JP2956038B2 - Al alloy plate for drawing cups excellent in suppressing distortion pattern and method for producing the same - Google Patents

Al alloy plate for drawing cups excellent in suppressing distortion pattern and method for producing the same

Info

Publication number
JP2956038B2
JP2956038B2 JP4206007A JP20600792A JP2956038B2 JP 2956038 B2 JP2956038 B2 JP 2956038B2 JP 4206007 A JP4206007 A JP 4206007A JP 20600792 A JP20600792 A JP 20600792A JP 2956038 B2 JP2956038 B2 JP 2956038B2
Authority
JP
Japan
Prior art keywords
alloy plate
strength
strain pattern
grain size
crystal grain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4206007A
Other languages
Japanese (ja)
Other versions
JPH0625787A (en
Inventor
岡本文人
隆 稲葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP4206007A priority Critical patent/JP2956038B2/en
Publication of JPH0625787A publication Critical patent/JPH0625787A/en
Application granted granted Critical
Publication of JP2956038B2 publication Critical patent/JP2956038B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、食缶、飲料缶、その他
器物等の絞り成形を行うためのAl合金板並びにその製
造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an Al alloy plate for drawing a food can, a beverage can, and other objects, and a method for producing the same.

【0002】[0002]

【従来の技術】Al合金板を用いて絞り成形を行う場
合、絞りカップ側壁に、ストレッチャー・ストレインマ
ーク(SSマーク)或いはリューダースマークと呼ばれる
ひずみ模様を生じる場合がある。このひずみ模様は、成
形時の変形応力状態に起因しており、側壁の周方向に対
する不均一変形により生じるものである。このようにし
て生じたひずみ模様は、カップ側壁の外観を損なうばか
りでなく、板表面に塗膜がある場合には塗膜の切れ、剥
離等の塗膜欠陥を生じ、程度が大きい場合には材料の割
れに至る場合がある。
2. Description of the Related Art When drawing is performed using an Al alloy plate, a strain pattern called a stretcher strain mark (SS mark) or a Luders mark may be formed on the side wall of the drawing cup. This distortion pattern is caused by the state of deformation stress at the time of molding, and is caused by uneven deformation in the circumferential direction of the side wall. The strain pattern generated in this way not only impairs the appearance of the cup side wall, but when there is a coating on the plate surface, the coating film is cut off, causing a coating defect such as peeling, and when the degree is large, May lead to cracking of the material.

【0003】従来より、食缶、飲料缶、その他器物等の
絞り成形においては、5052等の合金に、特開昭61
−288056号、特公昭61−7465号に示されて
いるように、熱間圧延−(冷間圧延)−中間焼鈍−最終冷
間圧延からなる製造方法にて製造された板が用いられて
いる。
[0003] Conventionally, in the drawing of food cans, beverage cans, and other objects, alloys such as 5052 are disclosed in
As shown in JP-A-288056 and JP-B-61-7465, a plate manufactured by a manufacturing method including hot rolling, (cold rolling), intermediate annealing, and final cold rolling is used. .

【0004】[0004]

【発明が解決しようとする課題】しかし、従来の505
2合金では絞りカップ側壁にひずみ模様が生じる問題が
ある。勿論、強度を低下することにより、この問題を回
避できるが、これでは薄肉化の要望には応えられない。
また、飲料缶に使用されている3004合金の採用も考
えられるが、同じく高強度ではひずみ模様が生じ、ま
た、強度を低下させる場合、高温処理を必要とし、実生
産の安定性に欠ける。更に3004合金ではFe、Cuを
含有(Fe:0.4%、Cu:0.2%)しているので、耐食
性に問題がある。
However, the conventional 505
The alloy 2 has a problem that a strain pattern is formed on the side wall of the drawing cup. Of course, this problem can be avoided by lowering the strength, but this does not meet the demand for thinning.
Although the use of 3004 alloy used for beverage cans is also conceivable, a strain pattern is generated at the same high strength, and when the strength is reduced, high-temperature treatment is required, and the stability of actual production is lacking. Further, since the 3004 alloy contains Fe and Cu (Fe: 0.4%, Cu: 0.2%), there is a problem in corrosion resistance.

【0005】したがって、従来の材料及び製造方法では
ひずみ模様の発生を抑制するためには不十分である。こ
の観点から、成形時の均一変形をし易く、成形性に好適
な強度、更に耐蝕性と生産性を考慮した材料の開発が必
要となっている。
[0005] Therefore, the conventional materials and manufacturing methods are insufficient for suppressing the generation of strain patterns. From this viewpoint, it is necessary to develop a material which is easily deformable at the time of molding, has a strength suitable for moldability, and further considers corrosion resistance and productivity.

【0006】本発明は、上記従来技術の問題点を解決
し、絞り成形によるひずみ模様の抑制に優れた絞りカッ
プ用Al合金板及びその製造方法を提供することを目的
とするものである。
An object of the present invention is to solve the above-mentioned problems of the prior art, and to provide an Al alloy plate for a draw cup which is excellent in suppressing a strain pattern by drawing and a method for producing the same.

【0007】[0007]

【課題を解決するための手段】前記課題を解決するた
め、本発明者らは、現有材料を用いて熱処理によって強
度変化させた場合のひずみ模様の発生状態が異なること
に着目し、ひずみ模様の抑制に優れた絞りカップ用Al
合金板を開発すべく努めた。
Means for Solving the Problems In order to solve the above problems, the present inventors have focused on the fact that the state of occurrence of a strain pattern when the strength is changed by heat treatment using an existing material is different, and Al for squeeze cup with excellent suppression
We worked to develop an alloy plate.

【0008】一般にひずみ模様は材料組織において固溶
したMg原子による転位の固着が原因であると考えられ
ている。
It is generally considered that the strain pattern is caused by dislocation fixation by Mg atoms dissolved in the material structure.

【0009】そこで、まず、本発明者らは、Mg量の異
なる幾つかの材料について調査した。その結果、冷間圧
延後の材料に関しては、ひずみ模様はMg量に関係なく
発生し、ひずみ模様の程度はMg量と対応していないこ
とが判明した。また、冷間圧延後に仕上焼鈍を施したも
のに関しては、焼鈍温度が高く材料強度の低い材料の方
が比較的ひずみ模様が軽減されていることが判明した。
更に、同一成分の合金に関して結晶粒径を変化させてひ
ずみ模様に関して調査したところ、結晶粒径の小さい方
がひずみ模様の程度が軽微であり、特に結晶粒径が40
μm以下の材料に焼鈍を施したもののひずみ模様は非常
に軽微であった。更に化学成分による結晶粒径の調整を
試みたが、25μm以下になるとひずみ模様は軽減する
が、その場合には再結晶の核を形成する元素であるFe
の添加が必要となり、耐食性に劣る。また、耐食性につ
いてはCuの多量添加も好ましくない。上記耐食性の低
下を抑制し、微細結晶粒を得るにはMnの添加が有効で
あるが、Mnの添加量が過多になる場合、成形性が低下
する。
Therefore, the present inventors first investigated several materials having different Mg contents. As a result, with respect to the material after the cold rolling, it was found that the strain pattern occurred regardless of the Mg amount, and the degree of the strain pattern did not correspond to the Mg amount. In addition, it was found that, for those subjected to finish annealing after cold rolling, a material having a higher annealing temperature and a lower material strength has a relatively reduced strain pattern.
Furthermore, when the crystal grain size was changed for alloys of the same component and the strain pattern was examined, the smaller the crystal grain size was, the smaller the degree of the strain pattern was.
The strain pattern was very slight after annealing the material of μm or less. Attempts were made to adjust the crystal grain size by chemical components. When the grain size was reduced to 25 μm or less, the strain pattern was reduced. In that case, Fe, an element that forms the nucleus of recrystallization,
Is required, resulting in poor corrosion resistance. Also, with respect to corrosion resistance, addition of a large amount of Cu is not preferable. To suppress the decrease in the corrosion resistance and obtain fine crystal grains, the addition of Mn is effective. However, if the addition amount of Mn is excessive, the formability is reduced.

【0010】これらの結果から以下のことが判明した。 絞り成形におけるひずみ模様はMg原子による転位の
固着によるものでなく、成形時の絞りカップの周方向に
対する不均一変形によるものである。 ひずみ模様を抑制するためには結晶粒の微細化が必要
であるが、耐食性を含めて考えると、Fe、Cuの添加は
規制されるべきである。
From these results, the following has been found. The strain pattern in the draw forming is not due to dislocation fixation due to Mg atoms, but due to uneven deformation in the circumferential direction of the draw cup during forming. In order to suppress the distortion pattern, it is necessary to refine the crystal grains. However, considering corrosion resistance, the addition of Fe and Cu should be regulated.

【0011】そこで、かかる知見に基づき結晶粒を微細
化することによって、絞り成形時の周方向に対する不均
一変形の減少を図ることを目的とし、食缶、飲料缶等に
適用するための耐食性と必要強度(耐力にて200〜2
60N/mm2)を充分得られるように化学成分を調整する
と共に、中間焼鈍条件、冷間圧延条件、仕上焼鈍条件を
規制することにより、初期の目的が達成可能であること
を見い出した。
Therefore, the purpose of the present invention is to reduce the non-uniform deformation in the circumferential direction at the time of drawing by reducing the size of the crystal grains based on such knowledge, and to improve the corrosion resistance for application to food cans, beverage cans and the like. Required strength (200 to 2 in proof stress)
It has been found that the initial purpose can be achieved by adjusting the chemical composition so as to sufficiently obtain 60 N / mm 2 ) and regulating the intermediate annealing conditions, the cold rolling conditions, and the finish annealing conditions.

【0012】すなわち、本発明は、Mg:1.0〜2.
0%、Mn:0.80超〜1.50%、Fe:0.10
〜0.25%を必須成分として含み、必要に応じて更に
Cu≦0.07%、Si≦0.20%、Ti≦0.20
%の1種又は2種以上を含有し、残部がAl及び不可避
不純物からなり、且つ、耐力が200〜260N/mm
で、表面から観察される平均結晶粒径が25〜40μ
mであることを特徴とする絞り成形によるひずみ模様の
抑制に優れた絞りカップ用Al合金板を要旨とするもの
である。
That is, the present invention relates to Mg: 1.0-2.
0%, Mn: more than 0.80 to 1.50%, Fe: 0.10
0.20.25% as an essential component, and if necessary, Cu ≦ 0.07%, Si ≦ 0.20%, Ti ≦ 0.20
% Of one or more kinds, the balance being Al and unavoidable impurities, and a proof stress of 200 to 260 N / mm.
2 , the average crystal grain size observed from the surface is 25 to 40 μm
The gist of the present invention is an Al alloy plate for a draw cup, which is excellent in suppressing a strain pattern due to draw forming, wherein the m is m.

【0013】また、その製造方法は、上記化学成分を有
するAl合金鋳塊を均質化熱処理した後、熱間圧延を施
し、圧延率60%以上で冷間圧延し、その後、中間焼鈍
として板温度で400〜500℃に10分以内保持する
条件の連続焼鈍を施し、更にその後、圧延率30〜70
%で冷間圧延した後、200〜260℃の温度で仕上げ
焼鈍を施して、耐力が200〜260N/mmで、
から観察される平均結晶粒径が25〜40μmのAl
合金板を得ることを特徴とするものである。
[0013] Further, the production method is such that an Al alloy ingot having the above-mentioned chemical components is subjected to a homogenizing heat treatment, then hot-rolled, cold-rolled at a rolling reduction of 60% or more, and then subjected to an intermediate annealing at a sheet temperature. At 400 to 500 ° C. for 10 minutes or less, and thereafter, a rolling reduction of 30 to 70 ° C.
% After cold rolling, it is subjected to finish annealing at a temperature of 200 to 260 ° C., in proof stress 200~260N / mm 2, Table
Al with an average crystal grain size of 25 to 40 μm observed from the surface
It is characterized by obtaining an alloy plate .

【0014】以下に本発明を更に詳細に説明する。Hereinafter, the present invention will be described in more detail.

【0015】[0015]

【作用】[Action]

【0016】まず、本発明におけるAl合金の化学成分
の限定理由について説明する。
First, the reasons for limiting the chemical components of the Al alloy in the present invention will be described.

【0017】Mg:Mgは強度を付与するために重要な元
素であり、本発明では必須成分とするものである。食
缶、飲料缶等に使用するためには、少なくとも1.0%
以上添加しないと十分な強度を得ることができない。し
かし、過多に添加すると強度が高くなり、変形力の増大
による不均一変形を招くため、添加量の上限は2.0%
である。したがって、Mg添加量は1.0〜2.0%の範
囲とする。
Mg: Mg is an important element for imparting strength, and is an essential component in the present invention. At least 1.0% for use in food cans, beverage cans, etc.
If not added, sufficient strength cannot be obtained. However, if added in excess, the strength increases and non-uniform deformation due to an increase in the deformation force is caused.
It is. Therefore, the amount of Mg added is set in the range of 1.0 to 2.0%.

【0018】Mn: Mnは強度に寄与し並びにひずみ模様の抑制に最も効果
を示す結晶粒の微細化に寄与する重要な元素であり、ま
た、結晶粒微細化と同様にひずみ模様の抑制に効果があ
る微細析出物の増加に寄与する。そこで、Mnも本発明
では必須成分とするものである。強度と結晶粒微細化の
効果が認められるには少なくとも0.80%を超える量
の添加をしなければならない。しかし、1.50%を超
えて過多に添加すると成形性の低下を招く。したがっ
て、Mn添加量は0.80超〜1.50%の範囲とす
る。
Mn: Mn is an important element that contributes to the strength and contributes to the refinement of crystal grains, which is most effective in suppressing the strain pattern, and also has the same effect as the refinement of the crystal grains in suppressing the strain pattern. Contributes to the increase of certain fine precipitates. Therefore, Mn is also an essential component in the present invention. An amount exceeding at least 0.80% for the effect of strength and grain refinement to be recognized
Must be added . However, excessive addition exceeding 1.50% causes a reduction in moldability. Therefore, the amount of added Mn is set to be in a range of more than 0.80 to 1.50%.

【0019】Fe:Feは再結晶の核を形成する元素であ
り、Feの添加は結晶粒を微細化させるの大きな効果を
示す。結晶粒微細化の効果が認められるには少なくとも
0.10%以上添加しなければならない。また、添加量
が多くなるに従い結晶粒は微細化されるものの、0.2
5%より多く添加すると耐食性の低下を招く。したがっ
て、Feの添加量は0.10〜0.25%の範囲とする。
Fe: Fe is an element forming a nucleus of recrystallization, and the addition of Fe has a great effect of making crystal grains fine. At least 0.10% must be added in order for the effect of grain refinement to be recognized. Further, as the amount of addition increases, the crystal grains become finer,
Addition of more than 5% causes a decrease in corrosion resistance. Therefore, the amount of Fe added is in the range of 0.10 to 0.25%.

【0020】本発明では、上記Mg及びMn、更にFeを
必須成分とするが、以下の元素の1種又は2種以上を必
要に応じて適量にて含有させることが可能である。
In the present invention, Mg, Mn, and Fe are essential components, but one or more of the following elements can be contained in an appropriate amount as needed.

【0021】Cu:Cuの添加は強度増加に大きな効果を
示すが、過多に添加すると耐食性の低下を招く。したが
って、Cuの添加量は0.07%以下とする。
Cu: The addition of Cu has a great effect on increasing the strength, but the excessive addition causes a decrease in corrosion resistance. Therefore, the added amount of Cu is set to 0.07% or less.

【0022】Si:Siの添加は析出物の生成に効果を示
すが、過多に添加すると巨大晶出物の生成及び晶出物の
生成の数が多くなり、成形性の低下を招く。したがっ
て、Siの添加量は0.20%以下とする。
Si: The addition of Si has an effect on the formation of precipitates. However, if it is added excessively, the number of giant crystallized substances and the number of crystallized substances increases, leading to a reduction in formability. Therefore, the addition amount of Si is set to 0.20% or less.

【0023】Ti:Tiは組織を安定化させるために有効
な元素であるものの、その添加量が多いと巨大晶出物を
生成して成形性を低下させる。したがって、Tiの添加
量は0.20%以下とする。
Ti: Ti is an element effective for stabilizing the structure, but when added in a large amount, giant crystals are formed to lower the formability. Therefore, the addition amount of Ti is set to 0.20% or less.

【0024】更に、本発明では、得られたAl合金板
表面から観察される平均結晶粒径を25〜40μmに規
制する。これは、絞り成形の際、結晶粒径が40μmよ
り大きいいと、周方向での不均一変形を起こし易く、ま
た25μmより小さい結晶粒径を得るにはFeの添加量
は0.25%以上にしなければならず、また中間焼鈍前
の冷間圧延率を大幅に増加しなければならないので、コ
ストアップ要因となる。
Further, in the present invention, the average crystal grain size observed from the surface of the obtained Al alloy plate is regulated to 25 to 40 μm. This is because if the crystal grain size is larger than 40 μm during drawing, uneven deformation in the circumferential direction is liable to occur. To obtain a crystal grain size smaller than 25 μm, the amount of Fe added must be 0.25% or more. And the cold rolling reduction before the intermediate annealing must be greatly increased, which is a factor of cost increase.

【0025】次に本発明の製造工程について説明する。Next, the manufacturing process of the present invention will be described.

【0026】上記化学成分を有するAl合金を溶解、鋳
造、均質化熱処理を行った後、熱間圧延が行われる。
After the Al alloy having the above chemical components is melted, cast and subjected to a homogenizing heat treatment, hot rolling is performed.

【0027】熱間圧延後、冷間圧延を行うが、本発明で
は、以下に示すような中間焼鈍を含む冷間圧延工程を行
うことによって、ひずみ模様の抑制に寄与する結晶粒径
の制御を行うことを特徴としている。
After hot rolling, cold rolling is performed. In the present invention, the control of the crystal grain size which contributes to the suppression of the strain pattern is performed by performing the cold rolling step including the following intermediate annealing. It is characterized by performing.

【0028】まず、中間焼鈍前の冷間圧延率は、60%
未満では中間焼鈍後の結晶粒が大きくなり、絞り成形に
おいて不均一変形を生じ易く、また、必要特性である成
形性に影響を及ぼすため、中間焼鈍前の冷間圧延率は6
0%以上とする。
First, the cold rolling reduction before the intermediate annealing is 60%.
If it is less than 1, the crystal grains after the intermediate annealing become large, and it is likely to cause non-uniform deformation in draw forming. Further, since the formability which is a necessary property is affected, the cold rolling reduction before the intermediate annealing is 6%.
0% or more.

【0029】次いで中間焼鈍を行うが、この焼鈍はCA
Lと呼ばれる連続焼鈍炉にて行われ、その条件は強度及
び成形性に大きな影響を及ぼす。すなわち、焼鈍中の板
の実体温度は再結晶及びMg、Cuの固溶量に影響を及ぼ
し、400℃未満では再結晶が完了せず、また500℃
を超えるとMg、Cuが固溶して強度が上昇するため変形
力が増大し、ひずみ模様に対して不利になる。更に再結
晶粒径が大きくなり、ひずみ模様抑制の効果が得られな
い。したがって、板温度の範囲は400〜500℃とす
る。また、保持時間は再結晶及びMg、Cuが固溶量に影
響を及ぼし、板温度によって異なるが、保持時間は10
分以内とする。なお、加熱冷却速度は100℃/min以
上であればよい。
Next, intermediate annealing is performed.
It is performed in a continuous annealing furnace called L, and the conditions have a great influence on strength and formability. That is, the actual temperature of the sheet during annealing affects the recrystallization and the solid solution amount of Mg and Cu. If the temperature is less than 400 ° C., the recrystallization is not completed.
If Mg exceeds Cu, Mg and Cu form a solid solution to increase the strength, so that the deformation force increases, which is disadvantageous for the strain pattern. Further, the recrystallized grain size becomes large, and the effect of suppressing the strain pattern cannot be obtained. Therefore, the range of the plate temperature is 400 to 500 ° C. The retention time affects the amount of solid solution of recrystallization and Mg and Cu, and varies depending on the plate temperature.
Within minutes. The heating / cooling rate may be 100 ° C./min or more.

【0030】中間焼鈍後の冷間圧延は、強度に大きく影
響する条件であり、圧延率が30%未満では充分な強度
を得ることができない。また、強度向上には圧延率増大
が有効なものの、圧延率が70%を超えると成形性の低
下、耳の発生が顕著になり、絞り成形後の歩留りが劣化
する。したがって、中間焼鈍後の冷間圧延率は30〜7
0%の範囲とする。
[0030] Cold rolling after intermediate annealing is a condition that greatly affects the strength. If the rolling reduction is less than 30%, sufficient strength cannot be obtained. Although an increase in the rolling ratio is effective for improving the strength, when the rolling ratio exceeds 70%, the formability is reduced and ears are remarkably generated, and the yield after drawing is deteriorated. Therefore, the cold rolling reduction after the intermediate annealing is 30 to 7
The range is 0%.

【0031】冷間圧延後に仕上焼鈍を施す。仕上焼鈍は
ひずみ模様を抑制する上で重要な役割を果たす熱処理で
ある。焼鈍温度が200℃以上になるとサブグレインが
生成され、冷間圧延によって結晶粒界に絡まっていた転
位の整理が生じ、転位密度が減少してくる。しかし、2
60℃より高くなると急速な強度低下を招き、実生産で
の安定性に欠ける。したがって、仕上焼鈍温度は200
〜260℃の範囲とする。
After the cold rolling, finish annealing is performed. Finish annealing is a heat treatment that plays an important role in suppressing strain patterns. When the annealing temperature is 200 ° C. or higher, sub-grains are generated, and the dislocations entangled in the crystal grain boundaries are arranged by cold rolling, and the dislocation density is reduced. However, 2
If the temperature is higher than 60 ° C., a rapid decrease in strength is caused, and the stability in actual production is lacking. Therefore, the finish annealing temperature is 200
~ 260 ° C.

【0032】これらの工程を経て得られた製品板の耐力
は200〜260N/mm2に規制する。これは、内容物
の種類、レトルト処理等により、内部圧力が変化するた
め、200N/mm2以下では変形を起こしてしまうため
である。また、260N/mm2以上になるとひずみ模様
の発生が顕著になる。
The proof stress of the product plate obtained through these steps is regulated to 200 to 260 N / mm 2 . This is because the internal pressure varies depending on the type of the contents, the retort treatment, and the like, and deformation occurs at 200 N / mm 2 or less. Further, when it is 260 N / mm 2 or more, generation of a distorted pattern becomes remarkable.

【0033】次に本発明の実施例を示す。Next, examples of the present invention will be described.

【0034】[0034]

【実施例1】Embodiment 1

【0035】表1Table 1

【表1】 に示す化学成分を有するAl合金の鋳塊に均質化熱処理
として590℃の温度で8時間保持し、その後、熱間圧
延にて板厚を2.0mmとした。
[Table 1] The aluminum alloy ingot having the chemical components shown in Table 1 was kept at a temperature of 590 ° C. for 8 hours as a homogenizing heat treatment, and thereafter, was hot-rolled to a thickness of 2.0 mm.

【0036】次いで、冷間圧延により各供試材に関して
0.55mmの板厚にした後、上記板厚に連続加熱焼鈍炉
において加熱冷却速度270℃/minで到達温度430
℃、保持時間0秒の熱処理を施し、更に冷間圧延により
板厚0.22mmとした。更に冷間圧延後、230℃×2h
rの仕上焼鈍を施した。また、これらの材料を食缶に適
用することを想定し、200℃×20minの焼き付け(ベ
ーキング)処理を施した。
Next, each specimen was cold-rolled to a sheet thickness of 0.55 mm, and the sheet thickness was increased to 430 ° C./min in a continuous heating annealing furnace at a heating / cooling rate of 270 ° C./min.
A heat treatment at 0 ° C. and a holding time of 0 seconds was performed, and the sheet thickness was reduced to 0.22 mm by cold rolling. After further cold rolling, 230 ℃ × 2h
The finish annealing of r was performed. In addition, assuming that these materials are applied to a food can, baking treatment was performed at 200 ° C. for 20 minutes.

【0037】製品板厚0.22mmの供試材のベーキング
処理後の材料特性及び製品の特性を調査した結果を表2
Table 2 shows the results of an examination of the material properties of the test material having a product plate thickness of 0.22 mm after the baking treatment and the characteristics of the product.

【表2】 に示す。[Table 2] Shown in

【0038】なお、カップ特性の試験方法は以下の通り
である。絞りカップ試験は、ブランク径127mmφ、ポ
ンチ径78mmφにて高さ26mmの絞りハットを作成し、
フランジ部の粗度(Rt値:ひずみ模様が顕著なものほど
Rt値が大)により評価した。更に、深絞りカップを作製
し、目視によりひずみ模様の発生状況を評価した。ま
た、限界絞り比(LDR:ブランク径/ポンチ径)に関し
ては、エリクセン試験機を用いて、33mmφの円筒ポン
チにてブランク径を変化させて求めた。
The test method for the cup characteristics is as follows. In the drawing cup test, a drawing hat with a height of 26 mm was created with a blank diameter of 127 mmφ and a punch diameter of 78 mmφ,
The evaluation was made based on the roughness of the flange portion (Rt value: the more remarkable the strain pattern, the larger the Rt value). Further, a deep drawing cup was prepared, and the occurrence of the strain pattern was visually evaluated. The limit drawing ratio (LDR: blank diameter / punch diameter) was determined by using an Erichsen tester and changing the blank diameter with a 33 mmφ cylindrical punch.

【0039】表2より以下の如く考察される。本発明例
であるNo.1は、適当な結晶粒径を示しており、ひずみ
模様も殆ど認められず良好であり、強度、成形性も適当
である。これに対して、比較例のNo.2、No.3、No.
7は、強度、成形性は適切なものの、結晶粒径が大きい
ため、ひずみ模様が顕著に認められる。また、比較例N
o.4〜No.5は過多のFe、Mn添加により析出物増大に
よる成形性の低下を招いている。更にNo.4は耐食性の
低下が著しく、No.6は結晶粒径、ひずみ模様は良好で
あるが、充分な強度が得られていない。
From Table 2, the following is considered. No. 1, which is an example of the present invention, has a suitable crystal grain size, shows almost no distortion pattern, is good, and has appropriate strength and moldability. On the other hand, No. 2, No. 3, and No. of the comparative examples.
In No. 7, although the strength and the formability are appropriate, the strain pattern is remarkably recognized because the crystal grain size is large. Comparative Example N
Nos. 4 to 5 cause excessive decrease in formability due to increase of precipitates due to excessive addition of Fe and Mn. Further, No. 4 has a remarkable decrease in corrosion resistance, and No. 6 has good crystal grain size and strain pattern, but does not have sufficient strength.

【0040】[0040]

【実施例2】表1のNo.1と同じ組成のAl合金鋳塊に
ついて、実施例1と同様に均質化処理、熱間圧延を施
し、表3
Example 2 An Al alloy ingot having the same composition as that of No. 1 in Table 1 was subjected to homogenization treatment and hot rolling in the same manner as in Example 1;

【表3】 に示す製造条件で板を製造し、機械的性質、成形性、結
晶粒径、Rt値、ひずみ模様の発生状況について求め
た。その結果を表4
[Table 3] A plate was manufactured under the following manufacturing conditions, and the mechanical properties, moldability, crystal grain size, Rt value, and occurrence of strain patterns were determined. Table 4 shows the results.

【表4】 に示す。[Table 4] Shown in

【0041】表4から明らかなように、本発明の製造方
法によるAl合金板Aは、適切な耐力成形性、結晶粒を
示し、ひずみ模様も良好である。これに対して、比較例
のC、F、Iは、ひずみ模様、成形性は良好であるもの
の、強度が低すぎる。また、比較例のB、D、Eは、強
度、成形性は満足するものの、結晶粒径の粗大化による
ひずみ模様の劣化を生じている。比較例G、Hは強度が
高すぎるためひずみ模様の劣化を生じたものである。
As is evident from Table 4, the Al alloy sheet A produced by the production method of the present invention shows proper yield strength, crystal grains, and a good strain pattern. On the other hand, although C, F, and I of the comparative examples have good strain patterns and good moldability, the strength is too low. Further, B, D, and E of the comparative examples satisfy the strength and the moldability, but cause deterioration of the strain pattern due to the coarsening of the crystal grain size. In Comparative Examples G and H, the strength was too high and the strain pattern was deteriorated.

【0042】[0042]

【発明の効果】以上詳述したように、本発明によれば、
食缶、飲料缶、その他器物等において絞り成形による側
壁部のひずみ模様の発生を抑制でき、且つ良好な成形
性、製品後の特性において必要な強度も充分に有してい
る。また、製造面(安定性、コスト)も優れている。
As described in detail above, according to the present invention,
In food cans, beverage cans, and other objects, it is possible to suppress the occurrence of distortion patterns on the side walls due to drawing, and it has sufficient moldability and strength required for the properties after the product. In addition, manufacturing aspects (stability, cost) are also excellent.

フロントページの続き (56)参考文献 特開 平2−290953(JP,A) 特開 昭51−116105(JP,A)Continuation of the front page (56) References JP-A-2-290953 (JP, A) JP-A-51-116105 (JP, A)

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量%で(以下、同じ)、Mg:1.0
〜2.0%、Mn:0.80超〜1.50%、Fe:
0.10〜0.25%を必須成分として含み、残部がA
l及び不可避不純物からなり、且つ、耐力が200〜2
60N/mm で、表面から観察される平均結晶粒径が
25〜40μmであることを特徴とする絞り成形による
ひずみ模様の抑制に優れた絞りカップ用Al合金板。
(1) Mg: 1.0% by weight (hereinafter the same).
~ 2.0%, Mn: more than 0.80 ~ 1.50%, Fe:
0.10 to 0.25% as an essential component, the balance being A
1 and unavoidable impurities, and has a proof stress of 200 to 2
An Al alloy plate for a draw cup excellent in suppression of a strain pattern by draw forming, wherein the average crystal grain size observed from the surface is 60 N / mm 2 and 25 to 40 μm.
【請求項2】 更にCu≦0.07%を含有する請求項
1に記載の絞りカップ用Al合金板。
2. The Al alloy plate for a drawing cup according to claim 1, further comprising Cu ≦ 0.07%.
【請求項3】 更にSi≦0.20%を含有する請求項
1又は2に記載の絞りカップ用Al合金板。
3. The Al alloy plate for a draw cup according to claim 1, further comprising Si ≦ 0.20%.
【請求項4】 更にTi≦0.20%を含有する請求項
1〜3のいずれかに記載の絞りカップ用Al合金板。
4. The Al alloy plate for a drawing cup according to claim 1, further comprising Ti ≦ 0.20%.
【請求項5】 請求項1〜4のいずれかに記載の化学成
分を有するAl合金鋳塊を均質化熱処理した後、熱間圧
延を施し、圧延率60%以上で冷間圧延し、その後、中
間焼鈍として板温度で400〜500℃に10分以内保
持する条件の連続焼鈍を施し、更にその後、圧延率30
〜70%で冷間圧延した後、200〜260℃の温度で
仕上げ焼鈍を施して、耐力が200〜260N/mm
で、表面から観察される平均結晶粒径が25〜40μm
Al合金板を得ることを特徴とする絞り成形によるひ
ずみ模様の抑制に優れた絞りカップ用Al合金板の製造
方法。
5. An Al alloy ingot having a chemical component according to any one of claims 1 to 4, which is subjected to a homogenizing heat treatment, hot-rolled, and cold-rolled at a rolling reduction of 60% or more. As the intermediate annealing, continuous annealing is performed under the condition that the sheet temperature is maintained at 400 to 500 ° C. within 10 minutes, and then the rolling reduction is 30
After cold rolling at ~ 70%, finish annealing is performed at a temperature of 200 ~ 260 ° C, and the proof stress is 200 ~ 260N / mm 2.
And the average crystal grain size observed from the surface is 25 to 40 μm
A method for producing an Al alloy plate for a draw cup, which is excellent in suppressing a strain pattern by drawing and forming, wherein the Al alloy plate is obtained.
JP4206007A 1992-07-09 1992-07-09 Al alloy plate for drawing cups excellent in suppressing distortion pattern and method for producing the same Expired - Lifetime JP2956038B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4206007A JP2956038B2 (en) 1992-07-09 1992-07-09 Al alloy plate for drawing cups excellent in suppressing distortion pattern and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4206007A JP2956038B2 (en) 1992-07-09 1992-07-09 Al alloy plate for drawing cups excellent in suppressing distortion pattern and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0625787A JPH0625787A (en) 1994-02-01
JP2956038B2 true JP2956038B2 (en) 1999-10-04

Family

ID=16516367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4206007A Expired - Lifetime JP2956038B2 (en) 1992-07-09 1992-07-09 Al alloy plate for drawing cups excellent in suppressing distortion pattern and method for producing the same

Country Status (1)

Country Link
JP (1) JP2956038B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4260510B2 (en) * 2002-03-07 2009-04-30 ユニバーサル製缶株式会社 Cap and screw type sealed bottle
PT1466992E (en) 2003-04-08 2007-09-12 Hydro Aluminium Deutschland A flat rolled semi-finished product from an aluminium alloy
CN115305389A (en) * 2022-08-12 2022-11-08 河南科创铝基新材料有限公司 Aluminum alloy battery shell plate and production method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51116105A (en) * 1975-04-04 1976-10-13 Kobe Steel Ltd A process for producing aluminum alloy sheet for deep drawing
JPH02290953A (en) * 1989-04-29 1990-11-30 Kobe Steel Ltd Production of al-mg alloy free from occurrence of stretcher strain mark at the time of forming

Also Published As

Publication number Publication date
JPH0625787A (en) 1994-02-01

Similar Documents

Publication Publication Date Title
US4284437A (en) Process for preparing hard tempered aluminum alloy sheet
EP0480402A1 (en) Process for manufacturing aluminium alloy material with excellent formability, shape fixability and bake hardenability
JP3590685B2 (en) Manufacturing method of aluminum alloy sheet for automobile outer panel
JP4257135B2 (en) Aluminum alloy hard plate for can body
JP3871462B2 (en) Method for producing aluminum alloy plate for can body
CN110983117A (en) Aluminum alloy for capacitor shell and preparation method of aluminum alloy plate strip of aluminum alloy
JP3644818B2 (en) Method for producing aluminum alloy plate for can body
JP2956038B2 (en) Al alloy plate for drawing cups excellent in suppressing distortion pattern and method for producing the same
JP2933501B2 (en) Method for producing aluminum alloy sheet excellent in formability of DI can bottom
JP3644819B2 (en) Method for producing aluminum alloy plate for can body
JP3871473B2 (en) Method for producing aluminum alloy plate for can body
JP3897926B2 (en) Method for producing aluminum alloy sheet with excellent formability
JP2595836B2 (en) Aluminum alloy sheet for press forming excellent in curability by low-temperature baking and method for producing the same
JPH0543974A (en) Aluminum alloy sheet excellent in baking hardenability of coating material and press formability and its production
JP2005076041A (en) Method for manufacturing hard aluminum alloy sheet for can body
JP3713614B2 (en) Method for producing aluminum alloy plate for can body
JPH05345963A (en) Manufacture of high formability aluminum alloy sheet
JPH0860283A (en) Aluminum alloy sheet for di can body and its production
JP3587993B2 (en) Manufacturing method of aluminum alloy sheet for deep drawing
JP4034904B2 (en) Hot rolled plate for aluminum can body and can body plate using the same
JPH07150282A (en) Al-mg-si alloy sheet excellent in formability and baking hardenability by crystalline grain control and its production
JPH08296011A (en) Production of aluminum alloy sheet for high speed forming excellent in baking hardenability of coating film and cold stability
JP2000080453A (en) Production of aluminum alloy foil excellent in strength and formability
JPH0586444A (en) Manufacture of aluminum alloy hard sheet excellent in anisotropy and softening resistance
JPH0813109A (en) Production of aluminum alloy sheet for forming

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070723

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080723

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090723

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100723

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100723

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110723

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110723

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120723

Year of fee payment: 13

EXPY Cancellation because of completion of term