JP2007169744A - Aluminum alloy sheet for aluminum bottle can barrel having excellent can roundness and its production method - Google Patents

Aluminum alloy sheet for aluminum bottle can barrel having excellent can roundness and its production method Download PDF

Info

Publication number
JP2007169744A
JP2007169744A JP2005371474A JP2005371474A JP2007169744A JP 2007169744 A JP2007169744 A JP 2007169744A JP 2005371474 A JP2005371474 A JP 2005371474A JP 2005371474 A JP2005371474 A JP 2005371474A JP 2007169744 A JP2007169744 A JP 2007169744A
Authority
JP
Japan
Prior art keywords
rolling
aluminum alloy
temperature
cross
roundness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005371474A
Other languages
Japanese (ja)
Inventor
Kazuhiko Matsuzaki
松崎和彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Sky KK
Original Assignee
Furukawa Sky KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Sky KK filed Critical Furukawa Sky KK
Priority to JP2005371474A priority Critical patent/JP2007169744A/en
Publication of JP2007169744A publication Critical patent/JP2007169744A/en
Pending legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an aluminum alloy sheet required for producing an aluminum bottle can barrel in which defects in necking forming are reduced, and can shape (roundness) after necking forming is satisfactory. <P>SOLUTION: The aspect ratio (the length in the rolling direction)/(the length in the sheet thickness direction) in the crystal grains of an Al-Mn-Mg-Cu alloy sheet having a specified composition is controlled to 10 to 30, the area ratio of intermetallic compounds with a size satisfying a diameter equivalent to a circle of 0.1 to <0.3 μm is controlled to 0.3 to 0.8%, also, the area ratio of intermetallic compounds with a size satisfying a diameter equivalent to a circle of ≥3 μm is controlled to 0.3 to 0.5%, and, the anisotropy in material strength in the case a test piece is extracted from the side wall part of a bottle-shaped formed body is controlled to ≤5%. In its production method, a cast ingot is subjected to homogenizing treatment, and thereafter, the temperature conditions of hot rolling, the spraying conditions of rolling oil and the like are controlled to specified ranges. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は缶胴部をDI加工(Draw絞り+Ironingしごき)により形成され、缶開口部をネッキングすることにより飲み口部を形成されるようなアルミボトル缶胴用のアルミニウム合金板に関する。また本対象であるボトル缶胴は、蓋となるキャップ体との嵌合のため、ネジ部分を備え、内容物である飲料体を飲む際に消費者に違和感を与えないため、飲み口部にカール加工が施される。   The present invention relates to an aluminum alloy plate for an aluminum bottle can body in which a can body portion is formed by DI processing (Draw drawing + Ironing ironing) and a drinking mouth portion is formed by necking a can opening portion. In addition, the bottle can body, which is the subject, is equipped with a screw part for fitting with the cap body serving as a lid, so that the consumer does not feel uncomfortable when drinking the beverage body that is the contents. Curled.

これまでもアルミニウムDI缶において缶真円度の改善を目的とした発明がなされているが、下記の理由により、本発明の内容と異なる。   In the past, inventions aimed at improving the roundness of cans in aluminum DI cans have been made, but differ from the contents of the present invention for the following reasons.

特許文献1、2には、DI缶での缶真円度の改善のため、板面内の引張強度異方性及び、耳率の絶対値の上限が規定されている。いずれも、缶真円度の改善には有効な施策ではあるが、そのアルミニウム合金板の製法は、冷間圧延パス間の中間焼鈍の付与や異方向の冷間圧延の組み合わせが必要であり、工業的には不利である。   Patent Documents 1 and 2 stipulate the upper limit of the tensile strength anisotropy in the plate surface and the absolute value of the ear ratio in order to improve the can roundness of the DI can. Both are effective measures to improve the roundness of the can, but the production method of the aluminum alloy sheet requires a combination of provision of intermediate annealing between cold rolling passes and cold rolling in different directions, It is disadvantageous industrially.

特許文献3には、絞り成形後のカップに加熱処理を付与するDI成形体の製法であるが、従来の成形工程に加熱処理を付与することは、著しく生産性を害する。   Patent Document 3 describes a method for producing a DI molded body in which heat treatment is applied to the cup after drawing, but applying the heat treatment to the conventional molding process significantly impairs productivity.

特許文献4には、DI缶での缶真円度の改善のため、板面内の引張強度異方性が1.5kgf/mm以内と規定されている。最終冷間圧延率を小さくする、結晶粒径を小さくするため、冷間圧延パス間に比較的高温の焼鈍処理を付与させることが必要であり、中間熱処理を必要としない本発明とは異なる。 Patent Document 4 stipulates that the tensile strength anisotropy in the plate surface is within 1.5 kgf / mm 2 in order to improve the roundness of the can in the DI can. In order to reduce the final cold rolling rate and the crystal grain size, it is necessary to apply a relatively high temperature annealing treatment between the cold rolling passes, which is different from the present invention which does not require an intermediate heat treatment.

特許文献5には、アルミニウム合金板に230〜270℃、20分間の熱処理を施したときに、熱処理前後の引張強度の変化ΔTSが(1.1×T−230)以下となることが規定されている。缶の塗装焼付のためのベーク処理による缶形状変化を抑えることを目的としており、本発明とは異なる。   Patent Document 5 stipulates that when an aluminum alloy plate is heat-treated at 230 to 270 ° C. for 20 minutes, the tensile strength change ΔTS before and after the heat treatment is (1.1 × T-230) or less. ing. The object of the present invention is to suppress changes in the shape of the can due to baking treatment for paint baking of the can, which is different from the present invention.

また、真円度には直接関係しないが、アルミニウムDI缶用材料に関する発明が有るが、下記の理由により、本発明の内容と異なる。   Although there is an invention related to the material for aluminum DI cans, although not directly related to the roundness, it differs from the contents of the present invention for the following reasons.

特許文献6には、強度上昇に寄与する100〜200nmのAl−Mg−Cu系析出物の発生を促進し、強度上昇に寄与せず、しごき成形性を著しく低下させる100nm以下のQ相(Al−Cu−Mg−Si系)の析出物の抑制を目的として、アルミニウム板の製法を規定している。本発明の目的である強度異方性には、100〜200nmのAl−Mg−Cu系析出物の占有密度が特に影響されるが、中間焼鈍工程の付与による制御を実施しない点にて異なる。   Patent Document 6 discloses that a Q phase (Al) of 100 nm or less that promotes the generation of 100-200 nm Al—Mg—Cu-based precipitates that contribute to an increase in strength, does not contribute to an increase in strength, and significantly lowers iron moldability. For the purpose of suppressing precipitates of (Cu-Mg-Si system), a method for producing an aluminum plate is defined. The strength anisotropy, which is the object of the present invention, is particularly affected by the occupation density of 100-200 nm Al—Mg—Cu-based precipitates, but differs in that control by applying an intermediate annealing step is not performed.

特許文献7には、しごき成形性を良好にするために、その他特性と共にアルミ表面に存在する5μm以上の晶出物の密度下限値を規定している。しごき成形時のダイスクリーニング効果を狙ったものであり目的が異なると共に、冷間圧延の中途に2回の焼鈍を付与する必要があるため、工業的に好ましくない。   In Patent Document 7, in order to improve the iron moldability, the lower limit of the density of a crystallized substance having a size of 5 μm or more existing on the aluminum surface is defined together with other characteristics. This is aimed at the die screening effect at the time of ironing forming, and the purpose is different, and since it is necessary to impart two annealings in the middle of cold rolling, it is not industrially preferable.

特開平02−092420号公報Japanese Patent Laid-Open No. 02-092220 特開平02−092421号公報Japanese Patent Laid-Open No. 02-092421 特開平04−172138号公報Japanese Patent Laid-Open No. 04-172138 特開平03−146632号公報Japanese Patent Laid-Open No. 03-146632 特開2003−277865号公報JP 2003-277865 A 特開平06−002089号公報Japanese Patent Laid-Open No. 06-002089 特開平06−271968号公報Japanese Patent Laid-Open No. 06-271968

アルミボトル缶胴体は、一般的に以下のような製法となる。アルミニウム合金板を円状に打ち抜き、円筒状に絞り成形する。円筒状容器の側壁部をDI成形にて薄肉化し、必要容量となるように缶高さを確保した後、洗浄、乾燥工程を経て、缶の内外面に塗装が施される。塗装された缶の開口部の径をネッキング成形にて縮小し、ねじ切り及びカール加工が施される。   The aluminum bottle can body is generally manufactured as follows. An aluminum alloy plate is punched into a circular shape and drawn into a cylindrical shape. After thinning the side wall of the cylindrical container by DI molding and securing the height of the can so as to obtain the required capacity, the inner and outer surfaces of the can are painted through a washing and drying process. The diameter of the opening of the painted can is reduced by necking, and threading and curling are performed.

上記のネッキング成形にて開口部の形状が歪んでいると、次工程のねじ切りやカール加工にて金型への装填不良が生じたり、加工により形状の歪が誇張されてしまう。アルミボトル缶は最終的には内容物を充填し、キャップ蓋体との嵌合が必要となるが、開口部付近のねじ部やカール部の形状が歪んでいると、キャップとの密閉性確保が不十分になったり、密閉したキャップを開ける際に必要なトルクが過大となりうる。   If the shape of the opening is distorted by the necking molding described above, defective loading into the mold may occur during threading or curl processing in the next process, or the distortion of the shape may be exaggerated by processing. The aluminum bottle can is finally filled with the contents and needs to be fitted with the cap lid, but if the shape of the screw or curl near the opening is distorted, the seal with the cap is secured. May be insufficient, or the torque required to open the sealed cap may be excessive.

本発明ではネッキング成形での不良を低減させること、及びネッキング成形後の缶形状(真円度)が良好なアルミボトル缶胴を作成するために必要なアルミニウム合金板を提供することを目的とする。   An object of the present invention is to provide an aluminum alloy plate which is necessary for reducing defects in necking molding and for producing an aluminum bottle can body having a good can shape (roundness) after necking molding. .

本発明は、特定組成のアルミニウム合金の結晶粒のアスペクト比、円相当直径0.1μm以上0.3μm未満の大きさの金属間化合物と円相当直径3μm以上の大きさの金属間化合物の面積率をそれぞれ特定の範囲に収めることにより上記課題を解決できるという知見に基づくものである。また、熱間圧延の温度条件や圧延油の吹き付け条件等を特定の範囲に制御することによってそのような圧延板が製造できるという知見に基づくものである。   The present invention provides an aspect ratio of crystal grains of an aluminum alloy having a specific composition, an area ratio of an intermetallic compound having a circle equivalent diameter of 0.1 μm or more and less than 0.3 μm and an intermetallic compound having a circle equivalent diameter of 3 μm or more. This is based on the knowledge that each of the above can be solved within the specific range. Moreover, it is based on the knowledge that such a rolled sheet can be manufactured by controlling the temperature conditions of hot rolling, spraying conditions of rolling oil, and the like within a specific range.

すなわち、請求項1記載の通り、Mg:0.8〜1.2%、Mn:0.7〜1.5%、Cu:0.10〜0.25%、Si:0.1〜0.3%、Fe:0.1〜0.3%を含有し残部Al及び不可避不純物よりなり、圧延方向に平行な断面における結晶粒のアスペクト比 (圧延方向の長さ)/(板厚方向の長さ)が10〜30であり、円相当直径0.1μm以上0.3μm未満の大きさの金属間化合物が圧延方向に平行な断面において面積率0.3〜0.8%で分布し、且つ円相当直径3μm以上の大きさの金属間化合物が圧延方向に平行な断面において面積率0.3〜0.5%で分布しているアルミニウム合金板に対して、絞り比1.5〜2.0にて絞り成形を施し、続いて1.1〜1.3の絞り比による再絞りと側壁部の板厚減少率が60〜70%となるような3段または4段のしごき成形を連続して施し、ベーク温度200℃×15分にて焼付け処理を加えた後、更に缶の開口部付近に12〜15%の絞り率にてネッキングした成形体の側壁部から試験片を採取した場合の材料強度異方性が5%以下となることを特徴とする缶真円度の優れたアルミボトル缶胴用アルミニウム合金板である。     That is, as described in claim 1, Mg: 0.8-1.2%, Mn: 0.7-1.5%, Cu: 0.10-0.25%, Si: 0.1-0. 3%, Fe: 0.1 to 0.3%, balance Al and inevitable impurities, aspect ratio of crystal grains in cross section parallel to rolling direction (length in rolling direction) / (length in plate thickness direction) And the intermetallic compound having a circle equivalent diameter of 0.1 μm or more and less than 0.3 μm is distributed in an area ratio of 0.3 to 0.8% in a cross section parallel to the rolling direction, and For an aluminum alloy sheet in which an intermetallic compound having a circle-equivalent diameter of 3 μm or more is distributed in an area ratio of 0.3 to 0.5% in a cross section parallel to the rolling direction, a drawing ratio of 1.5 to 2. After drawing at 0, redrawing with a drawing ratio of 1.1 to 1.3 and a plate thickness reduction rate of 6 on the side wall After three or four steps of ironing are applied to make up to 70%, baking is performed at a baking temperature of 200 ° C. for 15 minutes, and then a 12-15% squeezing is performed near the opening of the can. An aluminum alloy plate for can bottles with excellent can roundness, characterized in that the material strength anisotropy is 5% or less when a specimen is taken from the side wall of the molded body necked at a rate. is there.

さらに、その製法は請求項2記載の通り、前記組成の合金鋳塊を、570〜620℃で4〜48時間の均質化処理後、450〜550℃まで炉冷した後、熱間粗圧延を開始して、上がり温度が400〜470℃となる熱間粗圧延板を得る、この熱間粗圧延板に対しタンデム式の熱間仕上圧延機にて圧延を施すにあたり、圧延ロール及び/または圧延板に吹き付ける圧延油をトータルで板幅1mあたり150〜350リットル/分とし、
熱間仕上圧延の総圧下率を88〜93%、圧延速度を270m/分以上とし、コイル状に巻き取った直後のコイル側面温度を310〜340℃とする、その後中間熱処理をすることなく、2〜4パスの圧延回数にて全体の圧延率を75〜87%とし、冷間圧延を終了し巻取り直後のコイル側面温度を80〜150℃となるように冷間圧延を施すことにより、圧延方向に平行な断面における結晶粒のアスペクト比 (圧延方向の長さ)/(板厚方向の長さ)が10〜30であり、円相当直径0.1以上0.3μm未満の大きさの金属間化合物が圧延方向に平行な断面において面積率0.3〜0.8%で分布し、且つ円相当直径3μm以上の大きさの金属間化合物が圧延方向に平行な断面において面積率0.3〜0.5%で分布している様にしたことを特徴とする缶真円度の優れたアルミボトル缶胴用アルミニウム合金板の製造方法である。
Furthermore, the manufacturing method is as described in claim 2, the alloy ingot having the above composition is homogenized at 570 to 620 ° C. for 4 to 48 hours, cooled to 450 to 550 ° C., and then hot rough rolled. Starting, a hot rough rolled sheet having a rising temperature of 400 to 470 ° C. is obtained. When this hot rough rolled sheet is rolled by a tandem hot finish rolling mill, a rolling roll and / or a rolling roll is obtained. The total amount of rolling oil sprayed on the plate is 150 to 350 liters / minute per 1 m of the plate width,
The total rolling reduction of hot finish rolling is 88 to 93%, the rolling speed is 270 m / min or more, and the coil side surface temperature immediately after coiling is 310 to 340 ° C. By performing the cold rolling so that the coil rolling temperature is 80 to 150 ° C. immediately after winding after the cold rolling is finished and the coil rolling temperature is 75 to 87% in 2 to 4 passes. The aspect ratio of the crystal grains in the cross section parallel to the rolling direction (length in the rolling direction) / (length in the plate thickness direction) is 10 to 30, and the circle equivalent diameter is 0.1 or more and less than 0.3 μm. An intermetallic compound is distributed in an area ratio of 0.3 to 0.8% in a cross section parallel to the rolling direction, and an intermetallic compound having a circle-equivalent diameter of 3 μm or more has an area ratio of 0.00 in a cross section parallel to the rolling direction. The distribution is 3 to 0.5%. The is an excellent method for producing the aluminum bottle can barrel aluminum alloy strip for cans roundness characterized.

本発明によればアルミボトル缶胴のネッキング成形での不良を低減させることができ、ネッキング成形後の缶形状(真円度)が良好なアルミボトル缶胴を作成することができる。   According to the present invention, defects in necking molding of an aluminum bottle can body can be reduced, and an aluminum bottle can body having a good can shape (roundness) after necking molding can be created.

本発明での合金成分の作用および範囲限定の理由を述べる。   The reason for the action and range limitation of the alloy components in the present invention will be described.

Mg:添加量を0.8〜1.2%とする。Mgは固溶硬化による強度向上に寄与する。また、冷延時やベーキング時の強度向上に寄与する析出物の構成元素でもある。0.8%未満ではこれらの効果が不十分であり、1.2%を超えると圧延時や成形中の加工硬化が大きくなり、材料の異方性が大きくなる。   Mg: Addition amount is 0.8 to 1.2%. Mg contributes to strength improvement by solid solution hardening. It is also a constituent element of precipitates that contribute to strength improvement during cold rolling and baking. If it is less than 0.8%, these effects are insufficient, and if it exceeds 1.2%, work hardening during rolling or forming becomes large, and the anisotropy of the material becomes large.

Mn:添加量を0.7〜1.5%とする。Mnは強度を向上させるとともに、Al(Fe,Mn)Si系化合物(α相)を形成するのに必要な元素である。α相はしごき加工時のダイスへの焼き付きを防ぐ働きがあり本用途に必要不可欠である。0.7%未満ではその効果が不十分であり、1.5%を超えるとAl−Mn−Fe系の粗大な晶出物が多くなり、しごき成形性を阻害する。   Mn: Addition amount is set to 0.7 to 1.5%. Mn is an element necessary for improving the strength and forming an Al (Fe, Mn) Si-based compound (α phase). The α phase has the function of preventing seizure on the die during ironing and is essential for this application. If it is less than 0.7%, the effect is insufficient, and if it exceeds 1.5%, the Al—Mn—Fe coarse crystallized product increases and the iron moldability is impaired.

Cu:添加量を0.10〜0.25%とする。Cuは冷延やベーキング時のAl−Mg−Cu系析出による強度上昇、耐熱性の向上に必要である。0.10%未満ではその効果が少なく、0.25%を超えるとAl−Mg−Cu系析出物の密度が多くなり、材料異方性が大きくなる。   Cu: Addition amount is set to 0.10 to 0.25%. Cu is necessary for increasing strength and improving heat resistance due to Al-Mg-Cu precipitation during cold rolling and baking. If it is less than 0.10%, the effect is small, and if it exceeds 0.25%, the density of Al—Mg—Cu-based precipitates increases and the material anisotropy increases.

Si: 添加量を0.1〜0.3%とする。Siは前述のα相を形成するのに必要な元素である。また、Si添加量によりMn固溶量は変化するので、Mn固溶量制御の手段としても有効である。Siが0.1%未満ではダイスへの焼き付け防止に十分なα相の分布を得られない。0.3%を超える場合は、Mnの固溶限が減少しAl−Mn−Fe(−Si)系の晶出物のサイズ及び分布密度が大きくなり過ぎるため、しごき成形時にそれら晶出物を起点として割れが発生してしまう。   Si: Addition amount is 0.1 to 0.3%. Si is an element necessary for forming the aforementioned α phase. Further, since the Mn solid solution amount changes depending on the Si addition amount, it is also effective as a means for controlling the Mn solid solution amount. If Si is less than 0.1%, it is impossible to obtain an α-phase distribution sufficient to prevent baking on the die. If it exceeds 0.3%, the solid solubility limit of Mn decreases, and the size and distribution density of Al-Mn-Fe (-Si) -based crystallized crystals become too large. Cracks will occur as a starting point.

Fe:添加量を0.1〜0.3%とする。FeはSi,Mn同様にα相の形成に必要な元素である。またSi同様、添加量によりMn固溶量を制御することも可能である。0.1%未満では、ダイスへの焼き付き防止効果が不十分であり、0.3%を超えると、粗大晶出物が生成し、しごき成形性を阻害する。   Fe: Addition amount is 0.1 to 0.3%. Fe is an element necessary for the formation of the α phase, like Si and Mn. Further, similarly to Si, the Mn solid solution amount can be controlled by the addition amount. If it is less than 0.1%, the effect of preventing seizure to the die is insufficient, and if it exceeds 0.3%, a coarse crystallized product is formed, and ironing formability is impaired.

以上の各元素のほかは、基本的にはAlおよび不可避的不純物とすれば良い。   In addition to the above elements, basically, Al and inevitable impurities may be used.

特に、Ti及びBは鋳塊の結晶粒を均一微細化させる元素でこの目的のために添加されることが多いが、それぞれ0.1%、0.001%を超えると粗大な晶出物を形成し、しごき成形性を低下させ、缶側壁のピンホールを生じさせやすくなる。 In particular, Ti and B are elements for uniformly refining ingot crystal grains and are often added for this purpose. However, when the content exceeds 0.1% and 0.001%, coarse crystallized substances are formed. Forming and ironing formability are reduced, and pinholes on the side wall of the can are easily generated.

アルミニウム合金板の圧延方向に平行な断面における結晶粒アスペクト比(圧延方向の長さ)/(板厚方向の長さ)=10〜30とする。本発明のように、熱間圧延以降にて再結晶化処理を目的とする焼鈍工程を含まない製法では、熱間圧延時の最終再結晶時に得られた結晶粒の形状及びサイズが、熱間圧延後の冷間圧延の圧下量によって変化し結晶粒のアスペクト比は変化する。結晶粒アスペクト比が30を超えると、冷間圧延量が過大になりすぎてしまい、アルミニウム合金板および缶胴に成形した際の缶開口部の強度異方性が大きくなってしまう。また、結晶粒アスペクト比が10未満であると、冷間圧延量が不足するため、缶体に必要な強度が得られない。   The crystal grain aspect ratio (length in the rolling direction) / (length in the plate thickness direction) in the cross section parallel to the rolling direction of the aluminum alloy plate = 10-30. As in the present invention, in a manufacturing method that does not include an annealing step for the purpose of recrystallization after hot rolling, the shape and size of the crystal grains obtained during the final recrystallization during hot rolling are hot. The aspect ratio of the crystal grains changes depending on the amount of cold rolling reduction after rolling. When the crystal grain aspect ratio exceeds 30, the amount of cold rolling becomes excessively large, and the strength anisotropy of the can opening when formed into the aluminum alloy plate and the can body becomes large. Further, if the crystal grain aspect ratio is less than 10, the amount of cold rolling is insufficient, so that the strength required for the can cannot be obtained.

アルミニウム合金板中に存在する円相当直径にて0.1μm以上0.3μm未満となる金属間化合物の分布が圧延方向に平行な断面にて面積率0.3〜0.8%となるように制御する。円相当直径にて0.1μm以上0.3μm未満となる金属間化合物は、鋳造凝固時に生成された晶出物が圧延により細かく分断されたものと、熱間圧延から冷間圧延の温度領域にて析出するものに分類される。このサイズの金属間化合物は冷間圧延における転位の集積度を上げることにより、アルミニウム合金板の強度付与に寄与する。しかし、金属間化合物の過度な存在は、圧延方向とその他方向との強度差が大きくなり、強度異方性に影響する。この金属間化合物の分布が圧延方向に平行な断面にて面積率が0.8%を超えると、冷間圧延または缶成形後の強度異方性が高くなりすぎてしまうし、0.3%未満では缶体に必要な強度が得られない。   The distribution of the intermetallic compound having an equivalent circle diameter of 0.1 μm or more and less than 0.3 μm existing in the aluminum alloy sheet is such that the area ratio is 0.3 to 0.8% in the cross section parallel to the rolling direction. Control. An intermetallic compound having an equivalent circle diameter of 0.1 μm or more and less than 0.3 μm is obtained by dividing the crystallized product generated during casting solidification into a temperature range from hot rolling to cold rolling. Are deposited. An intermetallic compound of this size contributes to imparting strength to the aluminum alloy sheet by increasing the degree of accumulation of dislocations in cold rolling. However, the excessive presence of intermetallic compounds increases the strength difference between the rolling direction and the other direction, which affects the strength anisotropy. When the distribution of the intermetallic compound is more than 0.8% in a cross section parallel to the rolling direction, the strength anisotropy after cold rolling or can forming becomes too high, and 0.3% If it is less than this, the strength required for the can cannot be obtained.

また、円相当直径にて3μm以上となる金属間化合物の分布が圧延方向に平行な断面にて面積率0.3〜0.5%とする。3μm以上となる金属間化合物は、鋳造凝固時に生成された晶出物が圧延されても細かく分断されずに材料中に残存したものに相当する。Al−Mn−Fe系やAl−Mn−Fe(−Si)系の晶出物が該当するが、特にAl−Mn−Fe(−Si)系の晶出物は非常に硬く、しごき成形時に砥粒のような働きをして、しごき金型への材料の焼付を防止すると共に、アルミニウム缶の表面の光沢を高める作用がある。その3μm以上となる金属間化合物が0.3%未満であると上記の作用効果が得られず、0.5%を超えてしまうと、しごき成形時の材料変形抵抗が増してしまい、同晶出物を起点として材料の破断が頻発してしまう。   Further, the distribution of the intermetallic compound having an equivalent circle diameter of 3 μm or more is set to an area ratio of 0.3 to 0.5% in a cross section parallel to the rolling direction. An intermetallic compound having a size of 3 μm or more corresponds to a crystallized product generated during casting solidification, which remains in the material without being finely divided even when rolled. Al-Mn-Fe-based and Al-Mn-Fe (-Si) -based crystallized substances are applicable, but especially Al-Mn-Fe (-Si) -based crystallized substances are very hard and are used during grinding. It acts like a grain to prevent the material from being baked on the ironing mold and to increase the gloss of the surface of the aluminum can. If the intermetallic compound with a thickness of 3 μm or more is less than 0.3%, the above-mentioned effects cannot be obtained. If it exceeds 0.5%, the material deformation resistance during ironing increases, and the same crystal The material breaks frequently from the starting material.

上記の要件を満たしたアルミニウム合金板に絞り比1.5〜2.0にて絞り成形を施し、続いて1.1〜1.3の絞り比による再絞りと側壁部の板厚減少率が60〜70%となるように3段または4段のしごき成形を連続して施した缶容器をベーク温度200℃×15分にて焼付け処理を加えたあとに、更に缶の開口部付近に12〜15%の絞り率にてネッキングした成形体の側壁部から試験片を採取した場合の材料強度異方性を5%以下とする。5%を超えてしまうと、缶開口部の高さ方向に平行な断面形状の真円度が悪くなってしまい、次工程であるカール成形やねじ切り成形にて不良を生じてしまう。   The aluminum alloy plate satisfying the above requirements is subjected to drawing at a drawing ratio of 1.5 to 2.0, followed by redrawing with a drawing ratio of 1.1 to 1.3 and a reduction in thickness of the side wall. After the can container which has been continuously subjected to the three-stage or four-stage iron forming so as to be 60 to 70% is baked at a baking temperature of 200 ° C. for 15 minutes, it is further placed near the opening of the can. The material strength anisotropy is 5% or less when a test piece is collected from the side wall of the molded article necked at a drawing ratio of ˜15%. If it exceeds 5%, the roundness of the cross-sectional shape parallel to the height direction of the can opening portion deteriorates, and a defect occurs in curl molding or threading molding as the next process.

本発明では上記合金組成をもつアルミニウム合金を通常のDC鋳造で鋳塊とし以下の工程で製造する。   In the present invention, an aluminum alloy having the above alloy composition is made into an ingot by ordinary DC casting and manufactured by the following steps.

570〜620℃で4〜48時間の均質化処理後、450〜550℃まで炉冷した後、熱間粗圧延を開始して、上がり温度が400〜470℃である熱間粗圧延アルミニウム合金板を得る。次にこの熱間粗圧延板に対しタンデム式の熱間仕上圧延機にて圧延を施す際に、圧延ロール及び/または圧延板に吹き付ける圧延油をトータルで板幅1mあたり150〜350リットル/分とし、熱間仕上圧延の総圧下率を88〜93%、圧延速度を270m/分以上とし、コイル状に巻き取った直後のコイル端面温度を310〜340℃とする、その後中間熱処理をすることなく冷間圧延を施す際に、2〜4パスの圧延回数にて全体の圧延率を75〜87%とし、冷間圧延を終了し巻取り直後のコイル側面温度を80〜150℃となるように冷間圧延を施す。   After homogenizing at 570 to 620 ° C. for 4 to 48 hours, after furnace cooling to 450 to 550 ° C., hot rough rolling is started, and the hot rough rolled aluminum alloy sheet having a rising temperature of 400 to 470 ° C. Get. Next, when this hot rough rolled sheet is rolled with a tandem hot finish rolling mill, the rolling oil and / or rolling oil sprayed on the rolled sheet is totaled at 150 to 350 liters / minute per sheet width. The total rolling reduction of hot finish rolling is 88 to 93%, the rolling speed is 270 m / min or more, and the coil end face temperature immediately after coiling is 310 to 340 ° C., followed by intermediate heat treatment When the cold rolling is performed, the entire rolling rate is 75 to 87% in 2 to 4 passes, and the coil side surface temperature immediately after winding after the cold rolling is 80 to 150 ° C. Is cold rolled.

均質化処理を、570〜620℃以下で4〜48時間行う。均質化処理の目的は、鋳造時に生じた不均一組織の均質化、不安定相の安定化であるが、本発明のようなボトル缶用材料ではAl−Fe・Mn系の相をAl(Fe,Mn)Si系のα相に変態させることが重要となる。このAl(Fe,Mn)Si系の相が適度に分散されていると、しごき成形時に材料がダイスに焼きつくことを防止できる。均質温度が570℃未満であるとα相への変態量が十分でなく、620℃を超えるとバーニングの可能性があり好ましくない。また保持時間が4時間未満であると鋳塊全体の均質化効果が得られず、48時間以上に保持したとしてもその効果が飽和するし、工業的に好ましくない。   The homogenization treatment is performed at 570 to 620 ° C. or lower for 4 to 48 hours. The purpose of the homogenization treatment is to homogenize the heterogeneous structure produced during casting and to stabilize the unstable phase. However, in the bottle can material as in the present invention, the Al—Fe · Mn system phase is changed to Al (Fe , Mn) Si transformation is important. When the Al (Fe, Mn) Si-based phase is appropriately dispersed, the material can be prevented from being burned into the die during ironing. If the homogeneous temperature is less than 570 ° C., the amount of transformation to α phase is not sufficient, and if it exceeds 620 ° C., there is a possibility of burning, which is not preferable. If the holding time is less than 4 hours, the homogenization effect of the entire ingot cannot be obtained. Even if the holding time is maintained for 48 hours or more, the effect is saturated, which is not industrially preferable.

均質化処理後に450〜550℃まで炉冷した後、熱間粗圧延を開始することにより、上がり温度が400〜470℃となる熱間粗圧延アルミニウム合金板とする。   After the furnace is cooled to 450 to 550 ° C. after the homogenization treatment, hot rough rolling is started to obtain a hot rough rolled aluminum alloy sheet having a rising temperature of 400 to 470 ° C.

本発明のように熱間圧延以降にて中間焼鈍を施さない工程にて製造する場合、熱間仕上圧延終了時に材料全体の再結晶化を実現させることが必須となる。そのため、均質化処理から熱間仕上圧延までの材料の温度管理が重要となる。熱間粗圧延開始の温度が450℃未満であると、引き続き施される熱間圧延条件を如何に変更したとしても、熱間仕上圧延後の材料の再結晶化が完全に達成できない。550℃を超えてしまうと、熱間粗圧延中に材料とロールが焼付を起こす可能性が高くなる。   When manufacturing in a process in which intermediate annealing is not performed after hot rolling as in the present invention, it is essential to realize recrystallization of the entire material at the end of hot finish rolling. Therefore, temperature management of materials from homogenization to hot finish rolling is important. If the temperature at the start of hot rough rolling is less than 450 ° C., recrystallization of the material after hot finish rolling cannot be achieved completely, no matter how the hot rolling conditions that are subsequently applied are changed. When it exceeds 550 degreeC, possibility that a material and a roll will raise | generate baking during hot rough rolling will become high.

熱間粗圧延の上がり温度は、熱間粗圧延の圧延時間や雰囲気温度、圧延量、圧延油の油温・噴出量に依存するが、400℃未満では、熱間仕上圧延後の材料の再結晶化が不十分となり、470℃を超えるように熱間粗圧延を施そうとすると、圧延条件が過酷になりすぎ、材料表面にピックアップインクルージョン等の不良を生じる。   The rise temperature of hot rough rolling depends on the rolling time and atmosphere temperature of hot rough rolling, the rolling amount, and the oil temperature and jetting amount of rolling oil, but at less than 400 ° C, the temperature of the material after hot finish rolling is reduced. If the crystallization is insufficient and the hot rough rolling is performed so as to exceed 470 ° C., the rolling condition becomes too severe, and a defect such as pickup inclusion occurs on the material surface.

タンデム式の熱間仕上圧延機にて圧延を施す際に、圧延ロール及び/または圧延板に吹き付ける圧延油をトータルで板幅1mあたり150〜350リットル/分とし、熱間仕上圧延の総圧下率を88〜93%、圧延速度を270m/分以上とし、コイル状に巻き取った直後のコイル側面温度が310〜340℃となるようにする。   When rolling with a tandem type hot finish rolling mill, the total rolling oil to be blown onto the rolling roll and / or the rolled sheet is 150 to 350 liters / minute per 1 m of the sheet width, and the total reduction ratio of the hot finish rolling. Is set to 88 to 93%, the rolling speed is set to 270 m / min or more, and the coil side surface temperature immediately after winding in a coil shape is set to 310 to 340 ° C.

コイルに巻き取った後のコイル温度は、材料全体の再結晶化を達成するために最重要項目となるが、この温度を満たすだけでなく、仕上総圧下量、圧延速度等も制御することとする。材料の再結晶化が十分でなければ、続く冷間圧延を施されたアルミニウム合金板の強度異方性が高くなってしまう。コイル温度が310℃未満であると材料の再結晶化が不十分となり、340℃を超える温度になるような圧延条件では、表面不良が多発してしまう。前述のように、アルミニウム合金板全体にて再結晶化を達成させるため、一定量以上の加工を施して、材料の加工発熱により圧延後の材料温度を再結晶化温度以上に確保しなければならない。熱間仕上圧延の総圧下率が88%未満であれば、加工率が十分でないために、熱間仕上圧延後の材料温度が再結晶温度に到達し得ない。93%を超えるような加工率では、1段当りの加工率が高くなりすぎてしまい、材料表面が不良となる可能性がある。圧延速度は材料の歪み速度に対応するが、270m/分以上でないと材料の再結晶化が促進されず、再結晶したとしても粗大な結晶粒となってしまう恐れがある。上限については特に規定しないが、材料に働く張力の過多による板切れを防止するため、400m/分以下が好ましい。   The coil temperature after being wound on the coil is the most important item for achieving recrystallization of the entire material. In addition to satisfying this temperature, the finish total rolling reduction, rolling speed, etc. should be controlled. To do. If the material is not sufficiently recrystallized, the strength anisotropy of the aluminum alloy sheet subjected to the subsequent cold rolling will increase. If the coil temperature is less than 310 ° C, recrystallization of the material is insufficient, and surface defects frequently occur under rolling conditions where the temperature exceeds 340 ° C. As described above, in order to achieve recrystallization in the entire aluminum alloy plate, it is necessary to perform processing of a certain amount or more and ensure that the material temperature after rolling is equal to or higher than the recrystallization temperature by processing heat generation of the material. . If the total rolling reduction of hot finish rolling is less than 88%, the processing rate is not sufficient, and thus the material temperature after hot finish rolling cannot reach the recrystallization temperature. If the processing rate exceeds 93%, the processing rate per step becomes too high, and the material surface may become defective. The rolling speed corresponds to the strain rate of the material, but if it is not 270 m / min or more, recrystallization of the material is not promoted, and even if recrystallized, coarse crystal grains may be formed. The upper limit is not particularly defined, but 400 m / min or less is preferable in order to prevent the plate from being cut due to excessive tension acting on the material.

圧延ロール及び/または圧延板に吹き付ける熱間圧延油は、一般に鉱油を基油とし油性剤を加えたものを水に乳化させたものであるが、その使用目的は、潤滑、冷却のためである。熱間圧延油量がトータルで板幅1mあたり350リットル/分を超えるとアルミニウム合金板が過度に冷却されてしまい、熱間仕上圧延後のコイル温度310〜340℃が確保できない。150リットル/分未満であると、ロールとアルミニウム合金板との間の潤滑が不十分となり、ピックアップインクルージョンが多発したり、アルミニウム合金板がロールに焼き付く恐れがある。   The hot rolling oil sprayed on the rolling roll and / or the rolled sheet is generally obtained by emulsifying a mineral oil base oil and an oily agent in water, and its purpose is for lubrication and cooling. . If the total amount of hot rolling oil exceeds 350 liters / minute per 1 m of the plate width, the aluminum alloy plate is excessively cooled, and a coil temperature of 310 to 340 ° C. after hot finish rolling cannot be secured. If it is less than 150 liters / minute, lubrication between the roll and the aluminum alloy plate becomes insufficient, and pick-up inclusion may occur frequently or the aluminum alloy plate may be baked on the roll.

2〜4パスの圧延回数にて全体の圧延率を75〜87%とし、巻取り直後のコイル側面温度を120〜150℃となるように冷間圧延を施す。冷間圧延は加工硬化による強度付与を目的とするが、冷間圧延の途中パスの圧延中または圧延終了時の温度域ではAl−Cu及びAl−Mg、Al−Mg−Cu系の析出物が析出し、その後の冷間圧延にて、析出物周りに転位が集積し、強度過多や強度異方性が悪くなる現象が生じる。圧延率が87%を超えると、材料の強度異方性が高くなりすぎ、ボトル缶の飲み口部の真円度が悪くなる。75%未満であると、缶体に必要な強度が得られない。また、圧延回数を2〜4パスとするが、通常上記の圧延率を1パスでは冷間圧延することができず、5パス以上にて圧延することは可能であるが、製造時間が過剰となり工業的に好ましくない。巻取り直後のコイル側面温度が150℃を超えると、Al−Cu及びAl−Mg、Al−Mg−Cu系の析出物が過剰に析出し、強度異方性が悪くなる。80℃未満に圧延しようとすると、圧延速度が異常に遅くなってしまい工業的に好ましくない。   Cold rolling is performed so that the overall rolling rate is 75 to 87% and the coil side surface temperature immediately after winding is 120 to 150 ° C. in the number of rolling passes of 2 to 4 passes. Cold rolling is intended to impart strength by work hardening, but Al-Cu, Al-Mg, and Al-Mg-Cu-based precipitates are present in the temperature range at the end of rolling or at the end of rolling during cold rolling. In the subsequent cold rolling, dislocations accumulate around the precipitate, resulting in a phenomenon in which excessive strength and strength anisotropy deteriorate. When the rolling rate exceeds 87%, the strength anisotropy of the material becomes too high, and the roundness of the mouth portion of the bottle can deteriorates. If it is less than 75%, the strength required for the can cannot be obtained. In addition, although the number of rolling is 2 to 4 passes, the above rolling rate cannot be cold-rolled with 1 pass, and it is possible to roll with 5 passes or more, but the manufacturing time becomes excessive. Industrially unfavorable. When the coil side surface temperature immediately after winding exceeds 150 ° C., Al—Cu, Al—Mg, and Al—Mg—Cu based precipitates are excessively deposited, resulting in poor strength anisotropy. If rolling to less than 80 ° C., the rolling speed is abnormally slow, which is not industrially preferable.

以下に実施例を示す。特性の評価方法は以下の通り実施した。
<評価方法>
Examples are shown below. The evaluation method of characteristics was performed as follows.
<Evaluation method>

・ 板断面の結晶粒サイズ測定
最終板の圧延方向に平行な断面(圧延方向と板厚方向を2辺とする断面)を機械/電解研磨し、光学顕微鏡にて結晶粒サイズを測定した。結晶粒の圧延方向長さL1と板厚方向長さL2を測定し、結晶粒のアスペクト比(L1/L2)を求めた。観察箇所は板断面の板厚の中央層とし、30箇所にて測定したアスペクト比の平均値を求めた。
-Measurement of crystal grain size of cross section of plate The cross section parallel to the rolling direction of the final plate (cross section with two sides in the rolling direction and the plate thickness direction) was mechanically / electropolished, and the crystal grain size was measured with an optical microscope. The length L1 in the rolling direction and the length L2 in the thickness direction of the crystal grains were measured to determine the aspect ratio (L1 / L2) of the crystal grains. The observation location was the center layer of the plate thickness of the plate cross section, and the average value of the aspect ratios measured at 30 locations was determined.

・ 金属間化合物の面積率
最終板の圧延方向に平行な断面(圧延方向と板厚方向を2辺とする断面)を機械研磨し、透過型電子顕微鏡/光学顕微鏡にて金属間化合物を写真撮影した。面積率の導出には、撮影した写真を画像解析装置にて2値化して、解析視野面積に対する第2相粒子の占有面積の割合より求めた。解析視野面積は、円相当直径0.1μm以上0.3μm未満の大きさの金属間化合物では0.2mm、円相当直径3μm以上の大きさの金属間化合物では5mmとした。
-Area ratio of intermetallic compound The cross section parallel to the rolling direction of the final plate (cross section with two sides in the rolling direction and the plate thickness direction) is mechanically polished, and the intermetallic compound is photographed with a transmission electron microscope / optical microscope. did. In order to derive the area ratio, the photographed image was binarized by an image analysis device, and was determined from the ratio of the area occupied by the second phase particles to the analysis visual field area. The analysis visual field area was 0.2 mm 2 for an intermetallic compound having a circle equivalent diameter of 0.1 μm or more and less than 0.3 μm, and 5 mm 2 for an intermetallic compound having a circle equivalent diameter of 3 μm or more.

・ 缶フランジ部の引張試験
絞り比1.7にて絞り成形を施し、続いて1.2の絞り比による再絞りと側壁部の板厚減少率が66%となるように3段のしごき成形を連続して施した缶を作成し、洗浄した缶をベーク温度200℃×15分にて焼付け処理を加えたあとに、更に缶の開口部付近に14%の絞り率にてネッキング成形を施した。
しごき成形後(表には「DI後」と表す)、ベーク処理後(表には「ベーク後」と表す)、ネッキング成形後(表には「ネッキング後」と表す)の缶について、缶の開口端より缶高さ方向に15mm、缶円周方向に80mmサイズで引張試験用の試験片を切り出し、引張り速度20mm/分で引張り試験を行い、缶側壁強度を求めた。また、それぞれの缶について圧延方向より0°、45°、90°の3方向の試験を行い、缶側壁の強度異方性を3方向の缶側壁強度から、{(最大値)−(最小値)}/(3方向の平均値)にて求めた。缶体に必要な強度として、ベーク処理後の材料強度が280MPa未満であると、不良と判断する。
・ Tensile test of can flange part Drawing is performed at a drawing ratio of 1.7, then redrawing with a drawing ratio of 1.2 and three-stage ironing so that the thickness reduction rate of the side wall part is 66%. After the cans were continuously baked at a baking temperature of 200 ° C for 15 minutes, necking was performed near the opening of the cans at a drawing ratio of 14%. did.
For cans after ironing (represented as “after DI” in the table), after baking (represented as “after baking” in the table), and after necking (represented as “after necking” in the table) A test piece for a tensile test was cut out at a size of 15 mm from the opening end in the can height direction and 80 mm in the circumferential direction of the can, and a tensile test was performed at a pulling speed of 20 mm / min to obtain a can side wall strength. In addition, each can was tested in three directions of 0 °, 45 °, and 90 ° from the rolling direction, and the strength anisotropy of the can side wall was determined from {(maximum value) − (minimum value) )} / (Average value in three directions). If the material strength after baking is less than 280 MPa as the strength required for the can body, it is judged as defective.

・ ネッキング加工缶の開口部真円度
ネッキング成形缶をn=10にて缶開口端より10mmの位置の形状プロファイルを測定し、同心の2円にて挟んだときの外側円と内側円の半径差を真円度とし、10缶分の平均値を真円度とした。真円度が0.3mmを超えると、不良と判定する。
・ Roundness of the opening of the necking can The shape profile of the necking can at the position of 10 mm from the end of the can opening is measured at n = 10, and the radius of the outer circle and the inner circle when sandwiched between two concentric circles The difference was roundness, and the average value for 10 cans was roundness. When the roundness exceeds 0.3 mm, it is determined as defective.

表1に示す合金組成のAl合金を常法により溶解鋳造し、鋳塊を製造した。次いで600℃×6hの均質化処理後、490℃まで炉冷し、直ちに熱間粗圧延を施した。熱間粗圧延の上がり温度は放射温度計での測定で430〜470℃であった。その後、駆動式テーブルにて板を搬送し、熱間粗圧延終了後から300秒後に熱間仕上げ圧延を開始した。熱間仕上げ圧延は、4段タンデム式圧延機にて実施し、総圧下率は90%とし、最終的に製品になる部分の最低圧延速度を275m/分、最高圧延速度を350m/分とした。コイル巻上げ直前にて放射温度計を用い温度管理を行い、熱間圧延油の噴出油量を制御した。結果的に使用した圧延油の量は、200〜300リットル/分であり、コイル巻上げ直後の材料温度は320〜330℃であった。熱間圧延後の板全体にて完全に再結晶化されていることが確認された。
その後、中間熱処理(焼鈍)を行うことなく冷間圧延を3パス、総圧下率85.8%にてアルミニウム板を製造した。冷間圧延3パス直後のコイル温度は130℃であった。
An Al alloy having the alloy composition shown in Table 1 was melt cast by a conventional method to produce an ingot. Subsequently, after homogenization at 600 ° C. × 6 h, the furnace was cooled to 490 ° C. and immediately subjected to hot rough rolling. The rising temperature of hot rough rolling was 430 to 470 ° C. as measured with a radiation thermometer. Thereafter, the plate was conveyed by a drive table, and hot finish rolling was started 300 seconds after the hot rough rolling was completed. Hot finish rolling is performed with a four-stage tandem rolling mill, the total rolling reduction is 90%, the minimum rolling speed of the final product is 275 m / min, and the maximum rolling speed is 350 m / min. . Immediately before coiling, the temperature was controlled using a radiation thermometer, and the amount of hot rolling oil ejected was controlled. The amount of rolling oil used as a result was 200 to 300 liters / minute, and the material temperature immediately after coiling was 320 to 330 ° C. It was confirmed that the entire plate after hot rolling was completely recrystallized.
Thereafter, an aluminum plate was manufactured with 3 passes of cold rolling and a total reduction ratio of 85.8% without performing intermediate heat treatment (annealing). The coil temperature immediately after 3 cold rolling passes was 130 ° C.

Figure 2007169744
Figure 2007169744

本発明の組成範囲内にある合金は、しごき、ネッキングの缶加工性が良好であり、ネッキング缶の開口部における真円度が良好である。
No.7,8,11はそれぞれSi,Fe,Mnが多いために円相当直径にて3μm以上となる金属間化合物分布が過剰となり、DI成形時に破胴が多発した。No.9,13はCu,Mgが規定量を超えているため、円相当直径にて0.1μm以上0.3μm未満となる金属間化合物の分布が過剰となり、ネッキング缶の開口部における真円度が悪かった。No.10,12,14はそれぞれCu,Mn,Mgの添加が少ないため、ベーク処理後の缶側壁強度が不足していた。
An alloy within the composition range of the present invention has good ironing and necking can processability and good roundness at the opening of the necking can.
No. 7, 8, and 11 had a large amount of Si, Fe, and Mn, respectively, so that the distribution of intermetallic compounds with an equivalent circle diameter of 3 μm or more was excessive, and fractures occurred frequently during DI molding. No. 9 and 13, since Cu and Mg exceed the specified amount, the distribution of intermetallic compounds with an equivalent circle diameter of 0.1 μm or more and less than 0.3 μm becomes excessive, and the roundness at the opening of the necking can is increased. It was bad. No. Nos. 10, 12, and 14 had a small amount of Cu, Mn, and Mg, respectively, so that the side wall strength after baking was insufficient.

表1中の合金組成1のAl合金を常法の溶解鋳造により鋳塊を製造した。その後、表2の条件で均質化処理、熱間圧延及び冷間圧延を実施し、アルミニウム合金板を製造した。   An ingot was produced by melting and casting an Al alloy having an alloy composition 1 in Table 1 in a conventional manner. Then, the homogenization process, hot rolling, and cold rolling were implemented on the conditions of Table 2, and the aluminum alloy plate was manufactured.

表2に実施例の結果を示す。本発明の製造条件であるA及びBは、板断面の結晶粒アスペクト比、金属間化合物の分布が、本発明内にありDI成形性、缶真円度は良好な結果が得られている。   Table 2 shows the results of the examples. In the production conditions A and B of the present invention, the crystal grain aspect ratio of the cross section of the plate and the distribution of intermetallic compounds are within the present invention, and the results of good DI moldability and roundness of the can are obtained.

Figure 2007169744
Figure 2007169744

Cは均質化処理温度が低いため晶出物の分布が多くなりすぎ、DI成形時に破胴は生じなかったものの缶胴側壁部に縦スジの発生が認められた。Dは均質化処理終了から熱間粗圧延開始までの時間が長時間になってしまったケースであるが、熱間仕上げ圧延後のコイル温度が必要温度に達さず、材料が十分に再結晶化されなかった。E、Fは熱間仕上げ圧延油の使用量がそれぞれ少ない、多い場合であるが、前者は析出物の過剰により缶真円度が悪化した。後者は過冷却となり部分的に非再結晶となる箇所が発生し、結晶粒アスペクト比が大きくなると共に、缶側壁部の強度が過剰となった。Gは冷間圧延の最終パス前の温度が高いために、析出物分布が過剰となり、強度異方性、缶真円度が悪くなった。
In C, since the homogenization temperature was low, the distribution of the crystallized product was too large, and although no fracture occurred during DI molding, vertical streaks were observed on the side wall of the can cylinder. D is the case where the time from the end of the homogenization treatment to the start of hot rough rolling has become long, but the coil temperature after hot finish rolling does not reach the required temperature, and the material is sufficiently recrystallized. It was not converted. E and F are cases where the amount of hot finish rolling oil used is small and large, respectively, but in the former case, roundness of the can deteriorated due to excess of precipitates. The latter was supercooled and partially non-recrystallized, resulting in an increased crystal grain aspect ratio and excessive strength on the side wall of the can. Since G had a high temperature before the final pass of cold rolling, the precipitate distribution was excessive, and the strength anisotropy and can roundness deteriorated.

Claims (2)

Mg:0.8〜1.2%(mass%、以下同じ)、Mn:0.7〜1.5%、Cu:0.10〜0.25%、Si:0.1〜0.3%、Fe:0.1〜0.3%を含有し残部Al及び不可避不純物よりなり、圧延方向に平行な断面における結晶粒のアスペクト比 (圧延方向の長さ)/(板厚方向の長さ)が10〜30であり、円相当直径0.1μm以上0.3μm未満の大きさの金属間化合物が圧延方向に平行な断面において面積率0.3〜0.8%で分布し、且つ円相当直径3μm以上の大きさの金属間化合物が圧延方向に平行な断面において面積率0.3〜0.5%で分布しているアルミニウム合金板に対して、絞り比1.5〜2.0にて絞り成形を施し、続いて1.1〜1.3の絞り比による再絞りと側壁部の板厚減少率が60〜70%となるような3段または4段のしごき成形を連続して施し、ベーク温度200℃×15分にて焼付け処理を加えた後、更に缶の開口部付近に12〜15%の絞り率にてネッキングした成形体の側壁部から試験片を採取した場合の材料強度異方性が5%以下となることを特徴とする缶真円度の優れたアルミボトル缶胴用アルミニウム合金板。 Mg: 0.8-1.2% (mass%, the same shall apply hereinafter), Mn: 0.7-1.5%, Cu: 0.10-0.25%, Si: 0.1-0.3% , Fe: 0.1 to 0.3% contained, remaining Al and inevitable impurities, aspect ratio of crystal grains in a cross section parallel to the rolling direction (length in the rolling direction) / (length in the plate thickness direction) Is 10-30, and an intermetallic compound having a circle equivalent diameter of 0.1 μm or more and less than 0.3 μm is distributed in an area ratio of 0.3 to 0.8% in a cross section parallel to the rolling direction, and is equivalent to a circle. With respect to an aluminum alloy sheet in which an intermetallic compound having a diameter of 3 μm or more is distributed at an area ratio of 0.3 to 0.5% in a cross section parallel to the rolling direction, the drawing ratio is 1.5 to 2.0. Then, drawing is performed, and then redrawing with a drawing ratio of 1.1 to 1.3 and the thickness reduction rate of the side wall portion is 60 to 7 % Or three-stage ironing is continuously performed, baking is performed at a baking temperature of 200 ° C. for 15 minutes, and further, the drawing ratio is 12 to 15% near the opening of the can. An aluminum alloy plate for an aluminum bottle can body excellent in can roundness, characterized in that material strength anisotropy is 5% or less when a test piece is collected from a side wall portion of a necked molded body. Mg:0.8〜1.2%、Mn:0.7〜1.5%、Cu:0.10〜0.25%、Si:0.1〜0.3%、Fe:0.1〜0.3%を含有し残部Al及び不可避不純物よりなるアルミニウム合金鋳塊を、570〜620℃で4〜48時間の均質化処理後、450〜550℃まで炉冷した後、熱間粗圧延を開始して、上がり温度が400〜470℃となる熱間粗圧延板を得る、
この熱間粗圧延板に対しタンデム式の熱間仕上圧延機にて圧延を施すにあたり、
圧延ロール及び/または圧延板に吹き付ける圧延油をトータルで板幅1mあたり150〜350リットル/分とし、
熱間仕上圧延の総圧下率を88〜93%、圧延速度を270m/分以上とし、
コイル状に巻き取った直後のコイル側面温度を310〜340℃とする、
その後中間熱処理をすることなく、
2〜4パスの圧延回数にて全体の圧延率を75〜87%とし、冷間圧延を終了し巻取り直後のコイル側面温度を80〜150℃となるように冷間圧延を施すことにより、
圧延方向に平行な断面における結晶粒のアスペクト比 (圧延方向の長さ)/(板厚方向の長さ)が10〜30であり、円相当直径0.1以上0.3μm未満の大きさの金属間化合物が圧延方向に平行な断面において面積率0.3〜0.8%で分布し、且つ円相当直径3μm以上の大きさの金属間化合物が圧延方向に平行な断面において面積率0.3〜0.5%で分布している様にしたことを特徴とする缶真円度の優れたアルミボトル缶胴用アルミニウム合金板の製造方法。
Mg: 0.8-1.2%, Mn: 0.7-1.5%, Cu: 0.10-0.25%, Si: 0.1-0.3%, Fe: 0.1 An aluminum alloy ingot containing 0.3% of the balance Al and inevitable impurities is homogenized at 570 to 620 ° C. for 4 to 48 hours, cooled to 450 to 550 ° C., and then hot rough rolled. Start, to obtain a hot rough rolled plate having a rising temperature of 400 to 470 ° C.,
When rolling this hot rough rolled sheet with a tandem hot finishing mill,
The rolling oil sprayed onto the rolling rolls and / or the rolled sheet is set to 150 to 350 liters / minute per 1 m of the sheet width,
The total rolling reduction of hot finish rolling is 88 to 93%, the rolling speed is 270 m / min or more,
The coil side surface temperature immediately after winding in a coil shape is 310 to 340 ° C.,
Without intermediate heat treatment
By performing the cold rolling so that the coil rolling temperature is 80 to 150 ° C. immediately after winding after the cold rolling is finished and the coil rolling temperature is 75 to 87% in 2 to 4 passes.
The aspect ratio of the crystal grains in the cross section parallel to the rolling direction (length in the rolling direction) / (length in the plate thickness direction) is 10 to 30, and the circle equivalent diameter is 0.1 or more and less than 0.3 μm. An intermetallic compound is distributed in an area ratio of 0.3 to 0.8% in a cross section parallel to the rolling direction, and an intermetallic compound having a circle-equivalent diameter of 3 μm or more has an area ratio of 0.00 in a cross section parallel to the rolling direction. A method for producing an aluminum alloy plate for an aluminum bottle can body excellent in can roundness, characterized by being distributed at 3 to 0.5%.
JP2005371474A 2005-12-26 2005-12-26 Aluminum alloy sheet for aluminum bottle can barrel having excellent can roundness and its production method Pending JP2007169744A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005371474A JP2007169744A (en) 2005-12-26 2005-12-26 Aluminum alloy sheet for aluminum bottle can barrel having excellent can roundness and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005371474A JP2007169744A (en) 2005-12-26 2005-12-26 Aluminum alloy sheet for aluminum bottle can barrel having excellent can roundness and its production method

Publications (1)

Publication Number Publication Date
JP2007169744A true JP2007169744A (en) 2007-07-05

Family

ID=38296683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005371474A Pending JP2007169744A (en) 2005-12-26 2005-12-26 Aluminum alloy sheet for aluminum bottle can barrel having excellent can roundness and its production method

Country Status (1)

Country Link
JP (1) JP2007169744A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014015643A (en) * 2012-07-06 2014-01-30 Uacj Corp Aluminum alloy sheet for can body and method for producing the same
WO2018003927A1 (en) * 2016-06-29 2018-01-04 株式会社Uacj Aluminum alloy plate and method for producing same
WO2018045296A1 (en) 2016-08-30 2018-03-08 Alcoa Usa Corp. Aluminum sheet with enhanced formability and an aluminum container made from aluminum sheet

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014015643A (en) * 2012-07-06 2014-01-30 Uacj Corp Aluminum alloy sheet for can body and method for producing the same
WO2018003927A1 (en) * 2016-06-29 2018-01-04 株式会社Uacj Aluminum alloy plate and method for producing same
WO2018045296A1 (en) 2016-08-30 2018-03-08 Alcoa Usa Corp. Aluminum sheet with enhanced formability and an aluminum container made from aluminum sheet
EP3507391A4 (en) * 2016-08-30 2020-04-29 Alcoa USA Corp. Aluminum sheet with enhanced formability and an aluminum container made from aluminum sheet
US11433441B2 (en) 2016-08-30 2022-09-06 Kaiser Aluminum Warrick, Llc Aluminum sheet with enhanced formability and an aluminum container made from aluminum sheet

Similar Documents

Publication Publication Date Title
WO2012043582A1 (en) Cold-rolled aluminum alloy sheet for bottle can
JP2006265700A (en) Aluminum alloy sheet for bottle-shaped can superior in high-temperature property
JP2012188703A (en) Aluminum-alloy sheet for resin coated can body, and method for producing the same
US9546411B2 (en) Aluminum-alloy sheet and method for producing the same
JP6336434B2 (en) Aluminum alloy plate for can body and manufacturing method thereof
US20210292878A1 (en) Aluminum alloy sheet for can body, and process for producing the same
JP6850635B2 (en) A method for manufacturing an aluminum alloy plate for beverage cans, which has excellent bottom moldability and bottom strength.
JP5568031B2 (en) Aluminum alloy cold rolled sheet for bottle cans
JP2009270192A (en) Aluminum alloy sheet for can barrel, and method for producing the same
JP4791072B2 (en) Aluminum alloy plate for beverage can body and manufacturing method thereof
JP2009235477A (en) Aluminum alloy sheet for drink can barrel, and method for producing the same
JP6718701B2 (en) Method for producing aluminum alloy sheet for beverage can body excellent in anisotropy and neck formability, and for bottle can body excellent in anisotropy and bottle neck formability
JP5491937B2 (en) Al alloy plate for can body and manufacturing method thereof
JP2010236075A (en) Aluminum alloy sheet for can barrel, and method for manufacturing the same
JP2004244701A (en) Aluminum alloy cold rolled sheet for can barrel, and aluminum alloy hot rolled sheet to be used as the stock therefor
JP2006283113A (en) Aluminum alloy sheet for drink can barrel, and method for producing the same
JP2008274319A (en) Method for manufacturing aluminum alloy sheet for beverage can body
JP2007270281A (en) Aluminum alloy sheet for bottle type beverage can and its production method
JP2007169744A (en) Aluminum alloy sheet for aluminum bottle can barrel having excellent can roundness and its production method
JP5113411B2 (en) Aluminum alloy plate for packaging container and method for producing the same
JP6684568B2 (en) Method for producing aluminum alloy plate for beverage can body or beverage bottle can body excellent in anisotropy and neck formability
JP5480688B2 (en) Aluminum alloy plate for PP cap and method for producing the same
JP2007051310A (en) Aluminum alloy sheet for aluminum bottle can barrel, and its manufacturing method
JP4771726B2 (en) Aluminum alloy plate for beverage can body and manufacturing method thereof
JP2009235475A (en) Aluminum alloy sheet for can body excellent in circularity of drawn cup, and method for producing the same