JPH04202747A - Manufacture of aluminum alloy sheet for forming - Google Patents

Manufacture of aluminum alloy sheet for forming

Info

Publication number
JPH04202747A
JPH04202747A JP33650590A JP33650590A JPH04202747A JP H04202747 A JPH04202747 A JP H04202747A JP 33650590 A JP33650590 A JP 33650590A JP 33650590 A JP33650590 A JP 33650590A JP H04202747 A JPH04202747 A JP H04202747A
Authority
JP
Japan
Prior art keywords
less
ingot
temperature
rolling
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33650590A
Other languages
Japanese (ja)
Inventor
Shinji Teruda
照田 伸二
Fujio Tanaka
田中 富次夫
Itsuo Kitahara
北原 逸雄
Masafumi Mizouchi
政文 溝内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sky Aluminium Co Ltd
Original Assignee
Sky Aluminium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sky Aluminium Co Ltd filed Critical Sky Aluminium Co Ltd
Priority to JP33650590A priority Critical patent/JPH04202747A/en
Publication of JPH04202747A publication Critical patent/JPH04202747A/en
Pending legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)

Abstract

PURPOSE:To manufacture an Al alloy sheet suitably used for a can material by rolling an Al allay ingot having a specified componental compsn. to rolling in combination with holding at a specified temp. for specified time and hot rolling at a specified amt. of draft. CONSTITUTION:An Al allay ingot contg., by weight, 3.5 to 6% Mg, 0.01 to 0.2% Si, <=1% Mn+Fe, furthermore one or more kinds among Cu, Zn, Cr or the like and the balance Al is rolled to manufacture an Al allay sheet. At this time, this ingot is heated at 500 to 560 deg.C for >=2hr and is thereafter hot- rolled. At the point of time when its draft reaches 40 to 70%, the temp. of the sheet surface is regulated to >=500 deg.C and is held for >=30sec. After that, it is hot-rolled to regulate its thickness to <=8mm and its rolling finishing temp. to <=320 deg.C. Then, the area rate occupied by intermetallmc compound Mg2Si of >=5mum in the full thickness is regulated to <=1%. In this way, the formation of coarse intermetallic compound Mg2Si can be suppressed.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、成形加工に用いられる5000系アルミニウ
ム合金板の製造方法に関するものであり、特に缶胴や、
缶蓋等の缶材に好適に使用されるアルミニウム合金板の
製造方法に関するものである。
The present invention relates to a method for manufacturing a 5000 series aluminum alloy plate used for forming, particularly for can bodies,
The present invention relates to a method of manufacturing an aluminum alloy plate suitably used for can materials such as can lids.

【従来の技術】[Conventional technology]

5000系アルミニウム合金は高強度であり、かつ深絞
り性、張出し性や曲げ加工性等の成形性が良好であるこ
とから、特に深絞り性の要求される缶胴や絞り・張り出
し性の要求される缶蓋等の缶材に使用される他、高強度
でかつ成形加工が必要な分野に広範囲で利用されている
5000 series aluminum alloy has high strength and good formability such as deep drawability, stretchability, and bending workability, so it is particularly suitable for can bodies that require deep drawability and for applications that require drawing and stretchability. In addition to being used for can materials such as can lids, it is also used in a wide range of fields that require high strength and molding.

【発明が解決しようとする課題】 Mgを高#度で含むA1合金は微量のSiの存在により
熱処理過程や熱間圧延途中に、比較的粗大なMg25i
の金属間化合物が生成する。しかしSlはAl地金の不
可避不純物であり含有量を0%とするのは不可能ででき
るだけ減少させる事にしても高品位地金を用いなければ
ならずコスト高となってしまう。 このMg2Si金属間化合物は、硬くて非常に脆い性質
が有り、このためAl−Mn系の晶出物に比較して、成
形加工時の割れの起点となりやすいなど特に成形時に悪
影響を及ぼす。 本発明はこの合金系でMg2Siの粗大な金属間化合物
の生成を抑えることによって成形性を改良することを目
的とする。
Problems to be Solved by the Invention Due to the presence of a trace amount of Si in A1 alloy containing a high Mg content, relatively coarse Mg25i is formed during heat treatment and hot rolling.
intermetallic compounds are formed. However, Sl is an inevitable impurity in Al metal, and it is impossible to reduce the content to 0%. Even if it is reduced as much as possible, high-grade metal must be used, resulting in high costs. This Mg2Si intermetallic compound has hard and extremely brittle properties, and therefore has an adverse effect particularly during molding, such as being more likely to become a starting point for cracks during molding than Al-Mn-based crystallized substances. The object of the present invention is to improve the formability of this alloy system by suppressing the formation of coarse intermetallic compounds of Mg2Si.

【課題を解決する為の手段】[Means to solve the problem]

前記目的を達成するために発明者らが鋭意研究の結果到
達した本発明は、以下の通り構成される。 すなわち本願第一請求項は Mg3.5〜5 w t%、SiO,O]〜0.2wt
%、Mn+Fe1wt%以下を含有し、さらにCuO,
05−0,5wt %、 Zn   0. 05−0.
 5wt %、 Cr   0.  0+−0,3w 
 t %、 Zr   0.  01〜0.  3wt
%、V  0. 0+−0,3wt%の1種又は2種以
上を含有し、残部Alおよび不可避不純物からなるアル
ミニウム合金鋳塊を常法にしたがって圧延して成形加工
用アルミニウム合金板を製造する方法において、鋳塊に
たいして500〜560℃の温度で2時間以上の加熱を
行なった後、熱間圧延し鋳塊より40〜70%の圧下を
施した熱間圧延の途中の時点で板表面の温度を500℃
以上とし この状態で30秒以上保持し、その後熱間圧
延を継続して、8mm以下の厚みでしかも圧延上がりの
温度を320℃以下に仕上げることによって、最終板の
平行断面の観察に於いて全厚み中に5μm以上のMg2
51の金属間化合物がしめる面積率を1%以下とするこ
とを特徴とする成形加工用アルミニウム合金板の製造方
法、第二請求項は Mg3.5〜6wt%、Si0.01〜0.2wt%、
Mn十F e 1wt%以下を含有し、さらにCuO,
05〜0.5wt%、Zn  0.05〜0.5wt%
、Cro、o1〜Q、3wt%、ZrO,OI〜0.3
wt%、V  O,’  01−0. 3wt%の】種
又は2種以上を含有し、残部A1および不可避不純物か
らなるアルミニウム合金鋳塊を常法にしたがって圧延し
て成形加工用アルミニウム合金板を製造する方法におい
て、鋳塊にたいして450〜560℃の温度で2時間以
上の加熱を行なった後、熱間圧延し鋳塊より40〜70
%の圧下を施した熱間圧延の途中の時点で板表面の温度
を500℃未満とし 500〜560℃の温度で30秒
以上保持する加熱処理を行ない、その後熱間圧延を継続
して、8mm以下の厚みでしかも圧延上がりの温度を3
20℃以下に仕上げることによって、最終板の平行断面
の観察に於いて全厚み中に5μm以上のMg25iの金
属間化合物がしめる面積率を】%以下とすることを特徴
とする成形加工用アルミニウム合金板の製造方法、 である。
The present invention, which the inventors have arrived at as a result of intensive research to achieve the above object, is configured as follows. That is, the first claim of the present application is Mg3.5-5 wt%, SiO,O]-0.2wt%
%, Mn + Fe 1wt% or less, and further contains CuO,
05-0.5wt%, Zn 0. 05-0.
5wt%, Cr 0. 0+-0,3w
t%, Zr 0. 01~0. 3wt
%, V 0. In a method of manufacturing an aluminum alloy plate for forming by rolling an aluminum alloy ingot containing one or more of 0 + - 0.3 wt% and the balance consisting of Al and unavoidable impurities according to a conventional method, the ingot After heating the plate at a temperature of 500 to 560°C for 2 hours or more, the plate surface was heated to 500°C at a point in the middle of hot rolling where the ingot was reduced by 40 to 70%.
By holding this state for more than 30 seconds and then continuing hot rolling to finish the plate with a thickness of 8 mm or less and a temperature of 320°C or less after rolling, it is possible to completely observe the parallel cross section of the final plate. Mg2 of 5μm or more in the thickness
A method for producing an aluminum alloy plate for forming processing, characterized in that the area ratio of intermetallic compounds of No. 51 is 1% or less, the second claim is Mg 3.5 to 6 wt%, Si 0.01 to 0.2 wt% ,
Contains 1 wt% or less of Mn+Fe, and further contains CuO,
05-0.5wt%, Zn 0.05-0.5wt%
, Cro, o1~Q, 3wt%, ZrO, OI~0.3
wt%, V O,' 01-0. 3wt%] species or two or more species, and the balance A1 and unavoidable impurities, in a method for producing an aluminum alloy plate for forming processing by rolling according to a conventional method, After heating at a temperature of ℃ for 2 hours or more, the hot rolled ingot has a
% during hot rolling, the temperature of the plate surface was lowered to less than 500°C, and heat treatment was performed by holding the plate at a temperature of 500 to 560°C for 30 seconds or more, and then hot rolling was continued to reduce the temperature to 8 mm. The thickness is as follows and the temperature after rolling is 3.
An aluminum alloy for forming processing, characterized in that by finishing at 20°C or less, the area ratio of Mg25i intermetallic compounds of 5 μm or more in the total thickness is % or less when observed in a parallel cross section of the final plate. A method for manufacturing a board.

【作用】[Effect]

先ず、この発明のアルミニウム合金圧延板における成分
限定理由について説明する。 Mg; MgはCu、Siとの共存によりG、  P、
  シーツ、β’Mg2Si、βMg24;iあるいは
G、  P、  ゾーン、S’ Al2CuMg、SA
l2CuMgといった析出過程を辿り析出するが、中間
相の析出段階では強度向上に寄与する。しかし高濃度M
g合金系ではMg25iの固溶量は少なく巨大金属間化
合物を生成しやすく成形性を著しく阻害する。しかしM
g単独でも固溶体強化に効果がある元素であるため高強
度用途には不可欠であり少なくすることは出来ない。M
gが3.5wt%未満では本用途に適する強度が得られ
ず6%を超えて添加した場合には、加工硬化しやすいこ
とや熱間圧延性を著しく悪化させるので、Mgの範囲は
3.5〜6wt%とした。 Si;Mg2Si系化合物の析出過程でも時効硬化が期
待できることは良く知られている。しかし高濃度Mg合
金系ではMg2Siの固溶量は少なく巨大金属間化合物
を生成しやすく成形性を著しく阻害する。従って含有し
ない方が良いがSlはAl地金の不可避不純物であり含
有量を0.01wt%未満とするのは経済的な理由から
難しく、S1含有量が0.2wt%を超えると本発明に
よってもMg2Siの巨大金属間化合物を生成を抑制す
るのは難しい。 Mn及びFe;Mnは強度向上に寄与するとともにFe
とともに金属間化合物を形成しその中にSiを固溶させ
るかまたは、αAl  (Mn−Fe)Siの金属間化
合物を形成するためMgと結合するフリーのSlを少な
くしてMg2Si巨大金属間化合物の生成を抑制する働
きかある。 Feは金属間化合物を形成してSlを取込むためMnと
同様Mgと結合するフリーのSiを少なくしてMg25
1巨大金属間化合物の生成を抑制する働きがある。 従ってこの2元素の添加量はFe+Mnが]wt%未満
であれば存在したほうが好都合である。しかしFe+M
nが0.2wt%以上の場合は上記作用により本願発明
のような複雑な製造プロセスを取る必要性は減る。本願
発明の複雑な製造プロセスを採る意義はFe+Mnが0
.2wt%未満の場合に大きい。ただしFe+Mnが1
wt%を超えるとそれ自体で形成する金属間化合物が粗
大となり成形性を阻害するので1wt%以下とする。 Cu、Zn、Cr、Zr、V: 強度向上に寄与する元
素で1種又は2種以上含有させる。Cu−Znは0. 
05以上0,5wt%以下、Cr−Zr ・Vは0.0
1以上0.3wt%以下ならば本発明の効果を失わず強
度向上に寄与する。 以上の各成分の残部はAl及び不可避不純物とすれば良
い。 なお通常のアルミニウム合金においては、鋳塊結晶粒微
細化の為にTi及びBを微量添加することがあり、本発
明のアルミニウム合金圧延板においても微jlノTi、
或いはBを含有しても良い。但し、T1を添加する場合
、0.01wt%未満ではその効果が得られず、0.2
wt%を超えると初晶TiAl3が晶出して成形性を阻
害するから、T1は0.01〜0.2wt%の範囲とす
ることが好ましい。又Tiと共にBを添加する場合、i
ppm未満ではその効果がなく、5ooppmを超える
とTi82の粗大粒子が混入して成形性を害することか
ら、Bは1〜500ppmの範囲とすることが好ましい
。 さらに、高Mg合金では溶湯の酸化防止のためBeを1
〜2ooppm添加することがあるが本願においてもそ
の様にするのが好ましい。 次に本発明における製造プロセスについて説明する。 先ず、前記した合金組成を有するアルミニウム合金鋳塊
を常法に従ってDC9鋳造法により作製する。 次いでその鋳塊に対して、請求項1の場合500℃以上
で、請求項2の場合450℃以上で560℃以下×2時
間以上の均熱・加熱を施す。基本的には鋳塊加熱温度の
下限は450℃でこの温度未満では熱間圧延時の圧延性
が著しく低下し、また高濃度Mg合金系ではMg2Si
の固溶量は少なく高温の方が固溶しやすく有利であるが
、560℃以上では表面酸化が進むこと、さらにAlM
nFe系の金属間化合物が成長して粗大化することなど
でこの温度範囲とした。ただし固溶を促進するために5
00℃以上が好ましい。また請求項1の場合には40〜
70%の熱間圧延を施した時の温度が500℃以上の状
態を創出することを狙っているので鋳塊加熱温度の下限
は500℃とした。 その後熱間圧延を施すが、鋳塊にたいし40〜70%の
熱間圧延を施した時の温度が500℃以上の状態で有れ
ばその状態で30秒以上の保持を行い、Mg2Siの固
溶を促進させる。 (これが請求項1の場合。)また、
鋳塊にたいし40〜70%の熱間圧延を施した時の温度
が500℃未満の状態で有れば500〜560℃の湿度
で30秒以上保持する加熱処理を行ない Mg2Siの
固溶を促進させる。 (これが請求項2の場合。)熱間
圧延により歪が加わっているため、鋳塊の時点で固溶し
きれなかったMg25iもこの処置により固溶しやすく
 なる。 引き続き熱間圧延を行ない8mm以下の厚みでかつ32
0℃以下に仕上げる。Mg2Siの析出は330〜45
0℃で最も促進されこの間が粗大化しやすい。従って熱
間圧延途中の再加熱時の温度は450℃超として、熱延
上がりの様にその温度で最も長時間保持される状態では
330℃未満の温度とする必要が有るのであがり温度を
320℃以下とした。また熱間圧延の上がりの板厚を8
mm以下としたのはその後の冷間圧延時の作業性を考慮
したにすぎない。このようにして得られた圧延板はMg
25工の巨大金属間化合物はすくない。 その後常法に従って、冷間加工、焼鈍等を行ない最終板
に仕上げる。このとき330℃以上の焼鈍を行なうとき
にはCALのような連続焼鈍法に依る方が箱型焼鈍法に
よるよりMg2Siの金属間化合物の粗大化が防げる。 上記製法に依り得られた成形用アルミニウム合金板は最
終板の平行断面の註察に於いて全厚み中に5μm以上の
Mg2Siの金属間化合物が占める面積率で1%以下と
なり、深絞り加工、曲げ加工や一般の張り出し加工さら
には局部的な張り出し加工時に割れの発生を低く抑えた
材料となる。
First, the reason for limiting the components in the aluminum alloy rolled sheet of the present invention will be explained. Mg; Mg coexists with Cu and Si to form G, P,
Sheets, β'Mg2Si, βMg24; i or G, P, Zone, S' Al2CuMg, SA
Although it precipitates through a precipitation process such as 12CuMg, it contributes to improving strength at the intermediate phase precipitation stage. However, high concentration M
In the g-alloy system, the amount of solid solution of Mg25i is small, and giant intermetallic compounds are likely to be formed, which significantly inhibits formability. But M
Since g alone is an element effective in solid solution strengthening, it is essential for high-strength applications and cannot be reduced. M
If Mg is less than 3.5 wt%, strength suitable for this purpose cannot be obtained, and if it is added in excess of 6%, work hardening is likely to occur and hot rollability is significantly deteriorated, so the range of Mg is 3. The content was set at 5 to 6 wt%. It is well known that age hardening can be expected during the precipitation process of Si;Mg2Si compounds. However, in high-concentration Mg alloy systems, the amount of solid solution of Mg2Si is small, and giant intermetallic compounds are likely to be formed, which significantly inhibits formability. Therefore, it is better not to contain Sl, but it is an unavoidable impurity in Al metal, and it is difficult to reduce the content to less than 0.01 wt% for economic reasons.If the S1 content exceeds 0.2 wt%, the present invention However, it is difficult to suppress the formation of giant intermetallic compounds of Mg2Si. Mn and Fe: Mn contributes to improving strength and Fe
Alternatively, in order to form an intermetallic compound of αAl (Mn-Fe)Si, the amount of free Sl that combines with Mg is reduced to form an Mg2Si giant intermetallic compound. It has the ability to suppress its production. Fe forms an intermetallic compound and takes in Sl, so like Mn, free Si that combines with Mg is reduced and Mg25
1. It has the function of suppressing the formation of giant intermetallic compounds. Therefore, it is more convenient for the amount of these two elements to be present if Fe+Mn is less than ]wt%. However, Fe+M
When n is 0.2 wt% or more, the above effect reduces the need for a complicated manufacturing process as in the present invention. The significance of adopting the complicated manufacturing process of the present invention is that Fe+Mn is 0.
.. It is large when it is less than 2wt%. However, Fe+Mn is 1
If it exceeds wt%, the intermetallic compound formed by itself becomes coarse and inhibits formability, so it is set to 1 wt% or less. Cu, Zn, Cr, Zr, V: One or more of these elements contribute to improving strength. Cu-Zn is 0.
05 or more and 0.5wt% or less, Cr-Zr ・V is 0.0
If it is 1 or more and 0.3 wt% or less, the effect of the present invention will not be lost and it will contribute to improving the strength. The remainder of each of the above components may be Al and unavoidable impurities. Note that in ordinary aluminum alloys, small amounts of Ti and B are sometimes added to refine the ingot crystal grains, and the aluminum alloy rolled sheet of the present invention also contains small amounts of Ti and B.
Alternatively, it may contain B. However, when adding T1, the effect cannot be obtained if it is less than 0.01 wt%;
If it exceeds wt%, primary TiAl3 will crystallize and inhibit moldability, so T1 is preferably in the range of 0.01 to 0.2 wt%. Also, when B is added together with Ti, i
If it is less than ppm, there is no effect, and if it exceeds 50ppm, coarse particles of Ti82 will be mixed in, impairing the moldability, so B is preferably in the range of 1 to 500 ppm. Furthermore, in high Mg alloys, Be is added to 1 to prevent oxidation of the molten metal.
~2ooppm may be added, and it is preferable to do so in the present application as well. Next, the manufacturing process in the present invention will be explained. First, an aluminum alloy ingot having the alloy composition described above is produced by the DC9 casting method according to a conventional method. Next, the ingot is soaked and heated at 500° C. or higher in the case of claim 1, or 450° C. or higher and 560° C. or lower for 2 hours or more in the case of claim 2. Basically, the lower limit of the ingot heating temperature is 450°C. Below this temperature, the rollability during hot rolling will decrease significantly, and in high-concentration Mg alloy systems, Mg2Si
The amount of solid solution is small and it is easier to form a solid solution at high temperatures, which is advantageous, but at temperatures above 560°C surface oxidation progresses, and
This temperature range was set because nFe-based intermetallic compounds grow and become coarse. However, in order to promote solid solution, 5
The temperature is preferably 00°C or higher. In addition, in the case of claim 1, 40 to
The lower limit of the ingot heating temperature was set at 500°C because the aim was to create a state in which the temperature when 70% hot rolling was 500°C or higher. After that, hot rolling is applied to the ingot, but if the temperature is 500°C or higher when hot rolling is applied to the ingot by 40 to 70%, the ingot is held in that state for 30 seconds or more, and the Mg2Si Promotes solid solution. (If this is claim 1.) Also,
If the temperature of the ingot is below 500°C when 40 to 70% hot rolling is performed, heat treatment is performed to maintain the humidity at 500 to 560°C for 30 seconds or more to form a solid solution of Mg2Si. promote (This is the case of claim 2.) Since strain is added by hot rolling, Mg25i, which could not be completely dissolved in the ingot at the time of the ingot, becomes easier to dissolve in the solid solution by this treatment. Continue hot rolling to a thickness of 8 mm or less and 32 mm.
Finish to below 0℃. Precipitation of Mg2Si is 330-45
It is most accelerated at 0°C and tends to become coarser between these temperatures. Therefore, the temperature during reheating during hot rolling must be over 450°C, and in the state where it is held at that temperature for the longest time, such as after hot rolling, it is necessary to keep the temperature below 330°C. The following was made. Also, the thickness of the plate after hot rolling is 8
The reason why the thickness is set to be less than mm is merely in consideration of workability during subsequent cold rolling. The rolled plate thus obtained contains Mg
There are only a few large intermetallic compounds of 25 types. Thereafter, cold working, annealing, etc. are performed according to conventional methods to produce the final plate. At this time, when annealing is performed at 330° C. or higher, continuous annealing such as CAL is more effective in preventing coarsening of the Mg2Si intermetallic compound than box annealing. In the aluminum alloy plate for forming obtained by the above manufacturing method, when examining the parallel cross section of the final plate, the area ratio occupied by Mg2Si intermetallic compound of 5 μm or more in the total thickness was 1% or less, and the area ratio was 1% or less, and it was not possible to perform deep drawing. It is a material that suppresses the occurrence of cracks during bending, general stretching, and even local stretching.

【実施例】【Example】

第】表に示す合金成分の400mm厚さのDC鋳塊を、
第2表に示すように加熱及び熱間圧延を行い、中間焼鈍
をCALとしてその後冷間圧延を行って最終板厚とした
。 その後供試材Bにのみ最終焼鈍を施した。そして本材料
の代表的な用途は缶蓋材であるので、缶蓋焼付塗装べ一
牛ング相当の加M(270℃×20秒)を施して性能を
第1表 合金組成(単位:wt%) 以下余白 第2表 製造条件および金属組織 注)熱延加熱保持棚の「85分」とは、わざわざ加熱せ
ず熱延A上がりのまま5分保持した事を意味する。 以下余白 表3 性能表 以下余白 調べ第3表に示す。またこの時の5μm以上のMg2S
iの面積率を測定し第2表に示す。BとEは請求項1の
発明例で、DとFは請求項2の発明例である。Gは一般
的に用いられているS1含有量が多い場合で、Cは最終
の熱延上り(表では「熱延B上がり」と称する)温度が
330℃と高い場合で、各々比較例とした。また熱延の
途中で保持又は加熱を行わないAを従来例とした。 第3表の性能で比較すると、耐力値はほぼ同程度でも、
本発明による製法でえられる材料は、5μm以上のMg
25lの面積率の少なくなり、張出し性(エリクセン、
局部張出性)及び曲げ性に於いて優れている事がわかる
。 しかしGのようにSi含有量が多い場合で熱延の途中に
加熱を施しても5μm以上のMg2Siの面積率は少な
くならずに、成形性は劣る結果となる。本発明例中で&
Hの最終焼鈍を施した場合が最も特性が良くなっている
。 これは最終焼鈍による時効硬化を促進させた結果、中間
焼鈍後の冷間圧延率が減らせるために成形性が良くなっ
たものである。このように低湿(250℃以下)の最終
焼鈍を施すことにより、^]−Cu−Mg及び5μmよ
り微細なMg−5i系の析出物等の析出を促進させるこ
とや、適度な歪の回復を達成することにより、ベーキン
グ後の特性が向上する場合が有る。 更に中間焼鈍をバッチタイプとしても320℃以下であ
れば、本発明により得られる材料は、従来のノクノチタ
イブの製法でえられた材料に比較して性能は良好になる
。 すなわち、中間焼鈍だけバッチタイプで315℃×2時
間で施しそれ以外は製造符号り、  Eと同じ工程をと
ったものは5μm以上のM g 251の面積率はそれ
ぞれ0゜7、 0. 6%であり良好な局部張り出し性
、曲げ性を有する。ただし中間焼鈍をCALとした場合
とくらべ引張り強さは約I Kgf/am2さがる。
] A 400 mm thick DC ingot with the alloy components shown in the table,
As shown in Table 2, heating and hot rolling were performed, intermediate annealing was performed as CAL, and then cold rolling was performed to obtain the final plate thickness. Thereafter, only sample material B was subjected to final annealing. Since the typical use of this material is as a can lid material, it was subjected to a heat treatment equivalent to baking paint for can lids (270°C x 20 seconds) and its performance was evaluated as shown in Table 1. Alloy composition (unit: wt%) ) Table 2 (margin below) Manufacturing conditions and metallographic structure Note) "85 minutes" on the hot-rolled heating holding rack means that the hot-rolled A was held for 5 minutes without being heated. Below is the margin table 3.Performance table below is the margin survey and shown in Table 3. Also, at this time, Mg2S of 5 μm or more
The area ratio of i was measured and shown in Table 2. B and E are examples of the invention according to claim 1, and D and F are examples of the invention according to claim 2. G is a case where the generally used S1 content is high, and C is a case where the final hot-rolling finish (referred to as "hot-rolling B finish" in the table) temperature is as high as 330°C, and each was used as a comparative example. . Further, A was used as a conventional example in which holding or heating was not performed during hot rolling. Comparing the performance in Table 3, even though the yield strength values are almost the same,
The material obtained by the manufacturing method according to the present invention has Mg of 5 μm or more.
The area ratio of 25l is reduced, and the overhang property (Eriksen,
It can be seen that the material has excellent local extrusion properties) and bendability. However, when the Si content is high as in G, even if heating is performed during hot rolling, the area ratio of Mg2Si of 5 μm or more does not decrease, resulting in poor formability. In the invention example &
The properties are the best when final annealing of H is applied. This is because as a result of promoting age hardening during final annealing, the cold rolling rate after intermediate annealing can be reduced, resulting in improved formability. By performing the final annealing at low humidity (250°C or less) in this way, it is possible to promote the precipitation of ^]-Cu-Mg and Mg-5i-based precipitates finer than 5 μm, and to recover appropriate strain. By achieving this, the properties after baking may be improved. Furthermore, even if the intermediate annealing is performed as a batch type, as long as the temperature is 320° C. or lower, the material obtained by the present invention has better performance than the material obtained by the conventional Nokunotitaib manufacturing method. That is, in the case where only the intermediate annealing was done in a batch type at 315°C for 2 hours, and the manufacturing code was the same as in E, the area ratio of M g 251 with a diameter of 5 μm or more was 0°7 and 0.7 μm, respectively. 6%, and has good local stretchability and bendability. However, the tensile strength is lower by about I Kgf/am2 compared to when intermediate annealing is CAL.

【発明の効果】【Effect of the invention】

本発明によれば、成形加工時の割れの起点となりやすい
など特に成形時に悪影響を及ぼすMg2Siの粗大な金
属間化合物の生成を抑えることができる。よって薄肉化
が進みよりきびしい成形性の要求される缶胴や缶蓋等の
缶材等に好適に用いることができる。 以上
According to the present invention, it is possible to suppress the formation of coarse intermetallic compounds of Mg2Si that have a particularly negative effect on molding, such as being likely to become a starting point for cracks during molding. Therefore, it can be suitably used for can materials such as can bodies and can lids, which are thinner and require stricter formability. that's all

Claims (1)

【特許請求の範囲】 1、Mg3.5〜6wt%、Si0.01〜0.2wt
%、Mn+Fe1wt%以下を含有し、さらにCu0.
05〜0.5wt%、Zn0.05〜0.5wt%、C
r0.01〜0.3wt%、Zr0.01〜0.3wt
%、V0.01〜0.3wt%の1種又は2種以上を含
有し、残部Alおよび不可避不純物からなるアルミニウ
ム合金鋳塊を常法にしたがって圧延して成形加工用アル
ミニウム合金板を製造する方法において、鋳塊にたいし
て500〜560℃の温度で2時間以上の加熱を行なっ
た後、熱間圧延し鋳塊より40〜70%の圧下を施した
熱間圧延の途中の時点で板表面の温度を500℃以上と
しこの状態で30秒以上保持し、その後熱間圧延を継続
して、8mm以下の厚みでしかも圧延上がりの温度を3
20℃以下に仕上げることによって、最終板の平行断面
の観察に於いて全厚み中に5μm以上のMg_2Siの
金属間化合物がしめる面積率を1%以下とすることを特
徴とする成形加工用アルミニウム合金板の製造方法。 2、Mg3.5〜6wt%、Si0.01〜0.2wt
%、Mn+Fe1wt%以下を含有し、さらにCu0.
05〜0.5wt%、%n0.05〜0.5wt%、C
r0.01〜0.3wt%、Zr0.01〜0.3wt
%、V0.01〜0.3wt%の1種又は2種以上を含
有し、残部Alおよび不可避不純物からなるアルミニウ
ム合金鋳塊を常法にしたがって圧延して成形加工用アル
ミニウム合金板を製造する方法において、鋳塊にたいし
て450〜560℃の温度で2時間以上の加熱を行なっ
た後、熱間圧延し鋳塊より40〜70%の圧下を施した
熱間圧延の途中の時点で板表面の温度を500℃未満と
し500〜560℃の温度で30秒以上保持する加熱処
理を行ない、その後熱間圧延を継続して、8mm以下の
厚みでしかも圧延上がりの温度を320℃以下に仕上げ
ることによって、最終板の平行断面の観察に於いて全厚
み中に5μm以上のMg_2Siの金属間化合物がしめ
る面積率を1%以下とすることを特徴とする成形加工用
アルミニウム合金板の製造方法。
[Claims] 1. Mg 3.5-6 wt%, Si 0.01-0.2 wt%
%, Mn+Fe 1wt% or less, and Cu0.
05-0.5wt%, Zn0.05-0.5wt%, C
r0.01~0.3wt%, Zr0.01~0.3wt
%, V0.01 to 0.3 wt%, and the remainder is Al and unavoidable impurities. After heating the ingot at a temperature of 500 to 560 °C for 2 hours or more, the ingot was hot rolled and the ingot was rolled down by 40 to 70%.The temperature of the plate surface was determined during hot rolling. The temperature was raised to 500°C or higher and held in this state for 30 seconds or more, and then hot rolling was continued to achieve a thickness of 8mm or less and a temperature at the end of rolling of 30 seconds.
An aluminum alloy for forming processing, characterized in that by finishing at 20°C or less, the area ratio of Mg_2Si intermetallic compounds of 5 μm or more in the total thickness is 1% or less when observed in a parallel cross section of the final plate. Method of manufacturing the board. 2. Mg3.5-6wt%, Si0.01-0.2wt
%, Mn+Fe 1wt% or less, and Cu0.
05-0.5wt%, %n0.05-0.5wt%, C
r0.01~0.3wt%, Zr0.01~0.3wt
%, V0.01 to 0.3 wt%, and the remainder is Al and unavoidable impurities. After heating the ingot at a temperature of 450 to 560°C for 2 hours or more, the ingot was hot rolled and the ingot was rolled down by 40 to 70%.At a point in the middle of hot rolling, the temperature of the plate surface was determined. By performing heat treatment to lower the temperature to less than 500°C and holding it at a temperature of 500 to 560°C for 30 seconds or more, and then continuing hot rolling to finish the product with a thickness of 8 mm or less and a finished rolling temperature of 320°C or less, A method for producing an aluminum alloy plate for forming, characterized in that when observing a parallel cross section of the final plate, the area ratio of Mg_2Si intermetallic compounds of 5 μm or more in the total thickness is 1% or less.
JP33650590A 1990-11-30 1990-11-30 Manufacture of aluminum alloy sheet for forming Pending JPH04202747A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33650590A JPH04202747A (en) 1990-11-30 1990-11-30 Manufacture of aluminum alloy sheet for forming

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33650590A JPH04202747A (en) 1990-11-30 1990-11-30 Manufacture of aluminum alloy sheet for forming

Publications (1)

Publication Number Publication Date
JPH04202747A true JPH04202747A (en) 1992-07-23

Family

ID=18299829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33650590A Pending JPH04202747A (en) 1990-11-30 1990-11-30 Manufacture of aluminum alloy sheet for forming

Country Status (1)

Country Link
JP (1) JPH04202747A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0823489A1 (en) * 1996-08-06 1998-02-11 Pechiney Rhenalu AlMgMn alloy product for welded structures with improved corrosion resistance
JP2010236075A (en) * 2009-03-31 2010-10-21 Kobe Steel Ltd Aluminum alloy sheet for can barrel, and method for manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0823489A1 (en) * 1996-08-06 1998-02-11 Pechiney Rhenalu AlMgMn alloy product for welded structures with improved corrosion resistance
FR2752244A1 (en) * 1996-08-06 1998-02-13 Pechiney Rhenalu PRODUCT FOR WELDED CONSTRUCTION IN ALMGMN ALLOY WITH IMPROVED CORROSION RESISTANCE
JP2010236075A (en) * 2009-03-31 2010-10-21 Kobe Steel Ltd Aluminum alloy sheet for can barrel, and method for manufacturing the same

Similar Documents

Publication Publication Date Title
JPS59159961A (en) Superplastic al alloy
JP4211875B2 (en) Aluminum alloy composition and production method thereof
JP2000212673A (en) Aluminum alloy sheet for aircraft stringer excellent in stress corrosion cracking resistance and its production
JP2671121B2 (en) Rolled aluminum alloy sheet for forming, which has excellent elongation, bendability, and overhanging property, and method for producing the same
CN117737525A (en) Aluminum alloy material
JPS6050864B2 (en) Aluminum alloy material for forming with excellent bending workability and its manufacturing method
WO2016140231A1 (en) Thin titanium sheet and manufacturing method therefor
JP2663078B2 (en) Aluminum alloy for T6 treatment with stable artificial aging
JPH06340940A (en) Aluminum alloy sheet excellent in press formability and baking hardenability and its production
JPH0257655A (en) Foamable aluminum alloy having excellent surface treating characteristics and its manufacture
JPH04202747A (en) Manufacture of aluminum alloy sheet for forming
JPH0547615B2 (en)
JPS61163232A (en) High strength al-mg-si alloy and its manufacture
JPS6410584B2 (en)
JPS5941506B2 (en) Manufacturing method for structural aluminum alloy with excellent strength and formability
JPH0480979B2 (en)
JPH0788558B2 (en) Method for producing aluminum alloy sheet excellent in formability and bake hardenability
JPH0718389A (en) Production of al-mg series alloy sheet for forming
JP3543362B2 (en) Method for producing aluminum alloy sheet excellent in formability and bake hardenability
JPS616244A (en) High strength alloy for forming having fine grain and its manufacture
JP3208234B2 (en) Aluminum alloy sheet for forming process excellent in formability and method for producing the same
JPH07228957A (en) Production of aluminum alloy sheet having excellent formability and quench-hardenability
JPH01225738A (en) Heat treatment-type aluminum alloy rolled plate for forming and its manufacture
JP2678675B2 (en) Method for producing aluminum alloy sheet for forming having excellent deep drawability
JPH04202748A (en) Manufacture of aluminum alloy sheet for forming