JP5670215B2 - Aluminum alloy plate for can body and manufacturing method thereof - Google Patents

Aluminum alloy plate for can body and manufacturing method thereof Download PDF

Info

Publication number
JP5670215B2
JP5670215B2 JP2011029695A JP2011029695A JP5670215B2 JP 5670215 B2 JP5670215 B2 JP 5670215B2 JP 2011029695 A JP2011029695 A JP 2011029695A JP 2011029695 A JP2011029695 A JP 2011029695A JP 5670215 B2 JP5670215 B2 JP 5670215B2
Authority
JP
Japan
Prior art keywords
aluminum alloy
rolling
hot
strength
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011029695A
Other languages
Japanese (ja)
Other versions
JP2012167333A (en
Inventor
横井 洋
洋 横井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UACJ Corp
Original Assignee
UACJ Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UACJ Corp filed Critical UACJ Corp
Priority to JP2011029695A priority Critical patent/JP5670215B2/en
Publication of JP2012167333A publication Critical patent/JP2012167333A/en
Application granted granted Critical
Publication of JP5670215B2 publication Critical patent/JP5670215B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Rigid Containers With Two Or More Constituent Elements (AREA)

Description

本発明は、缶ボディ用アルミニウム合金板、詳しくは、薄肉とした場合でも高強度が得られ、絞り加工またはDI加工(絞り、しごき加工)により缶ボディに成形し塗装焼付けあるいは熱処理した場合においても缶体強度を高く保持できる缶ボディ用アルミニウム合金板、およびその製造方法に関する。   The present invention provides an aluminum alloy plate for a can body, and more specifically, even when it is thin, high strength can be obtained, and even when it is formed into a can body by drawing or DI processing (drawing, ironing), and then subjected to paint baking or heat treatment. The present invention relates to an aluminum alloy plate for can bodies that can maintain high can body strength, and a method for producing the same.

アルミニウム合金板からなる飲料缶の缶ボディは、板材に塗油を施し、カップ成形、DI加工、トリミング、洗浄、乾燥、塗装、焼付け、ネッキングおよびフランジ加工の工程を経て製造される。缶体重量の軽減は、輸送コスト低減のみならず、環境保全のためにも有効であり、そのためには素材の薄肉化が必要である。しかしながら単純に薄肉化した場合、缶体強度が低下するため、缶体の座屈や、缶体の運搬、取扱い過程で、とくに薄肉の缶壁部が突起物に押し当てられると、缶壁部に凹みが生じ、あるいは突起物の先端が缶壁部を突き刺し、貫通して、内容物が漏洩するという問題が生じる。   The can body of a beverage can made of an aluminum alloy plate is manufactured through a process of cup forming, DI processing, trimming, cleaning, drying, painting, baking, necking, and flange processing by applying oil to the plate material. Reduction of the weight of the can body is effective not only for reducing transportation costs but also for environmental conservation. For this purpose, it is necessary to reduce the thickness of the material. However, if the thickness of the can is simply reduced, the strength of the can body will decrease, so if the thin wall of the can is pressed against the projection during buckling of the can, transporting or handling the can, the can wall There arises a problem that a dent is formed on the surface, or that the tip of the protrusion pierces and penetrates the can wall portion and the content leaks.

上記の問題を解決するためには、素材である缶ボディ用アルミニウム合金板を従来の厚さ0.3mmからさらに薄肉にするとともに、高強度化することが必要であり、絞り加工またはDI加工(絞り、しごき加工)により缶ボディに成形し、塗装焼付けあるいは熱処理した場合においても缶体強度を高く保持できるようにする必要がある。   In order to solve the above problems, it is necessary to make the aluminum alloy plate for can bodies, which is a raw material, thinner than the conventional thickness of 0.3 mm and to increase the strength, and drawing processing or DI processing ( It is necessary to keep the strength of the can body high even when it is molded into a can body by drawing and ironing processing, and paint baking or heat treatment.

従来、缶ボディ用アルミニウム合金としては、Al−Mn系アルミニウム合金に、主要合金成分としてMgを添加し強度を向上させたアルミニウム合金が提案されている。Mgの添加は、耐圧強度の必要な5182合金に代表される缶エンド材と、成形性が要求される缶ボディ材を、とくにリサイクルの観点から同じ成分で得ようとする材質統合化の流れにも対応し得るものであり、種々のMg含有量を有する缶ボディ用アルミニウム合金が提案されている(特許文献1〜10参照)。   Conventionally, as an aluminum alloy for a can body, an aluminum alloy in which strength is improved by adding Mg as a main alloy component to an Al—Mn based aluminum alloy has been proposed. The addition of Mg is due to the trend toward material integration that seeks to obtain can end materials represented by 5182 alloy, which requires pressure strength, and can body materials that require formability, with the same components from the viewpoint of recycling. Have been proposed, and aluminum alloys for can bodies having various Mg contents have been proposed (see Patent Documents 1 to 10).

しかしながら、上記のアルミニウム合金は、Mg含有量が1%程度の従来の缶ボディ用アルミニウム合金であるJIS3004合金(Al−1.0〜1.5%Mn−0.8〜1.3%Mg)、3104合金(Al−0.8〜1.4%Mn−0.8〜1.3%Mg)あるいはAA3204合金(Al−0.8〜1.5%Mn−0.8〜1.5%Mg)に比べて、強度の向上は得られるが、薄肉化したときのDI成形および絞り加工時の成形性と缶体強度の両立に関しては、満足すべきものは得られていない。   However, the above aluminum alloy is a JIS 3004 alloy (Al-1.0 to 1.5% Mn-0.8 to 1.3% Mg), which is a conventional aluminum alloy for can bodies having a Mg content of about 1%. 3104 alloy (Al-0.8 to 1.4% Mn-0.8 to 1.3% Mg) or AA3204 alloy (Al-0.8 to 1.5% Mn-0.8 to 1.5%) Although an improvement in strength is obtained as compared with Mg), satisfactory results are not obtained with respect to the compatibility of the moldability and can strength at the time of DI molding and drawing when the thickness is reduced.

また、缶体の流通過程において、缶胴部に異物が接触したり衝突したり、あるいは缶胴部間に異物が挟まったりすることに起因して、缶壁にピンホールと呼ばれる微小な孔状の欠陥が生じ、内容物が漏れるという問題もあり、この問題を解消するものとして、ピンホール性に優れた缶用アルミニウム合金板が提案されており(特許文献11参照)、また、缶壁のピンホール評価として用いられる突き刺し強度を高めたアルミニウム合金板も提案されているが(特許文献12参照)、これらのアルミニウム合金板も缶体の素材として必ずしも十分なものではない。   Also, in the distribution process of the can body, due to foreign matter coming into contact with or colliding with the can body part, or foreign matter being caught between the can body parts, a minute hole shape called pinhole on the can wall In order to solve this problem, an aluminum alloy plate for cans excellent in pinhole properties has been proposed (see Patent Document 11), and Aluminum alloy plates with increased piercing strength used for pinhole evaluation have also been proposed (see Patent Document 12), but these aluminum alloy plates are not necessarily sufficient as a material for cans.

特開昭58−224145号公報JP 58-224145 A 特開昭61−261466号公報JP-A-61-261466 特開昭57−120648号公報Japanese Patent Laid-Open No. 57-120648 特開平5−112854号公報Japanese Patent Laid-Open No. 5-112854 特開平3−207840号公報Japanese Patent Laid-Open No. 3-207840 特開平4−362151号公報JP-A-4-362151 特開2000−309838公報JP 2000-309838 A 特開2000−309839号公報JP 2000-309839 A 特開2001−3130号公報Japanese Patent Laid-Open No. 2001-3130 特開2001−32032号公報JP 2001-32032 A 特開2007−197817号公報JP 2007-197817 A 特開2006−77296号公報JP 2006-77296 A

本発明は、3000系(Al−Mn系)アルミニウム合金をベースとする缶ボディ用アルミニウム合金板において、上記従来の難点を解消するためになされたものであり、その目的は、0.23〜0.27mmの薄肉とした場合でも、高強度が得られ、高成形性および所定の缶体強度をそなえた缶ボディ用アルミニウム合金板、およびその製造方法を提供することにある。   The present invention has been made in order to eliminate the above-mentioned conventional problems in a can body aluminum alloy plate based on a 3000 series (Al-Mn series) aluminum alloy. An object of the present invention is to provide an aluminum alloy plate for a can body that has high strength, has high formability and has a predetermined can body strength, and a method for producing the same even when the thickness is .27 mm.

上記の目的を達成するための請求項1による缶ボディ用アルミニウム合金板は、Mn:1.1〜1.3%、Mg:1.2〜1.5%、Cu:0.15〜0.3%、Fe:0.28〜0.4%、Si:0.1〜0.3%を含有し、(Mn%/Fe%):3.0〜4.0、(Mg%/Mn%)>1.0、(Mn%+Mg%+Cu%):2.6〜3.1の関係を満足し、残部アルミニウムおよび不可避的不純物からなる板厚が0.23〜0.27mmの冷間圧延板であり、該冷間圧延板について、45°方向の耳率が2.5〜3.5%、(45°方向の耳率)>(0−180°方向の耳率)の関係を有し、205℃で10分間の空焼きを行った後の耐力が280〜320MPa、該空焼き前後の引張強さおよび耐力の差がいずれも15MPa以上であることを特徴とする。なお、以下の説明において、合金成分値はすべて質量%で示す。 In order to achieve the above object, the aluminum alloy sheet for can bodies according to claim 1 has Mn: 1.1 to 1.3%, Mg: 1.2 to 1.5%, Cu: 0.15 to 0.00. 3%, Fe: 0.28 to 0.4%, Si: 0.1 to 0.3%, (Mn% / Fe%): 3.0 to 4.0, (Mg% / Mn%) )> 1.0, (Mn% + Mg% + Cu%): Cold rolling satisfying the relationship of 2.6 to 3.1 and having a sheet thickness of 0.23 to 0.27 mm consisting of the remaining aluminum and unavoidable impurities The 45% direction ear rate is 2.5 to 3.5%, (45 ° direction ear rate)> (0-180 ° direction ear rate). The yield strength after baking at 205 ° C. for 10 minutes is 280 to 320 MPa, and the difference in tensile strength and yield strength before and after baking is 15 MPa or more. It is characterized by being. In the following description, all alloy component values are indicated by mass%.

請求項2による缶ボディ用アルミニウム合金板は、請求項1において、前記冷間圧延板を缶ボディに成形する前に樹脂層が被覆されてなることを特徴とする。   An aluminum alloy plate for a can body according to claim 2 is characterized in that, in claim 1, a resin layer is coated before the cold-rolled plate is formed into a can body.

請求項3による缶ボディ用アルミニウム合金板の製造方法は、請求項1記載の缶ボディ用アルミニウム合金板を製造する方法であって、請求項1記載の組成を有するアルミニウム合金の鋳塊を、均質化処理後、熱間粗圧延と熱間仕上げ圧延からなる熱間圧延を行い、該熱間粗圧延は熱間粗圧延スタンドにおいて、開始温度を500〜540℃、終了温度を430〜480℃として、板厚15〜30mmまで圧延し、熱間粗圧延終了後の圧延材を熱間仕上げ圧延スタンドに移行して、終了温度を310〜350℃とする熱間仕上げ圧延を行い、その後、冷間圧延を行って板厚0.23〜0.27mmとすることを特徴とする。   A method for producing an aluminum alloy plate for a can body according to claim 3 is a method for producing an aluminum alloy plate for a can body according to claim 1, wherein the ingot of the aluminum alloy having the composition according to claim 1 is homogeneously produced. After the heat treatment, hot rolling comprising hot rough rolling and hot finish rolling is performed, and the hot rough rolling is performed in a hot rough rolling stand with a start temperature of 500 to 540 ° C. and an end temperature of 430 to 480 ° C. , Rolled to a thickness of 15 to 30 mm, the rolled material after the hot rough rolling was transferred to a hot finish rolling stand, and hot finish rolling was performed at an end temperature of 310 to 350 ° C., followed by cold Rolling is performed to obtain a sheet thickness of 0.23 to 0.27 mm.

請求項4による缶ボディ用アルミニウム合金板の製造方法は、請求項3において、前記冷間圧延に先立ち中間焼鈍を行うことを特徴とする。   The method for producing an aluminum alloy sheet for a can body according to claim 4 is characterized in that in claim 3, intermediate annealing is performed prior to the cold rolling.

本発明によれば、板厚を0.23〜0.27mmに薄肉化した場合でも高強度が得られ、絞り加工またはDI加工により缶ボディに成形し塗装焼付けあるいは熱処理した場合においても、缶体強度を高く保持できる缶ボディ用アルミニウム合金板およびその製造方法が提供される。   According to the present invention, even when the plate thickness is reduced to 0.23 to 0.27 mm, high strength can be obtained. Even when the can body is formed by drawing or DI processing and then painted or baked or heat-treated, the can body Provided are an aluminum alloy plate for a can body that can maintain high strength and a method for producing the same.

実施例において、ボトムしわ最大高さを測定するために用いられる缶状体の底部を示す図で、詳しくは、アルミニウム合金板のDI加工の途中の再絞り加工工程で得られた缶状体の底部を示す図である。In an Example, it is a figure which shows the bottom part of the can-like body used in order to measure bottom wrinkle maximum height, and in detail, the can-like body obtained by the redrawing process in the middle of DI processing of an aluminum alloy plate It is a figure which shows a bottom part.

本発明の缶ボディ用アルミニウム合金板における合金成分の意義および限定理由は以下のとおりである。
Mnは、成形される缶ボディの強度を付加的に向上させ、さらに、Al−Mn−Fe−(Si)系金属間化合物を分散させて、しごき加工時の金型への焼付きを防止し、しごき加工性を向上させるよう機能する。好ましい含有量は1.1〜1.3%の範囲であり、1.1%未満では強度向上効果が得られず、1.3%を超えると、Fe量にもよるが、Al(Mn、Fe)の粗大な晶出物が発生し、しごき加工時に破胴が生じ易くなる。また樹脂被覆板の場合は、上記の粗大な晶出物により樹脂が損傷して缶体の耐腐食性悪化、フランジ加工性や巻き締め時の割れなどが発生し易くなる。さらに、Al−Mn−Si系金属間化合物が大きくなり量も増加するため、突き刺し試験時の亀裂の伝播経路となり望ましくない。このAl−Mn−Si系金属間化合物は2μm以下が好ましい。
The significance and reasons for limitation of the alloy components in the aluminum alloy sheet for can bodies of the present invention are as follows.
Mn additionally improves the strength of the molded can body, and further disperses the Al-Mn-Fe- (Si) intermetallic compound to prevent seizure on the mold during ironing. It functions to improve ironing processability. The preferred content is in the range of 1.1 to 1.3%. If the content is less than 1.1%, the effect of improving the strength cannot be obtained. If the content exceeds 1.3%, depending on the amount of Fe, Al 6 (Mn , Fe) coarse crystallized products are generated, and breakage is likely to occur during ironing. In the case of a resin-coated plate, the resin is damaged by the coarse crystallized material, and the corrosion resistance of the can body is deteriorated, and the flange workability and cracking at the time of winding are likely to occur. Furthermore, since the Al—Mn—Si intermetallic compound increases and the amount increases, it becomes an undesirable propagation path for cracks during the piercing test. The Al—Mn—Si intermetallic compound is preferably 2 μm or less.

Mgは、成形される缶ボディの強度を高めるよう機能するが、1.5%を超えると、耳率の制御が困難となり、また均質化処理時にMgの酸化が促進され、板面品質が低下する。 Mg functions to increase the strength of the molded can body, but if it exceeds 1.5%, it becomes difficult to control the ear rate, and oxidation of Mg is promoted during the homogenization process, resulting in a reduction in plate surface quality. To do.

Cuは、Mgと共に、固溶したり、Al-Mg-Cu系化合物を形成して、成形される缶ボディの強度を付加的に向上させ、また塗装焼き付けなどの加熱による軟化を抑制するよう機能する。好ましい含有量は0.15〜0.3%の範囲であり、0.15%未満では強度向上効果が得られず、0.3%を超えて含有すると加工硬化が大きく成りすぎて成形性が低下し、また耐食性が低下する等の弊害が生じる。   Cu, together with Mg, forms a solid solution or forms an Al-Mg-Cu compound to further improve the strength of the molded can body and to suppress softening due to heating such as paint baking To do. The preferred content is in the range of 0.15 to 0.3%, and if it is less than 0.15%, the effect of improving the strength cannot be obtained, and if it exceeds 0.3%, the work hardening becomes too large and the formability is too high. Deterioration such as lowering and corrosion resistance occurs.

Feは、不純物として不可避的に含有されるものであるが、本発明においては、Mnにより強度を付与するため、Feが0.4%を超えると、粗大なAl(Mn、Fe)化合物や、均質化処理で変態して生成するAl−Mn−Fe−Si系金属間化合物が大きくなり量も増加するため、成形性や突き刺し強度の低下を招く。このAl−Mn−Fe−(Si)系金属間化合物は小さい方が好ましい。 Although Fe is inevitably contained as an impurity , in the present invention, since strength is imparted by Mn, when Fe exceeds 0.4%, a coarse Al 6 (Mn, Fe) compound or Since the Al—Mn—Fe—Si intermetallic compound produced by transformation in the homogenization treatment is increased and the amount thereof is increased, the moldability and the piercing strength are lowered. The smaller the Al—Mn—Fe— (Si) -based intermetallic compound is preferable.

Siは、不純物として不可避的に含まれるものであり、好ましい含有量は0.1〜0.3%の範囲である。0.1%未満では、材料の製造において99.9%以上の純度の地金の使用が多くなり、再生材を多く使用する缶ボディ材としてはリサイクルの観点から好ましくない。0.3%を超えると、Al-Mn-Si系金属間化合物や粗大なMgSi金属間化合物が生成し、強度向上の妨げとなる。また、突き刺し試験時の割れの伝播経路と成り、突き刺し強度向上の妨げとなる。 Si is inevitably contained as an impurity, and the preferred content is in the range of 0.1 to 0.3%. If it is less than 0.1%, the use of a metal having a purity of 99.9% or more in the production of the material increases, and it is not preferable from the viewpoint of recycling as a can body material using a large amount of recycled material. If it exceeds 0.3%, an Al—Mn—Si intermetallic compound or a coarse Mg 2 Si intermetallic compound is produced, which hinders strength improvement. Moreover, it becomes a propagation path of the crack at the time of the piercing test, and hinders the piercing strength.

Mn含有量とFe含有量との比(Mn%/Fe%)は、Al−Mn−Fe系化合物の生成に影響し、空焼き後の耐力、45°方向の耳と0−180°方向の耳のバランス、缶体に成形した後の耐圧、突き刺し強度およびフランジ成形性に影響を与える。本発明において、(Mn%/Fe%)の好ましい範囲は3.0〜4.0である。   The ratio of Mn content to Fe content (Mn% / Fe%) affects the formation of Al-Mn-Fe compounds, yield strength after baking, 45 ° ears and 0-180 ° direction It affects the balance of the ear, the pressure resistance after being formed into a can body, the piercing strength and the flange formability. In the present invention, a preferable range of (Mn% / Fe%) is 3.0 to 4.0.

(Mn%/Fe%)が3.0未満では、空焼き後の耐力が280MPaを下回る傾向にあり、0−180°耳が45°耳より大きくなり、カッピングの際のカップ端部のしわを誘発し、DI成形時に缶壁が割れ易くなり、また、フランジ成形時にフランジ部が割れ易くなる。また、缶体の耐圧が600kPaを下回り、突き刺し強度も40N未満になる傾向にある。(Mn%/Fe%)が4.0を超えると、空焼き後の耐力が320MPaを超える傾向にあり、延性不足により、ネック成形性が低下し、また、フランジ成形時にフランジ部が割れ易くなる。   When (Mn% / Fe%) is less than 3.0, the yield strength after baking is less than 280 MPa, and the 0-180 ° ear is larger than the 45 ° ear, which induces wrinkles at the end of the cup during cupping. In addition, the can wall is easily cracked during DI molding, and the flange portion is easily cracked during flange molding. Further, the pressure resistance of the can body is less than 600 kPa, and the piercing strength tends to be less than 40N. When (Mn% / Fe%) exceeds 4.0, the yield strength after baking is likely to exceed 320 MPa. Due to insufficient ductility, neck formability is reduced, and the flange portion is easily cracked during flange molding. .

Mg含有量とMn含有量の比(Mg%/Mn%)は、空焼き前後の強度差に影響する。本発明において、(Mg%/Mn%)の好ましい範囲は1.0を超える範囲である。(Mg%/Mn%)の値が1.0を超えると、Mg添加による均一変形性能向上によりボトムしわの発生を抑制し、また、DI成形性を向上させる効果がある。また、Mgによる加工硬化能の向上により元板強度が増加し、その後の空焼きでの回復量が多くなるため、空焼き前後の引張強さ及び耐力の差が15MPa以上となる傾向にあり、絞り加工時のしわ低減、およびフランジ成形性を向上させる効果がある。(Mg%/Mn%)が1.0以下では、ボトムしわが発生し易く、さらに空焼き前後の引張強さ及び耐力の差は15MPa未満となる傾向にあるため、DI成形時に缶胴が割れ易くなり、フランジ成形時にフランジ部が割れ易くなる。   The ratio of Mg content to Mn content (Mg% / Mn%) affects the strength difference before and after baking. In the present invention, the preferred range of (Mg% / Mn%) is a range exceeding 1.0. When the value of (Mg% / Mn%) exceeds 1.0, the generation of bottom wrinkles is suppressed by improving the uniform deformation performance by adding Mg, and the DI moldability is improved. Further, the strength of the base plate increases due to the improvement of work hardening ability by Mg, and the amount of recovery in subsequent baking is increased, so the difference in tensile strength and proof stress before and after baking tends to be 15 MPa or more, It has the effect of reducing wrinkles during drawing and improving flange formability. When (Mg% / Mn%) is 1.0 or less, bottom wrinkles are likely to occur, and the difference in tensile strength and proof stress before and after baking is likely to be less than 15 MPa. It becomes easy and a flange part becomes easy to break at the time of flange molding.

Mn含有量とMg含有量とCu含有量の総和、(Mn%+Mg%+Cu%)は、空焼き後の耐力あるいは空焼き前後の強度差に影響する。本発明において、(Mn%+Mg%+Cu%)の好ましい範囲は2.6〜3.1であり、(Mn%+Mg%+Cu%)が2.6未満では、空焼き後の耐力が280MPa未満となる傾向にあり、缶体に成形した後の耐圧や突き刺し強度が不足する。3.1を超えると、空焼き後の耐力が320MPa超えとなる傾向にあり、延性不足により、フランジ成形時にフランジ部が割れ易くなる。   The total of Mn content, Mg content and Cu content, (Mn% + Mg% + Cu%), affects the yield strength after baking or the strength difference before and after baking. In the present invention, the preferable range of (Mn% + Mg% + Cu%) is 2.6 to 3.1. When (Mn% + Mg% + Cu%) is less than 2.6, the yield strength after baking is less than 280 MPa. The pressure resistance and piercing strength after forming into a can body are insufficient. If it exceeds 3.1, the yield strength after baking is likely to exceed 320 MPa, and the flange portion is liable to break during flange molding due to insufficient ductility.

本発明のアルミニウム合金板においては、45°方向の耳率が2.5〜3.5%であり、(45°方向の耳率)>(0−180°方向の耳率)の関係を有することが重要である。45°方向の耳率が2.5%未満では、相対的に0−180°の耳率が大きくなり好ましくない。45°方向の耳率が3.5%を超えると、カップ成形やDI加工後に耳高の部分が搬送などで引っ掛かり、また、DI加工後の耳高さのバラツキがその後のトリミングで除去されず、巻き締めに重要なフランジ幅の低下を招く。(45°方向の耳率)≦(0−180°方向の耳率)の関係では、カップ成形時の最終にその2箇所が強く引っ張られるため、耳ちぎれとなり、DI加工時の割れにつながる。45°は4方向あるため、4点で支えられ、耳ちぎれが起こり難い。   In the aluminum alloy plate of the present invention, the ear rate in the 45 ° direction is 2.5 to 3.5%, and the relationship is (the ear rate in the 45 ° direction)> (the ear rate in the 0-180 ° direction). This is very important. If the ear rate in the 45 ° direction is less than 2.5%, the ear rate of 0 to 180 ° is relatively large, which is not preferable. If the ear rate in the 45 ° direction exceeds 3.5%, the ear height will be caught by transport after cup molding or DI processing, and the variation in ear height after DI processing will not be removed by subsequent trimming. The flange width, which is important for tightening, is reduced. In the relationship of (the ear rate in the 45 ° direction) ≦ (the ear rate in the 0-180 ° direction), since the two places are pulled strongly at the end of the cup molding, the ears are torn and lead to cracks in the DI processing. Since there are four directions at 45 °, it is supported at four points, and ear tears are unlikely to occur.

また、本発明のアルミニウム合金板においては、205℃で10分間の空焼きを行った後、耐力は280〜320MPaの耐力をそなえていることが望ましく、空焼き前後の引張強さおよび耐力の差がいずれも15MPa以上であることが重要である。本発明によるアルミニウム合金板は、上記のように、空焼き後の耐力が高いことを特徴とするため、ネック成形性やフランジ成形性の保持に注意が必要である。上記空焼き前後の引張強さおよび耐力の差のいずれかが15MPa未満では、缶壁部が回復しないため、ネック成形(絞り成形)時に座屈し易く、また、フランジ割れが生じ易くなる。   Moreover, in the aluminum alloy plate of the present invention, it is desirable that the proof stress is 280 to 320 MPa after air baking at 205 ° C. for 10 minutes, and the difference in tensile strength and proof strength before and after baking. Is important to be 15 MPa or more. As described above, the aluminum alloy plate according to the present invention is characterized by high proof stress after baking, so care must be taken to maintain neck formability and flange formability. If any of the difference between the tensile strength and the proof stress before and after the baking is less than 15 MPa, the can wall portion does not recover, so that it tends to buckle during neck molding (drawing), and flange cracking easily occurs.

缶ボディの成形は、前記のように、絞り加工またはDI加工により底付きの円筒状容器を成形し、開口部をトリミング加工、ネッキング加工、フランジ加工することにより行われる。DI加工は、板を円板に打ち抜く工程、円板をカップに絞り加工する工程、カップを缶状体に再絞り加工する工程、缶状体の側壁をしごき加工する工程を含む。   As described above, the can body is formed by forming a cylindrical container with a bottom by drawing or DI, and trimming, necking, or flanging the opening. The DI processing includes a step of punching a plate into a disc, a step of drawing the disc into a cup, a step of redrawing the cup into a can-like body, and a step of ironing the side wall of the can-like body.

塗装焼付け工程は、通常、缶ボディ成形のトリミング加工後、200〜220℃の温度で5〜20分程度加熱する条件で行われる。缶ボディ成形前に樹脂被覆をしない従来型のアルミニウム合金板を使用する場合には、内容物および外的要因からの耐食性のために、缶外面を印刷してから缶内面に樹脂塗装する。樹脂被覆を施す場合には、樹脂被覆が両面の時は外面印刷のみ、樹脂被覆が缶内面の片面の時は反対面(缶外面)の印刷が施される。   The paint baking process is usually performed under the condition of heating at a temperature of 200 to 220 ° C. for about 5 to 20 minutes after the trimming process of can body molding. In the case of using a conventional aluminum alloy plate that is not coated with a resin before molding the can body, the outer surface of the can is printed and then the resin is coated on the inner surface of the can for corrosion resistance from the contents and external factors. When the resin coating is applied, only the outer surface printing is performed when the resin coating is on both sides, and the opposite surface (can outer surface) is printed when the resin coating is one side of the inner surface of the can.

つぎに、本発明のアルミニウム合金板の製造方法を以下に説明する。
前記の組成を有するアルミニウム合金をDC鋳造で造塊し、得られた鋳塊を均質化処理後、熱間圧延する。均質化処理は、580〜620℃の温度で2〜10時間行うのが望ましい。熱間圧延は、熱間粗圧延スタンドにおいてリバース圧延する熱間粗圧延と、複数タンデム圧延機で構成される熱間仕上げ圧延スタンドで行われる熱間仕上げ圧延からなる。熱間粗圧延の開始温度は500〜540℃、熱間粗圧延上がり板厚は15〜30mm、熱間粗圧延終了温度は430〜480℃とするのが好ましい。熱間粗圧延終了後の圧延材は、熱間仕上げ圧延スタンドに移行して、終了温度を310〜350℃とする熱間仕上げ圧延を行い、板厚を1.7〜2.5mmとする。その後、板厚0.23〜0.27mまで冷間圧延を行う。必要に応じて、冷間圧延に先立ち中間焼鈍を行ってもよく、冷間圧延の後に最終熱処理を施すこともできる。
Below, the manufacturing method of the aluminum alloy plate of this invention is demonstrated below.
An aluminum alloy having the above composition is ingoted by DC casting, and the resulting ingot is homogenized and hot rolled. The homogenization treatment is desirably performed at a temperature of 580 to 620 ° C. for 2 to 10 hours. The hot rolling includes hot rough rolling that is reverse-rolled in a hot rough rolling stand, and hot finish rolling that is performed in a hot finish rolling stand that includes a plurality of tandem rolling mills. It is preferable that the hot rough rolling start temperature is 500 to 540 ° C., the hot rough rolling finish plate thickness is 15 to 30 mm, and the hot rough rolling finish temperature is 430 to 480 ° C. The rolled material after the hot rough rolling is transferred to a hot finish rolling stand and subjected to hot finish rolling with an end temperature of 310 to 350 ° C., and a thickness of 1.7 to 2.5 mm. Thereafter, cold rolling is performed to a thickness of 0.23 to 0.27 m. If necessary, intermediate annealing may be performed prior to cold rolling, and final heat treatment may be performed after cold rolling.

本発明のアルミニウム合金板を缶ボディに成形するに先立って樹脂層を被覆する場合は、アルミニウム合金板を、アルカリや酸洗浄などによる脱脂、リン酸クロメート処理あるいはZr、Ti、Mn、V系処理などによる化成処理(下地処理)を施した後、板の両面あるいは片面に、ポリエステル系、ポリオレフィン系、ポリアミド系の樹脂を被覆する。被覆方法としては、フィルムにした樹脂を熱融着でアルミニウム合金板表面にラミネートする方法、樹脂を溶融させて直接被覆する方法などがある。樹脂の被覆の際には、アルミニウム合金板を200〜300℃に加熱する。これら一連の処理は、切り板で実施しても、コイル材を使用して連続的に実施してもよい。   When the resin layer is coated prior to forming the aluminum alloy plate of the present invention on the can body, the aluminum alloy plate is degreased by alkali or acid cleaning, phosphoric acid chromate treatment, or Zr, Ti, Mn, V series treatment. After performing chemical conversion treatment (primary treatment), etc., a polyester-based, polyolefin-based, or polyamide-based resin is coated on both sides or one side of the plate. As a coating method, there are a method of laminating a resin made into a film on the surface of an aluminum alloy plate by heat fusion, a method of directly coating a resin by melting it, and the like. In coating the resin, the aluminum alloy plate is heated to 200 to 300 ° C. These series of treatments may be carried out with a cut plate or continuously using a coil material.

上記製造条件の設定理由は以下のとおりである。
均質化処理温度が580℃未満、均質化処理時間が2時間未満では、鋳塊の粒界晶出物であるAl(Mn、Fe)やMgSiの溶入化が不足して、微細なAl−Mn−Si系化合物が残存するため、熱間圧延終了時に再結晶不良となり易く、冷間圧延後の45°耳率増加の原因となる。均質化処理温度が620℃を超えると、鋳塊の一部に共晶融解が生じ、板表面の面質が悪化し易くなる。10時間を超えて均質化処理を行っても、それ以上の効果が得られず経済的でないため、均質化処理時間は10時間以下とするのが好ましい。
The reasons for setting the manufacturing conditions are as follows.
When the homogenization treatment temperature is less than 580 ° C. and the homogenization treatment time is less than 2 hours, the infiltration of Al 6 (Mn, Fe) and Mg 2 Si, which are the grain boundary crystallization products of the ingot, is insufficient and fine. Since an Al—Mn—Si based compound remains, recrystallization failure tends to occur at the end of hot rolling, which causes an increase in 45 ° ear rate after cold rolling. When the homogenization temperature exceeds 620 ° C., eutectic melting occurs in a part of the ingot, and the surface quality of the plate surface tends to deteriorate. Even if the homogenization treatment is performed for more than 10 hours, no further effect is obtained and it is not economical, so the homogenization treatment time is preferably 10 hours or less.

熱間粗圧延の開始温度が500℃未満では、Al−Mn−Si系化合物の析出が促進されるため、Mn固溶量が減少して目的の強度が得られない。540℃を超えると、強度は得られるが、Mgが多く添加されているために、Mgの酸化が促進され板面品質の低下を招く。熱間粗圧延の終了温度が430℃未満では、熱間仕上げ圧延の終了温度を達成するために圧下率や圧延速度の増加が必要となり、板面品質や板歪みの悪化を招く。また、熱間仕上げ圧延の終了温度が低くなり、再結晶が不十分となる。480℃を超えると、熱間仕上げ圧延において、再結晶の駆動力となる歪みエネルギーを蓄積できないため、熱間仕上げ圧延後に十分な再結晶組織が得られず、製品板での45°方向耳率が増大する。   If the start temperature of hot rough rolling is less than 500 ° C., precipitation of the Al—Mn—Si compound is promoted, so that the amount of Mn solid solution decreases and the desired strength cannot be obtained. If the temperature exceeds 540 ° C., strength can be obtained, but since Mg is added in a large amount, the oxidation of Mg is promoted and the plate surface quality is deteriorated. When the end temperature of the hot rough rolling is less than 430 ° C., it is necessary to increase the reduction rate and the rolling speed in order to achieve the end temperature of the hot finish rolling, resulting in deterioration of the plate surface quality and plate distortion. Moreover, the end temperature of hot finish rolling becomes low, and recrystallization becomes insufficient. If the temperature exceeds 480 ° C., strain energy as a driving force for recrystallization cannot be accumulated in hot finish rolling, so that a sufficient recrystallized structure cannot be obtained after hot finish rolling. Will increase.

熱間粗圧延上がり板厚が15mm未満では、熱間仕上げ圧延において、再結晶の駆動力となる歪みエネルギーを蓄積できず、熱間仕上げ圧延後に十分な再結晶組織が得られない。熱間粗圧延上がり板厚が30mmを超えると、熱間仕上げ圧延での圧下率が増加することとなり、板面品質や板歪みの悪化を招く。   If the plate thickness after hot rough rolling is less than 15 mm, strain energy as a driving force for recrystallization cannot be accumulated in hot finish rolling, and a sufficient recrystallized structure cannot be obtained after hot finish rolling. If the plate thickness after hot rough rolling exceeds 30 mm, the reduction ratio in hot finish rolling will increase, leading to deterioration of plate surface quality and plate distortion.

熱間仕上げ圧延の終了温度が310℃未満では、熱間仕上げ圧延後に十分な再結晶組織が得られないため、45°方向耳率が増大する。熱間仕上げ圧延の終了温度が350℃を超えると、再結晶が促進され、最終製品板の0−180°方向耳率が増加し、また板面品質が低下し易くなる。   When the finish temperature of hot finish rolling is less than 310 ° C., a sufficient recrystallized structure cannot be obtained after hot finish rolling, so the 45 ° direction ear rate increases. When the finish temperature of hot finish rolling exceeds 350 ° C., recrystallization is promoted, the 0 to 180 ° direction ear ratio of the final product plate increases, and the plate surface quality is liable to deteriorate.

熱間仕上げ圧延後の板厚が1.7mm未満では、冷間圧延率の低下による強度不足を招き、熱間仕上げ圧延後の板厚が2.5mmを超えると、冷間圧延率が増大して、冷間圧延後の45°耳率が大きくなる。   If the plate thickness after hot finish rolling is less than 1.7 mm, the strength will be insufficient due to a decrease in the cold rolling rate, and if the plate thickness after hot finish rolling exceeds 2.5 mm, the cold rolling rate will increase. Thus, the 45 ° ear rate after cold rolling increases.

冷間圧延の最終上がり温度は170℃以下とするのが好ましい。本発明のアルミニウム合金板はMg、Mnを添加しているため、冷間圧延中の加工発熱により冷間圧延板の温度が上昇し易く、170℃を超えると、材料組織の部分的な回復が起こり強度が得られなくなる。また、生産性の点から、冷間圧延の最終上がり温度は130℃以上とするのが望ましい。   The final rising temperature of the cold rolling is preferably 170 ° C. or lower. Since Mg and Mn are added to the aluminum alloy sheet of the present invention, the temperature of the cold-rolled sheet is likely to rise due to processing heat generated during cold rolling. The strength is not obtained. From the viewpoint of productivity, it is desirable that the final rising temperature of cold rolling is 130 ° C. or higher.

なお、冷間圧延に先立つ中間焼鈍は、熱間仕上げ圧延の上がり温度が310〜320℃の比較的低温の場合、合金組成によっては部分的に再結晶が不十分となることがある。この場合、冷間圧延後の45°耳が大きくなる傾向があるため、より安定した材料とするために、350〜450℃の温度範囲で、箱形焼鈍炉で1〜10時間加熱あるいは連続焼鈍炉で10分以内加熱してもよい。   In the intermediate annealing prior to cold rolling, recrystallization may be partially insufficient depending on the alloy composition when the rising temperature of hot finish rolling is a relatively low temperature of 310 to 320 ° C. In this case, the 45 ° ears after cold rolling tend to be large, so in order to obtain a more stable material, heating or continuous annealing in a box annealing furnace for 1 to 10 hours in a temperature range of 350 to 450 ° C. You may heat within 10 minutes with a furnace.

以下、本発明の実施例を比較例と対比して説明し、その効果を立証する。なお、これらの実施例は本発明の一実施態様を示すものであり、本発明はこれらに限定されない。   Hereinafter, examples of the present invention will be described in comparison with comparative examples to prove the effects. In addition, these Examples show one embodiment of this invention, and this invention is not limited to these.

実施例1、比較例1
表1に示す組成を有するアルミニウム合金をDC鋳造により造塊し、得られた鋳塊を、常法に従って均質化処理した後、熱間粗圧延スタンドにおいて、530℃の温度で熱間粗圧延を開始し、460℃の温度で熱間粗圧延を終了し、板厚20mmとした。熱間粗圧延を終了した圧延材は、熱間仕上げ圧延スタンドに移行して、終了温度を320℃とする熱間仕上げ圧延を行い、その後、冷間圧延を行って、厚さ0.23〜0.27mmの冷間圧延板とした。表1において、本発明の条件を外れたものには下線を付した。
Example 1 and Comparative Example 1
An aluminum alloy having the composition shown in Table 1 is ingoted by DC casting, and the obtained ingot is homogenized according to a conventional method, and then hot roughing is performed at a temperature of 530 ° C. in a hot roughing stand. The hot rough rolling was completed at a temperature of 460 ° C., and the plate thickness was 20 mm. The rolled material that has been subjected to hot rough rolling is transferred to a hot finish rolling stand, subjected to hot finish rolling at an end temperature of 320 ° C., and then cold rolled to obtain a thickness of 0.23 to 0.23. A 0.27 mm cold rolled plate was used. In Table 1, those outside the conditions of the present invention are underlined.

得られた冷間圧延板を試験材として、引張試験を行って冷間圧延板(元板)の引張強さ(σB)、耐力(σ0.2)、伸び(δ)を測定し、また、冷間圧延板について、205℃で10分間の空焼きを行い、空焼き後の引張強さ(σB)、耐力(σ0.2)、伸び(δ)を測定し、空焼き前(元板)と空焼き後の引張強さおよび耐力の差を求めた。さらに、45°方向の耳率、90°方向(0−180°方向)の耳率を測定した。結果を表2に示す。表2において、本発明の条件を外れたものには下線を付した。   Using the obtained cold rolled sheet as a test material, a tensile test was performed to measure the tensile strength (σB), proof stress (σ0.2), and elongation (δ) of the cold rolled sheet (base plate). The cold-rolled sheet is baked at 205 ° C. for 10 minutes, and the tensile strength (σB), proof stress (σ0.2), and elongation (δ) after baking are measured. And the difference in tensile strength and yield strength after baking. Furthermore, the ear rate in the 45 ° direction and the ear rate in the 90 ° direction (0-180 ° direction) were measured. The results are shown in Table 2. In Table 2, those outside the conditions of the present invention are underlined.

また、得られた冷間圧延板を、一部については、下記の方法で、片面(缶外面側)の樹脂被覆を行った後、DI加工により缶ボディに成形した。残りについては、樹脂被覆を行うことなしに、DI加工により缶ボディに成形した。   The obtained cold-rolled plate was partly resin-coated on one side (can outer surface side) by the following method, and then formed into a can body by DI processing. The rest was molded into a can body by DI processing without performing resin coating.

なお、缶ボディへの成形に際し、缶胴壁厚は、アルミニウムの厚みで0.100mmになるようにし、缶底接地径は48mmとなるよう成形した。樹脂被覆を行ったものについては、樹脂の密着性を増すために200℃で30秒間熱処理し、樹脂被覆を行わなかったものについては、内外面に塗装、焼付けに相当する205℃で10分間の熱処理を施した。   In forming the can body, the can body wall thickness was set to 0.100 mm in terms of aluminum thickness, and the can bottom grounding diameter was set to 48 mm. For those with resin coating, heat treatment was carried out at 200 ° C. for 30 seconds in order to increase the adhesion of the resin. For those without resin coating, the inner and outer surfaces were painted and baked at 205 ° C. for 10 minutes. Heat treatment was applied.

樹脂被覆は、冷間圧延板をアルカリ洗浄後、リン酸クロメート(Cr付着量20mg/m)の化成処理を行い、ついで、15μm厚さのポリエステル系樹脂フィルムを200℃に加熱したヒートロールで板の片面のみに熱融着でラミネートした。さらに、270℃で30秒間保持後、水冷した。 For resin coating, cold-rolled plates were washed with alkali, then subjected to chemical conversion treatment of phosphoric acid chromate (Cr deposition amount 20 mg / m 2 ), and then heated with a heat roll in which a polyester resin film having a thickness of 15 μm was heated to 200 ° C. Lamination was performed only on one side of the plate by heat sealing. Further, after being kept at 270 ° C. for 30 seconds, it was cooled with water.

前記冷間圧延板(試験材)を缶ボディに成形し、塗装焼付け相当の前記熱処理を施した後の缶(試験缶)、および予め樹脂被覆をした板から缶ボディを成形し、前記の熱処理を行った缶(試験缶)について、以下の方法により、耐圧、突き刺し強度、ボトムしわ高さを測定し、フランジ成形性を評価した。結果を表3に示す。   The cold-rolled plate (test material) is molded into a can body, the can body after being subjected to the heat treatment equivalent to paint baking (test can), and the can body is molded from a previously resin-coated plate, and the heat treatment described above About the can (test can) which performed this, the pressure resistance, the piercing strength, and the bottom wrinkle height were measured by the following methods to evaluate the flange formability. The results are shown in Table 3.

耐圧:成形された缶ボディの缶底耐圧を測定し、600kPa以上を合格とする。
突き刺し強度:成形された缶ボディから、缶ボディを構成するアルミニウム合金自体の特性をみるために樹脂皮膜を脱膜し、測定を容易にするために缶ボディ(缶胴)のネック部を切り落とした後、缶胴部を測定装置に取り付け、196kPaの内圧をかけた状態で、直径1mm、先端R0.5mmの針を、50mm/分の速度で、缶壁部に突き刺した時の最大荷重を測定した。n=10とし、その平均値を求めた。単位はNである。40N以上を合格とする。なお、現在市販されているアルミニウム合金缶の缶胴には塗膜などが付けられているから、塗膜などが無い時に比べて、突き刺し強度は平均で10N増加する。
Pressure resistance: The can bottom pressure resistance of the molded can body is measured, and 600 kPa or more is accepted.
Puncture strength: The resin film was removed from the molded can body to see the characteristics of the aluminum alloy itself that makes up the can body, and the neck of the can body (can body) was cut off to facilitate measurement. Then, attach the can body to the measuring device and measure the maximum load when a needle with a diameter of 1 mm and a tip of R0.5 mm is pierced into the can wall at a speed of 50 mm / min with an internal pressure of 196 kPa. did. The average value was determined with n = 10. The unit is N. Accept 40N or more. In addition, since the coating body etc. are attached to the can body of the aluminum alloy can marketed now, the piercing strength increases 10N on average compared with when there is no coating film etc.

ボトムしわ最大高さ:冷間圧延板(試験材)DI加工工程の途中のカップを缶状体に再絞り加工する工程で得られる缶状体を用い、図1に示すように、チャイム部11のしわ12をMitutoyo製の真円度計(型式EC−1010A)2を用いて測定し、最大しわ高さ測定チャートを得た。このチャートは、点Oを中心とした円座標であり、周方向に角度を、径方向にチャイム部の凹凸をとったものである。得られたチャートにおいて、隣り合う山部と谷部について、(山部の外接円の半径の値)から(谷部の外接円の半径の値)を差し引いた値をしわ高さとし、1つの缶状体1の全周におけるしわ高さの分布のうち最大のものを最大しわ高さHとした。また、5つの缶状体の最大しわ高さHの平均値を算出し、その試験材のボトムしわ最大高さとした。ボトムしわ最大高さ750μm以下を合格とする。   Maximum height of bottom wrinkle: Cold rolled plate (test material) Using a can-like body obtained in the process of redrawing the cup in the middle of the DI processing step into a can-like body, as shown in FIG. The wrinkle 12 was measured using a roundness meter (model EC-1010A) 2 manufactured by Mitutoyo, and a maximum wrinkle height measurement chart was obtained. This chart is a circular coordinate centered on the point O, and has an angle in the circumferential direction and an unevenness of the chime portion in the radial direction. In the obtained chart, for the adjacent peaks and valleys, the value obtained by subtracting (the value of the radius of the circumscribed circle of the peaks) from the value of the radius of the circumscribed circle of the peak is the wrinkle height, and one can The maximum wrinkle height distribution among the wrinkle height distributions on the entire circumference of the body 1 was defined as the maximum wrinkle height H. Moreover, the average value of the maximum wrinkle height H of five can-like bodies was computed, and it was set as the maximum bottom wrinkle height of the test material. The bottom wrinkle maximum height of 750 μm or less is regarded as acceptable.

フランジ成形性:冷間圧延板(試験材)から100缶づつ製缶し、204径までネッキングし、さらにフランジ幅2.2mmでフランジ加工を行い、フランジ端部の割れの有無を外観の目視観察により評価した。なお、表3において、全缶(100缶)フランジ割れが生じなかったものを合格(○)、1缶でもフランジ割れが生じたものを不合格(×)とした。   Flange formability: 100 cans are made from cold-rolled sheets (test material), necked up to 204 diameters, further flanged with a flange width of 2.2 mm, and visually observed for appearance of flange end cracks. It was evaluated by. In Table 3, all cans (100 cans) in which flange cracks did not occur were accepted (◯), and even one can with flange cracks was rejected (x).

Figure 0005670215
Figure 0005670215

Figure 0005670215
Figure 0005670215

Figure 0005670215
Figure 0005670215

表2に示すように、本発明に従う試験材1〜3はいずれも、強度が高く、適正な耳率をそなえ、試験材1〜3から成形された試験缶1〜3はいずれも、耐圧、突き刺し強度、ボトムしわ最大高さ、フランジ成形性において、良好なものであった。   As shown in Table 2, all of the test materials 1 to 3 according to the present invention have high strength and an appropriate ear rate, and the test cans 1 to 3 formed from the test materials 1 to 3 are all pressure resistant. The piercing strength, bottom wrinkle maximum height and flange formability were good.

これに対して、試験材4は、Mn量が少ないため(Mn%+Mg%+Cu%)の値が小さく、空焼き後の耐力が低くなったため、試験材4から成形された試験缶4は耐圧が低く、突き刺し強度も低いものとなった。試験材5は、Mn量およびFe量が多いため、サイズの大きい晶出物が多くなり、試験材5から成形された試験缶5は、突き刺し強度およびフランジ成形性が劣るものとなっている。また、試験材5は(Mn%/Fe%)が低いため、耳率のバランスがわるい。   On the other hand, since the test material 4 has a small amount of Mn (Mn% + Mg% + Cu%), and the proof stress after empty baking is low, the test can 4 molded from the test material 4 has a pressure resistance. Was low and the puncture strength was low. Since the test material 5 has a large amount of Mn and Fe, a large amount of crystallized matter increases, and the test can 5 formed from the test material 5 has poor piercing strength and flange formability. Moreover, since the test material 5 has a low (Mn% / Fe%), the ear ratio is poorly balanced.

試験材6は、Mg量が少ないため、(Mn%+Mg%+Cu%)の値が小さく、空焼き後の耐力が低くなり、試験材6から成形された試験缶6は耐圧が低く、突き刺し強度も低いものとなった。試験材7は、Mg量が多いため、(Mn%+Mg%+Cu%)の値が大きく、また(Mn%/Fe%)も高いため、空焼き後の耐力が高すぎて伸びが低く、試験材7から成形された試験缶7はフランジ成形性が劣り、ボトムしわが生じるものとなった。   Since the test material 6 has a small amount of Mg, the value of (Mn% + Mg% + Cu%) is small, the yield strength after baking is low, and the test can 6 formed from the test material 6 has a low pressure resistance and a piercing strength. Was also low. Since the test material 7 has a large amount of Mg, the value of (Mn% + Mg% + Cu%) is large, and (Mn% / Fe%) is also high, so the yield strength after baking is too high and the elongation is low. The test can 7 molded from the material 7 was inferior in flange formability and caused bottom wrinkles.

試験材8は、Cu量が少ないため(Mn%+Mg%+Cu%)の値が小さくなり、またSi量も多いため空焼き後の耐力が低くなり、試験材8から成形された試験缶8は耐圧が低く、突き刺し強度も低いものとなった。試験材9は、Cu量が多いため(Mn%+Mg%+Cu%)の値が大きくなり、空焼き後の耐力が高すぎて、試験材9から成形された試験缶9はフランジ成形性が劣るものとなった。また、試験材9は(Mn%/Fe%)が高いため、耳率のバランスがわるい。   Since the test material 8 has a small amount of Cu, the value of (Mn% + Mg% + Cu%) is small, and since the amount of Si is also large, the yield strength after baking is low, and the test can 8 formed from the test material 8 is The pressure resistance was low and the puncture strength was low. Since the test material 9 has a large amount of Cu, the value of (Mn% + Mg% + Cu%) becomes large, the proof stress after baking is too high, and the test can 9 formed from the test material 9 has poor flange formability. It became a thing. Moreover, since the test material 9 has a high (Mn% / Fe%), the balance of the ear rate is poor.

1 DI加工工程の途中の再絞り加工で得られた缶状体
2 真円度計
11 チャイム部
12 しわ
1 Canned body obtained by redrawing in the middle of DI processing process 2 Roundness meter 11 Chime part 12 Wrinkle

Claims (4)

Mn:1.1〜1.3%(質量%、以下同じ)、Mg:1.2〜1.5%、Cu:0.15〜0.3%、Fe:0.28〜0.4%、Si:0.1〜0.3%を含有し、(Mn%/Fe%):3.0〜4.0、(Mg%/Mn%)>1.0、(Mn%+Mg%+Cu%):2.6〜3.1の関係を満足し、残部アルミニウムおよび不可避的不純物からなる板厚が0.23〜0.27mmの冷間圧延板であり、該冷間圧延板について、45°方向の耳率が2.5〜3.5%、(45°方向の耳率)>(0−180°方向の耳率)の関係を有し、205℃で10分間の空焼きを行った後の耐力が280〜320MPa、該空焼き前後の引張強さおよび耐力の差がいずれも15MPa以上であることを特徴とする缶ボディ用アルミニウム合金板。 Mn: 1.1 to 1.3% (mass%, the same applies hereinafter), Mg: 1.2 to 1.5%, Cu: 0.15 to 0.3%, Fe: 0.28 to 0.4% , Si: 0.1 to 0.3%, (Mn% / Fe%): 3.0 to 4.0, (Mg% / Mn%)> 1.0, (Mn% + Mg% + Cu%) ): A cold rolled plate satisfying the relationship of 2.6 to 3.1 and having a thickness of 0.23 to 0.27 mm consisting of the balance aluminum and inevitable impurities, and about 45 ° The ear ratio in the direction is 2.5 to 3.5%, (the ear ratio in the 45 ° direction)> (the ear ratio in the 0-180 ° direction), and baked at 205 ° C. for 10 minutes. An aluminum alloy plate for a can body, characterized in that the later yield strength is 280 to 320 MPa, and the difference in tensile strength and yield strength before and after baking is 15 MPa or more. 前記冷間圧延板を缶ボディに成形する前に樹脂層が被覆されてなることを特徴とする請求項1記載の缶ボディ用アルミニウム合金板。 The aluminum alloy plate for a can body according to claim 1, wherein a resin layer is coated before the cold rolled plate is formed into a can body. 請求項1記載の組成を有するアルミニウム合金の鋳塊を、均質化処理後、熱間粗圧延と熱間仕上げ圧延からなる熱間圧延を行い、該熱間粗圧延は熱間粗圧延スタンドにおいて、開始温度を500〜540℃、終了温度を430〜480℃として、板厚15〜30mmまで圧延し、熱間粗圧延終了後の圧延材を熱間仕上げ圧延スタンドに移行して、終了温度を310〜350℃とする熱間仕上げ圧延を行い、その後、冷間圧延を行って板厚0.23〜0.27mmとすることを特徴とする請求項1記載の缶ボディ用アルミニウム合金板の製造方法。 The ingot of the aluminum alloy having the composition according to claim 1 is subjected to hot rolling including hot rough rolling and hot finish rolling after homogenization, and the hot rough rolling is performed in a hot rough rolling stand. The starting temperature is 500 to 540 ° C., the end temperature is 430 to 480 ° C., the sheet is rolled to a thickness of 15 to 30 mm, the rolled material after hot rough rolling is transferred to a hot finish rolling stand, and the end temperature is 310 The method for producing an aluminum alloy sheet for a can body according to claim 1, wherein hot finish rolling is performed to ˜350 ° C. and then cold rolling is performed to obtain a sheet thickness of 0.23 to 0.27 mm. . 前記冷間圧延に先立ち中間焼鈍を行うことを特徴とする請求項3記載の缶ボディ用アルミニウム合金板の製造方法。 The method for producing an aluminum alloy sheet for a can body according to claim 3, wherein intermediate annealing is performed prior to the cold rolling.
JP2011029695A 2011-02-15 2011-02-15 Aluminum alloy plate for can body and manufacturing method thereof Active JP5670215B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011029695A JP5670215B2 (en) 2011-02-15 2011-02-15 Aluminum alloy plate for can body and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011029695A JP5670215B2 (en) 2011-02-15 2011-02-15 Aluminum alloy plate for can body and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2012167333A JP2012167333A (en) 2012-09-06
JP5670215B2 true JP5670215B2 (en) 2015-02-18

Family

ID=46971751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011029695A Active JP5670215B2 (en) 2011-02-15 2011-02-15 Aluminum alloy plate for can body and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5670215B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108368570A (en) * 2015-12-25 2018-08-03 株式会社Uacj Tank body aluminium alloy plate and its manufacturing method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105008566B (en) * 2013-02-25 2017-07-25 株式会社Uacj Tank body aluminium alloy plate and its manufacture method
CN106460106B (en) * 2014-07-04 2018-12-11 株式会社Uacj Used for Making Beverage Container Body aluminium alloy plate and its manufacturing method
JP7138396B2 (en) * 2017-02-01 2022-09-16 株式会社Uacj Aluminum alloy plate for can body and manufacturing method thereof
JP2021524888A (en) * 2018-06-01 2021-09-16 ノベリス・インコーポレイテッドNovelis Inc. Low gauge leveled can material and how to make it
JP2023131622A (en) * 2022-03-09 2023-09-22 株式会社Uacj Aluminum alloy sheet for can lid

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3201783B2 (en) * 1991-07-31 2001-08-27 住友軽金属工業株式会社 Method of manufacturing aluminum alloy hard plate excellent in strength and formability
JPH08127850A (en) * 1994-11-01 1996-05-21 Furukawa Electric Co Ltd:The Production of aluminum alloy sheet for forming low in edge ratio
JPH11181558A (en) * 1997-12-22 1999-07-06 Furukawa Electric Co Ltd:The Production of aluminum alloy sheet for low and positive pressure can body
JP2001262261A (en) * 2000-03-22 2001-09-26 Furukawa Electric Co Ltd:The Aluminum alloy sheet for can barrel excellent in can bottom formability and its producing method
JP2006299330A (en) * 2005-04-19 2006-11-02 Sumitomo Light Metal Ind Ltd Aluminum alloy sheet for bottle can body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108368570A (en) * 2015-12-25 2018-08-03 株式会社Uacj Tank body aluminium alloy plate and its manufacturing method

Also Published As

Publication number Publication date
JP2012167333A (en) 2012-09-06

Similar Documents

Publication Publication Date Title
JP4019082B2 (en) Aluminum alloy plate for bottle cans with excellent high temperature characteristics
US9574258B2 (en) Aluminum-alloy sheet and method for producing the same
JP5670215B2 (en) Aluminum alloy plate for can body and manufacturing method thereof
US9546411B2 (en) Aluminum-alloy sheet and method for producing the same
JP4019083B2 (en) Aluminum alloy cold rolled sheet for bottle cans with excellent high temperature characteristics
JP6210896B2 (en) Aluminum alloy plate for can lid and manufacturing method thereof
JP5568031B2 (en) Aluminum alloy cold rolled sheet for bottle cans
WO2014129385A1 (en) Aluminum alloy plate for can body and production method therefor
JP4791072B2 (en) Aluminum alloy plate for beverage can body and manufacturing method thereof
JP5961839B2 (en) Aluminum alloy plate for can body and manufacturing method thereof
JP2010053367A (en) Aluminum alloy sheet for can end, and method for manufacturing the same
JP6405014B1 (en) Aluminum alloy plate for bottle can body and manufacturing method thereof
JP2010189730A (en) Method of producing aluminum alloy sheet for beverage can barrel
JP5113411B2 (en) Aluminum alloy plate for packaging container and method for producing the same
JP4667722B2 (en) Aluminum alloy can body design method
JP2016041852A (en) Aluminum alloy sheet for can barrel
JP4019084B2 (en) Aluminum alloy cold rolled sheet for bottle cans with excellent high temperature characteristics
JP2009242830A (en) Aluminum alloy sheet for bottle can and method for producing the same
JP6435268B2 (en) Aluminum alloy plate for can end and manufacturing method thereof
JP4467443B2 (en) Method for producing aluminum alloy plate
JP2001262261A (en) Aluminum alloy sheet for can barrel excellent in can bottom formability and its producing method
JP2006097076A (en) Aluminum-alloy sheet for bottle can, and its manufacturing method
JP4750392B2 (en) Aluminum alloy plate for bottle-shaped cans
JP2007169744A (en) Aluminum alloy sheet for aluminum bottle can barrel having excellent can roundness and its production method
JP7426243B2 (en) Aluminum alloy plate for bottle body

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20131023

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141217

R150 Certificate of patent or registration of utility model

Ref document number: 5670215

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150