JP2010236075A - Aluminum alloy sheet for can barrel, and method for manufacturing the same - Google Patents

Aluminum alloy sheet for can barrel, and method for manufacturing the same Download PDF

Info

Publication number
JP2010236075A
JP2010236075A JP2009088475A JP2009088475A JP2010236075A JP 2010236075 A JP2010236075 A JP 2010236075A JP 2009088475 A JP2009088475 A JP 2009088475A JP 2009088475 A JP2009088475 A JP 2009088475A JP 2010236075 A JP2010236075 A JP 2010236075A
Authority
JP
Japan
Prior art keywords
aluminum alloy
mass
alloy plate
less
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009088475A
Other languages
Japanese (ja)
Other versions
JP5961839B2 (en
Inventor
Masahiro Yamaguchi
正浩 山口
Atsuto Tsuruta
淳人 鶴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2009088475A priority Critical patent/JP5961839B2/en
Publication of JP2010236075A publication Critical patent/JP2010236075A/en
Application granted granted Critical
Publication of JP5961839B2 publication Critical patent/JP5961839B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an aluminum alloy sheet for a can barrel, which can be formed into a can barrel having excellent sticking resistance and can expansibility even if being thinned, by covering both sides of the aluminum alloy sheet with a protective layer made from resin, and to provide a method for manufacturing the same. <P>SOLUTION: The aluminum alloy sheet is manufactured by: producing an ingot by melting an aluminum alloy comprising, by mass, 1.6-6.0% Mg, less than 0.5% Mn, 0.05-0.5% Si, 0.1-0.5% Fe, 0.05-0.3% Cu and the balance Al with unavoidable impurities, and casting the melted alloy; homogenizing the ingot by heat-treating it once at 450°C or higher but lower than 550°C; subsequently hot-rolling the ingot at a total reduction ratio of 99.2% or more without cooling it; and cold-rolling the hot-rolled plate without annealing it. In the central part in the sheet thickness direction of a cross-section of the aluminum alloy sheet, intermetallic compounds with the maximum length of 1 μm or more occupy more than 0.3% but less than 1.3% by an area rate, and the number of intermetallic compounds with the maximum length of 11 μm or more is 100 pieces/mm<SP>2</SP>or less. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、飲料、食品用途に使用される包装容器であって、特に両面にフィルムラミネートを施してから飲料缶の胴部に成形加工されるアルミニウム合金板とその製造方法に関する。   The present invention relates to a packaging container used for beverages and foods, and more particularly to an aluminum alloy plate formed on a body portion of a beverage can after film lamination on both sides and a manufacturing method thereof.

現在、飲料、食品用途に使用される包装容器の1つとして、底と側壁が一体構造の有底円筒状の胴部(缶胴)と、この胴部の開口部に封止されて上面となる円板状の蓋部(缶蓋)とからなる2ピース缶が知られている。このような缶の材料として、成形性、耐食性、強度等の面から、アルミニウム合金板が広く適用されている。このアルミニウム合金板で製造される2ピース缶の中でも、特に飲料缶のような高さのある円筒形状の缶の胴部は、DI(Drawing and wall Ironing)成形と呼ばれる絞り加工−しごき加工の多段階の加工により成形されることが多い。このように、アルミニウム合金板はDI成形された後、塗装、焼付けされ、ネッキング(ネック成形)により開口部を縮径して、フランジング(フランジ成形)により開口部の縁を外側に拡げて缶胴となる。最後に、内容物(飲料、食品)が胴部内に充填され、蓋部を開口部に巻き締めて封止される。このような製法による缶は、DI缶(以下、適宜「缶」という)と呼ばれ、広く流通している。   Currently, as one of packaging containers used for beverages and foods, a bottomed cylindrical body (can body) whose bottom and side walls are integrated, and an upper surface sealed by an opening of the body A two-piece can comprising a disc-shaped lid (can lid) is known. As a material for such a can, an aluminum alloy plate is widely applied in terms of formability, corrosion resistance, strength, and the like. Among the two-piece cans manufactured with this aluminum alloy plate, the cylindrical portion of the cylindrical can having a height particularly like a beverage can has a lot of drawing and ironing called DI (Drawing and wall Ironing) molding. Often formed by step processing. In this way, the aluminum alloy plate is DI molded, then painted and baked, the opening diameter is reduced by necking (neck molding), and the edge of the opening is expanded outward by flanging (flange molding). Become the torso. Finally, the contents (beverage, food) are filled in the body, and the lid is wound around the opening and sealed. A can made by such a manufacturing method is called a DI can (hereinafter referred to as “can” as appropriate) and is widely distributed.

従来より、このようなアルミニウム合金製の缶で包装された飲料のコスト削減のため、包装容器である缶は、軽量化および原材料(アルミニウム合金)低減の対策として薄肉化が進められている。その結果、現行のアルミニウム合金製の缶の側壁(最薄部)厚さは、塗膜等を除いたアルミニウム合金部分で0.100〜0.110mm程度となっている。しかし、このような薄肉化された缶では、特に板厚が薄い側壁(周面)に突起物が接触して押圧された(押し込まれた)とき、その先端が側壁を貫通し、穴(ピンホール)が開いて内容物が漏れるという不具合が発生することがある。突起物の接触としては、製造時(内容物充填、蓋部巻き締め、製造工程内の搬送系通過時)、流通時、さらに消費者が扱うときに、外部から硬い異物が接触すること等が挙げられる。また、フランジングにおいても、開口部の縁が拡げられるときに、開口部の端部で割れ(フランジ割れ)を生じることがある。そのため、このような薄肉化された缶の、側壁のピンホール発生および開口部のフランジ割れを防止できる、すなわち側壁の耐突刺し性およびフランジ成形性(拡缶性)を向上させるように、材料であるアルミニウム合金板の開発が進められている。   Conventionally, in order to reduce the cost of beverages packaged with such aluminum alloy cans, cans that are packaging containers have been reduced in thickness as measures for reducing weight and reducing raw materials (aluminum alloys). As a result, the thickness of the side wall (thinnest part) of the current aluminum alloy can is about 0.100 to 0.110 mm in the aluminum alloy part excluding the coating film and the like. However, in such a thinned can, when a protrusion is brought into contact with and pressed against a thin side wall (circumferential surface), the tip penetrates the side wall and a hole (pin (Hall) may open and the contents may leak. Protrusion contact may include contact of hard foreign matter from the outside during manufacturing (filling contents, tightening the lid, passing through the transport system in the manufacturing process), distribution, and even when handled by consumers. Can be mentioned. Also in flanging, when the edge of the opening is expanded, a crack (flange crack) may occur at the end of the opening. Therefore, the material of the thinned can can prevent the occurrence of pinholes on the side walls and cracks in the flanges of the openings, that is, improve the piercing resistance and flange formability (can expandability) of the side walls. The development of aluminum alloy plates is underway.

例えば、特許文献1では、JIS3104−H19調質板から缶をDI成形し、この缶を270℃以上の洗浄乾燥炉中で熱処理することにより側壁の伸びを増大させて、ピンホールおよびフランジ割れの発生の少ない缶を製造する技術が開示されている。また、特許文献2では、Mn,Mg,Cu,Si,Feを所定量含有するアルミニウム合金冷延板で、その表面において所定サイズの金属間化合物の分布密度および面積率を制御することにより、強度(耐突刺し性)および靭性を向上させる技術が開示されている。特許文献3では、Mn,Mg,Cu,Si,Feを所定量含有するアルミニウム合金冷延板を、所定の加工率でDI成形し、210〜250℃で熱処理することにより、DI成形による加工硬化と引張強さを制御して、耐突刺し性を向上させる技術が開示されている。特許文献4では、Mn,Mg,Cu,Si,Feを所定量含有するアルミニウム合金を鋳造した鋳塊を均質化処理により比較的大きなAl−Mn−Fe−Si系の晶出物を密に分布させることで、強度を付与する技術が開示されている。   For example, in Patent Document 1, a can is DI-molded from a JIS 3104-H19 tempered plate, and the can is heat-treated in a washing and drying furnace at 270 ° C. or more to increase the elongation of the side wall, thereby causing pinholes and flange cracks. A technique for producing a can with less generation is disclosed. Further, in Patent Document 2, an aluminum alloy cold-rolled sheet containing a predetermined amount of Mn, Mg, Cu, Si, and Fe, and by controlling the distribution density and area ratio of an intermetallic compound of a predetermined size on the surface thereof, Techniques for improving (puncture resistance) and toughness are disclosed. In Patent Literature 3, aluminum alloy cold-rolled sheets containing a predetermined amount of Mn, Mg, Cu, Si, and Fe are subjected to DI molding at a predetermined processing rate and heat-treated at 210 to 250 ° C., whereby work hardening by DI molding is performed. And a technique for improving the puncture resistance by controlling the tensile strength. In Patent Document 4, a relatively large Al-Mn-Fe-Si-based crystallized substance is densely distributed by homogenizing an ingot obtained by casting an aluminum alloy containing a predetermined amount of Mn, Mg, Cu, Si, and Fe. Thus, a technique for imparting strength is disclosed.

また、DI成形をクーラントを使用しないドライ加工で行うために、アルミニウム合金板の両面にPET等からなるフィルムをラミネートして、しごきダイス等の工具がアルミニウム合金板に接触することによる焼付きを防止したフィルムラミネート缶も流通している。特許文献5では、Mnの含有量を抑えてMg,Si,Feを所定量含有するアルミニウム合金を鋳造、均質化処理、熱間圧延、冷間圧延、中間焼鈍、二次冷間圧延したアルミニウム合金板にPET等の樹脂被覆した樹脂被覆アルミニウム合金板で、降伏強度を高くすることで、薄板化を可能とする技術が開示されている。特許文献6では、Mg,Mn,Cu,Si,Fe,Tiを所定量含有するアルミニウム合金とすることで、強度および樹脂被覆での加工性を向上させ、また樹脂被覆における加熱により加工硬化指数を所定値以上として耐突刺し性を向上させる技術が開示されている。   Also, in order to perform DI molding by dry processing without the use of coolant, films made of PET or the like are laminated on both sides of the aluminum alloy plate to prevent seizure due to tools such as ironing dies coming into contact with the aluminum alloy plate. Film laminate cans are also available. In Patent Document 5, an aluminum alloy obtained by casting, homogenizing, hot rolling, cold rolling, intermediate annealing, and secondary cold rolling an aluminum alloy containing a predetermined amount of Mg, Si, and Fe while suppressing the content of Mn. A technique is disclosed in which a thin plate can be formed by increasing the yield strength of a resin-coated aluminum alloy plate in which the plate is coated with a resin such as PET. In Patent Document 6, an aluminum alloy containing a predetermined amount of Mg, Mn, Cu, Si, Fe, and Ti improves strength and workability in the resin coating, and increases the work hardening index by heating in the resin coating. A technique for improving the puncture resistance at a predetermined value or more is disclosed.

特公平8−950号公報(請求項1)Japanese Patent Publication No. 8-950 (Claim 1) 特開2007−197815号公報(段落0015〜0018,0030,0031)JP 2007-197815 A (paragraphs 0015 to 0018, 0030, 0031) 特開2007−169767号公報(段落0017〜0021,0033,0036)JP 2007-169767 (paragraphs 0017 to 0021, 0033, 0036) 特開2006−77296号公報(段落0006,0022)JP 2006-77296 A (paragraphs 0006, 0022) 特開平9−287043号公報(段落0004,0023〜0026)JP-A-9-287043 (paragraphs 0004, 0023 to 0026) 特開2001−3130号公報(段落0008〜0020,0029〜0033)JP 2001-3130 (paragraphs 0008 to 0020, 0029 to 0033)

しかしながら、特許文献1に開示された技術では、缶の側壁厚さが0.16mm以上であり、現行の缶の側壁厚さに対応した強度を有していない。そして、特許文献2に開示された技術は、缶の側壁厚さを0.110mm超に厚くすることにより耐突刺し性を向上させており、薄肉化に対応していない。また、特許文献3に開示された技術は、缶の塗装時における焼付けの温度範囲が限定されているため、当該温度に対応した塗膜材料を適用する必要がある。一方、特許文献4に開示された技術は、鋳塊に比較的大きなAl−Mn−Fe−Si系の晶出物を晶出させるため、590〜630℃という高温での均質化処理を行うものであり、さらに熱間圧延前に400〜550℃の予備加熱を行っており、エネルギー消費量が大きい。   However, in the technique disclosed in Patent Document 1, the side wall thickness of the can is 0.16 mm or more and does not have the strength corresponding to the current side wall thickness of the can. And the technique disclosed by patent document 2 has improved the piercing-proof property by making the side wall thickness of a can more than 0.110 mm, and does not respond to thickness reduction. Moreover, since the technique disclosed in Patent Document 3 has a limited baking temperature range when painting a can, it is necessary to apply a coating material corresponding to the temperature. On the other hand, the technique disclosed in Patent Document 4 performs homogenization at a high temperature of 590 to 630 ° C. in order to crystallize a relatively large Al—Mn—Fe—Si-based crystallized product in an ingot. Furthermore, preheating at 400 to 550 ° C. is performed before hot rolling, and energy consumption is large.

特許文献5に開示された技術では、冷間加工を中間焼鈍を挟んで2回に分けて行うため生産性に劣り、また、曲げ・曲げ戻し加工性や耐圧強度については対応しているが、耐突刺し性には対応せず、特に均質化処理における温度が高いために金属間化合物が成長して十分ではない虞がある。また、特許文献6に開示された技術は、冷間圧延までの製造条件を常法として規定しないため、製造条件によるばらつきが大きい。   The technique disclosed in Patent Document 5 is inferior in productivity because cold work is performed in two steps with intermediate annealing in between. Also, bending / unbending workability and pressure strength are supported. It does not correspond to the puncture resistance, and there is a possibility that the intermetallic compound grows and is not sufficient because the temperature in the homogenization treatment is particularly high. Moreover, since the technique disclosed in Patent Document 6 does not prescribe the manufacturing conditions up to cold rolling as a conventional method, there is a large variation due to the manufacturing conditions.

本発明は、前記問題点に鑑みてなされたものであり、薄肉化された缶に成形したときに、側壁の耐突刺し性および開口部の拡缶性を十分に有する缶胴用アルミニウム合金板およびその製造方法を提供することを目的とする。   The present invention has been made in view of the above-described problems, and when formed into a thinned can, the aluminum alloy plate for a can body having sufficient puncture resistance on the side wall and can expandability on the opening. And it aims at providing the manufacturing method.

前記課題を解決するために、本発明者らは、缶の側壁に突起物が押し込まれたときにピンホールが生じるメカニズムを調査した結果、以下の現象が判明した。すなわち、突起物が接触している部位を中心にして缶の内側へすり鉢状に窪んで変形する際に、この中心部の周縁(すり鉢の傾斜した面)で局所的な減肉およびせん断帯が生じ、このせん断帯端部(缶の内側表面)からクラックが発生し、このクラックがせん断帯に沿って伝播することによって破断に至ること、そして、この減肉部に金属間化合物の量、特にサイズの大きな金属間化合物が多いと破断し易いこと、である。そこで、本発明者らは、アルミニウム合金板における金属間化合物の面積率およびサイズの大きな金属間化合物の個数密度、特に圧延板においてサイズの大きな金属間化合物が残留し易い板厚中心部における金属間化合物を制御する思想に至った。   In order to solve the above-mentioned problems, the present inventors have investigated the mechanism of generating pinholes when protrusions are pushed into the side walls of the can, and as a result, the following phenomena have been found. That is, when the dent is deformed in the shape of a mortar to the inside of the can centering on the portion where the projection is in contact, local thinning and shear bands are formed at the periphery of the center (the inclined surface of the mortar). A crack is generated from the end of the shear band (inner surface of the can), and the crack propagates along the shear band to break, and the amount of intermetallic compound in the thinned portion, particularly When there are many large intermetallic compounds, it is easy to break. Therefore, the present inventors have determined that the area ratio of the intermetallic compound in the aluminum alloy sheet and the number density of the large intermetallic compound, particularly between the metals in the center of the plate thickness where the large intermetallic compound tends to remain in the rolled sheet. It came to the thought which controls a compound.

さらに、缶胴にDI成形する際にアルミニウム合金板に樹脂被覆することで、工具との接触による焼付きを回避できるため、アルミニウム合金板表面に金属間化合物を適度に分散させて潤滑性を付与する必要がないので、アルミニウム合金板中の金属間化合物を大幅に低減させることとした。一方、適度に分散した金属間化合物により、熱間圧延後の自己焼鈍による再結晶が促進されてアルミニウム合金板の成形性が向上していたという効果もあるため、金属間化合物によらずに十分に再結晶を促進させる方法を研究した結果、アルミニウム合金の組成、特にMg,Mnの含有量を制御する方法を見出した。   In addition, when DI is formed on the can body, resin coating is applied to the aluminum alloy plate to avoid seizure due to contact with the tool, so that intermetallic compounds are appropriately dispersed on the surface of the aluminum alloy plate to provide lubricity. Therefore, the intermetallic compound in the aluminum alloy sheet is greatly reduced. On the other hand, the moderately dispersed intermetallic compound has the effect of promoting recrystallization by self-annealing after hot rolling and improving the formability of the aluminum alloy sheet. As a result of research on methods for promoting recrystallization, the inventors have found a method for controlling the composition of aluminum alloy, particularly the contents of Mg and Mn.

すなわち、本発明に係る缶胴用アルミニウム合金板は両面に樹脂を被覆して缶胴に成形するためのアルミニウム合金板であって、Mg:1.6〜6.0質量%、Mn:0.5質量%未満、Si:0.05〜0.5質量%、Fe:0.1〜0.5質量%、Cu:0.05〜0.3質量%を含有し、残部がAlおよび不可避的不純物からなるアルミニウム合金で形成され、断面の板厚方向中心部において、最大長が1μm以上の金属間化合物の面積率が0.3%を超え1.3%未満であり、最大長が11μm以上の金属間化合物の個数が100個/mm2以下であることを特徴とする。 That is, the aluminum alloy plate for a can body according to the present invention is an aluminum alloy plate for forming a can body by coating a resin on both sides, and Mg: 1.6 to 6.0% by mass, Mn: 0.00. Less than 5% by mass, Si: 0.05 to 0.5% by mass, Fe: 0.1 to 0.5% by mass, Cu: 0.05 to 0.3% by mass, the balance being Al and inevitable An area ratio of an intermetallic compound having a maximum length of 1 μm or more is less than 1.3% and less than 1.3%, and the maximum length is 11 μm or more. The number of intermetallic compounds is 100 / mm 2 or less.

このように、Mg,Cuを所定範囲で含有することにより、缶胴用アルミニウム合金板の強度を適度に向上させながら、缶胴に作製するための成形性を保持することができる。また、Mg,Mn,Si,Feを所定範囲で含有することにより、缶胴用アルミニウム合金板中に金属間化合物を適度に分散させることができる。さらに、缶胴用アルミニウム合金板の板厚中心部において、前記金属間化合物の分布を面積率および個数密度で制限することで、成形性を保持し、0.110mm以下に薄肉化された缶胴に成形されても耐突刺し性および拡缶性を向上させることができる。   Thus, by containing Mg and Cu in a predetermined range, the formability for producing the can body can be maintained while appropriately improving the strength of the aluminum alloy plate for the can body. Further, by containing Mg, Mn, Si, and Fe within a predetermined range, the intermetallic compound can be appropriately dispersed in the aluminum alloy plate for a can body. Furthermore, in the center part of the thickness of the aluminum alloy plate for the can body, the distribution of the intermetallic compound is restricted by the area ratio and the number density, thereby maintaining the formability and reducing the thickness of the can body to 0.110 mm or less. Even if it is molded, the puncture resistance and the can expandability can be improved.

さらに、本発明に係る缶胴用アルミニウム合金板は、前記アルミニウム合金に含有されるMgが1.6〜4.0質量%であることが好ましい。このようなMg含有量とすることで、フランジングにおける拡缶性をいっそう向上させることができる。   Furthermore, in the aluminum alloy plate for a can body according to the present invention, Mg contained in the aluminum alloy is preferably 1.6 to 4.0% by mass. By setting it as such Mg content, the can expandability in flanging can be improved further.

さらに、本発明に係る缶胴用アルミニウム合金板は、前記アルミニウム合金に含有されるSiとFeの合計が0.6質量%を超えてもよい。このようなSi,Fe含有量とすることで、スクラップ使用量を確保しリサイクル性を向上させることができる。   Furthermore, in the aluminum alloy plate for can bodies according to the present invention, the total of Si and Fe contained in the aluminum alloy may exceed 0.6% by mass. By setting it as such Si and Fe content, the amount of scraps used can be ensured and recyclability can be improved.

また、本発明に係る缶胴用アルミニウム合金板の製造方法は、前記成分のアルミニウム合金を溶解、鋳造して鋳塊とする鋳造工程と、この鋳塊を450℃以上550℃未満で2〜8時間の熱処理を1回行うことにより均質化する均熱処理工程と、均質化した鋳塊を冷却することなく熱間圧延して熱間圧延板とする熱間圧延工程と、この熱間圧延板を焼鈍することなく冷間圧延する冷間圧延工程とを行い、前記熱間圧延工程は粗圧延および仕上げ圧延を含み、前記熱間圧延工程における総圧延率を99.2%以上とすることを特徴とする。   Further, the method for producing an aluminum alloy plate for a can body according to the present invention comprises a casting step for melting and casting the aluminum alloy of the above components to form an ingot, and the ingot is 2 to 8 at 450 ° C. or more and less than 550 ° C. A soaking process that homogenizes by performing heat treatment for one time, a hot rolling process that hot-rolls the homogenized ingot without cooling it into a hot-rolled sheet, and this hot-rolled sheet A cold rolling process that performs cold rolling without annealing, the hot rolling process includes rough rolling and finish rolling, and the total rolling rate in the hot rolling process is 99.2% or more. And

このように、均質化のための熱処理条件を制限することにより鋳塊の金属間化合物の粗大化を抑制し、また、熱間圧延における総圧延率を所定値以上とすることにより熱間圧延で大きな金属間化合物が十分に破砕されて、大きな金属間化合物が多数残留していない缶胴用アルミニウム合金板を製造することが可能である。   In this way, by restricting the heat treatment conditions for homogenization, the ingot intermetallic compound is suppressed from coarsening, and the total rolling rate in the hot rolling is set to a predetermined value or more to achieve hot rolling. It is possible to produce an aluminum alloy plate for a can body in which large intermetallic compounds are sufficiently crushed and a large number of large intermetallic compounds do not remain.

本発明に係る缶胴用アルミニウム合金板によれば、薄肉化しても十分な耐突刺し性および拡缶性を有するDI缶を樹脂被覆して製造することができ、また、DI缶のいっそうの薄肉化によるコスト低減および省資源化を可能とする。そして、本発明に係る缶胴用アルミニウム合金板の製造方法によれば、前記の効果を有する缶胴用アルミニウム合金板を生産性よく製造することができる。   According to the aluminum alloy plate for a can body according to the present invention, a DI can having sufficient piercing resistance and can expandability can be produced by resin coating even if it is thinned. It enables cost reduction and resource saving by thinning. And according to the manufacturing method of the aluminum alloy plate for can bodies which concerns on this invention, the aluminum alloy plate for can bodies which has the said effect can be manufactured with sufficient productivity.

缶胴用アルミニウム合金板からDI缶の缶胴を作製する方法の一例を説明する図である。It is a figure explaining an example of the method of producing the can body of DI can from the aluminum alloy plate for can bodies. 缶胴の突刺し強度の測定方法を模式的に説明する断面図である。It is sectional drawing which illustrates typically the measuring method of the piercing strength of a can body. (a)、(b)は缶胴の拡缶性の評価方法を模式的に説明する断面図である。(A), (b) is sectional drawing which illustrates typically the can expandability evaluation method of a can body.

以下、本発明に係る缶胴用アルミニウム合金板(以下、アルミニウム合金板と称す)を実現するための形態について説明する。   Hereinafter, the form for implement | achieving the aluminum alloy plate for can bodies which concerns on this invention (henceforth an aluminum alloy plate) is demonstrated.

本発明に係るアルミニウム合金板は、Mg:1.6〜6.0質量%、Mn:0.5質量%未満、Si:0.05〜0.5質量%、Fe:0.1〜0.5質量%、Cu:0.05〜0.3質量%を含有し、残部がAlおよび不可避的不純物からなるアルミニウム合金で形成される。   The aluminum alloy plate according to the present invention has Mg: 1.6 to 6.0 mass%, Mn: less than 0.5 mass%, Si: 0.05 to 0.5 mass%, Fe: 0.1 to 0.3 mass%. 5% by mass, Cu: 0.05 to 0.3% by mass, with the balance being made of an aluminum alloy composed of Al and inevitable impurities.

そして、本発明に係るアルミニウム合金板は、その断面の板厚方向中心部において、最大長が1μm以上の金属間化合物の面積率が0.3%を超え1.3%未満であり、最大長が11μm以上の金属間化合物の個数が100個/mm2以下である。また、アルミニウム合金板の板厚は樹脂被覆前で0.26〜0.36mm程度が好ましい。以下、本発明に係るアルミニウム合金板を構成する各要素について説明する。 The aluminum alloy plate according to the present invention has an area ratio of an intermetallic compound having a maximum length of 1 μm or more at a central portion in the plate thickness direction of the cross section of more than 0.3% and less than 1.3%, and the maximum length The number of intermetallic compounds having a diameter of 11 μm or more is 100 / mm 2 or less. The thickness of the aluminum alloy plate is preferably about 0.26 to 0.36 mm before resin coating. Hereinafter, each element which comprises the aluminum alloy plate which concerns on this invention is demonstrated.

〔アルミニウム合金の成分〕
(Mg:1.6〜6.0質量%)
Mgは、アルミニウム合金において、固溶強化により強度を向上させる効果および加工硬化を増大させる効果があり、さらに、熱間圧延時に蓄積歪みを増大させてその後の自己焼鈍による再結晶を促進させる効果があるため、アルミニウム合金板のDI成形性を向上させる。Mgの含有量が1.6質量%未満では、熱間圧延時の蓄積歪みが不足して、熱間圧延後の自己焼鈍の際に十分な再結晶組織が安定して得られず、特に圧延幅方向の中央部に未再結晶部(加工組織)が残存し易く組織が不均一なアルミニウム合金板になるため、DI成形性が劣化する。また、再結晶が十分な場合でも、アルミニウム合金板が缶胴に成形されたときに、側壁強度が低くなって座屈強度や耐突刺し性が不足する。一方、Mgの含有量が6.0質量%を超えると、アルミニウム合金板の加工硬化が過大となる。そのため、しごき加工時のティアオフ(胴体割れ)等の割れ、ネッキング時のシワやスジ、およびフランジング時の割れ等の不良が発生し易く、それぞれの加工歩留が低下し、特にネッキングによる加工硬化が加わることでフランジング時の不良が顕著になる。したがって、Mgの含有量は、1.6〜6.0質量%とし、特に優れた成形性を得るためには1.6〜4.0質量%が好ましい。
[Components of aluminum alloy]
(Mg: 1.6-6.0% by mass)
Mg has an effect of improving strength by solid solution strengthening and an effect of increasing work hardening in an aluminum alloy, and further has an effect of increasing accumulated strain during hot rolling and promoting recrystallization by subsequent self-annealing. Therefore, the DI formability of the aluminum alloy plate is improved. If the Mg content is less than 1.6% by mass, the accumulated strain during hot rolling is insufficient, and a sufficient recrystallized structure cannot be stably obtained during self-annealing after hot rolling. Since the non-recrystallized portion (processed structure) tends to remain in the central portion in the width direction, an aluminum alloy plate having a non-uniform structure is formed, so that the DI formability deteriorates. Even when recrystallization is sufficient, when the aluminum alloy plate is formed on the can body, the side wall strength becomes low and the buckling strength and puncture resistance are insufficient. On the other hand, if the Mg content exceeds 6.0% by mass, the work hardening of the aluminum alloy plate becomes excessive. For this reason, defects such as tear-off (fuselage cracks) during ironing, wrinkles and streaks during necking, and cracks during flanging are likely to occur, each processing yield decreases, especially work hardening by necking As a result, defects during flanging become prominent. Therefore, the Mg content is set to 1.6 to 6.0 mass%, and 1.6 to 4.0 mass% is preferable in order to obtain particularly excellent moldability.

(Mn:0.5質量%未満)
Mnは、アルミニウム合金の強度を向上させる効果があり、アルミニウム合金板が缶胴に成形されたときに、側壁強度を高めて座屈強度や耐突刺し性を確保する。また、Mnはアルミニウム合金中でAl−Mn−Fe−Si系、Al−Mn−Fe系金属間化合物を形成する。これらの金属間化合物は、ある程度の大きさのものはアルミニウム合金中で再結晶の核となるため、適度に分散されることで熱間圧延後の自己焼鈍による再結晶を促進させて、アルミニウム合金板のDI成形性を向上させるが、一方、その量や大きさが増大すると耐突刺し性および拡缶性が低下する。Mnの含有量が0.5質量%以上になると、鋳塊に金属間化合物の微細なものが多量に析出する。ここで、本発明に係るアルミニウム合金板においては、金属間化合物を大きく成長させないように、後記するように鋳塊の均熱処理における温度を低い範囲に制限しているが、前記の多量かつ微細な金属間化合物は逆に熱間圧延後の再結晶を阻害するため、DI成形性が劣化する。したがって、Mnの含有量は0.5質量%未満とする。なお、本発明に係るアルミニウム合金板においては、Mg等の他の添加元素や製造方法にて強度や加工性を向上させるので、Mnの含有量の下限は規定しないが、さらに前記強度向上効果を付与するため、またリサイクル性を向上させるために、0.3質量%以上とすることが好ましい。
(Mn: less than 0.5% by mass)
Mn has an effect of improving the strength of the aluminum alloy, and when the aluminum alloy plate is formed on the can body, the side wall strength is increased to ensure buckling strength and puncture resistance. Mn forms Al—Mn—Fe—Si-based and Al—Mn—Fe-based intermetallic compounds in the aluminum alloy. These intermetallic compounds of a certain size become the core of recrystallization in an aluminum alloy, so that they are moderately dispersed to promote recrystallization by self-annealing after hot rolling, so that the aluminum alloy Although the DI moldability of the plate is improved, on the other hand, when the amount and size thereof are increased, the puncture resistance and the can expandability are lowered. When the Mn content is 0.5% by mass or more, a large amount of fine intermetallic compounds are precipitated in the ingot. Here, in the aluminum alloy plate according to the present invention, the temperature in the soaking heat treatment of the ingot is limited to a low range as described later so that the intermetallic compound is not greatly grown. On the contrary, the intermetallic compound inhibits recrystallization after hot rolling, so that the DI moldability deteriorates. Therefore, the Mn content is less than 0.5% by mass. In addition, in the aluminum alloy plate according to the present invention, since the strength and workability are improved by other additive elements such as Mg and the manufacturing method, the lower limit of the Mn content is not specified, but the above-described strength improvement effect is further improved. In order to give and to improve recyclability, it is preferable to set it as 0.3 mass% or more.

(Si:0.05〜0.5質量%)
Siは、地金不純物としてアルミニウム合金中に混入するものであり、Siの含有量を0.05質量%未満にすると、原材料にするアルミニウム地金の必要純度が高くなり、コストを増大させる。また、Siはアルミニウム合金中でAl−Mn−Fe−Si系金属間化合物やMg−Si系金属間化合物(Mg2Si)を形成し、これらの金属間化合物が適度に分散されることで熱間圧延後の再結晶が促進されてアルミニウム合金板のDI成形性を向上させる。一方、Siの含有量が0.5質量%を超えると、これらの金属間化合物の大きなものが多数形成されて、耐突刺し性および拡缶性が低下したり、Mg2Siを多く形成することでアルミニウム合金へのMg固溶量が不足する。したがって、Siの含有量は0.05〜0.5質量%とする。
(Si: 0.05-0.5% by mass)
Si is mixed into the aluminum alloy as a metal base impurity. When the Si content is less than 0.05% by mass, the required purity of the aluminum base metal used as a raw material increases and the cost increases. In addition, Si forms Al—Mn—Fe—Si intermetallic compounds and Mg—Si intermetallic compounds (Mg 2 Si) in an aluminum alloy. Recrystallization after hot rolling is promoted to improve the DI formability of the aluminum alloy sheet. On the other hand, when the Si content exceeds 0.5% by mass, a large number of these intermetallic compounds are formed, and the puncture resistance and can expandability are reduced, or a large amount of Mg 2 Si is formed. Thus, the amount of Mg solid solution in the aluminum alloy is insufficient. Therefore, the Si content is 0.05 to 0.5 mass%.

(Fe:0.1〜0.5質量%)
Feは、地金不純物としてアルミニウム合金中に混入するものであり、Feの含有量を0.1質量%未満にすると、原材料にするアルミニウム地金の必要純度が高くなり、コストを増大させる。また、Feはアルミニウム合金中でAl−Mn−Fe−Si系、Al−Mn−Fe系金属間化合物を形成し、これらの金属間化合物が適度に分散されることで熱間圧延後の再結晶が促進されてアルミニウム合金板のDI成形性を向上させる。一方、Feの含有量が0.5質量%を超えると、これらの金属間化合物が多量に形成されて耐突刺し性および拡缶性が低下する。したがって、Feの含有量は0.1〜0.5質量%とする。
(Fe: 0.1-0.5% by mass)
Fe is mixed into the aluminum alloy as a metal impurity, and if the Fe content is less than 0.1% by mass, the required purity of the aluminum metal used as a raw material increases, and the cost increases. In addition, Fe forms Al-Mn-Fe-Si-based and Al-Mn-Fe-based intermetallic compounds in an aluminum alloy, and these intermetallic compounds are appropriately dispersed to allow recrystallization after hot rolling. Is promoted to improve the DI formability of the aluminum alloy sheet. On the other hand, if the Fe content exceeds 0.5% by mass, a large amount of these intermetallic compounds are formed, and the puncture resistance and can expandability deteriorate. Therefore, the Fe content is 0.1 to 0.5 mass%.

前記した通り、Si,Feは、地金不純物としてアルミニウム合金中に不可避的に混入するものであり、特にスクラップや再生地金にはある程度含有している。すなわち、Si,Feの含有量の多いアルミニウム合金とすることにより、リサイクル性が向上する。したがって、SiとFeの含有量の合計が0.6質量%を超えることが好ましい。   As described above, Si and Fe are inevitably mixed in the aluminum alloy as metal impurities, and are contained to some extent in scrap and recycled metal. That is, recyclability is improved by using an aluminum alloy having a high Si and Fe content. Therefore, the total content of Si and Fe is preferably more than 0.6% by mass.

(Cu:0.05〜0.3質量%)
Cuは、アルミニウム合金の強度を向上させる効果があり、アルミニウム合金板が缶胴に成形されたときに、側壁強度を高めて、座屈強度や耐突刺し性を確保する。Cuの含有量が0.05質量%未満では、この効果が不十分である。一方、Cuの含有量が0.3質量%を超えると、アルミニウム合金板の加工硬化が過大となって加工性が低下する。したがって、Cuの含有量は0.05〜0.3質量%とする。
(Cu: 0.05 to 0.3% by mass)
Cu has an effect of improving the strength of the aluminum alloy, and when the aluminum alloy plate is formed on the can body, the side wall strength is increased to ensure buckling strength and puncture resistance. When the Cu content is less than 0.05% by mass, this effect is insufficient. On the other hand, if the Cu content exceeds 0.3% by mass, the work hardening of the aluminum alloy plate becomes excessive and the workability is lowered. Therefore, the Cu content is set to 0.05 to 0.3% by mass.

前記以外に、不可避的不純物を含有してもよい。不可避的不純物として、例えば、Cr:0.10質量%以下、Zn:0.50質量%以下、Ti:0.10質量%以下、Zr:0.10質量%以下、B:0.05質量%以下であれば、本発明に係るアルミニウム合金板の特性に影響しない。   In addition to the above, inevitable impurities may be contained. As unavoidable impurities, for example, Cr: 0.10% by mass or less, Zn: 0.50% by mass or less, Ti: 0.10% by mass or less, Zr: 0.10% by mass or less, B: 0.05% by mass The following will not affect the characteristics of the aluminum alloy sheet according to the present invention.

〔アルミニウム合金板中の金属間化合物〕
(断面の板厚方向中心部における最大長1μm以上の金属間化合物の面積率:0.3%を超え1.3%未満)
本発明に係るアルミニウム合金板における金属間化合物は、主にAl−Mn−Fe−Si系金属間化合物、Al−Mn−Fe系金属間化合物、およびMg−Si系金属間化合物(Mg2Si)(以下、適宜「金属間化合物」という)である。これらの金属間化合物である程度の大きさのものが適度に分散することにより、熱間圧延後の自己焼鈍による再結晶が促進されて、アルミニウム合金板のDI成形性が向上する。具体的には、アルミニウム合金板において、最大長が1μm以上の金属間化合物の面積率が0.3%以下では、熱間圧延後の再結晶が不十分で加工組織が残留しており、DI成形性が劣化する。
[Intermetallic compounds in aluminum alloy sheets]
(Area ratio of intermetallic compounds with a maximum length of 1 μm or more at the center in the thickness direction of the cross section: more than 0.3% and less than 1.3%)
The intermetallic compounds in the aluminum alloy sheet according to the present invention are mainly Al—Mn—Fe—Si intermetallic compounds, Al—Mn—Fe intermetallic compounds, and Mg—Si intermetallic compounds (Mg 2 Si). (Hereinafter referred to as “intermetallic compound” as appropriate). When these intermetallic compounds having a certain size are appropriately dispersed, recrystallization by self-annealing after hot rolling is promoted, and the DI formability of the aluminum alloy sheet is improved. Specifically, in an aluminum alloy sheet, when the area ratio of an intermetallic compound having a maximum length of 1 μm or more is 0.3% or less, recrystallization after hot rolling is insufficient and a processed structure remains, and DI Formability deteriorates.

一方、過剰な金属間化合物は耐突刺し性および拡缶性を劣化させる。前記したように、缶の側壁に突起物が押し込まれたときのメカニズムは、突起物が接触している部位を中心にして缶の内側へすり鉢状に窪む際に、この中心部の周縁が局所的に減肉され、同時にせん断帯が生じ、このせん断帯端部(缶の内側表面)からクラックが発生し、せん断帯に沿って伝播することによって破断に至るというものであり、この破断箇所がピンホールとなる。また、フランジングにおいては、アルミニウム合金板が成形限界を超える際に、開口部の端部近傍にせん断帯が生じて局所的な減肉が進行して、クラックが発生してフランジ割れとなる。せん断帯端部に、ある程度の大きさ、具体的には最大長が1μm程度以上の金属間化合物が存在すると、この金属間化合物がクラックの発生源となり易い。   On the other hand, excessive intermetallic compounds deteriorate puncture resistance and can expandability. As described above, the mechanism when the protrusion is pushed into the side wall of the can is that the peripheral edge of the center portion is depressed when it is recessed in the shape of a mortar toward the inside of the can with the protrusion in contact with the center. The thickness is reduced locally, and at the same time, a shear band is formed. Cracks are generated from the end of the shear band (inner surface of the can) and propagated along the shear band. Becomes a pinhole. Further, in flanging, when the aluminum alloy plate exceeds the forming limit, a shear band is generated in the vicinity of the end of the opening, local thinning progresses, cracks are generated, and flange cracking occurs. If an intermetallic compound having a certain size, specifically, a maximum length of about 1 μm or more is present at the end of the shear band, this intermetallic compound is likely to be a source of cracks.

また、せん断帯上においても、最大長が1μm以上の金属間化合物が存在すると、この金属間化合物が応力集中や微小クラックあるいは空隙の発生源となり、クラックの発生や伝播を助長する。したがって、缶の側壁や開口部近傍において、表面を含めた板厚方向の全域、すなわちアルミニウム合金板の表面および板厚方向内部のいずれにおいても金属間化合物の個数密度が多いと、このアルミニウム合金板が缶胴に成形されたときに、ピンホールやフランジ割れが発生し易い。   On the shear band, if an intermetallic compound having a maximum length of 1 μm or more exists, the intermetallic compound becomes a source of stress concentration, microcracks or voids, and promotes the generation and propagation of cracks. Therefore, if the number density of the intermetallic compound is large in the whole area in the plate thickness direction including the surface, that is, in the surface of the aluminum alloy plate and inside the plate thickness direction, in the vicinity of the side wall and the opening of the can, the aluminum alloy plate When this is formed into a can body, pinholes and flange cracks are likely to occur.

圧延板においては、圧延面すなわち鋳塊表面に近い金属間化合物の方が圧延時に破砕されて微細化し易い。すなわち、板厚方向の中心近傍では金属間化合物のより大きなものが、また数が多く存在(残留)する傾向がある。したがって、本発明に係るアルミニウム合金板においては、板厚方向中心部における金属間化合物の分布を規制する。この領域における最大長が1μm以上の金属間化合物の面積率が1.3%以上になると、このアルミニウム合金板が缶胴に成形されたときにクラックが発生し易く耐突刺し性が劣化し、さらにフランジングにおいてフランジ割れが発生し易く拡缶性が劣化する。以上より、最大長が1μm以上の金属間化合物の面積率は、アルミニウム合金板の断面の板厚方向中心部において0.3%を超え1.3%未満とする。なお、断面の板厚方向中心部とは、具体的には、板厚方向中心を中心として板厚の55〜70%における領域を指す。   In the rolled plate, the intermetallic compound closer to the rolling surface, that is, the ingot surface is crushed during rolling and is more easily refined. That is, in the vicinity of the center in the thickness direction, larger intermetallic compounds tend to exist (residual) in large numbers. Therefore, in the aluminum alloy plate according to the present invention, the distribution of the intermetallic compound in the central portion in the plate thickness direction is regulated. When the area ratio of the intermetallic compound having a maximum length in this region of 1 μm or more is 1.3% or more, cracking is likely to occur when the aluminum alloy plate is formed on the can body, and the puncture resistance is deteriorated. Furthermore, flange cracking is likely to occur in flanging, and the can expandability deteriorates. From the above, the area ratio of the intermetallic compound having a maximum length of 1 μm or more is more than 0.3% and less than 1.3% in the center part in the plate thickness direction of the cross section of the aluminum alloy plate. The central portion in the plate thickness direction of the cross section specifically refers to a region at 55 to 70% of the plate thickness centering on the plate thickness direction center.

なお、これらの金属間化合物にはしごき加工時における潤滑効果もあるため、特にアルミニウム合金板の表面に十分な量を分散させることで、DI成形時にしごきダイス等の工具とアルミニウム合金板との間の焼付きを防止することができる。しかし、本発明に係るアルミニウム合金板は、耐突刺し性および拡缶性を向上させるために、金属間化合物の分布を、DI成形時の焼付きを防止できる量よりも少なく制限している。したがって、本発明に係るアルミニウム合金板は、後記するように、DI成形の前にフィルムラミネートのような樹脂被覆を施して、工具と直接に接触しないようにする。   Since these intermetallic compounds also have a lubricating effect during ironing, a sufficient amount is dispersed especially on the surface of the aluminum alloy plate, so that a tool such as an ironing die can be formed between the aluminum alloy plate and the die during DI forming. It is possible to prevent seizure. However, the aluminum alloy plate according to the present invention limits the distribution of intermetallic compounds to less than the amount that can prevent seizure during DI molding in order to improve the puncture resistance and can expandability. Therefore, as will be described later, the aluminum alloy plate according to the present invention is coated with a resin such as a film laminate before DI molding so as not to come into direct contact with the tool.

(断面の板厚方向中心部における最大長11μm以上の金属間化合物の個数密度:100個/mm2以下)
金属間化合物はサイズが大きいほどクラックを伝播し易く、最大長が11μm以上になると少ない個数で破断に至らしめる。前記した通り、圧延板においては、板厚方向の中心近傍では大きな金属間化合物が数多く存在する傾向がある。したがって、アルミニウム合金板の断面の板厚方向中心部において、最大長が11μm以上の金属間化合物の個数は100個/mm2以下とする。以上のような金属間化合物の分布は、前記Mg,Mn,Si,Feの各含有量、および後記の製造条件により制御される。
(Number density of intermetallic compounds having a maximum length of 11 μm or more at the center in the thickness direction of the cross section: 100 / mm 2 or less)
The larger the size of the intermetallic compound, the easier it is for cracks to propagate, and when the maximum length is 11 μm or more, a small number leads to breakage. As described above, in the rolled sheet, there are many large intermetallic compounds in the vicinity of the center in the sheet thickness direction. Accordingly, the number of intermetallic compounds having a maximum length of 11 μm or more at the central portion in the thickness direction of the cross section of the aluminum alloy plate is set to 100 pieces / mm 2 or less. The distribution of the intermetallic compound as described above is controlled by the contents of the Mg, Mn, Si, and Fe and the manufacturing conditions described later.

金属間化合物の検出手段には、走査型電子顕微鏡(SEM)の適用が一例として挙げられる。最大長が1μm以上の金属間化合物はSEMの組成(COMPO)像において母相とのコントラストで識別でき、Al−Mn−Fe−Si系、Al−Mn−Fe系金属間化合物はAl母相より白く写り、Mg−Si系金属間化合物はAl母相より黒く写る。アルミニウム合金板の断面の板厚方向中心部における金属間化合物は、アルミニウム合金板を切り出して、圧延方向と板厚方向を含む切断面を研磨して鏡面に仕上げて観察面とし、アルミニウム合金板の板厚方向中心を中心とした板厚の55〜70%における領域を観察する。この領域から好ましくは複数の視野を合計1mm2以上観察、撮影し、画像処理装置等を用いて指定サイズの金属間化合物についての面積率および個数密度を測定できる。 Application of a scanning electron microscope (SEM) is an example of the intermetallic compound detection means. Intermetallic compounds with a maximum length of 1 μm or more can be identified by contrast with the parent phase in the SEM composition (COMPO) image. Al—Mn—Fe—Si and Al—Mn—Fe intermetallic compounds are more It appears white, and the Mg—Si intermetallic compound appears blacker than the Al matrix. The intermetallic compound in the center part in the thickness direction of the cross section of the aluminum alloy plate is cut out of the aluminum alloy plate, and the cut surface including the rolling direction and the plate thickness direction is polished into a mirror surface to obtain an observation surface. A region at 55 to 70% of the plate thickness centered on the center in the plate thickness direction is observed. From this region, a plurality of visual fields are preferably observed and photographed in a total of 1 mm 2 or more, and the area ratio and number density of the intermetallic compound having a specified size can be measured using an image processing apparatus or the like.

次に、本発明に係るアルミニウム合金板の製造方法を説明する。本発明に係るアルミニウム合金板は、前記成分のアルミニウム合金を溶解、鋳造して鋳塊とする鋳造工程と、鋳塊を1回の熱処理により均質化する均熱処理工程と、この熱処理後に鋳塊を冷却することなく熱間圧延して熱間圧延板とする熱間圧延工程と、熱間圧延板を焼鈍することなく冷間圧延する冷間圧延工程によって製造される。以下に、各工程の条件について説明する。   Next, the manufacturing method of the aluminum alloy plate concerning this invention is demonstrated. The aluminum alloy plate according to the present invention comprises a casting process for melting and casting the aluminum alloy of the above components to form an ingot, a soaking process for homogenizing the ingot by a single heat treatment, and an ingot after this heat treatment. It is manufactured by a hot rolling process in which hot rolling is performed without cooling to obtain a hot rolled sheet, and a cold rolling process in which cold rolling is performed without annealing the hot rolled sheet. Below, the conditions of each process are demonstrated.

〔鋳造工程〕
はじめに、アルミニウム合金を溶解し、DC鋳造法等の公知の半連続鋳造法により鋳造し、アルミニウム合金の固相線温度未満まで冷却して鋳塊とする。鋳塊の厚さは、生産性、および後続の熱間圧延で十分な圧延量を確保するために、500mm以上とすることが好ましい。一方、過剰に厚い鋳塊にすると、鋳塊割れが発生し易くなって鋳造歩留が低下するため、650mm以下とすることが好ましい。また、鋳造や冷却の速度が遅いと鋳塊中に粗大な金属間化合物が多量に晶出し、過剰に速いと鋳塊割れが発生し易くなって鋳造歩留が低下する。したがって、鋳造において、鋳造速度は40〜65mm/分、冷却速度は0.5〜1.5℃/秒とすることが好ましい。なお、この冷却速度は、鋳塊の中央部の温度、すなわち鋳造方向に垂直な面の中央部の温度についてのものであり、アルミニウム合金の液相線温度から固相線温度までの冷却における速度とする。なお、本発明に係るアルミニウム合金の液相線温度および固相線温度は、それぞれ組成によって変化し、特にMg,Cuの含有量が多いと低くなる。
[Casting process]
First, an aluminum alloy is melted, cast by a known semi-continuous casting method such as a DC casting method, and cooled to below the solidus temperature of the aluminum alloy to form an ingot. The thickness of the ingot is preferably 500 mm or more in order to ensure productivity and a sufficient amount of rolling in the subsequent hot rolling. On the other hand, if an excessively thick ingot is used, ingot cracking is likely to occur and the casting yield is lowered. Therefore, the thickness is preferably 650 mm or less. Moreover, if the speed of casting or cooling is slow, a large amount of coarse intermetallic compounds crystallize in the ingot, and if it is too fast, ingot cracking is likely to occur and the casting yield is lowered. Therefore, in casting, it is preferable that a casting speed is 40 to 65 mm / min and a cooling speed is 0.5 to 1.5 ° C./second. This cooling rate is for the temperature of the central part of the ingot, that is, the temperature of the central part of the surface perpendicular to the casting direction, and the cooling rate from the liquidus temperature to the solidus temperature of the aluminum alloy. And In addition, the liquidus temperature and the solidus temperature of the aluminum alloy according to the present invention vary depending on the composition, respectively, and become low when the contents of Mg and Cu are large.

〔均熱処理工程〕
鋳塊を圧延する前に、所定温度で均質化熱処理(均熱処理)することが必要である。鋳塊に熱処理を施すことによって、内部応力を除去し、鋳造時に偏析した溶質元素を均質化する。一方、この熱処理により、鋳造冷却時やそれ以降に析出した金属間化合物が成長するが、本発明に係るアルミニウム合金板においては、金属間化合物を過大に成長させないため、およびエネルギー消費低減のため、均熱処理工程における熱処理は1回とする。さらにこの熱処理で均質化された鋳塊を、冷却することなく連続して後続の熱間圧延工程を行う。
[Soaking process]
Before rolling the ingot, it is necessary to perform a homogenization heat treatment (soaking) at a predetermined temperature. By applying heat treatment to the ingot, internal stress is removed and solute elements segregated during casting are homogenized. On the other hand, this heat treatment grows the intermetallic compound deposited at the time of casting cooling or later, but in the aluminum alloy plate according to the present invention, the intermetallic compound is not grown excessively, and for reducing energy consumption, The heat treatment in the soaking process is performed once. Further, the ingot homogenized by this heat treatment is continuously subjected to a subsequent hot rolling step without cooling.

(熱処理:450℃以上550℃未満で2〜8時間)
均熱処理工程において、熱処理温度が450℃未満では、本発明に係るアルミニウム合金板の組成の鋳塊を均質化するためには不十分である。一方、熱処理温度が550℃以上では、金属間化合物が過大に成長してしまい、後続の熱間圧延工程および冷間圧延工程後も残留して、アルミニウム合金板を缶胴に成形したときの耐突刺し性および拡缶性が低下する。また、熱処理時間が2時間未満では、鋳塊の均質化が完了していない場合がある。一方、8時間を超える熱処理を行っても、効果のさらなる向上は得られず、生産性が低下する。したがって、均熱処理工程において、熱処理は450℃以上550℃未満で2〜8時間とする。
(Heat treatment: 450 ° C. or higher and lower than 550 ° C. for 2 to 8 hours)
In the soaking process, if the heat treatment temperature is less than 450 ° C., it is insufficient for homogenizing the ingot having the composition of the aluminum alloy sheet according to the present invention. On the other hand, when the heat treatment temperature is 550 ° C. or higher, the intermetallic compound grows excessively and remains after the subsequent hot rolling process and cold rolling process, and the resistance when the aluminum alloy sheet is formed into a can body. The piercing property and can expandability are reduced. Further, if the heat treatment time is less than 2 hours, the homogenization of the ingot may not be completed. On the other hand, even if the heat treatment is performed for more than 8 hours, further improvement of the effect cannot be obtained and productivity is lowered. Therefore, in the soaking process, the heat treatment is performed at 450 ° C. or higher and lower than 550 ° C. for 2 to 8 hours.

〔熱間圧延工程〕
(総圧延率:99.2%以上)
均熱処理工程から連続して、均質化された鋳塊を熱間圧延する。まず、均熱処理工程の熱処理完了時の温度を保持して鋳塊を粗圧延して、さらに仕上げ圧延により、所定の板厚のアルミニウム合金熱間圧延板とする。粗圧延と仕上げ圧延を含めた熱間圧延における圧延率の合計(総圧延率)が、99.2%未満では、熱間圧延による金属間化合物の破砕が不足するため大きな金属間化合物が多量に残留し易い。したがって、熱間圧延における総圧延率は99.2%以上とする。
[Hot rolling process]
(Total rolling ratio: 99.2% or more)
The homogenized ingot is hot-rolled continuously from the soaking process. First, the temperature at the time of completion of the heat treatment in the soaking process is maintained, the ingot is roughly rolled, and the aluminum alloy hot-rolled sheet having a predetermined plate thickness is obtained by finish rolling. If the total rolling reduction (total rolling reduction) in hot rolling including rough rolling and finish rolling is less than 99.2%, a large amount of large intermetallic compounds are produced because the intermetallic compounds are not sufficiently crushed by hot rolling. It tends to remain. Therefore, the total rolling rate in hot rolling is 99.2% or more.

〔冷間圧延工程〕
アルミニウム合金熱間圧延板は、焼鈍せずに冷間圧延して所定の板厚のアルミニウム合金板に仕上げる。冷間圧延における総圧延率(冷間加工率)は80〜90%とすることが好ましい。
[Cold rolling process]
The aluminum alloy hot-rolled sheet is cold-rolled without being annealed to finish an aluminum alloy sheet having a predetermined thickness. The total rolling rate (cold working rate) in cold rolling is preferably 80 to 90%.

〔DI缶の作製方法〕
本発明に係るアルミニウム合金板は、公知の方法により、フィルムラミネートを施してDI缶の缶胴に作製される。以下に、図1を参照して、本発明に係るアルミニウム合金板からDI缶の缶胴を作製する方法の一例を説明する。はじめに、本発明に係るアルミニウム合金板に耐食性皮膜を形成するため、例えばリン酸クロメート処理を施す。そして、アルミニウム合金板の保護層として、ポリエステル樹脂やポリプロピレン樹脂等の結晶性熱可塑性樹脂からなるフィルム(図示せず)を両面にラミネートして、缶胴用樹脂被覆アルミニウム合金板とする。このような保護層を被覆することで、アルミニウム合金板の表面がしごきダイス等の工具に接触しないため、DI成形時の焼付きや焼付き起因のティアオフの発生を防止できて、成形歩留を向上させることができる。
[DI can manufacturing method]
The aluminum alloy plate according to the present invention is produced in a can body of a DI can by performing film lamination by a known method. Below, with reference to FIG. 1, an example of the method of producing the can body of DI can from the aluminum alloy plate which concerns on this invention is demonstrated. First, in order to form a corrosion-resistant film on the aluminum alloy plate according to the present invention, for example, phosphoric acid chromate treatment is performed. Then, as a protective layer for the aluminum alloy plate, a film (not shown) made of a crystalline thermoplastic resin such as a polyester resin or a polypropylene resin is laminated on both sides to obtain a resin-coated aluminum alloy plate for a can body. By covering such a protective layer, the surface of the aluminum alloy plate does not come into contact with tools such as ironing dies, so it is possible to prevent seizure during DI molding and the occurrence of tear-off due to seizure, thereby reducing the molding yield. Can be improved.

この缶胴用樹脂被覆アルミニウム合金板を円板形状に打ち抜いて(ブランキング)、浅いカップ形状に絞り加工し(カッピング)、DI成形を施す。すなわち、絞り加工さらにしごき加工を複数回繰り返して徐々に側壁を高くして、所定の底面形状および側壁高さの有底筒形状とする。これらの加工による缶胴の側壁の板厚減少率(しごき加工率)は、60〜70%とすることが好ましい。そして、DI成形時に塗布した高揮発性潤滑剤の除去やフィルムの剥離防止のための加熱を行った後、側壁(開口部)の縁を切り落として整える(トリミング)。次に、この缶胴の外面に塗装、焼付け(ベーキング)を施す。そして、開口部を縮径し(ネッキング)、開口部の縁を外側に拡げて(フランジング)、缶胴となる。飲料、食品用途に使用する際には、開口部から内容物(飲料、食品)が缶胴に充填され、別工程で作製された缶蓋を開口部に巻き締めて封止される(図示せず)。   This resin-coated aluminum alloy plate for can body is punched into a disk shape (blanking), drawn into a shallow cup shape (cupping), and subjected to DI molding. That is, drawing and ironing are repeated a plurality of times to gradually increase the side wall to obtain a bottomed cylindrical shape having a predetermined bottom surface shape and side wall height. It is preferable that the plate | board thickness reduction | decrease rate (ironing process rate) of the side wall of a can body by these processes shall be 60 to 70%. Then, after removing the highly volatile lubricant applied during DI molding and heating for preventing the film from peeling off, the edges of the side walls (openings) are trimmed and trimmed. Next, the outer surface of the can body is painted and baked (baked). And an opening part is diameter-reduced (necking), the edge of an opening part is expanded outside (flanging), and it becomes a can body. When used for beverages and food applications, the contents (beverages and food) are filled into the can body from the opening, and a can lid produced in a separate process is wound around the opening and sealed (not shown). )

以上、本発明を実施するための形態について述べてきたが、以下に、本発明の効果を確認した実施例を、本発明の要件を満たさない比較例と対比して具体的に説明する。なお、本発明はこの実施例に限定されるものではない。   As mentioned above, although the form for implementing this invention has been described, the Example which confirmed the effect of this invention is demonstrated concretely compared with the comparative example which does not satisfy | fill the requirements of this invention below. In addition, this invention is not limited to this Example.

〔供試材作製〕
(アルミニウム合金板)
表1に示す組成のアルミニウム合金を、溶解し、半連続鋳造法を用いて厚さ600mmの鋳塊を作製した。この鋳塊に、表1に示す均熱処理温度で4時間保持することにより均質化してから、冷却することなく連続して、表1に示す総圧延率で熱間圧延(粗圧延、仕上げ圧延)を施して熱間圧延板とした。さらに、この熱間圧延板に冷間圧延を施して、板厚0.30mmのアルミニウム合金板とした。
[Sample preparation]
(Aluminum alloy plate)
An aluminum alloy having the composition shown in Table 1 was melted, and an ingot having a thickness of 600 mm was produced using a semi-continuous casting method. This ingot is homogenized by holding at the soaking temperature shown in Table 1 for 4 hours, and then continuously hot-rolled at the total rolling rate shown in Table 1 (rough rolling and finish rolling) without cooling. To give a hot rolled sheet. Further, this hot-rolled plate was cold-rolled to obtain an aluminum alloy plate having a plate thickness of 0.30 mm.

(缶胴)
得られたアルミニウム合金板に、リン酸クロメート処理を施し、両面に厚さ16μmのポリエチレンテレフタレート樹脂フィルムをラミネートした。このフィルムラミネートを施されたアルミニウム合金板を、カッピング、DI成形(しごき加工率65〜70%)し、開口部をトリミングして、外径約66mm、高さ(缶軸方向長)124mm、フィルムを含まない側壁厚さ0.1mm近傍の有底筒形状の缶胴とした。さらに、塗装時の焼付けを想定した270℃×30秒間の熱処理を行って、供試材とした。得られた供試材のフィルムを含まない側壁厚さを測定し、表1に示す。
(Can body)
The obtained aluminum alloy plate was subjected to a phosphoric acid chromate treatment, and a polyethylene terephthalate resin film having a thickness of 16 μm was laminated on both surfaces. This film laminated aluminum alloy plate is cupped, DI-molded (ironing rate 65-70%), the opening is trimmed, outer diameter is about 66mm, height (can axial length) 124mm, film A bottomed cylindrical can body having a side wall thickness of about 0.1 mm. Furthermore, heat treatment was performed at 270 ° C. for 30 seconds assuming baking during coating to obtain a test material. The thickness of the side wall not including the film of the obtained specimen is measured and shown in Table 1.

〔評価〕
評価は、アルミニウム合金板で金属間化合物分布を、缶胴(熱処理後)で缶剛性、耐突刺し性、および拡缶性(フランジ成形性)を、それぞれ以下に示す方法にて評価した。なお、アルミニウム合金板の作製時において、熱間圧延後の熱間圧延板で以下に示す方法にて再結晶率を評価し、評価基準を満たさなかったもの、すなわち未再結晶部が残存しているものは、アルミニウム合金板に冷間圧延してもDI成形性が不十分なものとなるため、缶胴用アルミニウム合金板として不適であるとして、後続の工程および評価は行わず、表1に「−」で示した。
[Evaluation]
In the evaluation, the distribution of intermetallic compounds was evaluated with an aluminum alloy plate, and the can rigidity (anti-piercing property) and the can expandability (flange formability) were evaluated with a can body (after heat treatment) by the following methods. In the preparation of the aluminum alloy plate, the hot rolling plate after hot rolling was evaluated for the recrystallization rate by the method shown below, and the evaluation criteria were not satisfied, that is, the unrecrystallized portion remained. However, since the DI formability is insufficient even if it is cold-rolled to an aluminum alloy plate, it is not suitable as an aluminum alloy plate for can bodies. Indicated by “−”.

(再結晶率)
自己焼鈍させた熱間圧延板を、圧延方向と板厚方向を含む面を観察面となるように切り出して樹脂埋めし、観察面を研磨して鏡面として、この鏡面化された面をホウフッ化水素酸の希釈水溶液でエッチングして結晶粒を可視化し、光学顕微鏡にて結晶粒組織を観察した。詳しくは、光学顕微鏡で熱間圧延板の両表面が含まれるように板厚方向に連続写真を撮影し、写真上に板厚方向の直線を引き、この直線上における再結晶粒の長さを計測し、板厚にわたる再結晶粒の長さの合計の、熱間圧延板の板厚に対する百分率を算出して再結晶率とした。評価は、熱間圧延板の圧延幅方向の中央と両端の計3箇所について結晶粒組織を観察、再結晶率を算出して、3箇所すべてが再結晶率90%以上である熱間圧延板を合格として「○」、1箇所でも90%未満の熱間圧延板は不良として「×」で評価し、結果を表1に示す。
(Recrystallization rate)
The self-annealed hot-rolled sheet is cut out so that the surface including the rolling direction and the plate thickness direction becomes the observation surface, resin-filled, the observation surface is polished as a mirror surface, and this mirror-finished surface is borofluorinated. The crystal grains were visualized by etching with a dilute aqueous solution of hydrogen acid, and the crystal grain structure was observed with an optical microscope. Specifically, a continuous photograph is taken in the thickness direction so that both surfaces of the hot-rolled sheet are included with an optical microscope, a straight line in the thickness direction is drawn on the photograph, and the length of the recrystallized grains on this straight line is determined. The recrystallization rate was calculated by calculating the percentage of the total length of recrystallized grains over the plate thickness relative to the thickness of the hot rolled plate. The evaluation is performed by observing the crystal grain structure at a total of three locations in the center and at both ends in the rolling width direction of the hot rolled plate, calculating the recrystallization rate, and hot rolling plate having a recrystallization rate of 90% or more at all three locations. As a pass, “◯” indicates that a hot-rolled sheet of less than 90% at one location is evaluated as “bad”, and the result is shown in Table 1.

(金属間化合物分布)
アルミニウム合金板を切り出して樹脂埋めし、圧延方向と板厚方向を含む面を観察面となるように研磨して鏡面とし、この鏡面化された面を、走査型電子顕微鏡(SEM)にて、加速電圧20KV、倍率500倍の組成(COMPO)像で20視野(合計1mm2)観察した。観察視野は、板厚方向中心を中心として板厚方向に0.19mmの範囲内とした。母相より白く写る部分をAl−Mn−Fe−Si系金属間化合物またはAl−Mn−Fe系金属間化合物と見なし、母相より黒く写る部分をMg−Si系金属間化合物と見なして、画像処理により最大長が1μm以上の金属間化合物の面積の合計を求め、面積率を算出した。また、最大長が11μm以上の金属間化合物の個数をカウントし、単位面積当たりの個数(個数密度)を算出した。アルミニウム合金板の断面の板厚中心部における金属間化合物の面積率および個数密度を表1に示す。
(Intermetallic compound distribution)
An aluminum alloy plate is cut out and filled with resin, and the surface including the rolling direction and the plate thickness direction is polished to be a mirror surface to be a mirror surface, and this mirror surface is scanned with a scanning electron microscope (SEM). Twenty visual fields (total 1 mm 2 ) were observed with a composition (COMPO) image at an acceleration voltage of 20 KV and a magnification of 500 times. The observation visual field was within a range of 0.19 mm in the thickness direction centering on the center in the thickness direction. A portion that appears whiter than the parent phase is regarded as an Al-Mn-Fe-Si intermetallic compound or an Al-Mn-Fe intermetallic compound, and a portion that appears blacker than the parent phase is regarded as an Mg-Si intermetallic compound. The total area of intermetallic compounds having a maximum length of 1 μm or more was determined by the treatment, and the area ratio was calculated. In addition, the number of intermetallic compounds having a maximum length of 11 μm or more was counted, and the number per unit area (number density) was calculated. Table 1 shows the area ratio and number density of the intermetallic compound at the center of the thickness of the cross section of the aluminum alloy plate.

(缶剛性)
缶胴に開口部から缶軸方向の荷重を加えていき、缶胴が座屈変形するまでの最大荷重を座屈強度として測定した。この座屈強度が1500N以上であれば缶剛性良好として「○」、1500N未満であると缶剛性不良として「×」で評価し、結果を表1に示す。
(Can rigidity)
A load in the can axis direction was applied to the can body from the opening, and the maximum load until the can body was buckled and deformed was measured as the buckling strength. If this buckling strength is 1500 N or more, the can rigidity is evaluated as “◯”, and if it is less than 1500 N, the can rigidity is evaluated as “x”. The results are shown in Table 1.

(耐突刺し性)
図2に示すように、缶胴を固定して、2.0kgf/cm2(=196kPa)の内圧をかけた。缶胴の側壁の、アルミニウム合金板の圧延方向が缶軸方向と一致し、缶底から缶軸方向の距離L=60mmの部位に、先端が半径0.5mmの半球面である突刺し針を、側壁に対して垂直に、速度50mm/分で突き刺した。そして、突刺し針が側壁を貫通するまでの荷重を測定し、得られた最大荷重を突刺し強度とし、突刺し強度が40N以上を合格として、特に45N以上は耐突刺し性が優れているとして「◎」、40N以上45N未満は耐突刺し性良好として「○」、一方、40N未満は耐突刺し性不良として「×」で評価し、表1に示す。
(Puncture resistance)
As shown in FIG. 2, the can body was fixed and an internal pressure of 2.0 kgf / cm 2 (= 196 kPa) was applied. On the side wall of the can body, a piercing needle whose tip is a hemispherical surface with a radius of 0.5 mm is placed at a position where the rolling direction of the aluminum alloy plate coincides with the can axis direction and the distance L = 60 mm in the can axis direction from the can bottom. It was stabbed perpendicularly to the side wall at a speed of 50 mm / min. Then, the load until the piercing needle penetrates the side wall is measured, and the obtained maximum load is defined as the piercing strength. The piercing strength is 40N or higher, and particularly 45N or higher has excellent piercing resistance. “◎”, 40N or more and less than 45N are evaluated as “good” as good puncture resistance, while less than 40N are evaluated as “good” as puncture resistance, and are shown in Table 1.

(拡缶性)
缶胴の開口部に4段のダイ・ネッキングを施して、開口部の内径を57.3mmとした。この缶胴を、図3(a)に示すように缶底を固定して、開口部から拡缶治具を挿入して缶底へ向けて押し込むことにより開口部の縁を外側に拡げた。治具の挿入部分の径および立ち上がりのR(図3のD,R)はそれぞれ57.3mm、3.0mmであり、缶胴との接触部には潤滑剤(Castrol製水溶性塑性加工油剤No.700)を塗布した。缶胴に開口部の端部が破断するまで治具を押し込み、開口部の破断位置から±90°未満の部位以外における3点のフランジ幅(図3(b)参照)を測定した。供試材の仕様毎に10個の缶胴のフランジ幅を測定し、3点×10個の平均値が2.5mm以上を合格として、特にフランジ幅が3.0mm以上は拡缶性が優れているとして「◎」、2.5mm以上3.0mm未満は拡缶性良好として「○」、2.5mm未満は拡缶性不良として「×」で評価し、表1に示す。
(Can expandability)
A four-stage die necking was applied to the opening of the can body so that the inner diameter of the opening was 57.3 mm. As shown in FIG. 3A, the can bottom was fixed to the can body, a can expanding jig was inserted from the opening and pushed toward the can bottom, and the edge of the opening was expanded outward. The diameter of the insertion portion of the jig and the rising R (D, R in FIG. 3) are 57.3 mm and 3.0 mm, respectively, and a lubricant (Castrol water-soluble plastic working oil No. 700) was applied. The jig was pushed into the can body until the end of the opening was broken, and the flange widths at three points (see FIG. 3B) were measured at locations other than ± 90 ° from the broken position of the opening. The flange width of 10 can bodies is measured for each specification of the test material, and the average value of 3 points x 10 is 2.5 mm or more, and the can expandability is particularly excellent when the flange width is 3.0 mm or more. “◎”, 2.5 mm or more and less than 3.0 mm are evaluated as “◯” as good can expandability, and less than 2.5 mm are evaluated as “×” as poor can expandability, and are shown in Table 1.

Figure 2010236075
Figure 2010236075

表1に示すように、供試材No.1〜7は、アルミニウム合金の成分の各含有量が本発明の範囲内の実施例であり、均熱処理工程における熱処理温度が本発明の範囲内であるので、金属間化合物分布が適度に分布して、かつ熱間圧延後の再結晶が十分に促進されたため、割れ等が発生することなく側壁厚さが0.097〜0.103mmの缶胴に成形することができた。さらに、これらの供試材で成形された缶胴は、強度が十分に高く、缶剛性、耐突刺し性、および拡缶性が良好であった。   As shown in Table 1, the test material No. Nos. 1 to 7 are examples in which the contents of the components of the aluminum alloy are within the scope of the present invention, and the heat treatment temperature in the soaking process is within the scope of the present invention, so that the intermetallic compound distribution is moderately distributed. In addition, since recrystallization after hot rolling was sufficiently promoted, a can body having a side wall thickness of 0.097 to 0.103 mm could be formed without causing cracks and the like. Furthermore, the can body molded from these test materials had sufficiently high strength, and good can rigidity, puncture resistance, and can expandability.

これに対して、供試材No.8〜17は本発明の要件のいずれかを満たさない比較例である。供試材No.8はMg含有量が不足しているため、熱間圧延後の再結晶が不十分で圧延幅方向の中央部に未再結晶部が残存した。一方、供試材No.9はMg含有量が過剰なため、加工硬化が過大となって拡缶性が低下した。   On the other hand, specimen No. 8 to 17 are comparative examples that do not satisfy any of the requirements of the present invention. Specimen No. Since No. 8 had insufficient Mg content, recrystallization after hot rolling was insufficient, and an unrecrystallized portion remained in the central portion in the rolling width direction. On the other hand, the test material No. In No. 9, since the Mg content was excessive, work hardening was excessive and the can expandability decreased.

供試材No.10,11はMn含有量が過剰なため、金属間化合物が多量に形成され、さらにこの金属間化合物が均熱処理工程における熱処理温度が本発明の範囲内であることで微細なものとなったために、熱間圧延後の再結晶が阻害された。特に供試材No.10はMg含有量が不足していることもあって、再結晶が不十分であった。一方、供試材No.16は、供試材No.10と同様にMg含有量が不足、Mn含有量が過剰であるが、均熱処理工程において、熱処理温度が本発明の範囲を超えて高いために金属間化合物が過大にかつ多量に成長して、熱間圧延後の再結晶は十分に促進されたが、これらの金属間化合物が冷間圧延後も微細化されずにアルミニウム合金板に残留したことにより、耐突刺し性が低下した。供試材No.12もMn含有量が過剰であり、かつFe含有量も過剰なため、均熱処理工程において、熱処理温度が本発明の範囲内であっても金属間化合物が多量にかつ大きなものが多数形成されて、耐突刺し性が低下した。   Specimen No. Nos. 10 and 11 have an excessive amount of Mn, so that a large amount of intermetallic compounds are formed, and the intermetallic compounds become fine because the heat treatment temperature in the soaking process is within the range of the present invention. The recrystallization after hot rolling was inhibited. In particular, sample No. No. 10 had insufficient recrystallization due to insufficient Mg content. On the other hand, the test material No. 16 is a specimen No. As in 10, the Mg content is insufficient and the Mn content is excessive, but in the soaking process, the heat treatment temperature is higher than the range of the present invention, so that the intermetallic compound grows excessively and in large quantities, Although recrystallization after hot rolling was sufficiently promoted, these intermetallic compounds remained on the aluminum alloy plate without being refined even after cold rolling, so that the piercing resistance was lowered. Specimen No. 12 also has an excessive Mn content and an excessive Fe content, so that in the soaking process, a large number of intermetallic compounds are formed in large quantities even when the heat treatment temperature is within the range of the present invention. , Puncture resistance decreased.

供試材No.13はSi含有量が過剰なため、Mg2Siが多く形成されてアルミニウム合金へのMg固溶量が不足したことにより強度が不足し、缶剛性、耐突刺し性、および拡缶性が十分に得られなかった。供試材No.14はCu含有量が過剰なため、加工硬化が過大となって加工性が不足し、拡缶性が低下した。一方、供試材No.15はCu含有量が不足した(無添加である)ことにより強度が不足し、缶剛性および耐突刺し性が十分に得られなかった。 Specimen No. No. 13 has an excessive Si content, so a large amount of Mg 2 Si is formed and the amount of Mg solid solution in the aluminum alloy is insufficient, resulting in insufficient strength and sufficient can rigidity, puncture resistance, and can expandability. Could not be obtained. Specimen No. In No. 14, since the Cu content was excessive, work hardening was excessive, workability was insufficient, and can expandability was reduced. On the other hand, the test material No. In No. 15, the Cu content was insufficient (no addition), so the strength was insufficient, and the can rigidity and puncture resistance were not sufficiently obtained.

供試材No.17は、アルミニウム合金の成分は本発明の範囲内であるが、均熱処理工程において、熱処理温度が本発明の範囲を超えて高いために金属間化合物が過大に成長し、熱間圧延および冷間圧延後も大きな金属間化合物が多数残留したことにより、耐突刺し性が低下した。   Specimen No. No. 17, the components of the aluminum alloy are within the scope of the present invention, but in the soaking process, the heat treatment temperature is higher than the scope of the present invention, so that the intermetallic compound grows excessively, and hot rolling and cold Since many large intermetallic compounds remained after rolling, the puncture resistance decreased.

Claims (6)

両面に樹脂からなる保護層を被覆して缶胴に成形する缶胴用アルミニウム合金板であって、
Mg:1.6〜6.0質量%、Mn:0.5質量%未満、Si:0.05〜0.5質量%、Fe:0.1〜0.5質量%、Cu:0.05〜0.3質量%を含有し、残部がAlおよび不可避的不純物からなるアルミニウム合金で形成され、
断面の板厚方向中心部において、最大長が1μm以上の金属間化合物の面積率が0.3%を超え1.3%未満であり、最大長が11μm以上の金属間化合物の個数が100個/mm2以下であることを特徴とする缶胴用アルミニウム合金板。
It is an aluminum alloy plate for a can body that covers a protective layer made of resin on both sides and is formed into a can body,
Mg: 1.6 to 6.0 mass%, Mn: less than 0.5 mass%, Si: 0.05 to 0.5 mass%, Fe: 0.1 to 0.5 mass%, Cu: 0.05 Containing 0.3 mass%, the balance being formed of an aluminum alloy consisting of Al and inevitable impurities,
In the central part in the plate thickness direction of the cross section, the area ratio of the intermetallic compound having a maximum length of 1 μm or more is more than 0.3% and less than 1.3%, and the number of intermetallic compounds having a maximum length of 11 μm or more is 100 / Mm 2 or less, an aluminum alloy sheet for a can body.
前記アルミニウム合金におけるMgの含有量が1.6〜4.0質量%であることを特徴とする請求項1に記載の缶胴用アルミニウム合金板。   The aluminum alloy plate for a can body according to claim 1, wherein the content of Mg in the aluminum alloy is 1.6 to 4.0% by mass. 前記アルミニウム合金におけるSiとFeの各含有量の合計が0.6質量%を超えることを特徴とする請求項1または請求項2に記載の缶胴用アルミニウム合金板。   The aluminum alloy plate for can bodies according to claim 1 or 2, wherein the total content of Si and Fe in the aluminum alloy exceeds 0.6 mass%. 両面に樹脂からなる保護層を被覆して缶胴に成形する缶胴用アルミニウム合金板の製造方法であって、
Mg:1.6〜6.0質量%、Mn:0.5質量%未満、Si:0.05〜0.5質量%、Fe:0.1〜0.5質量%、Cu:0.05〜0.3質量%を含有し、残部がAlおよび不可避的不純物からなるアルミニウム合金を、溶解、鋳造して鋳塊とする鋳造工程と、
前記鋳塊を、450℃以上550℃未満で2〜8時間の熱処理を1回行うことにより均質化する均熱処理工程と、
前記均質化した鋳塊を、冷却することなく熱間圧延して熱間圧延板とする熱間圧延工程と、
前記熱間圧延板を、焼鈍することなく冷間圧延する冷間圧延工程と、を行い、
前記熱間圧延工程は粗圧延および仕上げ圧延を含み、前記熱間圧延工程における総圧延率を99.2%以上とすることを特徴とする缶胴用アルミニウム合金板の製造方法。
A method for producing an aluminum alloy plate for a can body, which is formed on a can body by covering a protective layer made of a resin on both sides,
Mg: 1.6 to 6.0 mass%, Mn: less than 0.5 mass%, Si: 0.05 to 0.5 mass%, Fe: 0.1 to 0.5 mass%, Cu: 0.05 A casting process that contains ~ 0.3% by mass, the balance being Al and unavoidable impurities, melting and casting into an ingot;
A soaking process in which the ingot is homogenized by performing heat treatment for 2 to 8 hours once at 450 ° C. or more and less than 550 ° C .;
A hot rolling step in which the homogenized ingot is hot rolled without cooling to form a hot rolled plate;
A cold rolling step of cold rolling the hot rolled sheet without annealing,
The hot rolling step includes rough rolling and finish rolling, and the total rolling rate in the hot rolling step is set to 99.2% or more.
前記アルミニウム合金におけるMgの含有量が1.6〜4.0質量%であることを特徴とする請求項4に記載の缶胴用アルミニウム合金板の製造方法。   5. The method for producing an aluminum alloy plate for a can body according to claim 4, wherein the content of Mg in the aluminum alloy is 1.6 to 4.0 mass%. 前記アルミニウム合金におけるSiとFeの各含有量の合計が0.6質量%を超えることを特徴とする請求項4または請求項5に記載の缶胴用アルミニウム合金板の製造方法。   The method for producing an aluminum alloy plate for a can body according to claim 4 or 5, wherein the total content of Si and Fe in the aluminum alloy exceeds 0.6 mass%.
JP2009088475A 2009-03-31 2009-03-31 Aluminum alloy plate for can body and manufacturing method thereof Expired - Fee Related JP5961839B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009088475A JP5961839B2 (en) 2009-03-31 2009-03-31 Aluminum alloy plate for can body and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009088475A JP5961839B2 (en) 2009-03-31 2009-03-31 Aluminum alloy plate for can body and manufacturing method thereof

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2015197849A Division JP2016041852A (en) 2015-10-05 2015-10-05 Aluminum alloy sheet for can barrel
JP2015197848A Division JP2016029218A (en) 2015-10-05 2015-10-05 Method for producing aluminum alloy sheet for can barrel

Publications (2)

Publication Number Publication Date
JP2010236075A true JP2010236075A (en) 2010-10-21
JP5961839B2 JP5961839B2 (en) 2016-08-02

Family

ID=43090673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009088475A Expired - Fee Related JP5961839B2 (en) 2009-03-31 2009-03-31 Aluminum alloy plate for can body and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5961839B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012188703A (en) * 2011-03-10 2012-10-04 Kobe Steel Ltd Aluminum-alloy sheet for resin coated can body, and method for producing the same
JP2012188704A (en) * 2011-03-10 2012-10-04 Kobe Steel Ltd Aluminum-alloy sheet for resin coated can body, and method for producing the same
WO2014103924A1 (en) * 2012-12-27 2014-07-03 株式会社神戸製鋼所 Aluminum alloy sheet for di can body
WO2016152790A1 (en) * 2015-03-23 2016-09-29 株式会社神戸製鋼所 Aluminum alloy sheet for resin-coated drawn and wall-ironed cans having excellent post-manufacture gloss and resin-coated aluminum alloy sheet for drawn and wall-ironed cans
US20160355915A1 (en) * 2015-06-05 2016-12-08 Novelis Inc. High strength 5xxx aluminum alloys and methods of making the same
CN108385044A (en) * 2018-03-06 2018-08-10 东北大学 A kind of preparation method of 5182 aluminum alloy plate materials of body of a motor car
CN113322400A (en) * 2020-02-28 2021-08-31 株式会社神户制钢所 Aluminum alloy forged material and method for producing same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59157249A (en) * 1983-02-25 1984-09-06 Kobe Steel Ltd Aluminum alloy flat bar for forming and its production
JPH04202747A (en) * 1990-11-30 1992-07-23 Sky Alum Co Ltd Manufacture of aluminum alloy sheet for forming
JPH04362151A (en) * 1991-06-06 1992-12-15 Sky Alum Co Ltd Aluminum alloy hard sheet excellent in formability and its manufacture
WO1998049360A1 (en) * 1997-04-25 1998-11-05 Toyo Kohan Co., Ltd. Resin-coated aluminum alloy sheet for drawn and ironed cans
JP2000273593A (en) * 1999-03-23 2000-10-03 Kobe Steel Ltd Manufacture of aluminum alloy sheet excellent in can- openability
JP2000309838A (en) * 1999-04-21 2000-11-07 Furukawa Electric Co Ltd:The Aluminum alloy for resin-coated can barrel and resin- coated aluminum alloy sheet for can barrel
JP2004043966A (en) * 2003-05-30 2004-02-12 Toyo Seikan Kaisha Ltd Seamless aluminum can body
JP2008019467A (en) * 2006-07-11 2008-01-31 Furukawa Sky Kk Aluminum alloy sheet with excellent surface quality after chromating for can end, and its manufacturing method
JP2009270192A (en) * 2008-04-09 2009-11-19 Kobe Steel Ltd Aluminum alloy sheet for can barrel, and method for producing the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59157249A (en) * 1983-02-25 1984-09-06 Kobe Steel Ltd Aluminum alloy flat bar for forming and its production
JPH04202747A (en) * 1990-11-30 1992-07-23 Sky Alum Co Ltd Manufacture of aluminum alloy sheet for forming
JPH04362151A (en) * 1991-06-06 1992-12-15 Sky Alum Co Ltd Aluminum alloy hard sheet excellent in formability and its manufacture
WO1998049360A1 (en) * 1997-04-25 1998-11-05 Toyo Kohan Co., Ltd. Resin-coated aluminum alloy sheet for drawn and ironed cans
JP2000273593A (en) * 1999-03-23 2000-10-03 Kobe Steel Ltd Manufacture of aluminum alloy sheet excellent in can- openability
JP2000309838A (en) * 1999-04-21 2000-11-07 Furukawa Electric Co Ltd:The Aluminum alloy for resin-coated can barrel and resin- coated aluminum alloy sheet for can barrel
JP2004043966A (en) * 2003-05-30 2004-02-12 Toyo Seikan Kaisha Ltd Seamless aluminum can body
JP2008019467A (en) * 2006-07-11 2008-01-31 Furukawa Sky Kk Aluminum alloy sheet with excellent surface quality after chromating for can end, and its manufacturing method
JP2009270192A (en) * 2008-04-09 2009-11-19 Kobe Steel Ltd Aluminum alloy sheet for can barrel, and method for producing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6013023267; アルミニウム加工技術便覧編集委員会編: アルミニウム加工技術便覧 , 19700305, p.117, 白井十四雄/日刊工業新聞社 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012188703A (en) * 2011-03-10 2012-10-04 Kobe Steel Ltd Aluminum-alloy sheet for resin coated can body, and method for producing the same
JP2012188704A (en) * 2011-03-10 2012-10-04 Kobe Steel Ltd Aluminum-alloy sheet for resin coated can body, and method for producing the same
US9546411B2 (en) 2011-03-10 2017-01-17 Kobe Steel, Ltd. Aluminum-alloy sheet and method for producing the same
US9574258B2 (en) 2011-03-10 2017-02-21 Kobe Steel, Ltd. Aluminum-alloy sheet and method for producing the same
DE102012004375B4 (en) 2011-03-10 2018-07-05 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Method for producing an aluminum alloy sheet
WO2014103924A1 (en) * 2012-12-27 2014-07-03 株式会社神戸製鋼所 Aluminum alloy sheet for di can body
JP2014125677A (en) * 2012-12-27 2014-07-07 Kobe Steel Ltd Aluminum alloy sheet for di can barrel
AU2013367319B2 (en) * 2012-12-27 2016-11-03 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Aluminum alloy sheet for DI can body
WO2016152790A1 (en) * 2015-03-23 2016-09-29 株式会社神戸製鋼所 Aluminum alloy sheet for resin-coated drawn and wall-ironed cans having excellent post-manufacture gloss and resin-coated aluminum alloy sheet for drawn and wall-ironed cans
US20160355915A1 (en) * 2015-06-05 2016-12-08 Novelis Inc. High strength 5xxx aluminum alloys and methods of making the same
CN108385044A (en) * 2018-03-06 2018-08-10 东北大学 A kind of preparation method of 5182 aluminum alloy plate materials of body of a motor car
CN113322400A (en) * 2020-02-28 2021-08-31 株式会社神户制钢所 Aluminum alloy forged material and method for producing same

Also Published As

Publication number Publication date
JP5961839B2 (en) 2016-08-02

Similar Documents

Publication Publication Date Title
US9574258B2 (en) Aluminum-alloy sheet and method for producing the same
JP5416433B2 (en) Aluminum alloy plate for can body and manufacturing method thereof
JP5961839B2 (en) Aluminum alloy plate for can body and manufacturing method thereof
JP6210896B2 (en) Aluminum alloy plate for can lid and manufacturing method thereof
JP2006265700A (en) Aluminum alloy sheet for bottle-shaped can superior in high-temperature property
US9546411B2 (en) Aluminum-alloy sheet and method for producing the same
WO2013118611A1 (en) Aluminum alloy sheet for di can body
JP5568031B2 (en) Aluminum alloy cold rolled sheet for bottle cans
JP5670215B2 (en) Aluminum alloy plate for can body and manufacturing method thereof
JP2006291326A (en) Aluminum alloy sheet for drink can barrel, and method for producing the same
JP2016041852A (en) Aluminum alloy sheet for can barrel
JP2016141886A (en) Aluminum alloy sheet for can top
JP4667722B2 (en) Aluminum alloy can body design method
JP2008248289A (en) Aluminum alloy sheet for packaging container and manufacturing method therefor
JP4019084B2 (en) Aluminum alloy cold rolled sheet for bottle cans with excellent high temperature characteristics
JP2016029218A (en) Method for producing aluminum alloy sheet for can barrel
WO2016063876A1 (en) Aluminium alloy sheet for can lid
JP2006097076A (en) Aluminum-alloy sheet for bottle can, and its manufacturing method
JP2016180175A (en) Resin-coated aluminum alloy sheet for drawn ironed can excellent in glossiness after making can and resin coated aluminum alloy sheet for drawn ironed can
JP2001262261A (en) Aluminum alloy sheet for can barrel excellent in can bottom formability and its producing method
JP2007169744A (en) Aluminum alloy sheet for aluminum bottle can barrel having excellent can roundness and its production method
JP6227691B2 (en) Manufacturing method of aluminum alloy plate for DI can body
WO2017065137A1 (en) Aluminum alloy plate for can end
WO2016152790A1 (en) Aluminum alloy sheet for resin-coated drawn and wall-ironed cans having excellent post-manufacture gloss and resin-coated aluminum alloy sheet for drawn and wall-ironed cans
JP2022114208A (en) Aluminum alloy coated sheet for can lid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130521

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140722

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140724

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140814

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20140905

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160603

R150 Certificate of patent or registration of utility model

Ref document number: 5961839

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees