JP3409195B2 - Aluminum alloy hard plate for forming and manufacturing method thereof - Google Patents

Aluminum alloy hard plate for forming and manufacturing method thereof

Info

Publication number
JP3409195B2
JP3409195B2 JP35210593A JP35210593A JP3409195B2 JP 3409195 B2 JP3409195 B2 JP 3409195B2 JP 35210593 A JP35210593 A JP 35210593A JP 35210593 A JP35210593 A JP 35210593A JP 3409195 B2 JP3409195 B2 JP 3409195B2
Authority
JP
Japan
Prior art keywords
temperature
rolling
strength
hot
hot rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP35210593A
Other languages
Japanese (ja)
Other versions
JPH07197173A (en
Inventor
山村浩司
隆 稲葉
小出政俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP35210593A priority Critical patent/JP3409195B2/en
Publication of JPH07197173A publication Critical patent/JPH07197173A/en
Application granted granted Critical
Publication of JP3409195B2 publication Critical patent/JP3409195B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Metal Rolling (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は成形加工用アルミニウム
合金材料に関し、飲料用金属缶として、特に缶胴となる
DI缶に適したアルミニウム合金材料及びその製造方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aluminum alloy material for forming and processing, and more particularly to an aluminum alloy material suitable for a metal can for beverages, especially for a DI can as a can body, and a method for producing the same.

【0002】[0002]

【従来の技術】従来より、飲料缶胴(DI缶)には300
4合金の硬質板材が使用されている。本材料の製造工程
には、大きくは2種類の製造工程があり、1つは熱延材
に焼鈍(場合によっては省略)を施し、その後冷間圧延に
て製品板厚にする製造工程であり、他の工程は熱延材に
冷間圧延を施し、その後CAL焼鈍、冷延して製品板厚
にする製造工程である。
2. Description of the Related Art Conventionally, a beverage can body (DI can) is 300
Hard plate material of 4 alloy is used. There are roughly two types of manufacturing processes for this material. One is a manufacturing process in which the hot-rolled material is annealed (omitted in some cases) and then cold-rolled to make the product sheet thickness. The other process is a manufacturing process in which the hot rolled material is subjected to cold rolling, and then CAL annealing and cold rolling are performed to obtain a product sheet thickness.

【0003】前者の製造工程にも、要求される強度(製
缶後の耐圧強度)によって2種類の方法があり、焼鈍方
法によって異なる。すなわち、バッチ式(中強度材:徐
加熱徐冷式)とCAL(高強度:特願平1−226746
号参照)である。いずれも、絞り加工後の耳率は小さ
く、歩留りに優れるものである。但し、後述の他の製造
工程に比べて結晶粒が大きく、成形性(特にしごき加工
性)に劣る面がある。
In the former manufacturing process as well, there are two types of methods depending on the required strength (pressure resistance after can making), which differs depending on the annealing method. That is, batch type (medium strength material: gradually heated and slowly cooled) and CAL (high strength: Japanese Patent Application No. 1-2226746).
No.). In each case, the earing rate after drawing is small and the yield is excellent. However, it has a larger crystal grain than other manufacturing steps described later and is inferior in moldability (particularly ironing workability).

【0004】一方、後者の製造工程は、熱延材に冷間圧
延を施し、その後CAL焼鈍、冷延して製品板厚にする
製造工程であるが、本材料はCALを使用して高強度
(Cu、Mgが固溶され、製缶工程でベークハードにより
強度上昇)が得られると共に、冷間圧延後に焼鈍するた
め結晶粒が微細であり、特に主要成形であるしごき加工
性に優れるものである。
On the other hand, the latter manufacturing process is a manufacturing process in which a hot rolled material is subjected to cold rolling, and then CAL annealing and cold rolling are performed to obtain a product sheet thickness.
(Cu and Mg are solid-dissolved and strength is increased by baking hard in the can making process), and since annealing is performed after cold rolling, the crystal grains are fine and especially ironing workability, which is the main forming, is excellent. is there.

【0005】[0005]

【発明が解決しようとする課題】しかし、近年の薄肉軽
量化においては、缶底部に加えてDI成形、塗装印刷
(ベーキング)後に行うネック部の薄肉化が重要課題であ
り、ネック部の薄肉化にはシワの発生及びその後のフラ
ンジ加工により割れ発生を抑制できる材料が要求され
る。
However, in recent years in thinning and lightening the weight, in addition to the bottom of the can, DI molding and painting printing are performed.
Thinning of the neck portion after (baking) is an important issue, and a material that can suppress the occurrence of wrinkles and the occurrence of cracks due to subsequent flange processing is required for thinning the neck portion.

【0006】この要求に応えるためには、缶底部は高強
度であり、逆にネック加工部は強度が低いことが重要で
ある。この観点から、加工硬化が小さく、またベークハ
ードをあまりしない高強度の材料が必要である。これに
対しては、本発明者らは既に幾つかの提案を(例、特願
平3−56196号)。その方法は前述した熱延材にC
AL焼鈍を施し、その後冷間圧延にて製品とする工程で
ある。しかしながら、この材料は冷間圧延後にCAL焼
鈍を行った材料(結晶粒微細)に比べてしごき加工性に劣
る課題がある。
In order to meet this demand, it is important that the bottom of the can has high strength and the necked part has low strength. From this point of view, there is a need for a high-strength material that has a small work hardening and does not cause much bake hard. In response to this, the present inventors have already made some proposals (eg, Japanese Patent Application No. 3-56196). The method is to add C to the hot rolled material described above.
This is a process of performing AL annealing and then cold rolling into a product. However, this material has a problem that it is inferior in ironing workability as compared with a material (grain fine) which is subjected to CAL annealing after cold rolling.

【0007】本発明は、かゝる問題点に鑑みて、高強度
で成形性、特にしごき加工性に優れたアルミニウム合金
硬質板及びその製造方法を提供することを目的としてい
る。
In view of the above problems, it is an object of the present invention to provide an aluminum alloy hard plate having high strength and excellent formability, particularly ironing workability, and a method for producing the same.

【0008】[0008]

【課題を解決するための手段】前記課題を解決するた
め、本発明者らは、特にしごき加工性を向上し得る改善
策について鋭意研究を重ね、ここに本技術を開発したも
のである。
In order to solve the above-mentioned problems, the inventors of the present invention have made extensive studies on improvement measures that can particularly improve the ironing workability, and developed the present technology here.

【0009】すなわち、本発明は、Mn:0.85〜1.
15%、Mg:0.90〜1.50%、Fe:0.35〜0.
55%、Si:0.15〜0.30%、Cu:0.15〜0.
30%及びZn:0.15〜1.0%を含有し、残部がAl
及び不可避的不純物からなり、仕上げ焼鈍を施さない最
終冷延板状態にて、結晶粒幅が25〜40μmであり、
引張強度(TS)と耐力(YS)の関係がTS/YS=1.
05以上で、且つ伸び率が5%以上であることを特徴と
する成形加工用アルミニウム合金硬質板を要旨としてい
る。
That is, according to the present invention, Mn: 0.85-1.
15%, Mg: 0.90 to 1.50%, Fe: 0.35 to 0.5.
55%, Si: 0.15 to 0.30%, Cu: 0.15 to 0.3.
30% and Zn: 0.15 to 1.0% with the balance being Al
And a crystal grain width of 25 to 40 μm in the final cold-rolled sheet state which is composed of unavoidable impurities and is not subjected to finish annealing.
The relationship between tensile strength (TS) and proof stress (YS) is TS / YS = 1.
The gist is an aluminum alloy hard plate for forming, which is characterized by having an elongation of 05 or more and an elongation of 5% or more.

【0010】また、その製造方法は、上記の化学成分を
有するAl合金鋳塊に、580〜630℃にて2時間以
上の均熱処理を施し、その後冷却して荒熱延と仕上げ熱
延とからなる熱間圧延を、熱延開始温度を450〜52
0℃、仕上げ熱延前の温度を400〜450℃、仕上げ
熱延直後の温度を300〜350℃とする条件で行うこ
とにより、熱延板での結晶粒幅を25〜40μmにコン
トロールし、この熱延板に更に加熱冷却速度100℃/
min以上、400〜600℃の範囲で保持10min以内の
連続焼鈍を施し、次いで冷間圧延を、パス間発熱時間を
10min以内として、圧下率80%以上、最終板厚での
巻上げ温度を130℃以上とする条件で行うことを特徴
としている。
Further, the manufacturing method is as follows. The Al alloy ingot having the above chemical composition is subjected to soaking at 580 to 630 ° C. for 2 hours or more, and then cooled to perform rough hot rolling and finish hot rolling. Hot rolling starting temperature of 450 ~ 52
0 ° C., the temperature before hot rolling is 400 to 450 ° C., and the temperature immediately after hot rolling is 300 to 350 ° C., thereby controlling the crystal grain width in the hot rolled plate to 25 to 40 μm. This hot-rolled sheet is further heated / cooled at 100 ° C /
min or more, continuous annealing within a range of 400 to 600 ° C and a holding time of 10 min or less, and then cold rolling with a heat generation time between passes of 10 min or less, a rolling reduction of 80% or more, and a winding temperature at a final plate thickness of 130 ° C. The feature is that it is performed under the above conditions.

【0011】[0011]

【作用】以下に本発明を更に詳細に説明する。まず、本
発明の知見を得るに至った検討結果を説明する。
The present invention will be described in more detail below. First, the results of the study leading to the knowledge of the present invention will be described.

【0012】本発明者らは、しごき加工性については種
々研究を重ね、しごき加工性の向上には次の点の改善が
重要であることを把握した。すなわち、 結晶粒の微細化:結晶粒はコイル内において均一微細
であることが重要であり、これは割れ感受性の低減につ
ながる。また、冷間圧延後CALを施した材料ほど微細
でなくとも、均一であればしごき加工性がかなり向上す
る。 素材強度の低下:素材強度の低下はしごき加工時の変
形抵抗力を低下させ、同じく割れ感受性の低減につなが
る。但し、少なくとも、要求される強度(缶底強度:ベ
ーキング後強度)を満足することが必要である。
The present inventors have conducted various studies on ironing workability, and have found that the following improvements are important for improving ironing workability. In other words, refinement of crystal grains: It is important that the crystal grains are uniformly fine in the coil, which leads to reduction in crack susceptibility. Further, even if the material is not as fine as the material subjected to CAL after cold rolling, if it is uniform, the ironing workability is considerably improved. Deterioration of material strength: Deterioration of material strength lowers the deformation resistance during ironing and also reduces crack susceptibility. However, it is necessary to satisfy at least the required strength (can bottom strength: strength after baking).

【0013】しかしながら、熱延板にCAL焼鈍を施
し、その後冷間圧延する工程では、上記とを満足さ
せることは非常に困難であった。何故なら、結晶粒の大
きさは熱延板にて決まり、その後のCAL焼鈍では結晶
粒は大きくなっても小さくなることはない。そこで、熱
延板の結晶粒微細化に関して成分、均熱、熱延について
詳細調査した。その結果、再結晶粒の核となるFe、Mn
等を増加すれば結晶粒は微細となるが、化合物が大きく
なり、成形性を低下させる。熱延も歪エネルギーを増や
す方法(例えば水冷)であれば、結晶粒の微細化に効果が
あるものの、コイル内の安定性が悪いこと及び表面品質
が劣ること等の問題を明らかにした。
However, in the step of subjecting the hot rolled sheet to CAL annealing and then cold rolling, it was very difficult to satisfy the above. This is because the size of the crystal grains is determined by the hot-rolled sheet, and in the subsequent CAL annealing, the crystal grains do not become small even if they become large. Therefore, a detailed investigation was conducted on the components, soaking, and hot rolling with respect to the refinement of crystal grains of the hot rolled sheet. As a result, Fe and Mn, which become nuclei for recrystallized grains,
If the number of grains is increased, the crystal grains become finer, but the compound becomes larger and the formability is lowered. If hot rolling is a method of increasing strain energy (for example, water cooling), although it is effective for refining crystal grains, problems such as poor stability in the coil and poor surface quality have been clarified.

【0014】このような問題に対する解決手段として、
本発明者らは、従来の高温均熱(500℃、550℃以
上と既存の特許公報に記載されていることが多い)領域
において詳細な試験とメカニズムを明らかにし、本発明
の最大の課題である上記結晶粒微細化を達成した。こ
れは、特に均質化処理に連続加熱炉を使用する方式であ
り、従来のバッチ式に比べて、鋳塊の温度分布に優れる
ものである。この方式を使用すると、バーニングする前
の温度(630℃前後)まで加熱することができ、Al−
Mn−Fe(−Si)の化合物を適度に大きくし、再結晶粒
の核とすることができる。また、コイル内での化合物サ
イズのバラツキが少なくなり結晶粒が均質となる。更
に、熱延時に低温圧延(歪量の導入)を行うことであり、
これにより再結晶粒の核を増加させることになる。具体
的には、高温均熱後に鋳塊を冷却し熱延開始の温度をコ
ントロールすることである。勿論、生産性も考慮が必要
であるが、その温度範囲は450〜520℃である。
As a solution to such a problem,
The present inventors have clarified detailed tests and mechanisms in the conventional high temperature soaking (often described in existing patent publications at 500 ° C. and 550 ° C. or higher) regions, and the main object of the present invention is to solve the problems. A certain degree of grain refinement was achieved. This is a system in which a continuous heating furnace is used for the homogenization treatment, and the temperature distribution of the ingot is superior to that of the conventional batch system. By using this method, it is possible to heat to the temperature before burning (around 630 ° C), and
The compound of Mn-Fe (-Si) can be made to be an appropriate size and used as the nucleus of recrystallized grains. Further, the variation in the compound size in the coil is reduced, and the crystal grains are homogenized. Furthermore, it is to perform low temperature rolling (introduction of strain amount) during hot rolling,
This increases the nuclei of recrystallized grains. Specifically, it is to control the temperature of hot rolling start by cooling the ingot after soaking at high temperature. Of course, productivity must be taken into consideration, but the temperature range is 450 to 520 ° C.

【0015】次に素材の強度低下について詳細な試験を
実施し、次の知見を得た。 製品板までの冷間圧延率の低下 製品板までの冷間圧延にてパス間発熱がないこと。
Next, detailed tests were conducted on the strength reduction of the material, and the following findings were obtained. Reduction of cold rolling rate to product sheet No heat generation between passes in cold rolling to product sheet.

【0016】については熱延板の薄肉化にて可能であ
るが、熱延時の焼付きにより、塗装印刷後の缶表面に熱
延の模様が生じ、商品価値を低下させる。したがって、
熱延板の板厚には現状限界がある。また、では従来の
圧延技術(シングル圧延機、クーラントとして鉱油を使
用)にて困難である。すなわち、従来技術では圧下率は
最大で50%であり、一般的な熱延板の板厚である2mm
以上から0.3mm前後に冷延するためには、コイル幅に
より異なるが3又は4パスを必要とするが、これはパス
間発熱が生じることになる。
With respect to the above, it is possible to reduce the thickness of the hot-rolled sheet, but the hot-rolling seizure causes a hot-rolled pattern on the surface of the can after painting and printing, which lowers the commercial value. Therefore,
There is currently a limit to the thickness of hot-rolled sheet. In addition, it is difficult to use conventional rolling technology (single rolling mill, mineral oil as coolant). That is, in the conventional technology, the rolling reduction is 50% at maximum, and the thickness of a general hot rolled sheet is 2 mm.
From the above, cold rolling to around 0.3 mm requires 3 or 4 passes, depending on the coil width, but this causes heat generation between passes.

【0017】ここで、について簡単に述べると、パス
間発熱は冷間圧延後の材料に回復(強度低下)を与え、一
見好ましく思われるが、次パスがある場合にはその後の
圧延にて大きな加工硬化を示し、強度が大幅に上昇す
る。これが3又は4パス続くので、強度の上昇は勿論、
パス間時間の変化によりコイル間のバラツキの原因にも
なる。したがって、理想的にはパス間発熱をなくすこと
である。そのためには、高圧下が可能な圧延条件にする
必要がある。具体的には、水溶性圧延油を使用したタン
デム圧延機であり、本機の使用により可能となる。
Briefly described below, heat generation between passes gives recovery (reduction in strength) to the material after cold rolling, which seems to be preferable, but when there is a next pass, it is large in subsequent rolling. Shows work hardening and significantly increases strength. As this continues for 3 or 4 passes, of course the increase in strength,
Variations in the time between passes also cause variations among the coils. Therefore, ideally it is to eliminate heat generation between passes. For that purpose, it is necessary to make the rolling conditions capable of high pressure. Specifically, it is a tandem rolling mill using a water-soluble rolling oil, which can be realized by using this rolling mill.

【0018】その他、成形性を上昇させる方法として、
固溶度(Cu、Mg)の低減を図るCAL条件、強度を適正
にする圧下率及び冷延上がり温度(巻上げ温度)等、種々
の知見を得て本発明を完成したのである。まず、本発明
におけるAl合金の化学成分の限定理由について説明す
る。
In addition, as a method for increasing the moldability,
The present invention has been completed based on various findings such as CAL conditions for reducing solid solubility (Cu, Mg), reduction ratio for proper strength and cold rolling temperature (rolling temperature). First, the reason for limiting the chemical composition of the Al alloy in the present invention will be described.

【0019】Mn:Mnは強度向上のほか、化合物である
Al−Mn−Fe−Si(α相)の適正分布によるしごき加工
性の向上に効果がある。しかし、0.85%未満ではい
ずれの効果も少なく、また1.15%を超えると化合物
のサイズ上昇を招き成形性の低下につながる。したがっ
て、Mn量は0.85〜1.15%である。
Mn: Mn is effective not only for improving the strength but also for improving the ironing workability due to the proper distribution of the compound Al-Mn-Fe-Si (α phase). However, if it is less than 0.85%, all the effects are small, and if it exceeds 1.15%, the size of the compound increases, leading to a decrease in moldability. Therefore, the amount of Mn is 0.85 to 1.15%.

【0020】Mg:Mgは強度上昇及び、Cuとの組合せ
(CAL使用に限る)により、製缶時のベーキングによる
軟化防止に効果がある。しかし、0.90%未満ではい
ずれの効果もなく、また1.50%を超えると強度上昇
が大きく、成形性の低下につながる。したがって、Mg
量は0.90〜1.50%である。
Mg: Mg is a combination of strength increase and Cu.
(Limited to using CAL) is effective in preventing softening due to baking during can making. However, if it is less than 0.90%, there is no effect, and if it exceeds 1.50%, the strength is greatly increased and the formability is lowered. Therefore, Mg
The amount is 0.90 to 1.50%.

【0021】Fe:Feは結晶粒の微細化及び化合物(α
相)の適正分布による成形性の向上に効果がある。しか
し、0.35%未満ではその効果がなく、また0.55%
を超える場合には化合物のサイズ上昇による成形性の低
下につながる。したがって、Fe量は0.35〜0.55
%である。
Fe: Fe is a refinement of crystal grains and a compound (α
It is effective in improving formability due to the proper distribution of (phase). However, if it is less than 0.35%, it is not effective, and it is 0.55%.
If it exceeds, the moldability is lowered due to the increase in the size of the compound. Therefore, the Fe amount is 0.35 to 0.55.
%.

【0022】Si:Siは化合物であるα相の形成による
成形性向上に効果がある。しかし、0.15%未満では
その効果が少なく、また0.30%を超える場合にはMg
2Siによる強度上昇が大きくなりすぎ、成形性の低下に
つながる。したがって、Si量は0.15〜0.30%で
ある。
Si: Si is effective in improving the formability by forming a compound α phase. However, if it is less than 0.15%, its effect is small, and if it exceeds 0.30%, Mg
2 Strength increase due to Si becomes too large, leading to deterioration of formability. Therefore, the Si amount is 0.15 to 0.30%.

【0023】Cu:Cuは強度上昇及びMgとの組合せ(C
AL使用に限る)により、製缶時のベーキングによる軟
化防止に効果がある。しかし、0.15%未満ではいず
れの効果もなく、また0.30%を超えると強度上昇が
大きく、成形性の低下につながる。したがって、Cu量
は0.15〜0.30%である。
Cu: Cu is a combination of strength increase and Mg (C
It is effective in preventing softening due to baking during can making. However, if it is less than 0.15%, there is no effect, and if it exceeds 0.30%, the strength is greatly increased and the formability is lowered. Therefore, the amount of Cu is 0.15 to 0.30%.

【0024】Zn:Znは化合物の均一微細化による成形
性の向上に効果があるが、0.1%未満ではその効果が
少なく、また1.0%を超えてもその効果は飽和状態で
ある。したがって、Zn量は0.1〜1.0%である。
Zn: Zn is effective in improving the moldability by uniformly refining the compound, but if it is less than 0.1%, the effect is small, and if it exceeds 1.0%, the effect is saturated. . Therefore, the amount of Zn is 0.1 to 1.0%.

【0025】なお、その他、不可避的不純物として、T
iは0.1%以下、Bは0.05%以下等、不純物レベル
であれば、本発明の効果を妨げるものではない。
Other unavoidable impurities include T
The effect of the present invention is not hindered as long as the impurity level is such that i is 0.1% or less and B is 0.05% or less.

【0026】次に本発明の製造工程について述べる。通
常野方法に鋳造された上記Al合金鋳塊は、面削(5mm以
上)した後、本発明のポイントである均熱処理を行う。
均熱は、前述のとおり、熱延板での結晶粒微細化に影響
が与える。この点、従来条件では一般的に600℃未満
である。すなわち、従来ピット炉(バッチ炉)では鋳塊の
加熱温度に差異が生じ、高温部ではバーニングを起こす
恐れがあることからそれ以上に加熱されておらず、また
従来からも高温であるため(Al−Mg合金の場合は54
0℃以下)、更に高温に均熱にすることの効果が明らか
でなかったためである。これに対し、本発明では均熱温
度を580〜630℃とする。580℃未満では化合物
による再結晶粒の核形成が少なく、効果が少ない。ま
た、630℃を超える場合にはバーニングの恐れがあ
る。より望ましくは600〜620℃の範囲である。こ
の高温均熱は鋼塊の均一な温度分布性に優れる連続加熱
炉の使用により可能である。
Next, the manufacturing process of the present invention will be described. The Al alloy ingot cast by the normal method is face-cut (5 mm or more) and then subjected to soaking treatment which is the point of the present invention.
As mentioned above, soaking affects the refinement of crystal grains in the hot rolled sheet. In this respect, it is generally less than 600 ° C. under the conventional conditions. That is, in the conventional pit furnace (batch furnace), there is a difference in the heating temperature of the ingot, and there is a risk of burning in the high temperature part, so there is no further heating, and since it is still high temperature (Al -54 for Mg alloy
This is because the effect of soaking at a higher temperature was not clear. On the other hand, in the present invention, the soaking temperature is set to 580 to 630 ° C. If the temperature is lower than 580 ° C, nucleation of recrystallized grains by the compound is small and the effect is small. If the temperature exceeds 630 ° C, burning may occur. More preferably, it is in the range of 600 to 620 ° C. This high temperature soaking is possible by using a continuous heating furnace which is excellent in the uniform temperature distribution of the steel ingot.

【0027】続いて均熱後に低温圧延による熱延(荒熱
延、仕上げ熱延)を行い熱延時に積極的に歪を導入す
る。熱延時の歪導入は更に熱延板での結晶粒を微細にす
ることができる。そのためには、熱延開始前に鋳塊を冷
却し、所定の温度範囲で熱延を開始する。520℃を超
える温度での熱延開始ではその効果が少なく、また、4
50℃未満では効果はあるものの、生産性(冷却までの
時間)に劣る。したがって、熱延開始温度は450〜5
20℃とする。なお、開始温度の調整には炉内冷却によ
る方法と、均熱後室温まで冷却(放冷又は強制空冷)し、
熱延温度まで加熱する方法がある。前者の方がより生産
性に優れる。
Subsequently, hot rolling (rough hot rolling, finish hot rolling) by low-temperature rolling is performed after soaking, and strain is positively introduced during hot rolling. The introduction of strain during hot rolling can further refine the crystal grains in the hot rolled sheet. For that purpose, the ingot is cooled before the start of hot rolling, and hot rolling is started within a predetermined temperature range. The effect of starting hot rolling at a temperature above 520 ° C is small, and 4
If the temperature is lower than 50 ° C, the effect is obtained, but the productivity (time until cooling) is poor. Therefore, the hot rolling start temperature is 450 to 5
Set to 20 ° C. In addition, in order to adjust the starting temperature, a method of cooling inside the furnace and cooling to room temperature after soaking (cooling or forced air cooling),
There is a method of heating to the hot rolling temperature. The former is more productive.

【0028】熱延はリバース型の粗圧延とタンデムの仕
上げ圧延からなされ、熱延板の結晶粒を微細にするため
には、仕上げ圧延での出入の温度コントロールが必要で
ある。入側温度は低目が望ましいが、出側温度を適正な
温度範囲に制御するためには入側温度を400〜450
℃にする必要がある。また出側温度は同じく300〜3
50℃にする必要がある。出側温度が300℃未満では
熱延コイル全体を再結晶させることができず、350℃
を超える場合には再結晶をするものの、結晶粒の粗大化
(結晶粒の成長)を招く。なお、熱延後にコイル全体を再
結晶させる理由は、微細な再結晶粒を得るためであり、
残存した一部未再結晶粒をその後の焼鈍にて再結晶させ
ると結晶粒の粗大化を招くためである。
Hot rolling is performed by reverse type rough rolling and tandem finish rolling, and in order to make the crystal grains of the hot rolled sheet fine, it is necessary to control the temperature at the time of finishing rolling. The inlet temperature should be low, but the inlet temperature should be 400-450 to control the outlet temperature within the proper temperature range.
Must be ℃. Also, the outlet temperature is 300 to 3
It needs to be 50 ° C. If the outlet temperature is less than 300 ° C, the entire hot rolled coil cannot be recrystallized, and 350 ° C
If it exceeds the limit, recrystallization will occur, but the crystal grains will become coarse.
(Growth of crystal grains) is caused. The reason for recrystallizing the entire coil after hot rolling is to obtain fine recrystallized grains,
This is because if the remaining partially unrecrystallized grains are recrystallized by subsequent annealing, the crystal grains become coarse.

【0029】上記条件にて得られた熱延板の結晶粒幅は
25〜45μmとなる。但し、この範囲において、結晶
粒は熱延板厚により変化し、熱延板の板厚が厚くなる程
大き目となる。なお、本発明では熱延板厚を規制してい
ないが、製品の板厚及び要求される強度を考慮すると一
般に1.5〜3.0mmである。
The crystal grain width of the hot rolled sheet obtained under the above conditions is 25 to 45 μm. However, in this range, the crystal grain changes depending on the thickness of the hot-rolled sheet, and becomes larger as the sheet thickness of the hot-rolled sheet increases. Although the thickness of the hot rolled sheet is not regulated in the present invention, it is generally 1.5 to 3.0 mm considering the sheet thickness of the product and the required strength.

【0030】熱延板(コイル)にはその後連続焼鈍(CA
L)が施される。これは適度な強度と成形性を得るため
であり、本発明の化学成分の内、特にCuとMg量のコン
トロールが重要である。400℃未満ではCuとMgの固
溶量が少なく、製缶時のベーキング強度が得られない。
一方、600℃を超える場合にはその固溶が多くなり、
強度は確保できるものの、成形性の低下につながる。し
たがって、加熱温度は400〜600℃とする。また、
加熱冷却も速度が遅い場合は固溶量の低下を招き、やは
り強度不足となるので、加熱冷却速度を100℃/min
以上とする。なお、加熱の保持時間は加熱温度により異
なるが、10分以内が適当である。
The hot rolled sheet (coil) was then subjected to continuous annealing (CA
L) is applied. This is to obtain appropriate strength and moldability, and among the chemical components of the present invention, it is particularly important to control the amounts of Cu and Mg. If it is less than 400 ° C, the solid solution amount of Cu and Mg is small, and the baking strength at the time of can making cannot be obtained.
On the other hand, when the temperature exceeds 600 ° C, the solid solution increases,
Although the strength can be secured, it leads to deterioration of moldability. Therefore, the heating temperature is set to 400 to 600 ° C. Also,
If the heating / cooling rate is slow, the amount of solid solution decreases, and the strength also becomes insufficient. Therefore, the heating / cooling rate is 100 ° C / min.
That is all. The holding time for heating varies depending on the heating temperature, but 10 minutes or less is appropriate.

【0031】次に冷間圧延を行うが、これが本発明の第
2ポイントである。焼鈍された熱延板は冷間圧延が施さ
れて製品となる。冷間圧延は熱延板厚と製品板厚の関係
で数回に分けて行われる。この場合、冷間圧延の途中に
て自己発熱(通常の冷間圧延は100℃前後)による回復
が生じる。この回復はその後の冷間圧延にて加工硬化大
による強度上昇を招き、これを繰り返すとかなりの強度
上昇が得られるものの、自己発熱による回復(パス間発
熱)を一定に管理することは生産上難しい。したがっ
て、バラツキが大きくなり、強度が高い場合には成形性
を低下させる。また、強度の低い場合には缶強度不足を
招く。本発明では冷間圧延での強度バラツキを大幅に低
減するため、パス間発熱を極端に少なくする。パス間発
熱時間(圧延と次の圧延の間の時間:通常10時間〜数
日)が1hr以内であれば問題ないが、本発明ではパス間
発熱時間(熱延板から製品板まで)を10min以内とす
る。
Next, cold rolling is performed, which is the second point of the present invention. The annealed hot rolled sheet is cold rolled into a product. Cold rolling is carried out several times depending on the relationship between the hot rolled sheet thickness and the product sheet thickness. In this case, recovery occurs due to self-heating (about 100 ° C. in normal cold rolling) during the cold rolling. This recovery causes an increase in strength due to large work hardening in the subsequent cold rolling, and a considerable increase in strength can be obtained by repeating this, but it is not possible to maintain constant recovery (heat generation between passes) due to self-heating in production. difficult. Therefore, the variation becomes large, and when the strength is high, the formability is deteriorated. If the strength is low, the strength of the can is insufficient. In the present invention, the variation in strength during cold rolling is significantly reduced, so the heat generation between passes is extremely reduced. There is no problem if the heat generation time between passes (time between rolling and the next rolling: usually 10 hours to several days) is within 1 hr, but in the present invention, the heat generation time between passes (from hot rolled sheet to product sheet) is 10 min. Within

【0032】また、強度を確保するためには、トータル
圧下率80%以上とする必要がある。更に、DI缶成形
(絞り−しごき加工、張出し加工等)における性能向上に
は強度のバランス(TS/YS=1.05以上)及び適正
な延性(伸び率5%以上)が必要であり、最終板厚での巻
上げ温度が130℃未満、また引張強度(TS)と耐力
(YS)の関係がTS/YS=1.05未満及び伸び率が
5%未満ではその効果が得られない。このため、最終板
厚での巻上げ温度を130℃以上とする。
Further, in order to secure the strength, it is necessary to set the total rolling reduction to 80% or more. Furthermore, DI can molding
Strength improvement (TS / YS = 1.05 or more) and appropriate ductility (elongation rate of 5% or more) are required to improve performance in (drawing-ironing, overhanging, etc.), and winding at the final plate thickness Temperature less than 130 ℃, tensile strength (TS) and yield strength
If the relationship of (YS) is less than TS / YS = 1.05 and the elongation is less than 5%, the effect cannot be obtained. Therefore, the winding temperature at the final plate thickness is 130 ° C. or higher.

【0033】成形性の向上を図るためには冷間圧延のみ
(仕上げ焼鈍なし)にて材料を回復させた時に優れた特性
を示すことが必要である。本発明によれば、仕上げ焼鈍
を施さない状態にて、結晶粒幅は25〜40μmであ
り、引張強度(TS)と耐力(YS)の関係がTS/YS=
1.05以上で、且つ伸び率5%以上が得られる。結晶
粒幅が25μm未満ではカップ製造時の耳率が非常に高
くなり、DI加工時に耳切れを生じる恐れがあり、40
μmを超えると加工性(絞り性、しごき性)の低下を生じ
好ましくない。また、TS/YS比が1.05未満では
塑性変形開始から破断までの差が小さすぎるため、加工
性(絞り性、しごき性)の低下を生じる。また、伸び率が
5%未満ではカップ成形時にカップ口部にシワを生じ、
ネックフランジ成形時にこのシワに起因するDI缶のフ
ランジ割れを生じ易くなる上、DI加工時に缶底シワを
生じ易くなる。缶底シワを防止するためにシワ押さえ力
を上昇させた場合は加工が非常に厳しいものとなり缶胴
割れ或いは缶胴にピンホールを生じるといった欠陥を生
じさせ好ましくない。
Only cold rolling is required to improve formability.
It is necessary to show excellent properties when the material is recovered (without finish annealing). According to the present invention, the crystal grain width is 25 to 40 μm and the relationship between the tensile strength (TS) and the proof stress (YS) is TS / YS =
An elongation rate of 1.05 or more and an elongation rate of 5% or more can be obtained. If the crystal grain width is less than 25 μm, the ear ratio at the time of manufacturing the cup becomes very high, and there is a risk of cutting the edges during DI processing.
If it exceeds μm, workability (drawability, ironing property) is deteriorated, which is not preferable. On the other hand, if the TS / YS ratio is less than 1.05, the difference between the start of plastic deformation and the fracture is too small, resulting in a decrease in workability (drawability, ironing property). Further, if the elongation is less than 5%, wrinkles occur at the cup mouth during cup molding,
Flange cracking of the DI can due to the wrinkles is likely to occur during neck flange molding, and can bottom wrinkles are likely to occur during DI processing. If the wrinkle pressing force is increased in order to prevent wrinkles on the bottom of the can, the processing becomes very strict and defects such as cracking of the can body or pinholes in the can body occur, which is not preferable.

【0034】次に本発明の実施例を示す。Next, examples of the present invention will be described.

【0035】[0035]

【実施例1】表1に示す化学成分のAl合金鋳塊から表
2に示す製造工程により冷延板を製造した。冷延板及び
ベーキング後の機械的性質、成形性及び缶強度を表3、
表4に示す。なお、製缶用製品板の成形性評価及び缶強
度の調査は以下の要領にて行った。
Example 1 A cold-rolled sheet was manufactured from an Al alloy ingot having the chemical composition shown in Table 1 by the manufacturing process shown in Table 2. Table 3 shows the mechanical properties, formability and can strength after cold rolling and baking.
It shows in Table 4. The evaluation of the formability of the product plate for can manufacturing and the investigation of the can strength were carried out as follows.

【0036】限界絞り比(LDR)は、エリクセン試験機
を使用し、ブランク径を変化させ、成形できる絞り比
(ブランク径/ポンチ径)にて求めた。ポンチ径は33mm
φで、潤滑油はダイドロ−Nを用い、しわ押さえ力は5
00kgfである。張出し性(エリクセン値)はJISのエ
リクセン試験B法により評価した。しごき加工性は、ブ
ランク径140mmφ、ポンチ径90mmφにて作製した絞
りカップを用い、DI加工機で最後のしごき加工率を4
1%として約5万缶の製缶試験を行い、その時のティア
ーオフ率にて評価した。なお、缶サイズは350ccであ
り、潤滑油は水溶性潤滑油を用いた。
The limit drawing ratio (LDR) is the drawing ratio that can be formed by changing the blank diameter using an Erichsen tester.
It was calculated by (blank diameter / punch diameter). Punch diameter is 33mm
φ, using Dydro-N as lubricating oil, and wrinkle holding force is 5
It is 00 kgf. The overhang property (Erichsen value) was evaluated by the Erichsen test B method of JIS. For ironing workability, using a squeeze cup manufactured with a blank diameter of 140 mmφ and a punch diameter of 90 mmφ, the final ironing rate was 4 with a DI processing machine.
A can-making test of about 50,000 cans was conducted with 1%, and the tear-off rate at that time was evaluated. The can size was 350 cc, and the lubricating oil used was a water-soluble lubricating oil.

【0037】ベーキング後の成形性に関しては、得られ
たDI缶に200℃のベーキングを施し、4段ネック加
工を実施した。加工配分は2mm/段である。4段ネック
ができた成功率(ネック成功率)にて評価した。更に、4
段ネック缶に交角90゜のポンチにてフランジ部の穴拡
げ(拡缶)を実施し、フランジ率12%(フランジ径65m
mφ、ネック径58mmφ)における成功率(フランジ成功
率)にて評価した。また、缶強度である耐圧、座屈強度
は水圧負荷及び軸圧縮にて求めた。
Regarding the formability after baking, the obtained DI can was baked at 200 ° C. and subjected to 4-step necking. The processing distribution is 2 mm / step. It was evaluated by the success rate (neck success rate) in which a 4-step neck was formed. Furthermore, 4
The hole of the flange portion was expanded (expanded) with a punch with a 90 ° cross angle to the stepped neck can, and the flange ratio was 12% (flange diameter 65 m
The success rate (flange success rate) at mφ and neck diameter of 58 mmφ was evaluated. Further, the pressure resistance and buckling strength, which are can strength, were determined by hydraulic load and axial compression.

【0038】表3、表4に示すように、本発明例のNo.
1〜No.4は、比較例のNo.5、No.6、No.10〜N
o.15に比らべてしごき成形性(ティアーオフ率)に優れ
ており、また比較例のNo.7〜No.9に比らべて、成形
性は略同等であるが、缶強度において優れている。
As shown in Tables 3 and 4, Nos.
Nos. 1 to 4 are Nos. 5, No. 6, and Nos. 10 to N of the comparative examples.
Compared to No. 15, it has excellent ironing formability (tear-off rate), and has substantially the same formability as No. 7 to No. 9 of Comparative Example, but in can strength. Are better.

【0039】[0039]

【表1】 [Table 1]

【0040】[0040]

【表2】 [Table 2]

【0041】[0041]

【表3】 [Table 3]

【0042】[0042]

【表4】 [Table 4]

【0043】[0043]

【実施例2】表5に示す化学成分のAl合金鋳塊から表
6に示す製造工程で冷延板を製造した。なお、工程Aは
本発明工程であり、工程Bは比較例の工程である。冷延
板及びベーキング後の機械的性質、成形性及び缶強度を
表7、表8に示す。本発明工程Aで得られた材料は、適
切な結晶粒幅を有し、工程Bに比べて、明らかに優れた
成形性(特にティアーオフ率)が優れている。
Example 2 A cold-rolled sheet was manufactured from the Al alloy ingot having the chemical composition shown in Table 5 by the manufacturing process shown in Table 6. Note that step A is the step of the present invention, and step B is the step of the comparative example. Tables 7 and 8 show the mechanical properties, moldability and can strength of the cold-rolled sheet and after baking. The material obtained in Process A of the present invention has an appropriate crystal grain width, and is clearly superior to Process B in moldability (particularly tear-off rate).

【0044】[0044]

【表5】 [Table 5]

【0045】[0045]

【表6】 [Table 6]

【0046】[0046]

【表7】 [Table 7]

【0047】[0047]

【表8】 [Table 8]

【0048】[0048]

【実施例3】表9に示す化学成分のAl合金から表10
に示す製造工程で冷延板を製造した。なお、工程Cは本
特許工程であり、工程Dは比較例の工程で冷延でのパス
間の時間が異なっている。冷延板及びベーキング後の機
械的性質、成形性及び缶強度を表11、12に示す。工
程Dによる材料は元板での強度が高すぎるのに比べて、
本発明工程Cによる材料の方が明らかに成形性(特にテ
ィアーオフ率)が優れている。
Example 3 From the Al alloy having the chemical composition shown in Table 9, Table 10
A cold-rolled sheet was manufactured by the manufacturing process shown in. The process C is the process of the present patent, and the process D is the process of the comparative example, and the time between passes in cold rolling is different. Tables 11 and 12 show the mechanical properties, formability and can strength after cold rolling and baking. Compared to the strength of the base plate of the material produced by process D is too high,
The material according to the process C of the present invention is obviously superior in moldability (particularly the tear-off rate).

【0049】[0049]

【表9】 [Table 9]

【0050】[0050]

【表10】 [Table 10]

【0051】[0051]

【表11】 [Table 11]

【0052】[0052]

【表12】 [Table 12]

【0053】[0053]

【実施例4】表13に示す化学成分のAl合金から表1
4に示す製造工程で冷延板を製造した。なお、工程Eは
本発明工程であり、工程Fは比較例の工程で冷延での巻
上げ温度が異なっている。冷延板及びベーキング後の機
械的性質、成形性及び缶強度を表15、表16に示す。
工程Fによる材料は元板での適正強度バランス(TS/
YS比)が崩れているのに対し、本発明工程Eによる材
料の方が明らかに成形性(特にティアーオフ率)が優れて
いる。
Example 4 From the Al alloys having the chemical components shown in Table 13, Table 1
A cold rolled sheet was manufactured by the manufacturing process shown in FIG. Step E is the step of the present invention, and step F is the step of the comparative example, and the winding temperature in cold rolling is different. Tables 15 and 16 show the mechanical properties, formability and can strength of the cold-rolled sheet and after baking.
Proper strength balance (TS /
While the YS ratio) is broken, the material according to the process E of the present invention is obviously superior in moldability (particularly the tear-off rate).

【0054】[0054]

【表13】 [Table 13]

【0055】[0055]

【表14】 [Table 14]

【0056】[0056]

【表15】 [Table 15]

【0057】[0057]

【表16】 [Table 16]

【0058】[0058]

【発明の効果】以上詳述したように、本発明によれば、
所定の高強度を有しつつ成形性、特にしごき加工性に優
れるので、アルミニウム缶の材料の薄肉化を可能にする
効果は極めて顕著である。
As described in detail above, according to the present invention,
Since it has a predetermined high strength and is excellent in moldability, especially ironing workability, the effect of enabling the material of the aluminum can to be thin is extremely remarkable.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小出政俊 栃木県真岡市鬼怒ヶ丘15番地株式会社神 戸製鋼所真岡製造所内 (56)参考文献 特開 平4−272151(JP,A) 特開 平2−270930(JP,A) 特開 平1−96346(JP,A) 特開 昭56−139646(JP,A)   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Masatoshi Koide               15 Kinugaoka, Moka City, Tochigi Prefecture God Inc.               Inside the Tooka Works Moka Works                (56) Reference JP-A-4-272151 (JP, A)                 JP-A-2-270930 (JP, A)                 JP-A-1-96346 (JP, A)                 JP-A-56-139646 (JP, A)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量%で(以下、同じ)、Mn:0.8
5〜1.15%、Mg:0.90〜1.50%、Fe:
0.35〜0.55%、Si:0.15〜0.30%、
Cu:0.15〜0.30%、Zn:0.10〜1.0
%を含有し、残部がAl及び不可避的不純物からなり、
仕上げ焼鈍を施さない最終冷延板状態にて、結晶粒幅が
25〜40μmであり、引張強度(TS)と耐力(Y
S)の関係がTS/YS=1.05以上で、且つ伸び率
が5%以上であることを特徴とするDI缶成形加工用ア
ルミニウム合金硬質板。
1. Mn: 0.8 by weight% (hereinafter the same)
5 to 1.15%, Mg: 0.90 to 1.50%, Fe:
0.35-0.55%, Si: 0.15-0.30%,
Cu: 0.15 to 0.30%, Zn: 0.10 to 1.0
%, The balance consists of Al and unavoidable impurities,
In the final cold-rolled sheet state without finish annealing, the crystal grain width is 25 to 40 μm, the tensile strength (TS) and the yield strength (Y
The aluminum alloy hard plate for forming DI cans, wherein the relationship S) is TS / YS = 1.05 or more and the elongation is 5% or more.
【請求項2】 Mn:0.85〜1.15%、Mg:
0.90〜1.50%、Fe:0.35〜0.55%、
Si:0.15〜0.30%、Cu:0.15〜0.3
0%、Zn:0.10〜1.0%を含有し、残部がAl
及び不可避的不純物からなるAl合金鋳塊に、580〜
630℃にて2時間以上の均熱処理を施し、その後冷却
して荒熱延と仕上げ熱延とからなる熱間圧延を、熱延開
始温度を450〜520℃、仕上げ熱延前の温度を40
0〜450℃、仕上げ熱延直後の温度を300〜350
℃とする条件で行うことにより、熱延板での結晶粒幅を
25〜40μmにコントロールし、この熱延板に更に加
熱冷却速度100℃/min以上、400〜600℃の
範囲で保持10min以内の連続焼鈍を施し、次いで冷
間圧延を、パス間発熱時間を10min以内として、圧
下率80%以上、最終板厚での巻き上げ温度を130℃
以上とする条件で行うことを特徴とし、仕上げ焼鈍を施
さない状態にて、結晶粒幅が25〜40μmであり、
張強度(TS)と耐力(YS)の関係がTS/YS=
1.05以上で、且つ伸び率が5%以上の成形加工用ア
ルミニウム合金硬質板の製造方法。
2. Mn: 0.85 to 1.15%, Mg:
0.90 to 1.50%, Fe: 0.35 to 0.55%,
Si: 0.15 to 0.30%, Cu: 0.15 to 0.3
0%, Zn: 0.10 to 1.0%, balance Al
580 to an Al alloy ingot containing inevitable impurities
A soaking treatment is performed at 630 ° C. for 2 hours or more, followed by cooling to perform hot rolling including rough hot rolling and finish hot rolling. The hot rolling start temperature is 450 to 520 ° C., and the temperature before finish hot rolling is 40.
0-450 ℃, the temperature immediately after hot rolling is 300-350
The temperature of the crystal grain width in the hot-rolled sheet is controlled to 25 to 40 μm by carrying out under the condition of 0 ° C., and this hot-rolled sheet is further kept at a heating / cooling rate of 100 ° C./min or more and a temperature of 400 to 600 ° C. within 10 minutes. Continuous annealing, and then cold rolling, the heat generation time between passes is within 10 min, the rolling reduction is 80% or more, and the winding temperature at the final plate thickness is 130 ° C.
It is characterized in that it is carried out under the above conditions, the grain width is 25 to 40 μm, and the relationship between the tensile strength (TS) and the proof stress (YS) is TS / YS =
A method of manufacturing an aluminum alloy hard plate for forming, which has a elongation of 1.05 or more and an elongation of 5% or more.
【請求項3】 均熱処理に連続加熱炉を使用する請求項
2に記載の方法。
3. The method according to claim 2, wherein a continuous heating furnace is used for soaking.
JP35210593A 1993-12-29 1993-12-29 Aluminum alloy hard plate for forming and manufacturing method thereof Expired - Lifetime JP3409195B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35210593A JP3409195B2 (en) 1993-12-29 1993-12-29 Aluminum alloy hard plate for forming and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35210593A JP3409195B2 (en) 1993-12-29 1993-12-29 Aluminum alloy hard plate for forming and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH07197173A JPH07197173A (en) 1995-08-01
JP3409195B2 true JP3409195B2 (en) 2003-05-26

Family

ID=18421818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35210593A Expired - Lifetime JP3409195B2 (en) 1993-12-29 1993-12-29 Aluminum alloy hard plate for forming and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3409195B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001262261A (en) * 2000-03-22 2001-09-26 Furukawa Electric Co Ltd:The Aluminum alloy sheet for can barrel excellent in can bottom formability and its producing method
US6543122B1 (en) * 2001-09-21 2003-04-08 Alcoa Inc. Process for producing thick sheet from direct chill cast cold rolled aluminum alloy
JP4771726B2 (en) * 2005-03-31 2011-09-14 古河スカイ株式会社 Aluminum alloy plate for beverage can body and manufacturing method thereof
JP2010053367A (en) * 2008-08-26 2010-03-11 Sumitomo Light Metal Ind Ltd Aluminum alloy sheet for can end, and method for manufacturing the same
JP2012092431A (en) * 2010-09-30 2012-05-17 Kobe Steel Ltd Aluminum alloy cold-rolled sheet for bottle can
JP2023131622A (en) * 2022-03-09 2023-09-22 株式会社Uacj Aluminum alloy sheet for can lid

Also Published As

Publication number Publication date
JPH07197173A (en) 1995-08-01

Similar Documents

Publication Publication Date Title
JP4019082B2 (en) Aluminum alloy plate for bottle cans with excellent high temperature characteristics
JPH11501988A (en) Method of manufacturing an improved aluminum alloy sheet product
EP0097319A2 (en) A cold-rolled aluminium-alloy sheet for forming and process for producing the same
JP4019083B2 (en) Aluminum alloy cold rolled sheet for bottle cans with excellent high temperature characteristics
JPH11181558A (en) Production of aluminum alloy sheet for low and positive pressure can body
JP2018145466A (en) Manufacturing method of aluminum alloy sheet for beverage can excellent in bottom moldability and bottom part strength
JP2011202273A (en) Aluminum alloy cold-rolled sheet for bottle can
JP2006291326A (en) Aluminum alloy sheet for drink can barrel, and method for producing the same
JP3409195B2 (en) Aluminum alloy hard plate for forming and manufacturing method thereof
JP3600022B2 (en) Manufacturing method of aluminum base alloy sheet for deep drawing
JP3550259B2 (en) Aluminum alloy plate for DI can body excellent in high-speed ironing formability and method for producing the same
JP2006283113A (en) Aluminum alloy sheet for drink can barrel, and method for producing the same
JP2933501B2 (en) Method for producing aluminum alloy sheet excellent in formability of DI can bottom
JP3871462B2 (en) Method for producing aluminum alloy plate for can body
JP6684568B2 (en) Method for producing aluminum alloy plate for beverage can body or beverage bottle can body excellent in anisotropy and neck formability
JP3644818B2 (en) Method for producing aluminum alloy plate for can body
JP3871473B2 (en) Method for producing aluminum alloy plate for can body
JP3644819B2 (en) Method for producing aluminum alloy plate for can body
JPH0222446A (en) Manufacture of high formability aluminum alloy hard plate
JP2005076041A (en) Method for manufacturing hard aluminum alloy sheet for can body
JPS63125645A (en) Production of aluminum alloy material having fine crystal grain
JPH09268355A (en) Production of aluminum alloy sheet for can body, reduced in earing rate
JP3850542B2 (en) Aluminum alloy plate excellent in curling property and winding property and method for producing the same
JP2956038B2 (en) Al alloy plate for drawing cups excellent in suppressing distortion pattern and method for producing the same
JP3713614B2 (en) Method for producing aluminum alloy plate for can body

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080320

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090320

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100320

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100320

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110320

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110320

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120320

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120320

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130320

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140320

Year of fee payment: 11

EXPY Cancellation because of completion of term