JP2010053367A - Aluminum alloy sheet for can end, and method for manufacturing the same - Google Patents

Aluminum alloy sheet for can end, and method for manufacturing the same Download PDF

Info

Publication number
JP2010053367A
JP2010053367A JP2008216148A JP2008216148A JP2010053367A JP 2010053367 A JP2010053367 A JP 2010053367A JP 2008216148 A JP2008216148 A JP 2008216148A JP 2008216148 A JP2008216148 A JP 2008216148A JP 2010053367 A JP2010053367 A JP 2010053367A
Authority
JP
Japan
Prior art keywords
aluminum alloy
rolling
temperature
pressure
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008216148A
Other languages
Japanese (ja)
Inventor
Minemitsu Okada
峰光 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP2008216148A priority Critical patent/JP2010053367A/en
Publication of JP2010053367A publication Critical patent/JP2010053367A/en
Pending legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an aluminum alloy sheet for a can end, which is particularly superior in a bulge pressure even though having been thinned, keeps pressure resistance, and is also superior in formability and opening easiness that tend to become problems when the aluminum alloy sheet is thinned, and to provide a method for manufacturing the same. <P>SOLUTION: The aluminum alloy sheet has a composition comprising 4.3 to 5.5% Mg, 0.35 to 0.55% Mn, 0.04 to 0.30% Si, 0.12 to 0.40% Fe, and the balance Al with unavoidable impurities; has a sheet thickness of 0.20 to 0.25 mm; has an organic resin film formed on one side or both sides thereof; and shows such mechanical properties that when tensile tests in directions of 0&deg;, 45&deg;and 90&deg;with respect to a rolling direction of the aluminum alloy sheet have been conducted, a difference between the minimum value of yield stress and the minimum value of tensile strength is 30 to 65 MPa. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、缶エンド用アルミニウム合金板、詳しくは、薄肉化してもバルジ圧の低下しない飲料缶および食缶の缶エンド材であり、とくに陽圧缶(ビール、炭酸系、あるいは窒素ガス充填により内圧のかかる缶)用エンドに使用する缶エンド用アルミニウム合金板およびその製造方法に関する。   The present invention relates to an aluminum alloy plate for can ends, and more specifically, can end materials for beverage cans and food cans that do not decrease in bulge pressure even if they are thinned. Especially, positive pressure cans (beer, carbonated, or filled with nitrogen gas). The present invention relates to an aluminum alloy plate for can ends used for an end for cans to which internal pressure is applied and a method for producing the same.

飲料缶のうち、ビール缶、炭酸を含む清涼飲料缶のように、缶内圧の高い陽圧缶に用いる缶エンド用アルミニウム合金板においては、缶内圧に耐えられる強度が必要であるが、一方、近年ではコスト低減および環境負荷軽減の観点から、缶エンド材の薄肉化が求められており、通常の製造方法で薄肉化すると、同じ材料強度でも缶内圧に耐えられないため、材料の高強度化が要求されている。   Among beverage cans, beer cans, and canned aluminum alloy plates used for positive pressure cans with high can internal pressure, such as soft drink cans containing carbonic acid, need strength that can withstand can internal pressure, In recent years, thinning of can end materials has been required from the viewpoint of cost reduction and environmental load reduction. If thinning is done with a normal manufacturing method, it cannot withstand the internal pressure of the can even with the same material strength. Is required.

陽圧用缶エンドに要求される缶内圧に耐える性能は、耐圧およびバルジ圧である。ビールや炭酸飲料などの陽圧缶を、夏期の車中など気温が高いところに放置した場合、缶内圧が上昇して缶エンドが膨れ、さらに、本来缶内側に向かって凸状のカウンターシンク部が外側に向かって凸状に変形するバックリングを起こすが、このときの缶内圧を耐圧といい、耐圧が低いと容易にバックリングが生じ、缶エンドの飲み口が開口したり、缶エンドの一部に亀裂が生じ、内容物が外に吹き出すなどの不具合が生じる。   The ability to withstand the can internal pressure required for the positive pressure can end is pressure resistance and bulge pressure. When positive pressure cans such as beer and carbonated drinks are left in places where the temperature is high, such as in a car in the summer, the internal pressure of the can rises and the end of the can swells. However, the pressure inside the can at this time is called pressure resistance, and if the pressure resistance is low, buckling occurs easily and the mouth end of the can end opens, Some cracks occur, causing problems such as the contents blowing out.

また、ビールや炭酸飲料が充填された陽圧缶を梱包して輸送する際、気温の上昇や振動により缶内圧が上昇して缶エンドが膨れる。通常、常温では、缶の高さ方向に対し、タブの位置は巻締め位置よりも低いが、このように缶エンドが膨れると、タブ位置が上昇し、梱包材に接触してしまう。このときの内圧をバルジ圧といい、バルジ圧が低いと、缶エンドの膨れにより容易にタブと梱包材が接触してしまい、その結果、輸送中に振動がタブに伝わり、飲み口が疲労破壊し開口するという問題が生じる。   Moreover, when packing and transporting a positive pressure can filled with beer or carbonated beverage, the can internal pressure rises due to a rise in temperature or vibration, and the can end swells. Normally, at normal temperature, the tab position is lower than the tightening position with respect to the height direction of the can, but when the can end swells in this way, the tab position rises and comes into contact with the packaging material. The internal pressure at this time is called the bulge pressure. If the bulge pressure is low, the tab and the packing material easily come into contact with each other due to the expansion of the can end, and as a result, vibration is transmitted to the tab during transportation, and the drinking mouth is damaged due to fatigue. The problem of opening will occur.

上記の定義から明らかなように、バルジ圧は耐圧よりも低いが、缶内圧がバルジ圧および耐圧に達したときには、缶エンドを形成する素材は塑性変形をしている。但し、バルジ圧および耐圧に達した時点での塑性変形量はそれぞれ異なるため、耐圧が高い缶エンドが必ずしもバルジ圧が高いとは限らない。   As is clear from the above definition, the bulge pressure is lower than the pressure resistance, but when the can internal pressure reaches the bulge pressure and pressure resistance, the material forming the can end is plastically deformed. However, since the amount of plastic deformation at the time of reaching the bulge pressure and the pressure resistance is different, the can end having a high pressure resistance does not necessarily have a high bulge pressure.

バルジ圧に達したときの素材の塑性変形量は比較的少ないため、高いバルジ圧を得るためには、素材が塑性変形し始める応力、すなわち素材の引張特性で言えば耐力が高いものが望ましい。一方、耐圧に達したときの素材は、すでに塑性変形が進行しているため、高い耐圧を得るためには、塑性変形による加工硬化後の変形応力に相当する応力、すなわち素材の引張特性で言えば引張強さが高いものが望ましい。   Since the amount of plastic deformation of the material when the bulge pressure is reached is relatively small, in order to obtain a high bulge pressure, it is desirable that the material begins to plastically deform, that is, a material having a high yield strength in terms of the tensile properties of the material. On the other hand, since the plastic material has already undergone plastic deformation when the pressure resistance is reached, in order to obtain a high pressure resistance, it can be said by the stress corresponding to the deformation stress after work hardening due to plastic deformation, that is, the tensile properties of the material. If the tensile strength is high, it is desirable.

さらに素材には強度異方性があるため、当然、強度の弱い位置から変形が開始し、バックリングする。そのため、素材の引張特性で性能を予測するためには、最も強度の弱い方向で評価しなければならない。なお、この場合、強度の高い方向と低い方向との強度の差は重要ではなく、最も強度の低い方向で評価すれば良いことは明らかである。   Furthermore, since the material has strength anisotropy, naturally, deformation starts from a position where strength is weak and buckling occurs. Therefore, in order to predict the performance based on the tensile properties of the material, it must be evaluated in the direction of the weakest strength. In this case, the difference in strength between the direction of high strength and the direction of low strength is not important, and it is obvious that the evaluation may be made in the direction of the lowest strength.

一方、薄肉化して問題となる特性として成形性と開口性がある。缶エンドの成形において、とくに過酷なのはリベット成形であるが、薄肉化してもタブを固定するのに必要なリベット径は変わらないため、薄肉化した分だけ加工による歪みが増加することとなり、より高い成形性が求められる。   On the other hand, there are moldability and openability as characteristics that are problematic due to thinning. In the can end molding, rivet molding is particularly severe, but the rivet diameter required to fix the tab does not change even if the thickness is reduced, so the distortion due to processing increases by the reduced thickness, which is higher. Formability is required.

また、エンドの飲み口が開口する位置には、スコアと呼ばれる溝が成形されている。内容物を充填し巻締めた後、内圧で不意に開口することを防ぐため、スコアの残厚(元板厚とスコアの溝深さの差)を管理しているが、同一残厚のスコアであっても、元板厚が薄いほどスコアの加工量が減少するため、スコアは開き難くなる。その上、スコアを開口するときには、タブでスコア内部を押し当てることにより溝に応力を集中させて開口するが、このとき板厚が薄いとスコア自体がタブに押されて撓んでしまい、溝に集中する応力が低減し、開口途中で亀裂がスコアに沿わず切れてしまうこともある。このように、薄肉化すると、幾何学的に成形量が増えたり、また剛性が低下する問題が発生する。   Further, a groove called a score is formed at a position where the end drinking mouth opens. After the contents are filled and tightened, the remaining thickness of the score (difference between the original plate thickness and the groove depth of the score) is managed to prevent unexpected opening due to internal pressure. Even so, the thinner the original plate thickness, the smaller the score processing amount, and the more difficult the score opens. In addition, when opening the score, the stress is concentrated in the groove by pressing the inside of the score with the tab. At this time, if the plate thickness is thin, the score itself is pushed by the tab and bends, causing the groove to enter the groove. The stress that concentrates is reduced, and the crack may break along the score in the middle of opening. As described above, when the thickness is reduced, a problem arises that the amount of molding increases geometrically and the rigidity decreases.

上記のとおり、単に缶エンド材を薄肉化すると、耐圧およびバルジ圧のいずれも低下し、従来と同じ引張特性では、陽圧用缶エンドとして要求される耐圧およびバルジ圧を確保することができない。加えて、材料の薄肉化に伴い、缶エンド材の成形性の確保と缶エンドの開口性の確保という新たな課題を克服しなくてはならず、薄肉化しても、これらの特性を同時に満足させることができる缶エンド用アルミニウム合金板が強く要望されている。   As described above, when the can end material is simply thinned, both the pressure resistance and the bulge pressure are lowered, and the pressure resistance and the bulge pressure required for the positive pressure can end cannot be secured with the same tensile characteristics as in the past. In addition, as the material becomes thinner, the new issues of securing the moldability of the can end material and securing the opening of the can end must be overcome. There is a strong demand for aluminum alloy plates for can ends that can be made to be able to be made.

これまで、高耐圧缶エンド用アルミニウム合金板において、3方向の引張特性に着目した例として、Mg、Mnを必須成分として含有するアルミニウム合金に対して、特定の条件で熱間圧延を行った後、冷間圧延を施すアルミニウム合金板の製造方法が提案されているが(特許文献1参照)、薄肉化しても陽圧用缶エンドとして要求される耐圧およびバルジ圧を確保し、さらに成形性や開口性を確保することは難しい。熱間圧延条件や冷間圧延率を規定するとともに、Mg、Mnなどの成分を特定する試みもなされているが(特許文献2、3参照)、この組み合わせによっても、必ずしも耐圧およびバルジ圧を確保する引張特性を得ることはできない。
特開平3−287749号公報 特開平4−176848号公報 特開2001−164347号公報
Up to now, as an example of paying attention to tensile properties in three directions in an aluminum alloy plate for high pressure can end, after hot rolling under specific conditions for an aluminum alloy containing Mg and Mn as essential components A method for producing an aluminum alloy sheet that is subjected to cold rolling has been proposed (see Patent Document 1), but the required pressure and bulge pressure required as a positive pressure can end can be secured even if the wall thickness is reduced, and formability and opening are further improved. It is difficult to ensure sex. While attempts have been made to specify hot rolling conditions and cold rolling rates and to specify components such as Mg and Mn (see Patent Documents 2 and 3), this combination does not necessarily ensure pressure resistance and bulge pressure. It is not possible to obtain tensile properties.
Japanese Patent Laid-Open No. 3-28749 Japanese Patent Laid-Open No. 4-176848 JP 2001-164347 A

発明者は、薄肉化しても、上記の特性を同時に満足させることができる缶エンド用アルミニウム合金板を得るために、合金成分、製造工程およびその組み合わせについて、多角的に試験、検討を行い、その過程において、合金成分のうち特にMgとMnの含有量、製造方法のうち特に冷間圧延率と塗装焼付け時の昇温速度を制御することで、優れた耐圧とバルジ圧を得ることができることを見出した。   In order to obtain an aluminum alloy sheet for can end that can satisfy the above characteristics at the same time even if the thickness is reduced, the inventor conducted multifaceted tests and studies on alloy components, manufacturing processes, and combinations thereof. In the process, it is possible to obtain excellent pressure resistance and bulge pressure by controlling the content of Mg and Mn among the alloy components, especially the cold rolling rate and the heating rate during paint baking among the production methods. I found it.

本発明は、上記の検討結果に基づいてなされたものであり、その目的は、薄肉化しても、とくにバルジ圧に優れ、同時に耐圧が維持され、且つ薄肉化に伴って問題となる成形性および開口性にも優れた缶エンド用アルミニウム合金板およびその製造方法を提供することにある。   The present invention has been made on the basis of the above examination results, and the purpose thereof is excellent in bulge pressure even when the thickness is reduced, and at the same time, the pressure resistance is maintained, and the moldability that becomes a problem with the thickness reduction and An object of the present invention is to provide an aluminum alloy plate for can ends that is excellent in openability and a method for producing the same.

上記の目的を達成するための請求項1による缶エンド用アルミニウム合金板は、Mg:4.3〜5.5%、Mn:0.35〜0.55%、Si:0.04〜0.30%、Fe:0.12〜0.40%を含有し、さらにCu、Cr、Zn、Tiを各々0.10%以下含有し、残部Alおよび不可避的不純物からなる組成を有する板厚0.20〜0.25mmのアルミニウム合金板であって、片面または両面が有機樹脂皮膜で被覆されており、前記アルミニウム合金板の圧延方向に対して0°、45°、90°方向の引張試験を行ったときの耐力の最小値と、引張強さの最小値の差が30〜65MPaであることを特徴とする。   In order to achieve the above object, the aluminum alloy plate for can end according to claim 1 is Mg: 4.3-5.5%, Mn: 0.35-0.55%, Si: 0.04-0. 30%, Fe: 0.12 to 0.40%, further containing 0.10% or less of Cu, Cr, Zn, and Ti, respectively, and having a composition comprising the balance Al and inevitable impurities. A 20 to 0.25 mm aluminum alloy plate, one or both surfaces of which are coated with an organic resin film, and subjected to a tensile test in directions of 0 °, 45 °, and 90 ° with respect to the rolling direction of the aluminum alloy plate. The difference between the minimum value of the proof stress and the minimum value of the tensile strength is 30 to 65 MPa.

請求項2による缶エンド用アルミニウム合金板は、請求項1において、前記有機樹脂皮膜の片面当たりの厚さが1〜20μmであることを特徴とする。   The aluminum alloy plate for can ends according to claim 2 is characterized in that, in claim 1, the thickness per one side of the organic resin film is 1 to 20 μm.

請求項3による缶エンド用アルミニウム合金板の製造方法は、請求項1記載の組成を有するアルミニウム合金鋳塊を、460〜540℃の温度で2〜24時間保持する均質化熱処理工程と、該均質化熱処理を施した鋳塊を熱間粗圧延および熱間仕上げ圧延するに際し、460〜540℃の温度範囲で熱間粗圧延を終了し、300〜370℃の温度範囲で熱間仕上げ圧延を終了して再結晶組織を得る熱間圧延工程と、室温〜180℃の温度範囲で且つ70〜93%の圧下率で冷間圧延して、板厚0.20〜0.25mmの冷間圧延板を得る冷間圧延工程と、該冷間圧延板の片面あるいは両面に有機樹脂皮膜を塗装焼付けする際、塗装後10℃/s以上の昇温速度で且つ板の到達温度が230〜270℃となる条件で焼付けする塗装焼付け工程を含むことを特徴とする。   According to a third aspect of the present invention, there is provided a method for producing an aluminum alloy plate for a can end, the homogenizing heat treatment step of holding the aluminum alloy ingot having the composition according to claim 1 at a temperature of 460 to 540 ° C. for 2 to 24 hours; When hot ingot and hot finish rolling are performed on the ingot subjected to hydrothermal treatment, the hot rough rolling is finished in the temperature range of 460 to 540 ° C and the hot finish rolling is finished in the temperature range of 300 to 370 ° C. Hot rolling step to obtain a recrystallized structure, and cold rolling in a temperature range of room temperature to 180 ° C. and a reduction rate of 70 to 93%, and a cold rolled plate having a thickness of 0.20 to 0.25 mm When the organic resin film is coated and baked on one side or both sides of the cold-rolled plate, the temperature reached by the plate is 230 to 270 ° C. at a heating rate of 10 ° C./s or more after coating. The painting baking process to bake under the conditions And wherein the Mukoto.

請求項4による缶エンド用アルミニウム合金板の製造方法は、請求項3において、前記熱間圧延工程後、または冷間圧延工程の途中に、中間焼鈍を行い、該中間焼鈍を行った後、室温〜180℃の温度範囲で且つ70〜93%の圧下率で冷間圧延して、板厚0.20〜0.25mmの冷間圧延板を得る冷間圧延工程と、該冷間圧延工程後、片面あるいは両面に有機樹脂皮膜を塗装焼付けする際、塗装後10℃/s以上の昇温速度で且つ板の到達温度が230〜270℃となる条件で焼付けする塗装焼付け工程を含むことを特徴とする。   The method for producing an aluminum alloy sheet for can ends according to claim 4 is the method according to claim 3, wherein after the hot rolling step or during the cold rolling step, intermediate annealing is performed, and the intermediate annealing is performed, A cold rolling step in which a cold rolled sheet having a thickness of 0.20 to 0.25 mm is obtained by cold rolling in a temperature range of ˜180 ° C. and a reduction rate of 70% to 93%, and after the cold rolling step In addition, when an organic resin film is coated and baked on one or both surfaces, it includes a coating baking process in which baking is performed at a temperature rising rate of 10 ° C./s or more after coating and at a plate temperature of 230 to 270 ° C. And

本発明によれば、薄肉化しても、バルジ圧に優れ、同時に耐圧が維持され、また塗装焼付け処理後の強度低下が抑制され、且つ薄肉化に伴って問題となる成形性および開口性にも優れたバルジ圧向上缶エンド用アルミニウム合金板およびその製造方法が提供される。   According to the present invention, even if the thickness is reduced, the bulge pressure is excellent, the pressure resistance is maintained at the same time, the strength reduction after the coating baking process is suppressed, and the moldability and openability that become a problem with the thickness reduction are also achieved. An excellent aluminum alloy plate for a bulge pressure improving can end and a method for producing the same are provided.

本発明に係る缶エンド用アルミニウム合金板の合金成分の意義およびその限定理由について説明する。
Mgは、所望されるバルジ圧および耐圧を確保するため、必要な耐力および引張強さを付与するよう機能する重要な添加元素であり、好ましい含有量は4.3〜5.5%の範囲である。4.3%未満ではバルジ圧および耐圧を確保するのに必要な耐力および引張強さを得ることができず、5.5%を超えると、熱間加工性が劣り熱間圧延時に割れが生じ易くなり、生産性を低下させる。
The significance of the alloy components of the aluminum alloy plate for can ends according to the present invention and the reason for limitation thereof will be described.
Mg is an important additive element that functions to provide the necessary proof stress and tensile strength to ensure the desired bulge pressure and pressure resistance, and the preferred content is in the range of 4.3 to 5.5%. is there. If it is less than 4.3%, the proof stress and tensile strength required to secure the bulge pressure and pressure resistance cannot be obtained, and if it exceeds 5.5%, hot workability is inferior and cracking occurs during hot rolling. It becomes easy and decreases productivity.

Mnは、Mgとともに、所望されるバルジ圧および耐圧を確保するため、必要な耐力および引張強さを付与するよう機能する重要な添加元素であるばかりでなく、開口性、リベット成形性などに大きく影響する元素であり、厳密に制御することが必要である。0.35%未満ではバルジ圧および耐圧を確保するのに必要な耐力および引張強さを得ることができないことに加え、缶エンドの飲み口を開口する際に、亀裂の進展経路となるAl−Mn、Al−Mn−Fe、Al−Mn−Si、Al−Mn−Fe−Si系金属間化合物が不足し、缶エンドの開口力が高くなりすぎて、開口部の溝を脱線してしまうこともある。Mn量が0.55%を超えると、上述した金属間化合物が多くなりすぎ、亀裂が容易に伝播してしまうため、製品板の成形性、とくにリベット成形性が著しく低下する。   Mn, together with Mg, is not only an important additive element that functions to provide the necessary proof stress and tensile strength in order to ensure the desired bulge pressure and pressure resistance, but also greatly increases the openability, rivet formability, etc. It is an influential element and must be strictly controlled. If it is less than 0.35%, the proof stress and tensile strength necessary to ensure the bulge pressure and the pressure resistance cannot be obtained, and when opening the mouth end of the can end, Al- Mn, Al-Mn-Fe, Al-Mn-Si, Al-Mn-Fe-Si intermetallic compound is insufficient, the opening force of the can end becomes too high, and the groove of the opening is derailed. There is also. When the amount of Mn exceeds 0.55%, the above-described intermetallic compound increases too much, and cracks easily propagate, so that the formability of the product plate, particularly the rivet formability, is significantly lowered.

SiおよびFeは、リサイクル材使用の観点から不可避的な元素である。Siの好ましい含有量は0.04〜0.3%の範囲であり、0.04%未満では、溶解原料である地金の純度を高めなければならず、コストアップ要因となるばかりか、リサイクル材を用いることができなくなる。Siが0.3%を超えると、晶出物として生じる粗大なMgSiが多くなり、強度に寄与するMg固溶量が減少してしまい、Mg量が少なすぎる場合と同様の問題が生じるほか、MgSiやAl−Mn−Si、Al−Mn−Fe−Si、Al−Fe−Si系金属間化合物が多くなりすぎ、Mn量が多すぎる場合と同様の問題が生じる。 Si and Fe are unavoidable elements from the viewpoint of using recycled materials. The preferable content of Si is in the range of 0.04 to 0.3%. If it is less than 0.04%, the purity of the raw metal that is the melting raw material has to be increased, which not only increases the cost but also recycles. The material cannot be used. When Si exceeds 0.3%, coarse Mg 2 Si generated as a crystallized product increases, and the amount of Mg solid solution that contributes to strength decreases, resulting in the same problem as when the amount of Mg is too small. In addition, Mg 2 Si, Al—Mn—Si, Al—Mn—Fe—Si, and Al—Fe—Si intermetallic compounds become too much, and problems similar to the case where the amount of Mn is too much arise.

Feの好ましい含有量は0.12〜0.4%の範囲であり、0.12%未満では、溶解原料である地金の純度を高めなければならず、Si量が少なすぎる場合と同様の問題が生じる。Fe量が0.4%を超えると、Al−Fe、Al−Mn−Fe、Al−Mn−Fe−Si、Al−Fe−Si系金属間化合物が多くなりすぎ、Mn量が多すぎる場合と同様の問題が生じる。   The preferable content of Fe is in the range of 0.12 to 0.4%, and if it is less than 0.12%, the purity of the bare metal as the melting raw material has to be increased, and the same as when the amount of Si is too small. Problems arise. When the amount of Fe exceeds 0.4%, there are too many Al-Fe, Al-Mn-Fe, Al-Mn-Fe-Si, Al-Fe-Si intermetallic compounds, and too much Mn amount. Similar problems arise.

本発明において、不純物としてのCu、Cr、Zn、Tiはそれぞれ0.10%以下に制限することが必要である。これらの元素がそれぞれ0.10%を超えると、缶エンドのリサイクル性が阻害され望ましくない。また、これら遷移金属元素はMnやFeと同様に金属間化合物を形成するため、Mn量が多すぎる場合と同様の問題が生じ易くなる。   In the present invention, Cu, Cr, Zn, and Ti as impurities must be limited to 0.10% or less, respectively. If each of these elements exceeds 0.10%, the recyclability of the can end is hindered, which is not desirable. Moreover, since these transition metal elements form an intermetallic compound similarly to Mn and Fe, the same problems as when the amount of Mn is too large are likely to occur.

本発明に係る缶エンド用アルミニウム合金板板の厚さは0.20〜0.25mmであることが望ましい。板厚が0.20mm未満では、陽圧用缶エンドに要求される耐圧およびバルジ圧を確保することが困難となる。0.25mmを超えると、従来用いられている缶エンド材と変わらず、コスト低減効果および環境負荷軽減に寄与しない。なお、コスト低減効果および環境負荷軽減を有効にするためには、板厚0.24mm以下がより好ましい。   The thickness of the aluminum alloy plate for can ends according to the present invention is preferably 0.20 to 0.25 mm. When the plate thickness is less than 0.20 mm, it is difficult to ensure the pressure resistance and bulge pressure required for the positive pressure can end. When it exceeds 0.25 mm, it is not different from a conventionally used can end material, and does not contribute to the cost reduction effect and the environmental load reduction. In order to make the cost reduction effect and environmental load reduction effective, a plate thickness of 0.24 mm or less is more preferable.

前記アルミニウム合金板の圧延方向に対して0°、45°、90°方向の引張試験を行ったときの耐力の最小値と、引張強度の最小値の差は30〜65MPaであることが望ましく、3方向の耐力最小値と引張強さの最小値の差が30MPa未満では、素材が塑性変形を開始してから破断するまでの塑性変形量が少なく、成形性に劣る。一方、これらの差が65MPaを超えると、素材が低い歪み量で容易に塑性変形してしまうため、陽圧用缶エンドに要求されるバルジ圧を得ることができない。なお、蓋形状によらず安定してバルジ圧を得るためには、耐力の最小値が315MPa以上であることが望ましい。   The difference between the minimum value of the proof stress and the minimum value of the tensile strength when performing a tensile test in the direction of 0 °, 45 °, and 90 ° with respect to the rolling direction of the aluminum alloy sheet is preferably 30 to 65 MPa, If the difference between the minimum value of the proof stress in three directions and the minimum value of tensile strength is less than 30 MPa, the amount of plastic deformation from when the material starts plastic deformation until it breaks is small, and the formability is poor. On the other hand, if the difference exceeds 65 MPa, the material is easily plastically deformed with a low strain amount, so that the bulge pressure required for the positive pressure can end cannot be obtained. In order to stably obtain the bulge pressure regardless of the lid shape, it is desirable that the minimum value of the proof stress is 315 MPa or more.

本発明の缶エンド用アルミニウム合金板の片面または両面に設けられる有機樹脂皮膜の片面当たりの厚さは1〜20μmであることが望ましく、1μm未満では、缶エンド材に要求されるバリアー性を確保することができず、内容物充填後、皮膜を透過した内容物の成分で金属素材が腐食するおそれがある。一方、20μmを超えると、連続塗装焼付けラインで塗装焼付けする工程で、塗料を塗布したアルミニウム合金板を高温に保持して、焼付けする工程で、高温に長時間保持しなくてはならず、金属素材の回復が進み耐力が低下し過ぎてしまい陽圧用缶エンドに要求されるバルジ圧を得ることができないことに加え、ライン速度を低下せざるを得ず生産性に劣る。   The thickness per one side of the organic resin film provided on one or both sides of the aluminum alloy plate for can ends of the present invention is desirably 1 to 20 μm, and if it is less than 1 μm, the barrier property required for the can end material is ensured. The metal material may corrode with components of the content that has passed through the film after the content has been filled. On the other hand, if the thickness exceeds 20 μm, the coating and baking process must be performed at a continuous coating baking line, the aluminum alloy sheet coated with the paint must be held at a high temperature, and the baking process must be maintained at a high temperature for a long time. In addition to the fact that the recovery of the material progresses and the proof stress is excessively lowered and the bulge pressure required for the positive pressure can end cannot be obtained, the line speed must be lowered and the productivity is inferior.

以下、本発明に係る缶エンド用アルミニウム合金板の製造方法について説明する。
前記の組成を有するアルミニウム合金を、常法に従って、溶解、鋳造し、得られた鋳塊を均質化熱処理する。均質化熱処理は、460〜540℃で2〜24時間行うのが好ましい。均質化熱処理温度が460℃未満では、均質化するまでに長時間要し生産性に劣る。540℃を超えると、鋳造工程で形成された共晶化合物が融解してしまうおそれがある。均質化熱処理時間が2時間未満では、均質化の効果が得難く、24時間を超えると、生産性に劣るばかりでなく、鋳塊表面の酸化が進んで製品板の圧延面に筋状の欠陥が生じ、面質を劣化させるおそれがある。
Hereinafter, the manufacturing method of the aluminum alloy plate for can ends which concerns on this invention is demonstrated.
The aluminum alloy having the above composition is melted and cast according to a conventional method, and the resulting ingot is subjected to homogenization heat treatment. The homogenization heat treatment is preferably performed at 460 to 540 ° C. for 2 to 24 hours. If the homogenization heat treatment temperature is less than 460 ° C., it takes a long time to homogenize and the productivity is poor. When it exceeds 540 degreeC, there exists a possibility that the eutectic compound formed at the casting process may melt | dissolve. If the homogenization heat treatment time is less than 2 hours, it is difficult to obtain the effect of homogenization. If the homogenization heat treatment time exceeds 24 hours, not only is the productivity inferior, but the ingot surface is oxidized and streak defects on the rolled surface of the product plate. May occur and the surface quality may be deteriorated.

均質化熱処理後、熱間粗圧延を行う。熱間粗圧延温度の終了温度は460〜540℃が好ましく、460℃未満では、圧延に必要な荷重が増加し、1パスごとの圧下量を少なくせざるを得ず生産性を損なう。540℃を超えると、共晶化合物の融解に起因する割れが生じるおそれがある。   After the homogenization heat treatment, hot rough rolling is performed. The end temperature of the hot rough rolling temperature is preferably 460 to 540 ° C., and if it is less than 460 ° C., the load required for rolling increases, and the reduction amount per pass must be reduced, thereby impairing productivity. When it exceeds 540 degreeC, there exists a possibility that the crack resulting from melting of a eutectic compound may arise.

熱間粗圧延に続いて熱間仕上げ圧延を行う。熱間仕上げ圧延の終了温度は300〜370℃が好ましく、300℃未満では、熱間圧延終了時点で再結晶組織を得ることができず、強度や面内異方性のばらつきの原因となる。とくに、中間焼鈍せず製品板厚まで冷間圧延する工程で製造する場合には、製造ロット毎の面内異方性のばらつきが顕著となり、製蓋後のリップハイト分布のばらつきが大きくなるばかりか、実質的な冷間加工度が高くなりすぎ、冷間圧延中の耳割れが生じて生産性を阻害し、また製品板の成形性が低下するおそれがある。370℃を超えると、圧延面と圧延ロールの摩擦により酸化皮膜がロールに凝集し、圧延面に筋状の欠陥が生じるおそれがある。   Hot finish rolling is performed following hot rough rolling. The end temperature of hot finish rolling is preferably 300 to 370 ° C. If it is less than 300 ° C, a recrystallized structure cannot be obtained at the end of hot rolling, which causes variations in strength and in-plane anisotropy. In particular, when manufacturing in the process of cold rolling to the product sheet thickness without intermediate annealing, the variation in in-plane anisotropy for each production lot becomes significant, and the variation in lip height distribution after lid making becomes large. However, the substantial cold work degree becomes too high, and there is a possibility that an ear crack occurs during the cold rolling to inhibit the productivity and the formability of the product plate is lowered. If the temperature exceeds 370 ° C., the oxide film aggregates on the roll due to the friction between the rolling surface and the rolling roll, which may cause streak defects on the rolling surface.

その後、冷間圧延を行い、所定の板厚(0.20〜0.25mm)とする。冷間圧延の圧下率は、70〜93%とするのが好ましく、70%未満では、引張強さに対して耐力が低くなりすぎてしまい、陽圧用缶エンド材として要求されるバルジ圧を確保することが困難となる。93%を超えると、加工硬化が進行しすぎて、耐力と引張強さの差が小さくなり、製品板の成形性が低下するおそれがある。   Thereafter, cold rolling is performed to obtain a predetermined plate thickness (0.20 to 0.25 mm). The rolling reduction of cold rolling is preferably 70 to 93%. If it is less than 70%, the yield strength becomes too low for the tensile strength, and the bulge pressure required as a positive pressure can end material is secured. Difficult to do. If it exceeds 93%, work hardening proceeds too much, the difference between the proof stress and the tensile strength becomes small, and the moldability of the product plate may be lowered.

冷間圧延は、室温(20〜25℃)〜180℃の温度範囲で行うのが好ましく、冷間圧延温度が180℃を超えると、冷間圧延中または直後に材料が回復してしまい、製品板に緻密な転位セル組織を形成することが困難となり、その結果耐力が低くなりすぎ、バルジ圧を確保することが困難となる。なお、冷間圧延の前、または冷間圧延の途中で、必要に応じて中間焼鈍を行ってもよい。中間焼鈍を行った場合には、前記冷間圧延の圧下率(70〜93%)は中間焼鈍後の冷間圧延における圧下率である。   Cold rolling is preferably performed in a temperature range of room temperature (20 to 25 ° C.) to 180 ° C. If the cold rolling temperature exceeds 180 ° C., the material recovers during or immediately after the cold rolling, and the product It becomes difficult to form a dense dislocation cell structure on the plate, and as a result, the yield strength becomes too low, and it becomes difficult to secure a bulge pressure. In addition, you may perform intermediate annealing as needed before cold rolling or in the middle of cold rolling. When the intermediate annealing is performed, the cold rolling reduction (70 to 93%) is the rolling reduction in the cold rolling after the intermediate annealing.

冷間圧延されたアルミニウム合金板には、片面または両面に有機樹脂皮膜が塗装され、塗装焼付けが行われる。塗装焼付けにおける板材の到達温度は230〜270℃が好ましく、到達温度までの昇温速度は10℃/s以上とするのが好ましい。   The cold-rolled aluminum alloy sheet is coated with an organic resin film on one or both sides, and is baked. The ultimate temperature of the plate material in painting baking is preferably 230 to 270 ° C., and the rate of temperature rise to the ultimate temperature is preferably 10 ° C./s or more.

塗装焼付け到達温度が230℃未満では、塗料を焼付ける温度が低すぎ、所定の塗膜性能を得ることができない。270℃を超えると、金属素材の回復が進みすぎ、昇温速度が遅すぎる場合と同様の問題が生じる。塗装焼付け昇温速度が10℃/s未満では、高温で保持される時間が長くなるため、冷間圧延で導入された転位密度が回復により低くなりすぎ、その結果、耐力が低くなり、バルジ圧を確保することが困難となる。   If the coating baking temperature is less than 230 ° C., the temperature at which the paint is baked is too low, and a predetermined coating film performance cannot be obtained. When the temperature exceeds 270 ° C., the recovery of the metal material proceeds too much, and the same problem as when the temperature rising rate is too slow occurs. When the coating baking temperature rise rate is less than 10 ° C./s, the time for holding at a high temperature becomes long, so the dislocation density introduced by cold rolling becomes too low due to recovery, resulting in low proof stress and bulge pressure. It becomes difficult to ensure.

以下、本発明の実施例を比較例と対比して説明し、その効果を実証する。なお、これらの実施例は、本発明の一実施態様を示すものであり、本発明はこれらに限定されない。   Examples of the present invention will be described below in comparison with comparative examples to demonstrate the effects. In addition, these Examples show one embodiment of this invention, and this invention is not limited to these.

実施例1、比較例1
表1に示す組成を有するアルミニウム合金を半連続鋳造で造塊し、得られた鋳塊を500℃の温度で4時間均質化熱処理して熱間圧延した。熱間圧延は、熱間粗圧延を470℃で終了し、熱間仕上げ圧延を330℃で終了した。ついで冷間圧延し、連続焼鈍ラインで材料温度が450℃に到達するよう中間焼鈍して再結晶組織を得た。なお、表1において、本発明の条件を外れたものには下線を付した。
Example 1 and Comparative Example 1
An aluminum alloy having the composition shown in Table 1 was ingot-formed by semi-continuous casting, and the resulting ingot was hot-rolled by homogenizing heat treatment at a temperature of 500 ° C. for 4 hours. In the hot rolling, the hot rough rolling was finished at 470 ° C., and the hot finish rolling was finished at 330 ° C. Subsequently, it was cold-rolled and subjected to intermediate annealing so that the material temperature reached 450 ° C. in a continuous annealing line to obtain a recrystallized structure. In Table 1, those outside the conditions of the present invention are underlined.

その後、製品板厚(表1)まで冷間圧延した。冷間圧延は、各パス毎の材料温度が120〜150℃となるよう制御した。また、中間焼鈍後の冷間圧延率が75%となるよう、中間焼鈍時の板厚を調整した。   Then, it cold-rolled to the product board thickness (Table 1). Cold rolling was controlled so that the material temperature for each pass was 120 to 150 ° C. Moreover, the plate | board thickness at the time of intermediate annealing was adjusted so that the cold rolling rate after intermediate annealing might be set to 75%.

冷間圧延板に連続処理ラインで冷間圧延板の両面に水性塗料を塗布し、塗装焼付けは、昇温速度11〜15℃/sの範囲内で加熱し、最高到達温度が250℃となるよう制御して、エポキシ−アクリル−フェノール樹脂を被覆した。   A cold-rolled sheet is coated with water-based paint on both sides of the cold-rolled sheet in a continuous processing line, and coating baking is performed within a temperature increase rate of 11 to 15 ° C / s, and the maximum temperature reached 250 ° C. The epoxy-acrylic-phenolic resin was coated in a controlled manner.

Figure 2010053367
Figure 2010053367

前記樹脂を塗装焼付けしたアルミニウム合金板(製品板)を試験材として、以下の方法により、3方向の引張強さ、耐力、成形性、バルジ圧、耐圧、および開口性(開缶性)を評価した。評価結果を表2に示す。   Using the aluminum alloy plate (product plate) coated and baked with the resin as a test material, the following methods were used to evaluate the tensile strength, yield strength, formability, bulge pressure, pressure resistance, and openability (can openability). did. The evaluation results are shown in Table 2.

3方向の引張強さ、耐力:製品板から樹脂を硫酸脱膜後、標点間距離50mm、平行部幅25mmの引張試験片を成形し、圧延方向に対して0、45、90°方向に引張試験を行い、耐力および引張強さを測定した。このとき、3方向の耐力と引張強さの値のうちの最小値を求め、これらの差を「差」として表示した。
成形性:製蓋途中でリベットに亀裂が生じた場合、成形性を不合格(×)とし、バルジ圧、耐圧測定および開口性評価は実施できず、表2中には(−)を記した。
バルジ圧:製品板から204径のエンドを成形し、缶胴に巻締め後、空圧により10kPa/sの昇圧速度で缶内圧を高め、タブノーズ位置がシームバンド位置に達したときの内圧を測定し、バルジ圧とした。バルジ圧が480kPa以上を合格(○)、480kPa未満は不合格(×)とした。
Tensile strength and proof stress in three directions: After removing the resin from the sulfuric acid film from the product plate, a tensile test piece having a distance between the gauge points of 50 mm and a parallel part width of 25 mm is formed, and the direction is 0, 45, 90 ° with respect to the rolling direction. Tensile tests were performed to measure proof stress and tensile strength. At this time, the minimum value among the values of the proof stress and the tensile strength in the three directions was obtained, and the difference between them was displayed as “difference”.
Formability: When a rivet cracks in the process of making a lid, the formability is determined to be rejected (x), and bulge pressure, pressure resistance measurement and openability evaluation cannot be performed. .
Bulge pressure: After forming a 204-diameter end from the product plate, winding it around the can body, increasing the internal pressure of the can at a pressure increase rate of 10 kPa / s by air pressure, and measuring the internal pressure when the tab nose position reaches the seam band position And bulge pressure. A bulge pressure of 480 kPa or higher was accepted (◯) and less than 480 kPa was rejected (x).

耐圧:バルジ圧と同様に、空圧により25kPa/sの昇圧速度で缶内圧を高め、バックリングしたときの内圧を測定し、540kPa以上を合格(○)、540kPa未満は不合格(×)とした。
開口性:製蓋後、タブを起こし開口させ、開口部の溝に沿って開口したものを合格(○)、溝から脱線したものは不合格(×)とした。
Pressure resistance: Like the bulge pressure, the internal pressure of the can is increased by air pressure at a pressure increase rate of 25 kPa / s, and the internal pressure when buckling is measured. did.
Openness: After making the lid, the tab was raised and opened, and the one opened along the groove in the opening was passed (◯), and the one derailed from the groove was rejected (x).

Figure 2010053367
Figure 2010053367

表2にみられるように、本発明に従う試験材E1〜E6はずれも、3方向の耐力の最小値と引張強さの最小値の差が30〜65MPaの範囲内にあり、良好な成形性、バルジ圧、耐圧、開口性をそなえていた。   As can be seen from Table 2, the test materials E1 to E6 according to the present invention are different from each other in the difference between the minimum value of the proof stress in three directions and the minimum value of the tensile strength in the range of 30 to 65 MPa. It had bulge pressure, pressure resistance and openness.

これに対して、試験材C1はMg量が少ないため、引張強さが低く、耐圧が劣っていた。試験材C2はMn量が少ないため開口性が劣り、試験材C3はMn量が多いため成形性が劣った。試験材C4はSi量が多いため、また試験材C5はFe量が多いため、いずれも成形性が劣った。試験材C6はCu量が多いため、試験材C7はCr量が多いため、試験材C8はZn量が多いため、試験材C9はTi量が多いため、いずれも成形性が劣った。   On the other hand, since the test material C1 had a small amount of Mg, the tensile strength was low and the pressure resistance was inferior. Since the test material C2 has a small amount of Mn, the opening property is inferior, and the test material C3 has a large amount of Mn, so the moldability is poor. Since the test material C4 has a large amount of Si and the test material C5 has a large amount of Fe, all of them have poor moldability. Since the test material C6 has a large amount of Cu, the test material C7 has a large amount of Cr, the test material C8 has a large amount of Zn, and the test material C9 has a large amount of Ti.

実施例2、比較例2
表1のE1の組成を有する鋳塊を使用して、表3に示す条件で製品板を製造し、製品板を試験材として、実施例1と同じ方法で性能評価を行った。評価結果を表4に示す。なお、表3および表4において、本発明の条件を外れたものには下線を付した。
Example 2 and Comparative Example 2
Using the ingot having the composition of E1 in Table 1, a product plate was produced under the conditions shown in Table 3, and performance evaluation was performed in the same manner as in Example 1 using the product plate as a test material. The evaluation results are shown in Table 4. In Tables 3 and 4, those outside the conditions of the present invention are underlined.

Figure 2010053367
Figure 2010053367

Figure 2010053367
Figure 2010053367

表4に示すように、本発明に従う試験材P1〜P3はいずれも、3方向の耐力の最小値と引張強さの最小値の差が30〜65MPaの範囲内にあり、良好な成形性、バルジ圧、耐圧、開口性をそなえていた。   As shown in Table 4, all of the test materials P1 to P3 according to the present invention have a difference between the minimum value of the proof stress in three directions and the minimum value of the tensile strength in the range of 30 to 65 MPa, and good moldability, It had bulge pressure, pressure resistance and openness.

これに対して、試験材Q1は熱間仕上げ圧延の終了温度が低いため、3方向の強度のばらつきが大きく、また3方向の耐力の最小値と引張強さの最小値の差が小さくなるばかりでなく、成形性が劣った。試験材Q2は冷間圧延の圧下率が小さいため、引張強さに対して耐力が低くなり、良好なバルジ圧を得ることができなかった。試験材Q3は冷間圧延の圧下率が大きいため、耐力と引張強さの差が小さくなり、成形性が低下した。試験材Q4は冷間圧延の終了温度が高くなったため、耐力が低くなり、良好なバルジ圧が得られなかった。   On the other hand, since the test material Q1 has a low end temperature of hot finish rolling, the variation in strength in the three directions is large, and the difference between the minimum value of the proof stress and the minimum value of the tensile strength in the three directions is small. Moreover, the moldability was inferior. Since test material Q2 had a low rolling reduction in cold rolling, the yield strength was low with respect to tensile strength, and a good bulge pressure could not be obtained. Since test material Q3 had a large cold rolling reduction, the difference between the proof stress and the tensile strength was reduced, and the formability was lowered. The test material Q4 had a high end temperature for cold rolling, so the yield strength was low, and a good bulge pressure could not be obtained.

試験材Q5は塗装焼付け時の昇温速度が小さいため、耐力が低くなり、良好なバルジ圧が得られなかった。試験材Q6は塗装焼付けの到達温度が高いため、耐力が低くなり、良好なバルジ圧が得られなかった。   Since the test material Q5 had a low temperature increase rate at the time of coating baking, the proof stress was low and a good bulge pressure could not be obtained. Since test material Q6 had a high temperature at which coating baking was performed, the proof stress was low and a good bulge pressure could not be obtained.

Claims (4)

Mg:4.3〜5.5%(質量%、以下同じ)、Mn:0.35〜0.55%、Si:0.04〜0.30%、Fe:0.12〜0.40%を含有し、さらにCu、Cr、Zn、Tiを各々0.10%以下含有し、残部Alおよび不可避的不純物からなる組成を有する板厚0.20〜0.25mmのアルミニウム合金板であって、片面または両面が有機樹脂皮膜で被覆されており、前記アルミニウム合金板の圧延方向に対して0°、45°、90°方向の引張試験を行ったときの耐力の最小値と、引張強さの最小値の差が30〜65MPaであることを特徴とする缶エンド用アルミニウム合金板。 Mg: 4.3-5.5% (mass%, the same shall apply hereinafter), Mn: 0.35-0.55%, Si: 0.04-0.30%, Fe: 0.12-0.40% An aluminum alloy plate having a thickness of 0.20 to 0.25 mm, further comprising Cu, Cr, Zn, Ti each containing 0.10% or less, and the balance consisting of Al and inevitable impurities, One side or both sides are coated with an organic resin film, and the minimum value of the proof stress and the tensile strength when the tensile test is performed in the 0 °, 45 °, and 90 ° directions with respect to the rolling direction of the aluminum alloy plate. The aluminum alloy plate for can ends, wherein the difference between the minimum values is 30 to 65 MPa. 前記有機樹脂皮膜の片面当たりの厚さが1〜20μmであることを特徴とする請求項1記載の缶エンド用アルミニウム合金板。 The aluminum alloy plate for a can end according to claim 1, wherein the thickness per one side of the organic resin film is 1 to 20 µm. 請求項1記載の組成を有するアルミニウム合金鋳塊を、460〜540℃の温度で2〜24時間保持する均質化熱処理工程と、該均質化熱処理を施した鋳塊を熱間粗圧延および熱間仕上げ圧延するに際し、460〜540℃の温度範囲で熱間粗圧延を終了し、300〜370℃の温度範囲で熱間仕上げ圧延を終了して再結晶組織を得る熱間圧延工程と、室温〜180℃の温度範囲で且つ70〜93%の圧下率で冷間圧延して、板厚0.20〜0.25mmの冷間圧延板を得る冷間圧延工程と、該冷間圧延板の片面あるいは両面に有機樹脂皮膜を塗装焼付けする際、塗装後10℃/s以上の昇温速度で且つ板の到達温度が230〜270℃となる条件で焼付けする塗装焼付け工程を含むことを特徴とする缶エンド用アルミニウム合金板の製造方法。 A homogenization heat treatment step of holding the aluminum alloy ingot having the composition according to claim 1 at a temperature of 460 to 540 ° C for 2 to 24 hours, and hot rough rolling and hot rolling of the ingot subjected to the homogenization heat treatment. When performing the finish rolling, the hot rolling step is completed at a temperature range of 460 to 540 ° C, the hot finish rolling is terminated at a temperature range of 300 to 370 ° C, and a recrystallized structure is obtained. A cold rolling step of cold rolling in a temperature range of 180 ° C. and a rolling reduction of 70 to 93% to obtain a cold rolled plate having a thickness of 0.20 to 0.25 mm, and one side of the cold rolled plate Alternatively, when the organic resin film is coated and baked on both sides, it includes a coating baking step of baking at a temperature rising rate of 10 ° C./s or more after coating and a temperature at which the plate reaches 230 to 270 ° C. Manufacturing method of aluminum alloy plate for can end . 前記熱間圧延工程後、または冷間圧延工程の途中に、中間焼鈍を行い、該中間焼鈍を行った後、室温〜180℃の温度範囲で且つ70〜93%の圧下率で冷間圧延して、板厚0.20〜0.25mmの冷間圧延板を得る冷間圧延工程と、該冷間圧延工程後、片面あるいは両面に有機樹脂皮膜を塗装焼付けする際、塗装後10℃/s以上の昇温速度で且つ板の到達温度が230〜270℃となる条件で焼付けする塗装焼付け工程を含むことを特徴とする請求項3記載の缶エンド用アルミニウム合金板の製造方法。 After the hot rolling step or in the middle of the cold rolling step, intermediate annealing is performed, and after the intermediate annealing is performed, cold rolling is performed at a temperature range of room temperature to 180 ° C. and a reduction rate of 70 to 93%. Then, a cold rolling step for obtaining a cold rolled plate having a thickness of 0.20 to 0.25 mm, and after the cold rolling step, when the organic resin film is coated and baked on one side or both sides, 10 ° C./s after coating 4. The method for producing an aluminum alloy plate for can ends according to claim 3, further comprising a paint baking step in which baking is performed under the above-described temperature rise rate and a condition that the temperature reached by the plate is 230 to 270 ° C.
JP2008216148A 2008-08-26 2008-08-26 Aluminum alloy sheet for can end, and method for manufacturing the same Pending JP2010053367A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008216148A JP2010053367A (en) 2008-08-26 2008-08-26 Aluminum alloy sheet for can end, and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008216148A JP2010053367A (en) 2008-08-26 2008-08-26 Aluminum alloy sheet for can end, and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2010053367A true JP2010053367A (en) 2010-03-11

Family

ID=42069592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008216148A Pending JP2010053367A (en) 2008-08-26 2008-08-26 Aluminum alloy sheet for can end, and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2010053367A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012070391A1 (en) * 2010-11-26 2012-05-31 住友軽金属工業株式会社 Coated aluminum alloy sheet for pressurized-can lid and process for producing same
CN104451284A (en) * 2014-11-28 2015-03-25 河南万达铝业有限公司 5182-H48 aluminum alloy strip for zip-top can cover and production method of 5182-H48 aluminum alloy strip
CN105658827A (en) * 2013-10-30 2016-06-08 株式会社Uacj Aluminum alloy plate for can ends, and method for manufacturing same
JP2017008388A (en) * 2015-06-24 2017-01-12 株式会社神戸製鋼所 Aluminum alloy sheet for can top
CN106795594A (en) * 2014-10-20 2017-05-31 株式会社神户制钢所 Cover aluminium alloy plate
JP2018521220A (en) * 2015-06-05 2018-08-02 ノベリス・インコーポレイテッドNovelis Inc. High strength 5XXX aluminum alloy and method of making the same
WO2019232374A1 (en) * 2018-06-01 2019-12-05 Novelis Inc. Low gauge, levelled can body stock and methods of making the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58224141A (en) * 1982-06-21 1983-12-26 Sumitomo Light Metal Ind Ltd Cold roller aluminum alloy plate for forming and its manufacture
JPH07197173A (en) * 1993-12-29 1995-08-01 Kobe Steel Ltd Aluminum alloy hardened sheet for forming work and its production
JPH09256097A (en) * 1996-03-22 1997-09-30 Furukawa Electric Co Ltd:The Baking-finished aluminium alloy sheet for can end and its production
JPH1112676A (en) * 1997-06-23 1999-01-19 Furukawa Electric Co Ltd:The Hard aluminum alloy sheet for forming, can lid using the hard sheet, and production of the hard sheet
JP2004183045A (en) * 2002-12-03 2004-07-02 Furukawa Sky Kk Aluminum alloy sheet for coated tab, and its production method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58224141A (en) * 1982-06-21 1983-12-26 Sumitomo Light Metal Ind Ltd Cold roller aluminum alloy plate for forming and its manufacture
JPH07197173A (en) * 1993-12-29 1995-08-01 Kobe Steel Ltd Aluminum alloy hardened sheet for forming work and its production
JPH09256097A (en) * 1996-03-22 1997-09-30 Furukawa Electric Co Ltd:The Baking-finished aluminium alloy sheet for can end and its production
JPH1112676A (en) * 1997-06-23 1999-01-19 Furukawa Electric Co Ltd:The Hard aluminum alloy sheet for forming, can lid using the hard sheet, and production of the hard sheet
JP2004183045A (en) * 2002-12-03 2004-07-02 Furukawa Sky Kk Aluminum alloy sheet for coated tab, and its production method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012070391A1 (en) * 2010-11-26 2012-05-31 住友軽金属工業株式会社 Coated aluminum alloy sheet for pressurized-can lid and process for producing same
JP2012112007A (en) * 2010-11-26 2012-06-14 Sumitomo Light Metal Ind Ltd Aluminum alloy coated sheet for positive pressure can lid, and method for producing the same
CN105658827A (en) * 2013-10-30 2016-06-08 株式会社Uacj Aluminum alloy plate for can ends, and method for manufacturing same
CN105658827B (en) * 2013-10-30 2017-11-21 株式会社Uacj Cover aluminium alloy plate and its manufacture method
CN106795594A (en) * 2014-10-20 2017-05-31 株式会社神户制钢所 Cover aluminium alloy plate
CN104451284A (en) * 2014-11-28 2015-03-25 河南万达铝业有限公司 5182-H48 aluminum alloy strip for zip-top can cover and production method of 5182-H48 aluminum alloy strip
CN104451284B (en) * 2014-11-28 2017-08-18 河南万达铝业有限公司 The H48 aluminium alloy strips of pop can cover 5182 and its production method
JP2018521220A (en) * 2015-06-05 2018-08-02 ノベリス・インコーポレイテッドNovelis Inc. High strength 5XXX aluminum alloy and method of making the same
EP3303649B1 (en) * 2015-06-05 2023-09-13 Novelis, Inc. An automotive body part comprising an aluminium alloy and a method for producing the automotive body part
JP2017008388A (en) * 2015-06-24 2017-01-12 株式会社神戸製鋼所 Aluminum alloy sheet for can top
WO2019232374A1 (en) * 2018-06-01 2019-12-05 Novelis Inc. Low gauge, levelled can body stock and methods of making the same

Similar Documents

Publication Publication Date Title
JP2010053367A (en) Aluminum alloy sheet for can end, and method for manufacturing the same
JP6210896B2 (en) Aluminum alloy plate for can lid and manufacturing method thereof
JP2012188703A (en) Aluminum-alloy sheet for resin coated can body, and method for producing the same
JP5675447B2 (en) Aluminum alloy plate for resin-coated can body and manufacturing method thereof
JP5898426B2 (en) Aluminum alloy plate for negative pressure can lid and manufacturing method thereof
JP2009221567A (en) Aluminum alloy sheet for positive pressure coated can lid, and method for producing the same
JP5356359B2 (en) Aluminum alloy coated plate for positive pressure can lid and manufacturing method thereof
JP5961839B2 (en) Aluminum alloy plate for can body and manufacturing method thereof
JP5670215B2 (en) Aluminum alloy plate for can body and manufacturing method thereof
JP2007277694A (en) Painted aluminum-alloy sheet for lid of positive pressure can, and manufacturing method therefor
JP2007023340A (en) Aluminum alloy sheet for positive-pressure can top, and method for producing the same
JP2016141886A (en) Aluminum alloy sheet for can top
JP5391234B2 (en) Aluminum alloy plate for PP cap
JP2001073058A (en) Aluminum alloy sheet for can end excellent in blowup resistance and its production
JP5113411B2 (en) Aluminum alloy plate for packaging container and method for producing the same
JP2016041852A (en) Aluminum alloy sheet for can barrel
JP4771726B2 (en) Aluminum alloy plate for beverage can body and manufacturing method thereof
JP5480688B2 (en) Aluminum alloy plate for PP cap and method for producing the same
KR101975129B1 (en) Steel sheet for crown cap, manufacturing method therefor, and crown cap
JP6435268B2 (en) Aluminum alloy plate for can end and manufacturing method thereof
WO2019066049A1 (en) Aluminium alloy plate for can end and production method therefor
JP4995494B2 (en) High-strength aluminum alloy plate for wide-mouth bottle can cap and method for producing the same
JPH09256097A (en) Baking-finished aluminium alloy sheet for can end and its production
JP2005226120A (en) Aluminum alloy sheet for end of packaging container, and manufacturing method therefor
JP6468405B1 (en) Steel plate and manufacturing method thereof, crown and DRD can

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20110610

Free format text: JAPANESE INTERMEDIATE CODE: A621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130130

A131 Notification of reasons for refusal

Effective date: 20130205

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130606