reducing the material cost. When reducing the wall thickness in this way, it is indispensable to increase the strength of the material in order to avoid problems such as a reduction in the buckling strength of the can associated with the reduction in wall thickness.

さらにDI缶胴用材料としては、DI成形時における耳率が安定して低いことが望まれる。すなわち、DI成形時の耳率が安定して低いことは、DI成形時の歩留り向上と、缶胴の耳切れに起因する缶胴破断防止の点から重要である。   Furthermore, it is desired that the DI can body material has a stable and low ear rate during DI molding. That is, the stable and low ear rate at the time of DI molding is important from the viewpoint of improving the yield at the time of DI molding and preventing can barrel breakage due to cutting off of the can barrel.

そしてまた、DI缶製造時におけるフランジ成形性(口拡げ性)が優れること、およびしごき性(耐缶切れ性)が優れることも重要である。   In addition, it is also important that the flange formability (mouth spreadability) at the time of DI can manufacture is excellent and the ironing property (can tear resistance) is excellent.

ここで、これらの強度、耳率、フランジ成形性(口拡げ性)、しごき性(耐缶切れ性)は、いずれか一つが優れていれば良いというものではなく、これらのバランスが良好で総合的に優れていることが必要であり、また製造方法としては、上述のような材料特性からの諸要求のほか、製造コストが低廉であることも重要である。   Here, these strengths, ear ratios, flange formability (mouth spreadability), and ironing properties (canning resistance) are not necessarily excellent, but they are well balanced and comprehensive. In addition to the requirements from the material characteristics as described above, it is also important that the manufacturing cost is low.

ところで従来の3004合金缶胴用硬質板の一般的な製造方法においては、前述のように熱間圧延後の冷間圧延前、あるいは冷間圧延の中途において、再結晶のために中間焼鈍を行なうのが通常である。このような中間焼鈍の観点から従来の主な製造プロセスを分類すれば、次の(a)〜(c)のプロセスに分けられる。
(a) 熱延−バッチ焼鈍プロセス
これは、通常の熱間圧延の後、加熱速度の遅い箱型焼鈍炉(バッチ式焼鈍炉;BAF)を用いて焼鈍する方法である。
(b) 熱延−連続焼鈍プロセス
これは、通常の熱間圧延の後、加熱速度の速い連続焼鈍炉(CAL)を用いて焼鈍する方法である。
(c) 冷延中間連続焼鈍プロセス
これは、通常の熱間圧延後の冷間圧延の中途において、加熱速度の速い連続焼鈍炉を用いて焼鈍する方法である。
By the way, in the general manufacturing method of the conventional hard plate for 3004 alloy can body, as described above, intermediate annealing is performed for recrystallization before cold rolling after hot rolling or in the middle of cold rolling. It is normal. If the conventional main manufacturing processes are classified from the viewpoint of such intermediate annealing, they can be divided into the following processes (a) to (c).
(A) Hot rolling-batch annealing process This is a method of annealing using a box annealing furnace (batch annealing furnace; BAF) having a slow heating rate after normal hot rolling.
(B) Hot rolling-continuous annealing process This is a method of annealing using a continuous annealing furnace (CAL) having a high heating rate after normal hot rolling.
(C) Cold rolling intermediate continuous annealing process This is a method of annealing using a continuous annealing furnace having a high heating rate in the middle of cold rolling after normal hot rolling.

さらに、以上の(a)〜(c)のプロセスのほか、次の(d)のような方法もある。
(d) 自己再結晶プロセス
これは、熱間圧延の上がり温度を材料の再結晶温度以上に制御することによって、熱間圧延上がりの状態で材料を自己再結晶(自己焼鈍)させる方法である。
Further, in addition to the processes (a) to (c), there is a method (d) as follows.
(D) Self-recrystallization process This is a method in which the material is self-recrystallized (self-annealed) in the state after hot rolling by controlling the temperature at which hot rolling rises above the recrystallization temperature of the material.

以上のような(a)〜(d)のプロセスのうち、(a)、(b)、(d)のプロセスを適用した場合、いずれも最終的に得られた缶胴材のしごき性が劣るという共通の問題がある。また(d)のプロセスは、タンデム熱間圧延機を用いる場合について実用化されているが、熱間仕上げ圧延をリバース式圧延機(リバーシング・ミル、リバーシング・ウォーミング・ミル)で行なう場合や熱間粗圧延と熱間仕上げ圧延兼用の圧延機がリバース式圧延機である場合については、プロセスの実用化が図られていないのが現状であり、またこの(d)のプロセスをタンデム熱間圧延機で適用して、缶胴材のしごき性を改善しようとすれば、材料強度の不足が生じるという問題もある。さらに(c)のプロセスを適用した場合、缶胴材としてしごき性は優れるものの、フランジ成形性が劣るという問題がある。そしてまた、熱間圧延後に再結晶のための焼鈍を必要とする(a)、(b)、(c)のプロセスでは、製造コストが割高であるという問題もある。   Among the processes (a) to (d) as described above, when the processes (a), (b), and (d) are applied, all of the obtained can bodies have poor ironing properties. There is a common problem. The process (d) has been put to practical use in the case of using a tandem hot rolling mill, but the hot finish rolling is performed in a reverse rolling mill (reversing mill, reversing warming mill). In the case where the rolling mill for both hot rough rolling and hot finish rolling is a reverse type rolling mill, the present situation is that the practical use of the process has not been achieved, and the process (d) is performed by tandem heat. If it is applied with a rolling mill to improve the ironing ability of the can body, there is a problem that the material strength is insufficient. Furthermore, when the process (c) is applied, the iron formability is excellent as a can body material, but there is a problem that the flange formability is inferior. In addition, in the processes (a), (b), and (c) that require annealing for recrystallization after hot rolling, there is a problem that the manufacturing cost is high.

ここで、Al−Mg−Mn系合金からなるDI缶胴材の製造方法として既に提案されている先行技術の方法としては、例えば特許文献1〜特許文献8に示すような方法があるが、これらのうち特許文献1〜特許文献5、特許文献8の方法は、いずれも熱間圧延の後、もしくは冷間圧延の中途で焼鈍を必須とするものであり、前述のようにコスト面等で問題があった。   Here, as a prior art method already proposed as a method for manufacturing a DI can body made of an Al-Mg-Mn alloy, there are methods as shown in Patent Documents 1 to 8, for example. Among them, the methods of Patent Literature 1 to Patent Literature 5 and Patent Literature 8 all require annealing after hot rolling or in the middle of cold rolling, and there are problems in terms of cost as described above. was there.

また特許文献6には、熱間圧延後に焼鈍なしで最終冷間圧延を施す方法も示されているが、この特許文献6に示されているのは熱間圧延機としてタンデム式圧延機を用いた場合の方法であり、リバース式圧延機を用いた場合については開示されていない。タンデム式圧延機とリバース式圧延機では、最適な熱間圧延プロセス条件が異なるのが通常であり、したがって特許文献6に示されている方法をリバース式圧延機を用いた場合に転用しても、直ちに前記諸特性の優れた缶胴材が得られるとは限らない。   Patent Document 6 also discloses a method of performing final cold rolling without annealing after hot rolling. However, Patent Document 6 uses a tandem rolling mill as a hot rolling mill. This method is not disclosed in the case of using a reverse rolling mill. The optimum hot rolling process conditions are usually different between a tandem rolling mill and a reverse rolling mill. Therefore, even if the method shown in Patent Document 6 is used when a reverse rolling mill is used, However, it is not always possible to obtain a can body material excellent in the above characteristics.

さらに特許文献7の方法でも、熱間圧延後の焼鈍を省略しても良いとされているが、この特許文献7の方法も、熱間圧延機としてタンデム式圧延機を使用するものであり、またその熱間圧延条件も厳密に規定されてはおらず、そのため特許文献7の方法をリバース式圧延機を用いる場合に転用しても、前記諸特性のバランスに優れたDI缶胴材は得られなかったのである。   Furthermore, even in the method of Patent Document 7, it is said that annealing after hot rolling may be omitted, but the method of Patent Document 7 also uses a tandem rolling mill as a hot rolling mill, Also, the hot rolling conditions are not strictly defined, so that even if the method of Patent Document 7 is diverted when a reverse rolling mill is used, a DI can body having an excellent balance of the above characteristics can be obtained. There was no.

特開平11−256290号公報JP-A-11-256290 特開平11−256291号公報JP 11-256291 A 特開平11−256292号公報Japanese Patent Laid-Open No. 11-256292 特開2000−234158号公報JP 2000-234158 A 特開2002−212691号公報JP 2002-212691 A 特開平10−310837号公報Japanese Patent Laid-Open No. 10-310837 特開平11−140576号公報JP-A-11-140576 特開2001−40461号公報JP 2001-40461 A

この発明は以上の事情を背景としてなされたもので、DI缶胴材として望まれる諸特性をバランスよく満足し得る材料、すなわち高強度を有すると同時に耳率が安定して低く、しかもフランジ成形性、しごき性に優れていて、これらの諸特性のバランスが総合的に良好なDI缶胴用のアルミニウム合金板を、低コストで得る方法を提供することを目的とするものであり、特に熱間圧延機としてタンデム圧延機ではなくリバース方式の圧延機を使用して上述のような高品質のDI缶胴材を低コストで得るに適した方法を提供することを目的とするものである。   The present invention has been made against the background described above, and is a material that can satisfy various properties desired as a DI can body in a well-balanced manner, that is, has a high strength and at the same time has a stable and low ear ratio, and has a flange formability. The purpose of the present invention is to provide a method for obtaining an aluminum alloy plate for a DI can body that has excellent ironing properties and a comprehensive balance of these characteristics at a low cost. An object of the present invention is to provide a method suitable for obtaining a high-quality DI can body as described above at a low cost by using a reverse rolling mill instead of a tandem rolling mill.

本発明者等が前述の課題を解決するべく種々実験・検討を重ねた結果、熱間圧延条件を適切に制御し、特に熱間圧延中における圧延ロールの表面温度のばらつきおよび板温度のばらつきを適切に規制することによって、熱間圧延後の再結晶のための焼鈍を省略しつつ高品質のDI缶胴材を得ることができるプロセス、特にリバーシングミル方式の熱間圧延機を使用して高品質のDI缶胴材を得ることができるプロセスを実現できることを見出し、この発明をなすに至った。   As a result of repeated various experiments and examinations by the present inventors to solve the above-mentioned problems, the hot rolling conditions are appropriately controlled, and in particular, the surface temperature variation of the rolling roll and the plate temperature variation during hot rolling. Using a process that can obtain high-quality DI can body materials, especially by using a reversing mill type hot rolling mill, by appropriately regulating, omitting annealing for recrystallization after hot rolling. The present inventors have found that a process capable of obtaining a high-quality DI can body can be realized, and have reached the present invention.

具体的には、請求項1の発明の缶胴用アルミニウム合金硬質板の製造方法は、Mg0.5〜2.0%、Mn0.5〜2.0%、Fe0.1〜0.7%、Si0.05〜0.5%を含有し、残部がAlおよび不可避的不純物よりなるアルミニウム合金を素材とし、その素材アルミニウム合金を鋳造した後、520〜630℃の範囲内の温度で1時間以上保持する均質化処理を行ない、次いで熱間圧延を行なうにあたり、
(1) 熱間圧延開始温度を350〜590℃の範囲内とし、
(2) 熱間圧延中における圧延板との接触部分の圧延ロールの表面温度について、板幅方向中央と端部との温度差を100℃以下に保持し、
(3) 熱間圧延中における各パスにおいて圧延方向および圧延方向に対し直交する方向の材料の温度変動幅をそれぞれ100℃以下に制御し、
(4) 熱間圧延中における板厚50mmから上がり板厚までの段階の圧延板材料温度を450〜280℃の範囲内に制御し、
(5) 熱間圧延上がりの材料温度を280〜350℃の範囲内とし、
(6) 熱間圧延上がり板厚を1.5〜2.8mmの範囲内とし、
(7) 熱間圧延上がりの280〜350℃の範囲内の温度から100℃までの平均冷却速度を100℃/時間以下に制御し、
以上の(1)〜(7)によって熱間圧延を行なって室温まで冷却し、耐力が120MPa以下の熱間圧延板を得、さらに中間焼鈍を施すことなく、65%以上の圧延率で冷間圧延を施すことを特徴とするものである。
Specifically, the manufacturing method of the aluminum alloy hard plate for a can body of the invention of claim 1 is Mg 0.5-2.0%, Mn 0.5-2.0%, Fe 0.1-0.7%, An aluminum alloy containing 0.05 to 0.5% of Si, the balance being Al and inevitable impurities is used as a raw material, and after casting the raw material aluminum alloy, it is kept at a temperature within a range of 520 to 630 ° C. for 1 hour or more. When performing the homogenization process and then hot rolling,
(1) The hot rolling start temperature is in the range of 350 to 590 ° C,
(2) About the surface temperature of the rolling roll at the contact portion with the rolled sheet during hot rolling, the temperature difference between the center in the sheet width direction and the end is maintained at 100 ° C. or less,
(3) The temperature fluctuation width of the material in the direction orthogonal to the rolling direction and the rolling direction in each pass during hot rolling is controlled to 100 ° C. or less,
(4) The temperature of the rolled sheet material at the stage from the sheet thickness of 50 mm to the increased sheet thickness during hot rolling is controlled within the range of 450 to 280 ° C.
(5) The material temperature after hot rolling is in the range of 280 to 350 ° C.,
(6) The hot-rolled finished sheet thickness is in the range of 1.5 to 2.8 mm,
(7) The average cooling rate from the temperature within the range of 280 to 350 ° C. after the hot rolling to 100 ° C. is controlled to 100 ° C./hour or less,
Hot rolling is performed according to the above (1) to (7) to cool to room temperature, a hot rolled sheet having a proof stress of 120 MPa or less is obtained, and cold rolling is performed at a rolling rate of 65% or more without performing intermediate annealing. It is characterized by rolling.

また請求項2の発明の缶胴用アルミニウム合金硬質板の製造方法は、請求項1に記載の缶胴用アルミニウム合金硬質板の製造方法において、素材アルミニウム合金として、前記各成分のほか、さらにCu0.05〜0.5%、Cr0.05〜0.3%、Zn0.05〜0.5%、Ti0.005〜0.20%のうちの1種または2種以上を含有するものを用いることを特徴とするものである。   According to a second aspect of the present invention, there is provided a method for producing an aluminum alloy hard plate for a can body according to the first aspect of the present invention. 0.05% to 0.5%, Cr 0.05% to 0.3%, Zn 0.05% to 0.5%, Ti containing 0.005% to 0.20% or one containing two or more types It is characterized by.

この発明の缶胴用アルミニウム合金硬質板の製造方法によれば、DI缶胴用硬質板としてバランスの優れた板、すなわち塗装焼付後の強度として高強度を有すると同時に耳率が安定して低く、しかもしごき性およびフランジ成形性のいずれもが優れた板を得ることができ、また熱間圧延後や冷間圧延中途における中間焼鈍を省略したプロセスで上述のような優れた材料を得ることができるところから、低コストで高品質の材料を得ることができる。   According to the method for producing an aluminum alloy hard plate for a can body of the present invention, a plate having an excellent balance as a hard plate for a DI can body, that is, having a high strength as a strength after painting and baking, and an ear rate is stably low. Moreover, it is possible to obtain a plate excellent in both ironing property and flange formability, and to obtain an excellent material as described above in a process in which intermediate annealing is omitted after hot rolling or in the middle of cold rolling. Since it is possible, a high-quality material can be obtained at a low cost.

先ずこの発明の缶胴用アルミニウム合金硬質板に用いられるアルミニウム合金の成分組成の限定理由について説明する。   First, the reasons for limiting the component composition of the aluminum alloy used in the aluminum alloy hard plate for a can body of the present invention will be described.

Mg:
Mgの添加は、Mgそれ自体の固溶による強度向上に効果があり、またMgの固溶に伴なう加工硬化量の増大による強度向上が期待でき、さらにはSiとの共存によるMg2Siの時効析出による強度向上も期待でき、したがってMgは缶胴材として必要な強度を得るためには不可欠の元素である。またMgは、加工時の転位の増殖作用があるため、再結晶粒を微細化させるためにも有効である。但しMg量が0.5%未満では上述の効果が少なく、一方2.0%を越えれば、高強度は容易に得られるものの、DI加工時の変形抵抗が大きくなって絞り性やしごき性を悪くする。したがってMg量は0.5〜2.0%の範囲内とした。
Mg:
The addition of Mg is effective in improving the strength by solid solution of Mg itself, and can be expected to improve the strength by increasing the work hardening amount accompanying the solid solution of Mg, and further, Mg 2 Si by coexistence with Si. Therefore, Mg is an indispensable element for obtaining the strength required as a can body material. Further, Mg has an effect of multiplying dislocations at the time of processing, and is therefore effective for making recrystallized grains finer. However, if the amount of Mg is less than 0.5%, the above-mentioned effect is small. On the other hand, if it exceeds 2.0%, high strength can be easily obtained, but the deformation resistance during DI processing increases and the drawability and squeezing property are improved. Make it worse. Therefore, the Mg content is set in the range of 0.5 to 2.0%.

Mn:
Mnは強度および成形性の向上に寄与する有効な元素である。特にこの発明で目的としている用途である缶胴材ではDI成形時にしごき加工が加えられるため、とりわけMnは重要となる。アルミニウム板のしごき加工においては通常エマルジョンタイプの潤滑剤が用いられているが、Mn系晶出物が少ない場合には同程度の強度を有していてもエマルジョンタイプ潤滑剤だけでは潤滑能が不足し、ゴーリングと称される擦り疵や焼付きなどの外観不良が発生するおそれがある。ゴーリングは晶出物の大きさ、量、種類に影響されることが知られており、その晶出物を形成するためにMnは不可欠な元素である。Mn量が0.5%未満ではMn系化合物による固体潤滑的な効果が得られず、一方Mn量が2.0%を越えればAl6Mnの初晶巨大金属間化合物が発生して、著しく成形性を損なってしまう。そこでMn量は0.5〜2.0%の範囲内とした。またここで製品板中における固溶Mnは、加工時の回復を抑制する効果および塗装焼付け時の軟化を低減する効果がある。
Mn:
Mn is an effective element that contributes to improvement in strength and formability. In particular, Mn is particularly important for the can body material, which is the intended application of the present invention, because ironing is applied during DI molding. Emulsion-type lubricants are usually used in ironing of aluminum plates, but if there are few Mn-based crystallized products, even if they have the same level of strength, the emulsion-type lubricants alone are not sufficient for lubrication. In addition, appearance defects such as scuffing and seizure called goling may occur. Goling is known to be affected by the size, amount, and type of crystallized matter, and Mn is an indispensable element for forming the crystallized product. If the amount of Mn is less than 0.5%, the effect of solid lubrication by the Mn-based compound cannot be obtained. On the other hand, if the amount of Mn exceeds 2.0%, an Al 6 Mn primary intermetallic compound is generated. Formability will be impaired. Therefore, the amount of Mn is set in the range of 0.5 to 2.0%. Here, the solid solution Mn in the product plate has an effect of suppressing recovery during processing and an effect of reducing softening during coating baking.

Fe:
Feは、Mnの晶出や析出を促進して、アルミニウム基地中のMn固溶量やMn系金属間化合物の分散状態を制御するために必要な元素である。適切な化合物分散状態を得るためには、Mn添加量に応じてFeを添加することが必要である。Fe量が0.1%未満では適切な化合物分散状態を得ることが困難であり、一方Fe量が0.7%を越えれば、Mn添加に伴なって初晶巨大金属間化合物が発生しやすくなり、成形性を著しく損なう。そこでFe量の範囲は0.1〜0.7%とした。
Fe:
Fe is an element necessary for accelerating crystallization and precipitation of Mn to control the amount of Mn solid solution in the aluminum matrix and the dispersion state of the Mn-based intermetallic compound. In order to obtain an appropriate compound dispersion state, it is necessary to add Fe according to the amount of Mn added. If the Fe content is less than 0.1%, it is difficult to obtain an appropriate compound dispersion state. On the other hand, if the Fe content exceeds 0.7%, a primary giant intermetallic compound is likely to be generated with the addition of Mn. Thus, the moldability is remarkably impaired. Therefore, the range of Fe content is set to 0.1 to 0.7%.

Si:
Siの添加は、Mg2Si系化合物の析出による時効硬化を通じて缶胴材の強度向上に寄与する。またSiは、Al−Mn−Fe−Si系金属間化合物を生成して、Mn系金属間化合物の分散状態を制御するために必要な元素である。Si量が0.05%未満では上記の効果が得られず、一方0.5%を越えれば時効硬化により材料が硬くなりすぎて成形性を阻害する。そこでSi量の範囲は0.05〜0.5%とした。
Si:
The addition of Si contributes to improvement of the strength of the can body material through age hardening by precipitation of Mg 2 Si-based compounds. Si is an element necessary for generating an Al—Mn—Fe—Si intermetallic compound and controlling the dispersion state of the Mn intermetallic compound. If the amount of Si is less than 0.05%, the above effect cannot be obtained. On the other hand, if it exceeds 0.5%, the material becomes too hard due to age hardening, thereby impairing the moldability. Therefore, the range of Si content is set to 0.05 to 0.5%.

以上の各元素のほかは、基本的にはAlおよび不可避的不純物とすれば良いが、必要に応じてTi、Cu、Cr、Znのうちの1種または2種以上を添加しても良い。これらのTi、Cu、Cr、Znについてさらに詳細に説明する。   In addition to the above elements, basically, Al and inevitable impurities may be used, but one or more of Ti, Cu, Cr, and Zn may be added as necessary. These Ti, Cu, Cr, and Zn will be described in more detail.

Ti:
通常のアルミニウム合金においては、鋳塊結晶粒微細化のためにTiを微量添加することが行なわれており、この発明においても、必要に応じて微量のTiを添加しても良い。但しTi量が0.005%未満ではその効果が得られず、一方0.20%を越えれば巨大なAl−Ti系金属間化合物が晶出して成形性を阻害するため、Tiを添加する場合のTi量は0.005〜0.20%の範囲内とした。またTiとともに微量のBを添加すれば鋳塊結晶粒微細化の効果が向上することが知られており、そこでこの発明の場合もTiとともに微量のBを添加することは許容される。このようにTiと併せてBを添加する場合、B量が0.0001%未満ではその効果がなく、0.05%を越えればTi−B系の粗大粒子が混入して成形性を害することから、TiとともにBを添加する場合のB量は0.0001〜0.05%の範囲内ととすることが望ましい。
Ti:
In a normal aluminum alloy, a small amount of Ti is added for refining ingot crystal grains. In this invention, a small amount of Ti may be added as necessary. However, if the amount of Ti is less than 0.005%, the effect cannot be obtained. On the other hand, if it exceeds 0.20%, a large Al—Ti intermetallic compound crystallizes and inhibits formability. The amount of Ti was in the range of 0.005 to 0.20%. Further, it is known that the addition of a small amount of B together with Ti improves the effect of refining the ingot crystal grains. Therefore, in the present invention, addition of a small amount of B together with Ti is allowed. Thus, when adding B together with Ti, if the amount of B is less than 0.0001%, there is no effect, and if it exceeds 0.05%, Ti-B based coarse particles are mixed to impair the formability. Therefore, the amount of B when adding B together with Ti is preferably within the range of 0.0001 to 0.05%.

Cu:
Cuは、アルミニウム基地中に溶体化させておき、塗装焼付処理時にAl−Cu−Mg系析出物として析出することによる析出硬化を利用した強度向上に寄与する。Cu量が0.05%未満ではその効果が得られず、一方Cuを0.5%を越えて添加した場合には、時効硬化は容易に得られるものの、硬くなりすぎて成形性を阻害し、また耐食性も劣化する。そこでCuを添加する場合のCu量の範囲は0.05〜0.5%とした。
Cu:
Cu is made into a solution in the aluminum base, and contributes to the strength improvement utilizing precipitation hardening by depositing as an Al—Cu—Mg based precipitate during the coating baking process. If the amount of Cu is less than 0.05%, the effect cannot be obtained. On the other hand, if Cu is added in excess of 0.5%, age hardening can be easily obtained, but it becomes too hard and inhibits formability. Moreover, corrosion resistance also deteriorates. Therefore, the range of the amount of Cu when adding Cu is set to 0.05 to 0.5%.

Cr:
Crは強度向上に効果的な元素であるが、0.05%未満ではその効果が少なく、0.3%を越えれば巨大晶出物生成によって成形性の低下を招くため、好ましくない。そこでCrを添加する場合のCr量の範囲は0.05〜0.3%とした。
Cr:
Cr is an element effective for improving the strength. However, if it is less than 0.05%, the effect is small, and if it exceeds 0.3%, formability is reduced due to the formation of giant crystals, which is not preferable. Therefore, the range of the Cr amount when adding Cr is set to 0.05 to 0.3%.

Zn:
Znの添加はAl−Mg−Zn系粒子の時効析出による強度向上に寄与するが、0.05%未満ではその効果が得られず、0.5%を越えれば、強度への寄与については問題がないが、耐食性を劣化させる。そこでZnを添加する場合のZr量の範囲は0.05〜0.5%とした。
Zn:
Addition of Zn contributes to strength improvement by aging precipitation of Al—Mg—Zn-based particles. However, if it is less than 0.05%, the effect cannot be obtained, and if it exceeds 0.5%, there is a problem regarding contribution to strength. There is no, but deteriorates the corrosion resistance. Therefore, the range of the Zr amount when adding Zn is set to 0.05 to 0.5%.

次にこの発明の缶胴用アルミニウム合金硬質板の製造プロセスについて説明する。   Next, the manufacturing process of the aluminum alloy hard plate for can bodies of this invention is demonstrated.

先ず前述のような合金組成を有するアルミニウム合金鋳塊を、常法にしたがってDC鋳造法(半連続鋳造法)により鋳造する。次いでその鋳塊に対して均質化処理を行ない、鋳塊の偏析を均質化するとともにMn、Fe、Si系の第2相粒子サイズと分布を最適化する。またこのような第2相粒子のサイズと分布は最終板の集合組織に影響を及ぼすこともある。均質化処理温度が520℃未満では、均質化効果が不充分であるばかりでなく、最適な集合組織が得られなくなるおそれがあり、一方630℃を越えれば、共晶融解のおそれがある。また均質化処理の時間は、1時間未満では均質化効果が不充分となるばかりでなく、最適な集合組織が得られないおそれがある。したがって均質化処理条件は、520〜630℃の範囲内の温度で1時間以上と規定した。なお均質化処理時間の上限は特に規定しないが、経済性を考慮して48時間以下とすることが好ましい。   First, an aluminum alloy ingot having the above alloy composition is cast by a DC casting method (semi-continuous casting method) according to a conventional method. The ingot is then homogenized to homogenize the ingot segregation and optimize the size and distribution of Mn, Fe, and Si-based second phase particles. Also, the size and distribution of such second phase particles may affect the texture of the final plate. If the homogenization temperature is less than 520 ° C., not only the homogenization effect is insufficient, but there is a possibility that an optimal texture cannot be obtained, while if it exceeds 630 ° C., eutectic melting may occur. If the homogenization treatment time is less than 1 hour, not only the homogenization effect is insufficient, but there is a possibility that an optimum texture cannot be obtained. Accordingly, the homogenization treatment condition was defined as 1 hour or more at a temperature in the range of 520 to 630 ° C. The upper limit of the homogenization treatment time is not particularly defined, but it is preferably 48 hours or less in consideration of economy.

均質化処理を施した鋳塊に対しては、熱間圧延を行なう。この発明の方法の場合、熱間圧延後に焼鈍を施さない方式を適用しているため、熱間圧延上がり板の状態で充分に再結晶している必要があり、また熱間圧延中の再結晶挙動は集合組織の制御を通じて耳率の低減およびしごき性の向上に大きな影響を与える。そこでこの発明では、熱間圧延開始温度や熱間圧延終了温度(熱延上がり温度)のみならず、熱間圧延中における圧延板との圧延ロールの接触部分の温度のばらつきや、板厚50mmの段階から熱延上がりまでの諸条件(材料温度、材料温度の板幅方向のばらつき)や、熱延上がり後、室温近くの温度(100℃以下の温度)に冷却されるまでの間の条件などを厳密に規定している。具体的には、次の(1)〜(7)の条件が必要である。
(1) 熱間圧延開始温度を350〜590℃の範囲内に制御する。
(2) 熱間圧延中における圧延板との接触部分の圧延ロールの表面温度について、板幅方向中央と端部との温度差を100℃以下に保持する。
(3) 熱間圧延中における各パスにおいて圧延方向および圧延方向に対し直交する方向の材料の温度変動幅をそれぞれ100℃以下に制御する。
(4) 熱間圧延中における板厚50mmから上がり板厚までの段階の圧延板材料温度を450〜280℃の範囲内に制御する。
(5) 熱間圧延上がりの材料温度を280〜350℃の範囲内とする。
(6) 熱間圧延上がり板厚を1.5〜2.8mmの範囲内とする。
(7) 熱間圧延上がりの280〜350℃の範囲内の温度から100℃までの平均冷却速度を100℃/時間以下に制御する。
Hot rolling is performed on the ingot subjected to the homogenization treatment. In the case of the method of the present invention, since a method in which annealing is not performed after hot rolling is applied, it is necessary to sufficiently recrystallize in the state of the hot rolled up plate, and recrystallization during hot rolling The behavior greatly affects the reduction of ear rate and the improvement of ironing ability through the control of texture. Therefore, in the present invention, not only the hot rolling start temperature and hot rolling end temperature (hot rolling temperature), but also the temperature variation at the contact portion of the rolling roll with the rolled plate during hot rolling, Conditions from the stage to the heat rise (material temperature, variation in material temperature in the plate width direction), conditions after the heat rise and until it is cooled to a temperature close to room temperature (temperature of 100 ° C or less) Is strictly prescribed. Specifically, the following conditions (1) to (7) are necessary.
(1) The hot rolling start temperature is controlled within a range of 350 to 590 ° C.
(2) About the surface temperature of the rolling roll in the contact portion with the rolled sheet during hot rolling, the temperature difference between the center in the sheet width direction and the end is maintained at 100 ° C. or less.
(3) The temperature fluctuation width of the material in the direction orthogonal to the rolling direction and the rolling direction is controlled to 100 ° C. or less in each pass during hot rolling.
(4) The rolled sheet material temperature at the stage from the sheet thickness of 50 mm to the increased sheet thickness during hot rolling is controlled within a range of 450 to 280 ° C.
(5) The material temperature after hot rolling is set within a range of 280 to 350 ° C.
(6) The hot rolled sheet thickness is set in the range of 1.5 to 2.8 mm.
(7) The average cooling rate from the temperature within the range of 280 to 350 ° C. after the hot rolling to 100 ° C. is controlled to 100 ° C./hour or less.

なおこの発明の方法は、熱間圧延の仕上げ圧延機としてリバーシング・ミルおよびリバーシング・ウォームミルを用いる場合、あるいは熱間圧延の粗圧延および仕上げ圧延兼用の圧延機としてリバーシング・ミルを用いる場合を想定しており、上記の(1)〜(7)の条件も、少なくとも仕上げ圧延にリバース方式の圧延機を用いた場合に有効な条件として規定している。そしてまた上記の各条件中、「板厚50mmから上がり板厚までの熱間圧延中」とは、リバース方式による仕上げ圧延中に含まれる。   In the method of the present invention, a reversing mill and a reversing worm mill are used as a hot rolling finish rolling mill, or a reversing mill is used as a hot rolling rough rolling and finishing rolling combined mill. The above conditions (1) to (7) are also stipulated as effective conditions at least when a reverse rolling mill is used for finish rolling. In each of the above conditions, “during hot rolling from a plate thickness of 50 mm to a raised plate thickness” is included in the finish rolling by the reverse method.

上記(1)〜(7)の熱間圧延条件について次に詳細に説明する。   Next, the hot rolling conditions (1) to (7) will be described in detail.

(1)熱間圧延開始温度を350〜590℃の範囲内に制御する:
熱間圧延開始温度は、熱間圧延中の材料の回復、再結晶挙動に強い影響を及ぼす。熱間圧延開始温度が350℃未満では、圧延中に再結晶が起こりにくく、材料の延性が低下し、圧延中に板のエッジ割れ現象が生じやすい。一方590℃を越えた温度で熱間圧延を開始すれば、粗大な結晶粒が形成されやすく、板の表面品質が低下する。そこで熱間圧延開始温度は350〜590℃の範囲内とした。
(1) The hot rolling start temperature is controlled within the range of 350 to 590 ° C:
The hot rolling start temperature strongly affects the recovery and recrystallization behavior of the material during hot rolling. When the hot rolling start temperature is less than 350 ° C., recrystallization hardly occurs during rolling, the ductility of the material is lowered, and the edge cracking phenomenon of the plate is likely to occur during rolling. On the other hand, if hot rolling is started at a temperature exceeding 590 ° C., coarse crystal grains are easily formed, and the surface quality of the plate is lowered. Therefore, the hot rolling start temperature is set in the range of 350 to 590 ° C.

(2) 熱間圧延中における圧延ロールの表面温度、特に圧延板との接触部分におけるロール表面温度について、板幅方向中央と端部との間の温度変動幅を100℃以下に保持する:
コイル幅方向の耳率を均一に保つためには、圧延ロールの表面温度分布を均一に保つ必要がある。一般にロールの幅方向中央部は温度が高くなる一方、ロール幅方向端部は温度が低くなる傾向を示す。このような温度分布傾向は、板の幅方向の温度分布に影響を及ぼし、ひいては耳率の変動を招くから、適切に制御することが不可欠である。このような圧延ロール幅方向の温度変動幅が100℃を越えれば、板幅方向の温度を均一に制御することが極めて困難となるため、圧延ロール幅方向温度変動幅を100℃以下に保つ必要があり、好ましくは変動幅を20℃以内に抑える。なおこのように圧延ロール温度変動幅を100℃以下、好ましくは20℃以下に制御するための具体的手法の一つとしては、後に(4)項において詳細に説明すると同様に、圧延ロールの表面の温度分布に応じて圧延ロール表面にクーラントを直接噴射し、かつその噴射量、温度を適切に調整する方法がある。またこのように圧延ロールの表面温度をクーラントの直接噴射で低下させることによって、板の表面品質を向上させることができる。
(2) With respect to the surface temperature of the rolling roll during hot rolling, particularly the roll surface temperature at the contact portion with the rolled sheet, the temperature fluctuation width between the center in the sheet width direction and the end is maintained at 100 ° C. or less:
In order to keep the ear ratio in the coil width direction uniform, it is necessary to keep the surface temperature distribution of the rolling roll uniform. In general, the temperature in the center portion in the width direction of the roll increases, while the end portion in the roll width direction tends to decrease in temperature. Such a temperature distribution tendency affects the temperature distribution in the width direction of the plate, which in turn causes fluctuations in the ear rate, so that it is indispensable to control appropriately. If the temperature fluctuation width in the rolling roll width direction exceeds 100 ° C, it becomes extremely difficult to uniformly control the temperature in the sheet width direction, so it is necessary to keep the temperature fluctuation width in the rolling roll width direction at 100 ° C or less. Preferably, the fluctuation range is kept within 20 ° C. One specific method for controlling the rolling roll temperature fluctuation range to 100 ° C. or lower, preferably 20 ° C. or lower as described above is the same as described in detail in the section (4) later. There is a method in which the coolant is directly sprayed on the surface of the rolling roll in accordance with the temperature distribution and the spray amount and temperature are appropriately adjusted. Moreover, the surface quality of a board can be improved by reducing the surface temperature of a rolling roll by direct injection of a coolant in this way.

(3) 熱間圧延中における各パスにおいて、圧延方向(コイル長手方向)および圧延方向に対し直交する方向(コイル幅方向)の温度変動幅を100℃以下に制御する:
熱間圧延が進行するに従って各パスの材料温度低下が徐々に大きくなるから、所定に熱延上りの温度を確保するには、高速圧延を行なうことが一般的であり、また高速圧延は生産性の点からも有利である。ここで、リバーシング・ミルを用いて多パス高速圧延を行なうことによって、圧延板の長手方向の中央部、幅方向の中央部の温度低下が材料の加工発熱によって緩和されるが、長手方向の両端と幅の両端からは熱が相対的に逃げやすく、これらの部位の温度低下が中央部より大きくなるため、熱間圧延途中にコイル内で材料温度の変動が生じてしまう。この温度変動幅が100℃を越えれば、全コイル内の再結晶挙動が大きく変動し、材料の機械的性質、特に耳率を均一に保つのが困難となるから、その温度変動幅を100℃以下に制御することとした。なおこの範囲内でも、特に20℃以内に制御することが好ましい。制御手法の一つとしては、板表面にクーラントを直接噴射し、かつその直接噴射クーラントの量を一定ではなく、温度分布に応じて変えることが重要である。すなわち、高温部にクーラントを多く噴射して、低温部にクーラントを少なめに噴射することにより、材料温度変動幅を適切に規制することができる。このようにクーラントは、圧延時の潤滑のために用いるだけでなく、材料温度の制御にも活用することができる。
(3) In each pass during hot rolling, the temperature fluctuation width in the rolling direction (coil longitudinal direction) and the direction orthogonal to the rolling direction (coil width direction) is controlled to 100 ° C. or less:
Since the material temperature drop in each pass gradually increases as hot rolling progresses, high-speed rolling is generally performed to ensure a predetermined hot rolling temperature. This is also advantageous. Here, by performing multi-pass high-speed rolling using a reversing mill, the temperature drop in the central portion in the longitudinal direction of the rolled sheet and the central portion in the width direction is alleviated by the processing heat generated by the material. Heat is relatively easy to escape from both ends and both ends of the width, and the temperature drop in these portions is greater than that in the central portion, so that the material temperature fluctuates in the coil during hot rolling. If this temperature fluctuation range exceeds 100 ° C., the recrystallization behavior in all the coils greatly fluctuates, and it becomes difficult to keep the mechanical properties of the material, particularly the ear ratio, uniform. It was decided to control as follows. Even within this range, it is particularly preferable to control the temperature within 20 ° C. As one of the control methods, it is important to inject coolant directly onto the plate surface and change the amount of the direct injection coolant according to the temperature distribution, not constant. That is, the material temperature fluctuation range can be appropriately regulated by injecting a large amount of coolant to the high temperature part and injecting a small amount of coolant to the low temperature part. Thus, the coolant can be used not only for lubrication during rolling but also for controlling the material temperature.

(4) 熱間圧延中における板厚50mmから上がり板厚までの圧延板材料温度を450〜280℃の範囲内に制御する:
熱間圧延中における各段階のうち、特に板厚50mmから仕上げ板厚までの段階における材料温度は、熱間圧延中における再結晶挙動、最終板の集合組織の形成、ひいては最終板の耳率に影響を与える。そしてこの段階における材料温度を450〜280℃の範囲内に制御することが、熱間圧延板の再結晶挙動を適切に調整し、最終板での集合組織・耳率を適切な範囲に制御するために必要である。この段階での材料温度が280℃未満では、表面品質の低下と深刻なエッジ割れを招くおそれがあり、一方450℃を越えれば、再結晶の進行が早まって、最終板として所要の集合組織・耳率が得られなくなるから、450〜280℃の範囲内とする必要がある。なおこの温度範囲内でも特に290〜390℃の範囲内に制御することが好ましい。
(4) Control the temperature of the rolled sheet material from the sheet thickness of 50 mm to the increased sheet thickness during hot rolling within a range of 450 to 280 ° C .:
Among the stages in hot rolling, the material temperature particularly in the stage from the thickness of 50 mm to the finished thickness depends on the recrystallization behavior during hot rolling, the formation of the texture of the final plate, and consequently the ear rate of the final plate. Influence. And controlling the material temperature at this stage within the range of 450 to 280 ° C. adjusts the recrystallization behavior of the hot-rolled sheet appropriately, and controls the texture / ear ratio of the final sheet to an appropriate range. Is necessary for. If the material temperature at this stage is less than 280 ° C., the surface quality may be deteriorated and serious edge cracking may occur. On the other hand, if it exceeds 450 ° C., the recrystallization progresses quickly, and the required texture / Since the ear ratio cannot be obtained, it is necessary to be within the range of 450 to 280 ° C. Even within this temperature range, it is particularly preferable to control the temperature within the range of 290 to 390 ° C.

(5) 熱間圧延上がりの材料温度を280〜350℃の範囲内とする:
熱間圧延の終了温度が280℃未満では、充分な再結晶が得られ難く、これをそのまま焼鈍せずに最終板厚まで冷間圧延した場合はDI缶の耳が高くなり、成形性の劣化を招く。一方熱間圧延終了温度が350℃を越える場合、材料は完全に再結晶するが、表面品質が低下してしまうおそれがある。そこで熱間圧延の終了温度は280〜350℃の範囲内とした。なおこの範囲内でも特に290〜340℃が好ましい。
(5) The material temperature after hot rolling is in the range of 280 to 350 ° C .:
If the end temperature of hot rolling is less than 280 ° C., it is difficult to obtain sufficient recrystallization, and when this is cold-rolled to the final thickness without being annealed as it is, the ears of the DI can become high and formability deteriorates. Invite. On the other hand, when the hot rolling finish temperature exceeds 350 ° C., the material is completely recrystallized, but the surface quality may be deteriorated. Therefore, the end temperature of hot rolling is set within a range of 280 to 350 ° C. Even within this range, 290 to 340 ° C. is particularly preferable.

(6) 熱間圧延上がり板厚を1.5〜2.8mmの範囲内とする:
熱間圧延上がり板厚が1.5mm未満では、熱間圧延機での板厚精度の制御が困難となる。一方熱間圧延上がり板厚が2.8mmを越えれば、その後の冷間圧延率が高くなり過ぎて、高強度は容易に得られるが、耳率が大きくなってしまう。そこで熱間圧延上がり板厚は1.5〜2.8mmの範囲内とした。
(6) The hot-rolled finished sheet thickness is set in the range of 1.5 to 2.8 mm:
If the thickness after hot rolling is less than 1.5 mm, it is difficult to control the thickness accuracy with a hot rolling mill. On the other hand, if the plate thickness after hot rolling exceeds 2.8 mm, the subsequent cold rolling rate becomes too high, and high strength can be easily obtained, but the ear rate becomes large. Therefore, the hot rolled plate thickness is set in the range of 1.5 to 2.8 mm.

(7) 熱間圧延上がりの280〜350℃の範囲内の温度から100℃以下の温度までの平均冷却速度を100℃/時間以下に制御する:
熱間圧延上がり材(コイル)の280〜350℃の範囲内の温度から100℃以下の温度までの冷却過程は、再結晶の進行過程であり、また立方体(Cube)方位結晶粒が成長する過程でもある。この過程での冷却速度が100℃/時間を越えれば、再結晶が充分に進行できず、Cube方位結晶粒の生成が不充分となる。その結果最終板の耳率を充分に低くすることができず、また成形性も低下するおそれがある。そこで熱間圧延上がりの280〜350℃の範囲内の温度から100℃以下の温度までの冷却過程の平均冷却速度を100℃/時間以下とした。
(7) The average cooling rate from the temperature in the range of 280 to 350 ° C. after the hot rolling to the temperature of 100 ° C. or less is controlled to 100 ° C./hour or less:
The process of cooling the hot rolled material (coil) from a temperature in the range of 280 to 350 ° C. to a temperature of 100 ° C. or less is a process of recrystallization and a process of growing cubic (Cube) oriented grains. But there is. If the cooling rate in this process exceeds 100 ° C./hour, recrystallization cannot proceed sufficiently and the formation of Cube-oriented crystal grains becomes insufficient. As a result, the ear rate of the final plate cannot be sufficiently lowered, and the moldability may be lowered. Therefore, the average cooling rate in the cooling process from the temperature in the range of 280 to 350 ° C. after the hot rolling to the temperature of 100 ° C. or less was set to 100 ° C./hour or less.

以上のような(1)〜(7)の条件に従って熱間圧延を行なってコイルに巻上げ、さらに100℃以下の温度まで冷却した熱延板は、自己焼鈍によりほぼ完全な再結晶状態の組織となり、このようなほぼ完全再結晶状態の組織の熱間圧延板に対しては、その後に改めて再結晶のための中間焼鈍を施すことなく、低コストで高品質の最終板に仕上げることができる。   The hot-rolled sheet that has been hot-rolled in accordance with the above conditions (1) to (7), wound on a coil, and further cooled to a temperature of 100 ° C. or lower becomes a substantially complete recrystallized structure by self-annealing. Such a hot-rolled sheet having a substantially completely recrystallized structure can be finished into a high-quality final sheet at a low cost without subsequent intermediate annealing for recrystallization.

さらに、上記の(1)〜(7)の手段により得られた熱間圧延板の特性としては、耐力が120MPa以下である必要がある。熱間圧延板における耐力が120MPaを越えている場合は、最終板において強度が高くなり過ぎ、しごき性の低下を招くおそれがある。なおここで、ほぼ完全な再結晶組織の材料では、未再結晶組織の材料よりも耐力が低下するから、耐力値によってほぼ完全な再結晶組織となっているか否かを評価することができる。   Furthermore, as a characteristic of the hot-rolled sheet obtained by the means (1) to (7), the proof stress needs to be 120 MPa or less. When the proof stress in the hot-rolled sheet exceeds 120 MPa, the strength is excessively increased in the final sheet, and there is a possibility that the ironing performance is lowered. Here, since the proof stress is lower in the material of the almost complete recrystallized structure than the material of the non-recrystallized structure, it is possible to evaluate whether or not the almost complete recrystallized structure is obtained from the proof stress value.

熱間圧延板に対しては、その後に改めて再結晶のための中間焼鈍を施すことなく、最終板厚まで冷間圧延を行なう。ここで、冷間圧延率は65%以上とする必要がある。すなわち、中間焼鈍を施さずに最終冷間圧延率を65%未満にするためには、最終製品の板厚(通常0.35〜0.25mm)を考慮すれば、熱延上がり板を1mm未満にする必要があるが、そのようなことは実操業上極めて困難であるばかりでなく、材料の冷間加工硬化による強化が少なくなり、充分な材料強度が得られなくなるおそれがあり、さらには耳率の制御にも不利となる。したがって冷間圧延率は65%以上とした。   The hot-rolled sheet is then cold-rolled to the final sheet thickness without any subsequent intermediate annealing for recrystallization. Here, the cold rolling rate needs to be 65% or more. That is, in order to make the final cold rolling reduction less than 65% without performing the intermediate annealing, if considering the thickness of the final product (usually 0.35 to 0.25 mm), the hot rolled sheet is less than 1 mm. However, this is not only extremely difficult in actual operation, but there is a risk that the material will not be strengthened by cold work hardening, and sufficient material strength may not be obtained. It is also disadvantageous for rate control. Therefore, the cold rolling rate is set to 65% or more.

表1に示す合金記号A〜Eの各合金について、常法に従ってDC鋳造法により鋳造した。得られた鋳塊に対し、均質化処理を施し、熱間圧延を行なってコイルに巻取り、100℃以下に冷却し、さらに冷間圧延を行なって最終板厚とし、最終板(製品板)とした。これらのプロセスの具体的な条件について、表2、表3の製造番号1〜5に示す。   Each alloy of alloy symbols A to E shown in Table 1 was cast by a DC casting method according to a conventional method. The resulting ingot is homogenized, hot-rolled and wound into a coil, cooled to 100 ° C. or lower, further cold-rolled to the final thickness, and the final plate (product plate) It was. Specific conditions of these processes are shown in production numbers 1 to 5 in Tables 2 and 3.

なお熱間圧延においては、仕上圧延機としてリバーシング・ミルを用いて、板厚50mm以下の段階での圧延はすべてリバーシング・ミルによるものとした。   In hot rolling, a reversing mill was used as a finishing mill, and all rolling at the stage where the plate thickness was 50 mm or less was performed by the reversing mill.

なおまた熱間圧延中のロール温度および熱間圧延中の板(長手方向、幅方向)の温度追跡は、非接触の放射温度計を用いて計測した。また熱間圧延上りの温度は巻き取ったコイル側面を接触温度計で計測した。   The roll temperature during hot rolling and the temperature tracking of the plate (longitudinal direction and width direction) during hot rolling were measured using a non-contact radiation thermometer. The temperature after hot rolling was measured with a contact thermometer on the wound coil side surface.

さらに、熱間圧延中に温度調整のために噴射するクーラントの量は1000リットル/分から10000リットル/分の範囲で行ない、クーラント温度を55〜65℃の範囲内に制御した。   Further, the amount of coolant sprayed for temperature adjustment during hot rolling was in the range of 1000 liters / minute to 10000 liters / minute, and the coolant temperature was controlled within the range of 55 to 65 ° C.

ここで、熱間圧延終了後100℃以下の温度まで冷却した段階で、その熱間圧延板について、強度(圧延方向の引張強さおよび耐力)を調べたので、その結果を表3中に示す。   Here, the strength (tensile strength and proof stress in the rolling direction) of the hot-rolled sheet was examined at the stage where it was cooled to a temperature of 100 ° C. or less after the hot rolling was completed, and the results are shown in Table 3. .

また前述のようにして得られた最終板(缶胴用の薄板;元板)について、圧延方向と平行に採取した引張試験片を用いて元板の引張強度(TS)、耐力(YS)、伸び(EL)を測定し、また塗装焼付(ベーク)を想定した200℃×20分の熱処理を行なった後の引張強度(TS)、耐力(YS)、伸び(EL)を測定した。   In addition, with respect to the final plate (thin plate for can body; base plate) obtained as described above, the tensile strength (TS), proof stress (YS) of the base plate using tensile test pieces taken in parallel with the rolling direction, The elongation (EL) was measured, and the tensile strength (TS), proof stress (YS), and elongation (EL) after heat treatment at 200 ° C. for 20 minutes assuming coating baking (baking) were measured.

さらに元板の耳率を調べるとともに、その元板を用いたDI缶成形性を調べた。DI缶成形性としては、しごき性の指標として「しごき成功率」を調べるとともに、フランジ成形性(口拡げ性)の指標として「口拡げ率」を調べ、さらにDI缶耐圧性を調べた。これらの結果を表4に示す。   Further, the ear rate of the base plate was examined, and the DI can moldability using the base plate was examined. As DI can moldability, “successful success rate” was examined as an index of ironability, “mouth spread rate” was examined as an index of flange formability (mouth spreadability), and DI can pressure resistance was further investigated. These results are shown in Table 4.

ここで耳率は、最終板について、コイルの長手方向に等間隔に7点、幅方向に等間隔に5点、合計35点について絞り試験を行ない、耳率の最大値と最小値を求めた。なお圧延方向に対して45°方向の耳の値を“+”、圧延方向に対し90°方向に生じる耳の値を“−”と規定した。絞り試験条件は、ポンチ径φ32mm、ブランク径φ56mmとした。またしごき性の指標としての「しごき成功率」は、DI缶成形において第2のダイスを抜き、第1と第3のダイスのしごき率を55%と苛酷にしたときに、連続100缶の製缶で缶切れが発生しない缶の比率を調べた。さらにフランジ成形性(口拡げ性)の指標としての「口拡げ率」は、4段ネッキング後のDI缶について、トリミング、洗浄、ベークを行ない、そのDI缶の上部開口部分に、15°の勾配を有するポンチを、材料に割れが生じるまで押し込む試験を行ない、割れが生じるまでの口拡げ率を以下の式で求めた。
口拡げ率=[R1−R0]×100%
但し、R0:4段ネッキング後のDI缶開口部の半径(29mm)
R1:割れが生じる限界まで口拡げしたときの開口部の半径
Here, with respect to the final plate, the final plate was subjected to a drawing test on a total of 35 points, 7 points at equal intervals in the longitudinal direction of the coil and 5 points at equal intervals in the width direction, and the maximum and minimum values of the ear rate were obtained. . The ear value in the 45 ° direction relative to the rolling direction was defined as “+”, and the ear value generated in the 90 ° direction relative to the rolling direction was defined as “−”. The drawing test conditions were a punch diameter of 32 mm and a blank diameter of 56 mm. In addition, the “successful ironing rate” as an index of ironing performance is 100 consecutive cans when the second die is removed in the DI can molding and the ironing rate of the first and third dies is set to 55%. The ratio of cans that could not be cut out was examined. Furthermore, the “opening ratio” as an index of flange formability (spreading ability) is a 15 ° gradient at the upper opening of the DI can after trimming, washing, and baking the DI can after four-stage necking. A test was conducted in which a punch having a crack was pushed in until the material was cracked, and the spread rate until the crack was generated was determined by the following equation.
Spreading rate = [R1-R0] x 100%
However, R0: Radius of DI can opening after 4 steps necking (29mm)
R1: Radius of the opening when the mouth is expanded to the limit where cracking occurs

さらにDI缶耐圧性は、缶の内圧をボトムが変形するまで上昇させる試験を行ない、変形するまでの最大圧力を求めた。   Further, the DI can pressure resistance was tested by increasing the internal pressure of the can until the bottom deformed, and the maximum pressure until deformation was determined.

Figure 2005076041
Figure 2005076041

Figure 2005076041
Figure 2005076041

Figure 2005076041
Figure 2005076041

Figure 2005076041
Figure 2005076041

表2〜表4において、製造番号1〜3は、いずれもこの発明で規定する成分組成範囲内の合金を用いて、この発明で規定する製造方法に従って製造した例であり、これらの本発明例では、表4に示す通り、最大の耳率が4%以下で、またその変動幅は2.6%以下と耳率が均一に低く、またベーク後の強度も充分に高く、しかもDI成形性、特にしごき性に優れていることが明らかである。   In Tables 2 to 4, production numbers 1 to 3 are all examples produced according to the production method defined in the present invention using alloys within the component composition range defined in the present invention. Then, as shown in Table 4, the maximum ear rate is 4% or less, the fluctuation range is 2.6% or less, the ear rate is uniformly low, the strength after baking is sufficiently high, and the DI moldability It is clear that the ironing property is particularly excellent.

これに対し製造番号4は、この発明で規定する成分範囲内の合金を用いたが、製造方法が本発明の範囲から外れた比較例である。すなわち、
(1)50mmから熱延上りまでの最高材料温度が466℃と高く、この発明で規定する280〜450℃の範囲を外れた。
(2)材料の長手方向の最大温度差が105℃と高く、この発明に範囲を外れた。
(3)圧延ロールの幅方向の最大温度差が118℃と高く、この発明の範囲を外れた。
On the other hand, although the production number 4 used the alloy within the component range prescribed | regulated by this invention, it is a comparative example from which the manufacturing method removed from the range of this invention. That is,
(1) The maximum material temperature from 50 mm to hot rolling was as high as 466 ° C., which was outside the range of 280 to 450 ° C. defined in the present invention.
(2) The maximum temperature difference in the longitudinal direction of the material was as high as 105 ° C., which was out of the scope of the present invention.
(3) The maximum temperature difference in the width direction of the rolling roll was as high as 118 ° C., which was outside the scope of the present invention.

このような製造番号4の比較例では、耳率の変動が大きく、またしごき性も劣っていた。   In the comparative example with such production number 4, the fluctuation of the ear rate was large and the ironing property was also inferior.

さらに製造番号5はこの発明の製造方法に従ったが、合金成分(Fe)の範囲がこの発明の範囲から外れた比較例である。この比較例では、耳率の最大値が高く、またしごき性と口拡げ性が劣っていた。   Furthermore, although production number 5 followed the manufacturing method of this invention, it is a comparative example from which the range of the alloy component (Fe) deviated from the range of this invention. In this comparative example, the maximum value of the ear rate was high, and the ironing property and the mouth spreading property were inferior.

この発明によれば、DI缶胴用硬質板として、バランスの優れた板、すなわち塗装焼付後の強度として高強度を有すると同時に安定して低耳率で、しかもしごき性およびフランジ成形性のいずれもが優れた板を、熱間圧延後や冷間圧延中途における中間焼鈍を省略した低コストのプロセスで得ることができる。   According to the present invention, as a hard plate for a DI can body, a plate having an excellent balance, that is, having a high strength as a strength after being baked on a coating, and at the same time, having a stable and low ear ratio, and having both ironing and flange formability. An excellent plate can be obtained by a low-cost process that eliminates intermediate annealing after hot rolling or during cold rolling.

Claims (2)

Mg0.5〜2.0%(mass%、以下同じ)、Mn0.5〜2.0%、Fe0.1〜0.7%、Si0.05〜0.5%を含有し、残部がAlおよび不可避的不純物よりなるアルミニウム合金を素材とし、その素材アルミニウム合金を鋳造した後、520〜630℃の範囲内の温度で1時間以上保持する均質化処理を行ない、次いで熱間圧延を行なうにあたり、
(1) 熱間圧延開始温度を350〜590℃の範囲内とし、
(2) 熱間圧延中における圧延板との接触部分の圧延ロールの表面温度について、板幅方向中央と端部との温度差を100℃以下に保持し、
(3) 熱間圧延中における各パスにおいて圧延方向および圧延方向に対し直交する方向の材料の温度変動幅をそれぞれ100℃以下に制御し、
(4) 熱間圧延中における板厚50mmから上がり板厚までの段階の圧延板材料温度を450〜280℃の範囲内に制御し、
(5) 熱間圧延上がりの材料温度を280〜350℃の範囲内とし、
(6) 熱間圧延上がり板厚を1.5〜2.8mmの範囲内とし、
(7) 熱間圧延上がりの280〜350℃の範囲内の温度から100℃までの平均冷却速度を100℃/時間以下に制御し、
以上の(1)〜(7)によって熱間圧延を行なって室温まで冷却し、耐力が120MPa以下の熱間圧延板を得、
さらに中間焼鈍を施すことなく、65%以上の圧延率で冷間圧延を施すことを特徴とする、缶胴用アルミニウム合金硬質板の製造方法。
Mg 0.5-2.0% (mass%, the same shall apply hereinafter), Mn 0.5-2.0%, Fe 0.1-0.7%, Si 0.05-0.5%, the balance being Al and An aluminum alloy composed of unavoidable impurities is used as a raw material, and after casting the raw material aluminum alloy, a homogenization treatment is performed for 1 hour or more at a temperature within a range of 520 to 630 ° C., and then hot rolling is performed.
(1) The hot rolling start temperature is in the range of 350 to 590 ° C,
(2) About the surface temperature of the rolling roll at the contact portion with the rolled sheet during hot rolling, the temperature difference between the center in the sheet width direction and the end is maintained at 100 ° C. or less,
(3) The temperature fluctuation width of the material in the direction orthogonal to the rolling direction and the rolling direction in each pass during hot rolling is controlled to 100 ° C. or less,
(4) The temperature of the rolled sheet material at the stage from the sheet thickness of 50 mm to the increased sheet thickness during hot rolling is controlled within the range of 450 to 280 ° C.
(5) The material temperature after hot rolling is in the range of 280 to 350 ° C.,
(6) The hot-rolled finished sheet thickness is in the range of 1.5 to 2.8 mm,
(7) The average cooling rate from the temperature within the range of 280 to 350 ° C. after the hot rolling to 100 ° C. is controlled to 100 ° C./hour or less,
Performing hot rolling according to the above (1) to (7) and cooling to room temperature, obtaining a hot rolled sheet having a proof stress of 120 MPa or less,
Furthermore, cold rolling is performed at a rolling rate of 65% or more without performing intermediate annealing, a method for producing an aluminum alloy hard plate for a can body.
請求項1に記載の缶胴用アルミニウム合金硬質板の製造方法において、
素材アルミニウム合金として、前記各成分のほか、さらにCu0.05〜0.5%、Cr0.05〜0.3%、Zn0.05〜0.5%、Ti0.005〜0.20%のうちの1種または2種以上を含有するものを用いる、缶胴用アルミニウム合金硬質板の製造方法。
In the manufacturing method of the aluminum alloy hard plate for can bodies according to claim 1,
As a raw material aluminum alloy, in addition to the above components, Cu 0.05 to 0.5%, Cr 0.05 to 0.3%, Zn 0.05 to 0.5%, Ti 0.005 to 0.20% The manufacturing method of the aluminum alloy hard board for can bodies using what contains 1 type, or 2 or more types.
JP2003304245A 2003-08-28 2003-08-28 Method for manufacturing hard aluminum alloy sheet for can body Pending JP2005076041A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003304245A JP2005076041A (en) 2003-08-28 2003-08-28 Method for manufacturing hard aluminum alloy sheet for can body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003304245A JP2005076041A (en) 2003-08-28 2003-08-28 Method for manufacturing hard aluminum alloy sheet for can body

Publications (1)

Publication Number Publication Date
JP2005076041A true JP2005076041A (en) 2005-03-24

Family

ID=34407985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003304245A Pending JP2005076041A (en) 2003-08-28 2003-08-28 Method for manufacturing hard aluminum alloy sheet for can body

Country Status (1)

Country Link
JP (1) JP2005076041A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007015560A1 (en) * 2005-08-04 2007-02-08 Universal Can Corporation Aluminum alloy sheet for can body, di can, and method for manufacture of the di can
JP2007197816A (en) * 2005-12-28 2007-08-09 Mitsubishi Alum Co Ltd Aluminum alloy sheet for can body having excellent resistance to circulation pinhole
JP2007197815A (en) * 2005-12-28 2007-08-09 Mitsubishi Alum Co Ltd Aluminum alloy sheet for can body having excellent resistance to circulation pinhole
JP2007197817A (en) * 2005-12-28 2007-08-09 Mitsubishi Alum Co Ltd Aluminum alloy sheet for can body having excellent resistance to circulation pinhole
JP2011202273A (en) * 2010-03-02 2011-10-13 Kobe Steel Ltd Aluminum alloy cold-rolled sheet for bottle can
WO2012043582A1 (en) * 2010-09-30 2012-04-05 株式会社神戸製鋼所 Cold-rolled aluminum alloy sheet for bottle can
CN115323141A (en) * 2022-08-23 2022-11-11 浙江永杰铝业有限公司 Preparation method of battery aluminum-coated plate and battery aluminum-coated plate

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62230411A (en) * 1986-03-31 1987-10-09 Furukawa Alum Co Ltd Method for controlling sectional shape of rolling material
JPH04313403A (en) * 1991-04-11 1992-11-05 Furukawa Alum Co Ltd Manufacture of aluminum alloy plate for forming
JPH05311362A (en) * 1992-05-12 1993-11-22 Nippon Light Metal Co Ltd Method and device for uniformly cooling high-temperature aluminum coil
JPH083700A (en) * 1994-06-21 1996-01-09 Furukawa Electric Co Ltd:The Production of aluminum or aluminum alloy foil for cathode of electrolytic capacitor
JPH11256290A (en) * 1998-03-06 1999-09-21 Sky Alum Co Ltd Manufacture of aluminum alloy sheet for can body
JPH11254014A (en) * 1998-03-11 1999-09-21 Furukawa Electric Co Ltd:The Method and device for controlling sheet crown
JP2000096198A (en) * 1998-09-28 2000-04-04 Furukawa Electric Co Ltd:The Production of aluminum alloy sheet for can barrel
JP2000248326A (en) * 1999-03-03 2000-09-12 Sumitomo Light Metal Ind Ltd High formability aluminum alloy sheet excellent in recyclability, and its manufacture
JP2001262261A (en) * 2000-03-22 2001-09-26 Furukawa Electric Co Ltd:The Aluminum alloy sheet for can barrel excellent in can bottom formability and its producing method
JP2003105475A (en) * 2001-09-26 2003-04-09 Sky Alum Co Ltd Aluminum alloy can cap material which is used for noncarbonated drink, food canning and sundry goods for daily use and is excellent in moldability, and manufacturing method therefor
JP2004263253A (en) * 2003-03-03 2004-09-24 Furukawa Sky Kk Aluminum alloy hard sheet for can barrel, and production method therefor

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62230411A (en) * 1986-03-31 1987-10-09 Furukawa Alum Co Ltd Method for controlling sectional shape of rolling material
JPH04313403A (en) * 1991-04-11 1992-11-05 Furukawa Alum Co Ltd Manufacture of aluminum alloy plate for forming
JPH05311362A (en) * 1992-05-12 1993-11-22 Nippon Light Metal Co Ltd Method and device for uniformly cooling high-temperature aluminum coil
JPH083700A (en) * 1994-06-21 1996-01-09 Furukawa Electric Co Ltd:The Production of aluminum or aluminum alloy foil for cathode of electrolytic capacitor
JPH11256290A (en) * 1998-03-06 1999-09-21 Sky Alum Co Ltd Manufacture of aluminum alloy sheet for can body
JPH11254014A (en) * 1998-03-11 1999-09-21 Furukawa Electric Co Ltd:The Method and device for controlling sheet crown
JP2000096198A (en) * 1998-09-28 2000-04-04 Furukawa Electric Co Ltd:The Production of aluminum alloy sheet for can barrel
JP2000248326A (en) * 1999-03-03 2000-09-12 Sumitomo Light Metal Ind Ltd High formability aluminum alloy sheet excellent in recyclability, and its manufacture
JP2001262261A (en) * 2000-03-22 2001-09-26 Furukawa Electric Co Ltd:The Aluminum alloy sheet for can barrel excellent in can bottom formability and its producing method
JP2003105475A (en) * 2001-09-26 2003-04-09 Sky Alum Co Ltd Aluminum alloy can cap material which is used for noncarbonated drink, food canning and sundry goods for daily use and is excellent in moldability, and manufacturing method therefor
JP2004263253A (en) * 2003-03-03 2004-09-24 Furukawa Sky Kk Aluminum alloy hard sheet for can barrel, and production method therefor

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007015560A1 (en) * 2005-08-04 2007-02-08 Universal Can Corporation Aluminum alloy sheet for can body, di can, and method for manufacture of the di can
JP2007197816A (en) * 2005-12-28 2007-08-09 Mitsubishi Alum Co Ltd Aluminum alloy sheet for can body having excellent resistance to circulation pinhole
JP2007197815A (en) * 2005-12-28 2007-08-09 Mitsubishi Alum Co Ltd Aluminum alloy sheet for can body having excellent resistance to circulation pinhole
JP2007197817A (en) * 2005-12-28 2007-08-09 Mitsubishi Alum Co Ltd Aluminum alloy sheet for can body having excellent resistance to circulation pinhole
JP2011202273A (en) * 2010-03-02 2011-10-13 Kobe Steel Ltd Aluminum alloy cold-rolled sheet for bottle can
WO2012043582A1 (en) * 2010-09-30 2012-04-05 株式会社神戸製鋼所 Cold-rolled aluminum alloy sheet for bottle can
JP2012092431A (en) * 2010-09-30 2012-05-17 Kobe Steel Ltd Aluminum alloy cold-rolled sheet for bottle can
CN103140593A (en) * 2010-09-30 2013-06-05 株式会社神户制钢所 Cold-rolled aluminum alloy sheet for bottle can
AU2011309067B2 (en) * 2010-09-30 2015-08-20 Kabushiki Kaisha Kobe Seiko Sho Cold-rolled aluminum alloy sheet for bottle can
CN115323141A (en) * 2022-08-23 2022-11-11 浙江永杰铝业有限公司 Preparation method of battery aluminum-coated plate and battery aluminum-coated plate
CN115323141B (en) * 2022-08-23 2023-08-22 浙江永杰铝业有限公司 Preparation method of battery pack aluminum plate and battery pack aluminum plate

Similar Documents

Publication Publication Date Title
JPH0617208A (en) Manufacture of aluminum alloy for forming excellent in shape freezability and coating/baking hardenability
JPWO2015140833A1 (en) Aluminum alloy plate for DR can body and manufacturing method thereof
JP4257135B2 (en) Aluminum alloy hard plate for can body
JP3600022B2 (en) Manufacturing method of aluminum base alloy sheet for deep drawing
JP2006283113A (en) Aluminum alloy sheet for drink can barrel, and method for producing the same
JP2005076041A (en) Method for manufacturing hard aluminum alloy sheet for can body
JPS626740B2 (en)
JP2006037148A (en) Aluminum alloy hard sheet for can barrel and its production method
JP3871462B2 (en) Method for producing aluminum alloy plate for can body
JP3644818B2 (en) Method for producing aluminum alloy plate for can body
JP3871473B2 (en) Method for producing aluminum alloy plate for can body
JP3644819B2 (en) Method for producing aluminum alloy plate for can body
JPH1161365A (en) Production of aluminum alloy sheet for deep drawing
JP3713614B2 (en) Method for producing aluminum alloy plate for can body
JPH0860283A (en) Aluminum alloy sheet for di can body and its production
JPH0222446A (en) Manufacture of high formability aluminum alloy hard plate
JP3587993B2 (en) Manufacturing method of aluminum alloy sheet for deep drawing
JP2956038B2 (en) Al alloy plate for drawing cups excellent in suppressing distortion pattern and method for producing the same
JP4034904B2 (en) Hot rolled plate for aluminum can body and can body plate using the same
JP3600021B2 (en) Manufacturing method of aluminum base alloy sheet for deep drawing
JPH06316749A (en) Production of al-mn-based aluminum alloy sheet for packaging container
JPH0813109A (en) Production of aluminum alloy sheet for forming
JPS58126952A (en) Baking hardening type hard aluminum alloy plate for can body and its manufacture
JPH0617205A (en) Manufacture of aluminum alloy sheet for di can
JPH06212370A (en) Production of aluminum alloy sheet for forming low in earing ratio

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060807

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070918

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080115