JP6227691B2 - Manufacturing method of aluminum alloy plate for DI can body - Google Patents

Manufacturing method of aluminum alloy plate for DI can body Download PDF

Info

Publication number
JP6227691B2
JP6227691B2 JP2016044038A JP2016044038A JP6227691B2 JP 6227691 B2 JP6227691 B2 JP 6227691B2 JP 2016044038 A JP2016044038 A JP 2016044038A JP 2016044038 A JP2016044038 A JP 2016044038A JP 6227691 B2 JP6227691 B2 JP 6227691B2
Authority
JP
Japan
Prior art keywords
aluminum alloy
soaking
hot
side wall
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016044038A
Other languages
Japanese (ja)
Other versions
JP2016135926A (en
Inventor
有賀 康博
康博 有賀
松本 克史
克史 松本
淳人 鶴田
淳人 鶴田
良治 正田
良治 正田
正浩 山口
正浩 山口
祐志 井上
祐志 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2016044038A priority Critical patent/JP6227691B2/en
Publication of JP2016135926A publication Critical patent/JP2016135926A/en
Application granted granted Critical
Publication of JP6227691B2 publication Critical patent/JP6227691B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、飲料、食品用途に使用される包装容器であって、特に飲料缶の胴部にDI成形加工されるアルミニウム合金板の製造方法に関する。   The present invention relates to a packaging container used for beverages and foods, and more particularly to a method for producing an aluminum alloy plate that is DI-formed on the body of a beverage can.

現在、飲料、食品用途に使用される包装容器の1つとして、底と側壁が一体構造の有底円筒状の胴部(缶胴)と、この胴部の開口部に封止されて上面となる円板状の蓋部(缶蓋)とからなる2ピース缶が知られている。このような缶の材料として、成形性、耐食性、強度等の面から、AA乃至JIS3000系などのアルミニウム合金板が広く適用されている。このアルミニウム合金板で製造される2ピース缶の中でも、特に飲料缶のような高さのある円筒形状の缶の胴部は、DI(Drawing and wall Ironing)成形と呼ばれる絞り加工−しごき加工の多段階の加工により成形されることが多い。そして、塗装、焼付けされ、ネッキング加工により開口部を縮径して、フランジング加工により開口部の縁を外側に拡げて缶胴となる。最後に、内容物(飲料、食品)が胴部に充填され、蓋部を開口部に巻き締めて封止される。このような製法による缶は、DI缶(以下、適宜「缶」という)と呼ばれ、広く流通している。   Currently, as one of packaging containers used for beverages and foods, a bottomed cylindrical body (can body) whose bottom and side walls are integrated, and an upper surface sealed by an opening of the body A two-piece can comprising a disc-shaped lid (can lid) is known. As a material for such cans, aluminum alloy plates such as AA to JIS3000 are widely used in terms of formability, corrosion resistance, strength, and the like. Among the two-piece cans manufactured with this aluminum alloy plate, the cylindrical portion of the cylindrical can having a height particularly like a beverage can has a lot of drawing and ironing called DI (Drawing and wall Ironing) molding. Often formed by step processing. And it is painted and baked, the diameter of the opening is reduced by necking, and the edge of the opening is expanded outward by flanging to form a can body. Finally, the contents (beverage, food) are filled in the body, and the lid is wound around the opening and sealed. A can made by such a manufacturing method is called a DI can (hereinafter referred to as “can” as appropriate) and is widely distributed.

従来より、このようなアルミニウム合金製の缶で包装された飲料のコスト削減のため、包装容器である缶は、軽量化および原材料(アルミニウム合金)低減の対策として薄肉化が進められている。その結果、現行のアルミニウム合金製の缶の側壁(最薄部)厚さは、塗膜を除いて0.105〜0.110mm程度となっている。しかし、このような薄肉化された缶では、特に板厚が薄い側壁(周面)に突起物が接触して押圧された(押し込まれた)とき、その先端が側壁を貫通し、穴(ピンホール)が開いて内容物が漏れるという不具合が発生することがある。突起物の接触としては、製造時(内容物充填、蓋部巻き締め、製造工程内の搬送系通過時)、流通時、さらに消費者が扱うときに、外部から硬い異物が接触すること等が挙げられる。また、フランジング加工においても、開口部の縁が拡げられるときに、開口部の端部で割れ(フランジ割れ)を生じることがある。   Conventionally, in order to reduce the cost of beverages packaged with such aluminum alloy cans, cans that are packaging containers have been reduced in thickness as measures for reducing weight and reducing raw materials (aluminum alloys). As a result, the thickness of the side wall (thinnest part) of the current aluminum alloy can is about 0.105 to 0.110 mm excluding the coating film. However, in such a thinned can, when a protrusion is brought into contact with and pressed against a thin side wall (circumferential surface), the tip penetrates the side wall and a hole (pin (Hall) may open and the contents may leak. Protrusion contact may include contact of hard foreign matter from the outside during manufacturing (filling contents, tightening the lid, passing through the transport system in the manufacturing process), distribution, and even when handled by consumers. Can be mentioned. Also, in the flanging process, when the edge of the opening is expanded, a crack (flange crack) may occur at the end of the opening.

そのため、このような薄肉化された缶の、側壁のピンホール発生および開口部のフランジ割れを防止できる、すなわち側壁の耐突き刺し性およびフランジング加工性(拡缶性)を向上させるように、材料側であるアルミニウム合金板の改良が進められている。   Therefore, the material of the thinned can can prevent the occurrence of pinholes on the side walls and cracks in the flanges of the openings, that is, improve the piercing resistance and flanging workability (can expandability) of the side walls. Improvement of the aluminum alloy plate on the side is underway.

例えば、特許文献1では、3000系組成を有するアルミニウム合金冷延板成を有するアルミニウム合金の冷間圧延板からDI成形または絞り成形により成形される缶ボディを設計する方法が開示されている。すなわち、塗装焼付け相当の熱処理を施された缶胴の厚みが0.07mm〜0.14mmの範囲で、この壁部の缶軸方向の引張強さが300MPa〜500MPa、伸びが3%〜8%である場合に、塗膜などの表面皮膜を脱膜した後の壁厚(t)に対する突き刺し強度が、壁厚0.105mmの缶の突き刺し強度に換算して35N以上の耐突き刺し強度を得られるようにしている。このため、Mg含有量から前記突き刺し強度を得るための壁部の厚さを決定するか、または、所望の突き刺し強度から、所定の壁部の厚さに対するMg含有量を決定している。   For example, Patent Document 1 discloses a method for designing a can body formed by DI molding or drawing from an aluminum alloy cold-rolled sheet having an aluminum alloy cold-rolled sheet composition having a 3000 series composition. That is, the thickness of the can body subjected to heat treatment equivalent to paint baking is in the range of 0.07 mm to 0.14 mm, the tensile strength in the can axis direction of this wall portion is 300 MPa to 500 MPa, and the elongation is 3% to 8%. In this case, the puncture strength with respect to the wall thickness (t) after removing the surface film such as a coating film can be converted to the puncture strength of a can having a wall thickness of 0.105 mm to obtain a puncture resistance of 35 N or more. I am doing so. For this reason, the thickness of the wall portion for obtaining the piercing strength is determined from the Mg content, or the Mg content with respect to the predetermined wall portion thickness is determined from the desired piercing strength.

また、3000系組成を有するアルミニウム合金冷間圧延板の金属間化合物を制御して、耐突き刺し性を向上させる技術も種々提案されている。例えば、特許文献2には、3000系組成を有するアルミニウム合金冷間圧延板の表面に、金属間化合物を特定密度と特定面積率で分布させる技術が開示されている。そして、これによって、DI成形された缶胴の外面および内面塗装を含む側壁厚さが0.110〜0.130mmの場合に、この側壁の缶軸方向における伸びを3%以上6%未満、引張強さを290MPaを越え330MPa以下として、耐突き刺し性を優れさせるとしている。   Various techniques for improving the puncture resistance by controlling the intermetallic compound of the aluminum alloy cold rolled sheet having a 3000 series composition have also been proposed. For example, Patent Document 2 discloses a technique for distributing an intermetallic compound at a specific density and a specific area ratio on the surface of an aluminum alloy cold rolled sheet having a 3000 series composition. Then, when the side wall thickness including the outer surface and inner surface coating of the DI molded can body is 0.110 to 0.130 mm, the elongation of the side wall in the can axis direction is 3% or more and less than 6%. The strength exceeds 290 MPa and is equal to or less than 330 MPa to improve puncture resistance.

特許文献3、4でも、同じく3000系組成を有するアルミニウム合金冷延板の、所定サイズの金属間化合物の分布密度および面積率を制御することにより、強度(耐突き刺し性)および靭性を向上させる技術が開示されている。更に、特許文献5では、同じく3000系組成を有するアルミニウム合金冷延板を、所定の加工率でDI成形し、210〜250℃で熱処理することにより、DI成形による加工硬化と引張強さを制御して、耐突き刺し性を向上させる技術が開示されている。   In Patent Documents 3 and 4, a technique for improving strength (piercing resistance) and toughness by controlling the distribution density and area ratio of an intermetallic compound of a predetermined size in an aluminum alloy cold-rolled sheet having the same 3000 series composition. Is disclosed. Furthermore, in Patent Document 5, an aluminum alloy cold-rolled plate having the same 3000 series composition is DI molded at a predetermined processing rate and heat-treated at 210 to 250 ° C., thereby controlling work hardening and tensile strength by DI molding. And the technique which improves puncture resistance is disclosed.

また、Si、Cu、Mn、Feなどの固溶量を規定して、薄肉化された場合のDI成形性や強度などの特性を向上させる技術も、缶用の3000系組成を有するアルミニウム合金冷延板分野では、従来から種々提案されている。
ちなみに、DI缶ではなく、耐突き刺し性向上目的でもないが、特許文献6では、ボトル缶用アルミニウム合金冷延板の塗装熱処理時の熱変形を防止し、熱処理後の缶強度を確保するとともに、真円度が高いボトル缶を得るために、CuとMgとの固溶量を、熱フェノールによる残査抽出法により粒子サイズが0.2μmを超える析出物と分離された溶液中のCu量として0.05〜0.3%、Mg量として0.75〜1.6%として各々規定している。
In addition, the technology for improving the properties such as DI formability and strength when thinned by specifying the solid solution amount of Si, Cu, Mn, Fe, etc. is also an aluminum alloy having a 3000 series composition for cans. Various proposals have been made in the field of sheeting.
By the way, it is not a DI can, it is not the purpose of improving puncture resistance, but in Patent Document 6, while preventing thermal deformation during coating heat treatment of the aluminum alloy cold-rolled sheet for bottle cans, ensuring the strength of the can after heat treatment, In order to obtain a bottle can with high roundness, the solid solution amount of Cu and Mg is defined as the amount of Cu in the solution separated from the precipitate having a particle size exceeding 0.2 μm by the residual extraction method using hot phenol. It is specified as 0.05 to 0.3% and Mg content as 0.75 to 1.6%, respectively.

特許第4667722号公報Japanese Patent No. 4667722 特開2004−68061号公報JP 2004-68061 A 特開2007−197815号公報JP 2007-197815 A 特開2009−270192号公報JP 2009-270192 A 特開2007−169767号公報JP 2007-169767 A 特許第4019083号公報Japanese Patent No. 4019083

ただ、DI缶の取り扱いや使用条件は、缶内外での圧力差がより大きくなって缶胴の変形がしやすくなるなど、より厳しい条件となっており、これにしたがって、缶胴に要求される耐突き刺し性(耐突き刺し強度)もより厳しいものとなっている。これに対して、前記した従来技術は、この厳しくなった耐突き刺し性を得るために未だ改善の余地がある。
例えば、特許文献1のようなMg含有量の制御のみからでは、組織中の化合物の存在にも大きく影響される突き刺し強度を、前記要求レベルにすることには限界がある。また、特許文献3に開示された技術は、缶の側壁厚さを0.110mm超に厚くすることにより耐突き刺し性を向上させており、缶の側壁厚さの薄肉化傾向に対応できていない。更に、特許文献5に開示された技術は、缶の塗装時における焼付けの温度範囲が高めに限定されているため、より低温で熱処理したい場合の製缶側の要求には不適である。
However, the handling and use conditions of DI cans are more severe, such as the pressure difference between the inside and outside of the can becoming larger and the can body being easily deformed. The puncture resistance (puncture resistance) is also stricter. On the other hand, the above-described prior art still has room for improvement in order to obtain this strict puncture resistance.
For example, only by controlling the Mg content as in Patent Document 1, there is a limit to setting the puncture strength that is greatly influenced by the presence of a compound in the tissue to the required level. Moreover, the technique disclosed in Patent Document 3 improves the puncture resistance by increasing the thickness of the side wall of the can to more than 0.110 mm, and cannot cope with the tendency of the can to reduce the thickness of the side wall of the can. . Furthermore, since the technique disclosed in Patent Document 5 is limited to a high baking temperature range when painting cans, it is unsuitable for requirements on the can-making side when heat treatment is desired at lower temperatures.

また、特許文献3〜5が開示する前記金属間化合物の制御は、確かに耐突き刺し性の向上には有効である。ただ、特許文献3〜5の規定を満足するか否かの評価のためには、制御対象となる金属間化合物の検出手段として、倍率500倍など、走査型電子顕微鏡(SEM)の適用が欠かせない。しかし、周知の通り、コイル状態の広幅で長尺の冷延板は、幅方向や圧延長手方向の全部位に亘って、数千から数万個の多数の缶胴にDI製缶される。
そして、コイル状態の広幅で長尺の冷延板には、その製造条件を最適化したとしても、板幅方向などで温度やひずみの分布がどうしても異なり、マクロ的な機械特性には影響せずとも、ミクロ組織としての金属間化合物の個数密度や面積率あるいは分布に、当然ながらばらつきが生じる。
Moreover, the control of the intermetallic compound disclosed in Patent Documents 3 to 5 is certainly effective for improving the puncture resistance. However, in order to evaluate whether or not the provisions of Patent Documents 3 to 5 are satisfied, it is necessary to apply a scanning electron microscope (SEM) such as a magnification of 500 times as a means for detecting an intermetallic compound to be controlled. I wo n’t. However, as is well known, a wide and long cold-rolled sheet in a coiled state can be made into DI in a large number of thousands to tens of thousands of can bodies over the entire part in the width direction and the longitudinal direction of rolling. .
And even if the manufacturing conditions are optimized for a coiled wide and long cold-rolled sheet, the distribution of temperature and strain is inevitably different in the sheet width direction, etc., and it does not affect the macroscopic mechanical properties. In both cases, the number density, area ratio or distribution of the intermetallic compound as a microstructure naturally varies.

したがって、特許文献3〜5が開示するような顕微鏡によるミクロ観察では、幾ら測定箇所を増したとしても、多数の缶胴にDI製缶される、コイル状態の長尺で広幅の冷延板の、幅方向の部位に亘る、ミクロ組織としての金属間化合物の個数密度や面積率あるいは分布を、全てマクロ的に代表しているものとは限らない。また、顕微鏡観察は、板厚方向における任意の1箇所を測定するものであり、板厚方向における組織のばらつきを考慮できない。このため、長尺で広幅の冷延板から製缶される缶胴の耐突き刺し性を総じて向上させることには限界がある。   Therefore, in micro observation with a microscope as disclosed in Patent Documents 3 to 5, even if the number of measurement points is increased, DI cans are formed in a large number of can bodies, and a coiled long and wide cold-rolled plate The number density, area ratio, or distribution of intermetallic compounds as a microstructure across the widthwise direction are not necessarily all representative of the macro. Further, the microscopic observation is to measure an arbitrary one place in the plate thickness direction, and the variation in the structure in the plate thickness direction cannot be taken into consideration. For this reason, there is a limit to improving the overall puncture resistance of a can body made from a long and wide cold-rolled sheet.

本発明は、前記問題点に鑑みてなされたものであり、長尺で広幅の冷延板から製缶される缶胴のより厳しくなった耐突き刺し性(耐突き刺し強度)を向上できるDI缶胴用アルミニウム合金板の製造方法を提供することを目的とする。   The present invention has been made in view of the above-mentioned problems, and a DI can body that can improve stricter puncture resistance (puncture strength) of a can body made from a long and wide cold-rolled plate. An object of the present invention is to provide a method for producing an aluminum alloy plate for use.

前記課題を解決するための本発明DI缶胴用アルミニウム合金板の製造方法の要旨は、質量%で、Mn:0.3〜1.3%、Mg:1.0〜3.0%、Si:0.1〜0.5%、Fe:0.1〜0.8%を各々含有し、残部がAl及び不可避的不純物からなる組成を有するアルミニウム合金鋳塊を2回均熱処理するに際して、1回目の均熱後の室温までの冷却の際の500〜200℃の平均冷却速度を80℃/時間以上とし、2回目の均熱の室温からの再加熱の際の200〜400℃の平均加熱速度を30℃/時間以上とし、これら均熱後の鋳塊を熱間粗圧延および熱間仕上げ圧延により熱間圧延板とし、前記熱間圧延板を冷間圧延してアルミニウム合金板とし、このアルミニウム合金板の組織として、熱フェノールによる残渣抽出法により分離された粒子サイズが0.1μmを超える残渣化合物に含まれるMn量を1.0%以下(0%を含む)とするとともに、前記熱フェノールによる残渣抽出法により分離された溶液中のMgの固溶量を0.7%以上、2.5%以下とすることである。   The gist of the manufacturing method of the aluminum alloy plate for DI can barrel of the present invention for solving the above problems is mass%, Mn: 0.3 to 1.3%, Mg: 1.0 to 3.0%, Si When the aluminum alloy ingot containing 0.1: 0.5% and Fe: 0.1-0.8% respectively and the balance is composed of Al and inevitable impurities is subjected to soaking treatment twice, The average cooling rate of 500 to 200 ° C. during cooling to room temperature after the second soaking is 80 ° C./hour or more, and the average heating of 200 to 400 ° C. during reheating from the second soaking room temperature. The speed is set to 30 ° C./hour or more, the soaked ingot is hot-rolled by hot rough rolling and hot finish rolling, and the hot-rolled plate is cold-rolled to obtain an aluminum alloy plate. As a structure of aluminum alloy sheet, by residue extraction method with hot phenol The amount of Mn contained in the residual compound having a separated particle size exceeding 0.1 μm is set to 1.0% or less (including 0%), and Mg contained in the solution separated by the hot phenol residual extraction method is used. The amount of solid solution is 0.7% or more and 2.5% or less.

ここで、前記アルミニウム合金鋳塊がさらにCu:0.05〜0.4%、あるいはCr:0.001〜0.1%、Zn:0.05〜0.5%の一種または二種を含有しても良い。また、前記アルミニウム合金板が、最薄部の側壁厚さが0.085〜0.110mmの範囲の缶胴にDI成形され、この缶胴が200℃×20分間熱処理された際の、缶胴側壁の缶軸方向の0.2%耐力が280MPa以上350MPa以下である強度特性を有することが好ましい。また、前記アルミニウム合金板の耐突き刺し性は、最薄部の側壁厚さが0.085〜0.110mmの範囲の缶胴にDI成形され、この缶胴が200℃×20分間熱処理された際の前記缶胴に、1.7kgf/cm2(=166.6kPa)の内圧をかけ、この缶胴側壁の缶底から缶軸方向の距離L=60mmの部位に、先端が半径0.5mmの半球面である突き刺し針を缶胴側壁に対して垂直に速度50mm/分で突き刺し、この突き刺し針が缶胴側壁を貫通するまでの荷重測定値のうちの最大値で35N以上であることが好ましい。   Here, the aluminum alloy ingot further contains one or two of Cu: 0.05 to 0.4%, or Cr: 0.001 to 0.1%, and Zn: 0.05 to 0.5%. You may do it. The aluminum alloy plate is DI-molded into a can body having a thinnest side wall thickness of 0.085 to 0.110 mm, and the can body is heat-treated at 200 ° C. for 20 minutes. It is preferable that the 0.2% yield strength of the side wall in the can axis direction has a strength characteristic of 280 MPa or more and 350 MPa or less. Further, the puncture resistance of the aluminum alloy plate is obtained when DI molding is performed on a can body having a thinnest side wall thickness of 0.085 to 0.110 mm, and the can body is heat-treated at 200 ° C. for 20 minutes. An inner pressure of 1.7 kgf / cm @ 2 (= 166.6 kPa) is applied to the can body, and a hemisphere having a radius of 0.5 mm at the tip at a distance L = 60 mm in the can axis direction from the bottom of the can body side wall. It is preferable that the surface piercing needle is pierced perpendicularly to the can barrel side wall at a speed of 50 mm / min, and the maximum value of the load measurement values until the piercing needle penetrates the can barrel side wall is 35 N or more.

前記した通り、従来からの金属間化合物の制御は、確かに耐突き刺し性(耐突き刺し強度)の向上には有効で、缶胴組織中にサイズの大きな金属間化合物が多いと破断し易くなって、耐突き刺し性が低下する。   As described above, the conventional control of intermetallic compounds is certainly effective for improving the puncture resistance (puncture strength), and it tends to break if there are many large intermetallic compounds in the can body structure. , Puncture resistance decreases.

ただ、従来からのアルミニウム合金板組織における、ミクロな金属間化合物の面積率、サイズ、個数密度の規定では、前記した通り、制御対象となる金属間化合物の検出手段は、走査型電子顕微鏡(SEM)などのミクロ観察となって、多数の缶胴にDI製缶される、コイル状態の広幅の冷延板の、幅方向や板厚方向に亘る部位のミクロ組織をマクロ的に代表できない。   However, in the conventional definition of the area ratio, size, and number density of the micro intermetallic compound in the aluminum alloy plate structure, as described above, the detection means of the intermetallic compound to be controlled is a scanning electron microscope (SEM). ), Etc., and the microstructure of the portion of the coiled wide cold-rolled sheet that is made of DI in a large number of can bodies in the width direction and the thickness direction cannot be represented macroscopically.

このため、本発明者らは、走査型電子顕微鏡(SEM)などのミクロ観察手段を使わず、熱フェノールによる残渣抽出法による謂わばマクロ的かつ平均的な情報が得られる分析手段により、コイル状態の広幅の冷延板の、特に幅方向や板厚方向に亘る部位の組織の(金属間化合物の)をマクロ的に制御する。これによって、耐突き刺し性を目的とするレベルに向上させることができる。   For this reason, the present inventors do not use a micro observation means such as a scanning electron microscope (SEM), but instead use a so-called macroscopic and average information obtained by a residue extraction method using hot phenol to analyze the coil state. Macroscopically control the structure (intermetallic compound) of the structure of the wide cold-rolled sheet, particularly in the width direction and the thickness direction. Thereby, the puncture resistance can be improved to a target level.

缶胴の突き刺し強度の測定方法を模式的に説明する断面図である。It is sectional drawing which illustrates typically the measuring method of the piercing strength of a can body.

以下、本発明に係る缶胴用アルミニウム合金板(以下、アルミニウム合金板と称す)を実現するための形態について説明する。   Hereinafter, the form for implement | achieving the aluminum alloy plate for can bodies which concerns on this invention (henceforth an aluminum alloy plate) is demonstrated.

(アルミニウム合金組成)
本発明に係るアルミニウム合金板の組成は、質量%で、Mn:0.3〜1.3%、Mg:1.0〜3.0%、Si:0.1〜0.5%、Fe:0.1〜0.8%を各々含有し、残部がAl及び不可避的不純物からなるものとする。このアルミニウム合金組成に、さらにCu:0.05〜0.4%を含有する組成としてもよい。なお、組成(各元素含有量)に関する%表示は全て質量%の意味である。
(Aluminum alloy composition)
The composition of the aluminum alloy plate according to the present invention is mass%, Mn: 0.3 to 1.3%, Mg: 1.0 to 3.0%, Si: 0.1 to 0.5%, Fe: It shall contain 0.1-0.8% respectively, and the remainder shall consist of Al and an unavoidable impurity. It is good also as a composition which contains Cu: 0.05-0.4% further to this aluminum alloy composition. In addition, all the% display regarding a composition (each element content) means the mass%.

(Mn:0.3〜1.3%)
Mnは、アルミニウム合金の強度を向上させる効果があり、アルミニウム合金板が缶胴に成形されたときに、側壁強度を高めて座屈強度や耐突刺し性を確保する。また、Mnはアルミニウム合金中でAl−Mn−Fe系金属間化合物を形成し、適度に分散されることで、熱間圧延後の再結晶が促進されてアルミニウム合金板の加工性が向上する。Mnの含有量が0.3%未満では、これらの効果が不十分である。このため、Mnの含有量は0.3%以上、好ましくは0.4%以上とする。一方、Mnの含有量が1.2%を超えると、アルミニウム合金板の固溶強化が過大となって加工性が低下し、また、Al−Mn−Fe系金属間化合物の生成量が増加して、耐突刺し性が低下する。それゆえ、Mnの上限は1.3%とし、好ましくは1.1%、さらに好ましくは1.0%とする。
(Mn: 0.3 to 1.3%)
Mn has an effect of improving the strength of the aluminum alloy, and when the aluminum alloy plate is formed on the can body, the side wall strength is increased to ensure buckling strength and puncture resistance. Further, Mn forms an Al—Mn—Fe-based intermetallic compound in the aluminum alloy and is appropriately dispersed, whereby recrystallization after hot rolling is promoted and the workability of the aluminum alloy sheet is improved. If the Mn content is less than 0.3%, these effects are insufficient. Therefore, the Mn content is 0.3% or more, preferably 0.4% or more. On the other hand, if the content of Mn exceeds 1.2%, the solid solution strengthening of the aluminum alloy plate becomes excessive, the workability decreases, and the amount of Al-Mn-Fe intermetallic compound produced increases. As a result, the puncture resistance is reduced. Therefore, the upper limit of Mn is 1.3%, preferably 1.1%, and more preferably 1.0%.

(Mg:1.0〜3.0%)
Mgは、アルミニウム合金の強度を向上させる効果がある。Mgの含有量が1.0%未満では、アルミニウム合金板が缶胴に成形されたときに、側壁強度が低くなって耐突刺し性が不足する。一方、Mgの含有量が3.0%を超えると、アルミニウム合金板の加工硬化が過大となって、しごき加工時のティアオフ(胴体割れ)等の割れ、ネッキング加工時のシワやスジ等の不良が発生し易くなる。したがって、Mgの含有量は、1.0〜3.0%の範囲とし、Mg量の上限は好ましくは2.5%とする。
(Mg: 1.0-3.0%)
Mg has the effect of improving the strength of the aluminum alloy. When the Mg content is less than 1.0%, when the aluminum alloy plate is formed on the can body, the side wall strength is lowered and the puncture resistance is insufficient. On the other hand, if the Mg content exceeds 3.0%, the work hardening of the aluminum alloy plate becomes excessive, and cracks such as tear-off (fuselage cracks) during ironing, wrinkles and streaks during necking, etc. Is likely to occur. Therefore, the Mg content is in the range of 1.0 to 3.0%, and the upper limit of Mg content is preferably 2.5%.

(Si:0.1〜0.5%)
Siは、Al−Fe−Mn−Si系金属間化合物を形成し、それが適正に分布している程、成形性が向上する。このため、Siの含有量は0.1%以上、好ましくは0.2%以上とする。一方、Siが過剰になると、Al−Mn−Fe−Si系金属間化合物やMg−Si系金属間化合物の大きなものが多数形成されて、耐突き刺し性が低下する。このため、Si含有量の上限は0.5%、好ましくは0.4%とする。
(Si: 0.1-0.5%)
Si forms an Al—Fe—Mn—Si intermetallic compound, and the more appropriately it is distributed, the better the moldability. Therefore, the Si content is 0.1% or more, preferably 0.2% or more. On the other hand, when Si becomes excessive, a large number of Al—Mn—Fe—Si intermetallic compounds and Mg—Si intermetallic compounds are formed, and the puncture resistance is lowered. For this reason, the upper limit of Si content is 0.5%, preferably 0.4%.

(Fe:0.1〜0.8%)
Feは、地金不純物としてアルミニウム合金中に混入されるが、アルミニウム合金中でAl−Mn−Fe系金属間化合物を形成し、適度に分散されることで、熱間圧延後の再結晶が促進されてアルミニウム合金板の加工性が向上する。また、Feは、Mnの晶出や析出を促進し、アルミニウム基地中のMn平均固溶量やMn系金属間化合物の分散状態を制御する点でも有用である。このため、Feの含有量は0.1%以上、好ましくは0.3%以上とする。一方、Fe含有量が過剰になると、直径15μmを超えるサイズの巨大な初晶金属間化合物が発生しやすくなり、DI成形性や耐突き刺し性も低下する。したがって、Fe含有量の上限は0.8%、好ましくは0.7%とする。
(Fe: 0.1-0.8%)
Fe is mixed into the aluminum alloy as a metal alloy impurity, but forms an Al-Mn-Fe intermetallic compound in the aluminum alloy and is appropriately dispersed to promote recrystallization after hot rolling. As a result, the workability of the aluminum alloy plate is improved. Fe is also useful in that it promotes crystallization and precipitation of Mn, and controls the Mn average solid solution amount in the aluminum matrix and the dispersion state of the Mn-based intermetallic compound. Therefore, the Fe content is 0.1% or more, preferably 0.3% or more. On the other hand, when the Fe content is excessive, a huge primary intermetallic compound having a diameter exceeding 15 μm is likely to be generated, and the DI moldability and puncture resistance are also lowered. Therefore, the upper limit of the Fe content is 0.8%, preferably 0.7%.

(Cu:0.05〜0.4%)
Cuは、固溶強化によって強度を増加させる。このため、Cuを選択的に含有させる場合の下限量は0.05%以上、好ましくは0.1%以上とする。一方、Cuが過剰になると、高強度は容易に得られるものの、硬くなりすぎるために、成形性が低下し、さらには耐食性も劣化する。このため、Cu含有の上限量は0.4%、好ましくは0.3%とする。
(Cu: 0.05-0.4%)
Cu increases the strength by solid solution strengthening. For this reason, the lower limit when Cu is selectively contained is 0.05% or more, preferably 0.1% or more. On the other hand, if Cu is excessive, high strength can be easily obtained, but it becomes too hard, so that formability is lowered and corrosion resistance is also deteriorated. For this reason, the upper limit of Cu content is 0.4%, preferably 0.3%.

(Cr:0.001〜0.1%、Zn:0.05〜0.5%)
このCuの同効の強度向上元素としてはCr、Znが挙げられ、Cr:0.001〜0.1%、Zn:0.05〜0.5%の一種または二種を、Cuに加えて、あるいはCuに代えて選択的に含有させることができる。選択的に含有させる場合のCrの含有量は0.001%以上、好ましくは0.002%以上とする。一方、Crが過剰になると、巨大晶出物が生成して成形性が低下するので、Cr量の上限は0.1%、好ましくは0.05%程度とする。また、選択的に含有させる場合のZnの含有量は0.05%以上、好ましくは0.06%以上とする。一方、Znが過剰になると耐食性が低下するので、Zn含有量の上限は0.5%、好ましくは0.45%程度とする。
(Cr: 0.001 to 0.1%, Zn: 0.05 to 0.5%)
Cr and Zn are listed as elements for improving the strength of the same effect of Cu. One or two of Cr: 0.001 to 0.1% and Zn: 0.05 to 0.5% are added to Cu. Alternatively, it can be selectively contained instead of Cu. When selectively contained, the Cr content is 0.001% or more, preferably 0.002% or more. On the other hand, when Cr is excessive, giant crystals are generated and the formability is lowered. Therefore, the upper limit of Cr content is set to 0.1%, preferably about 0.05%. Further, when Zn is selectively contained, the Zn content is 0.05% or more, preferably 0.06% or more. On the other hand, since corrosion resistance falls when Zn becomes excessive, the upper limit of Zn content is made into 0.5%, Preferably it is about 0.45%.

これらの元素以外に不可避的不純物があるが、この不可避的不純物として、例えば、Zr:0.10%以下、Ti:0.2%以下、好ましくは0.1%以下、B:0.05%以下、好ましくは0.01%であれば、本発明に係るアルミニウム合金板の特性に影響せず、含有が許容される。このうち、Tiは結晶粒を微細化する効果もあり、微量のBと共に含有すると、この結晶粒の微細化効果がさらに向上するが、これらの含有量が過剰になると、巨大なAl−Ti系金属間化合物やTi−B系の粗大粒子が晶出して成形性を阻害する。   In addition to these elements, there are inevitable impurities. Examples of the inevitable impurities include Zr: 0.10% or less, Ti: 0.2% or less, preferably 0.1% or less, and B: 0.05%. Hereinafter, if it is preferably 0.01%, the content of the aluminum alloy plate according to the present invention is not affected and the inclusion is allowed. Among these, Ti also has an effect of refining crystal grains, and when it is contained together with a small amount of B, the effect of refining the crystal grains is further improved. However, if these contents are excessive, a huge Al—Ti system Intermetallic compounds and Ti-B-based coarse particles crystallize and hinder formability.

(DI缶胴用アルミニウム合金板の組織)
耐突き刺し性(耐突き刺し強度)の向上のために、本発明でも、DI缶胴用アルミニウム合金板あるいは、これをDI成形したDI缶胴の組織中の、Al−Fe−Mn系化合物などの金属間化合物の制御や固溶Mg量の制御を行う。
(Structure of aluminum can plate for DI can body)
In order to improve the puncture resistance (puncture resistance), in the present invention, a metal such as an Al-Fe-Mn compound in an aluminum alloy plate for a DI can body or a DI can body formed by DI molding is used. Control of intermetallic compounds and solid solution Mg amount are performed.

(化合物に含まれるMn量)
缶の側壁に突起物が押し込まれたときにピンホールが生じる突き刺しのメカニズムは、前記特許文献4にも開示される通り、突起物が接触している部位を中心にして缶の内側へすり鉢状に窪んで変形する際に、この中心部の周縁(すり鉢の傾斜した面)で局所的な減肉およびせん断帯が生じ、このせん断帯端部(缶の内側表面)からクラックが発生するためである。このクラックがせん断帯に沿って伝播することによって破断に至り、この減肉部に金属間化合物の量、特にサイズの大きな金属間化合物が多いと破断し易くなる。
(Mn content in the compound)
The piercing mechanism in which a pinhole is generated when a protrusion is pushed into the side wall of the can is, as disclosed in Patent Document 4, a mortar-like shape toward the inside of the can centering on the portion where the protrusion is in contact This is due to local thinning and shear bands occurring at the periphery of the central part (inclined surface of the mortar) and cracking from the end of the shear band (inner surface of the can) is there. When this crack propagates along the shear band, it breaks, and if the amount of intermetallic compound, particularly a large intermetallic compound, is large in the thinned portion, the crack is easily broken.

ただ、走査型電子顕微鏡(SEM)などの観察手段を用いた、金属間化合物の面積率、サイズ、個数密度などのミクロ的な規定では、前記した通り、DI缶用冷延板の板幅方向や板厚方向に亘る部位の組織をマクロ的に代表できない。このため、冷延板から製缶される缶胴の耐突き刺し性を総じて向上させられるとは限らない。   However, according to the microscopic regulations such as the area ratio, size and number density of intermetallic compounds using an observation means such as a scanning electron microscope (SEM), as described above, the plate width direction of the cold rolled sheet for DI cans In addition, the tissue of the part extending in the plate thickness direction cannot be represented macroscopically. For this reason, the puncture resistance of the can body made from cold-rolled sheets cannot be improved as a whole.

このため、本発明では、このようなミクロ観察手段を使わず、熱フェノールによる残渣抽出法による謂わばマクロ的な分析手段により、コイル状態の広幅で長尺の冷延板の、板幅方向や板厚方向に亘る部位の組織の金属間化合物をマクロ的に制御する。すなわち、熱フェノールによる残渣抽出法により分離された残渣としての化合物に含まれるMn量(化合物残渣におけるMn量)によって、缶の側壁に突起物が押し込まれたとき(突き刺しのとき)の破壊の起点となるAl−Fe−Mn系などのMnを含む化合物量を規定する。   Therefore, in the present invention, without using such a micro observation means, a so-called macro analysis means based on a residue extraction method using hot phenol is used, so that a wide and long cold-rolled plate in a coil state can be Macroscopically control the intermetallic compound in the structure in the region extending in the plate thickness direction. That is, the starting point of destruction when a protrusion is pushed into the side wall of the can (when piercing) due to the amount of Mn contained in the compound as a residue separated by the residue extraction method using hot phenol (the amount of Mn in the compound residue) The amount of the compound containing Mn such as Al—Fe—Mn system is defined.

突き刺しのときの破壊の起点となるのは、Al−Fe−Mn系などの、共通してMnを含む、粒子サイズが0.1μmを超える粗大な化合物である。この点で、熱フェノールによる残渣抽出法により、DI缶胴用アルミニウム合金冷延板あるいは、これをDI成形したDI缶胴試料を熱フェノールにより溶解した際の、0.1μmのメッシュのフィルターによって分離された残渣としての化合物に含まれるMn(化合物残渣におけるMn)の含有量(Mn析出量)を測定すれば、このMnを含む、前記した破壊の起点となるAl−Fe−Mn系などのMnを含む化合物の板や缶胴の組織中の量が分かる。   The starting point of destruction at the time of piercing is a coarse compound having a particle size exceeding 0.1 μm, which commonly contains Mn, such as an Al—Fe—Mn system. In this regard, the aluminum alloy cold-rolled sheet for DI can barrels or DI can body samples formed from DI can be separated by a 0.1 μm mesh filter when dissolved in hot phenol by a hot phenol residue extraction method. If the content (Mn precipitation amount) of Mn contained in the compound as the residue is measured (Mn precipitation amount), Mn such as Al-Fe-Mn system that contains Mn and serves as a starting point of the above-described destruction The amount of the compound containing can be found in the structure of the plate or can body.

ちなみに、DI缶胴用アルミニウム合金冷延板の組織である、前記残渣としての化合物に含まれるMnの含有量あるいは、後述する前記分離された溶液中のMgの含有量は、このDI缶胴用アルミニウム合金冷延板をDI成形してDI缶胴としても(DI缶胴の側壁部を試料に測定しても)、互いの値の違いは、アルミニウム合金冷延板の部位による値の違い程度でしかなく、本発明の各含有量規定に影響を及ぼすほどには変化しない。したがって、DI缶胴用アルミニウム合金冷延板を試料として測っても、このDI缶胴用アルミニウム合金冷延板をDI成形したDI缶胴の側壁を試料として測っても良い。   Incidentally, the content of Mn contained in the compound as the residue, which is the structure of the aluminum alloy cold-rolled sheet for DI can barrels, or the content of Mg in the separated solution described later is for this DI can barrel. Even if the aluminum alloy cold-rolled sheet is DI-molded to form a DI can body (even if the side wall of the DI can body is measured as a sample), the difference between the values depends on the portion of the aluminum alloy cold-rolled sheet. However, it does not change to such an extent that it affects each content specification of the present invention. Accordingly, the aluminum alloy cold-rolled sheet for DI can barrel may be measured as a sample, or the side wall of the DI can cylinder obtained by DI molding of the aluminum alloy cold-rolled sheet for DI can barrel may be measured as a sample.

本発明では、この板や缶胴の組織中のAl−Fe−Mn系などのMnを含む、粒子サイズが0.1μmを超える粗大な化合物の量を、熱フェノールによる残渣抽出法により分離された化合物におけるMnの平均含有量として、1.0%以下に規制する。これによって、DI缶胴用アルミニウム合金冷延板が、最薄部の側壁厚さが0.085〜0.110mmの範囲の缶胴にDI成形され、かつ缶胴が塗膜の焼付け相当の熱処理(200℃×20分間の熱処理)され、缶胴側壁の缶軸方向の0.2%耐力が280MPa以上350MPa以下となった場合の、DI缶胴の耐突き刺し性を向上させる。   In the present invention, the amount of a coarse compound having a particle size exceeding 0.1 μm containing Mn such as Al—Fe—Mn in the structure of the plate or can body was separated by a residue extraction method using hot phenol. The average content of Mn in the compound is regulated to 1.0% or less. As a result, the aluminum alloy cold-rolled sheet for DI can body is DI-molded into a can body having a thinnest side wall thickness in the range of 0.085 to 0.110 mm, and the can body is heat treatment equivalent to baking of the coating film. When the 0.2% proof stress in the can axis direction of the side wall of the can body is 280 MPa or more and 350 MPa or less, the piercing resistance of the DI can body is improved.

本発明で、前記残渣としての化合物に含まれるMnの含有量を「平均」としたのは、広幅な冷延板の板幅方向のMn系金属間化合物量をマクロ的に制御するためである。1000mm以上の広幅な冷延板の板幅方向では、製造における温度やひずみの分布の違いによって組織状態がばらつきやすくなる。このばらつきを抑制して組織の均一度を上げ、冷延板の板幅方向の各製缶部位から製缶されたDI缶胴の耐突き刺し性を総じて(一様にあるいは均一に)向上させるために、前記Mnの含有量を前記各製缶部位の「平均」とする。
このために、後述する実施例の通り、冷延板の長手方向中央部の板幅方向中央部1箇所とこの中央部からの板幅方向両端部2箇所の計3箇所の、板の板幅方向の製缶部位を代表する複数個所からサンプリングして試料を採取する、そして、これらの板の各部位試料の各Mn系金属間化合物量(前記残渣としての化合物に含まれるMnの含有量)を各々測定し、これら測定値を平均化した平均値としてMn系金属間化合物量を規定、評価する。
このMnの平均含有量が1.0%を超えた場合には、板や缶胴の組織中のAl−Fe−Mn系などのMnを含む、粒子サイズが0.1μmを超える粗大な金属間化合物が多くなりすぎる。この結果、缶胴が前記薄肉で前記高強度であり、かつ使用環境が厳しくなった場合の、耐突き刺し性が低下してしまう。
In the present invention, the reason why the content of Mn contained in the compound as the residue is “average” is to control macroscopically the amount of Mn-based intermetallic compound in the sheet width direction of the wide cold-rolled sheet. . In the plate width direction of a wide cold-rolled plate having a width of 1000 mm or more, the structure state tends to vary due to the difference in temperature and strain distribution during production. In order to suppress this variation and increase the uniformity of the structure and improve the overall puncture resistance (uniformly or uniformly) of the DI can body produced from each can in the width direction of the cold-rolled sheet In addition, the content of Mn is defined as the “average” of the respective can making parts.
For this purpose, as in the examples described later, the plate width of the plate in three places, one in the center in the plate width direction at the center in the longitudinal direction of the cold-rolled plate and two at both ends in the plate width direction from this center. Samples are taken by sampling from a plurality of locations representing the direction of the can making part, and the amount of each Mn-based intermetallic compound in each part sample of these plates (content of Mn contained in the compound as the residue) Are measured, and the amount of Mn-based intermetallic compound is defined and evaluated as an average value obtained by averaging these measured values.
When the average content of Mn exceeds 1.0%, a coarse intermetallic material containing Mn such as Al—Fe—Mn in the structure of a plate or can body and having a particle size exceeding 0.1 μm Too much compound. As a result, the piercing resistance is deteriorated when the can body is thin and has high strength and the use environment becomes severe.

(固溶Mg量)
固溶Mg量が増加すると、板や缶胴の固溶強化による加工硬化特性が向上し、缶の側壁に突起物が押し込まれたとき(突き刺しのとき)の、板や缶胴の変形能が向上して、耐突き刺し性が向上する。このため、本発明では、板や缶胴の固溶Mg量を、前記熱フェノールによる残渣抽出法により分離された溶液中のMgの平均含有量で0.7%以上、2.5%以下とする。
(Solution Mg amount)
When the amount of solid solution Mg increases, the work hardening characteristics by the solid solution strengthening of the plate and the can body improve, and the deformability of the plate and the can body when the projection is pushed into the side wall of the can (when piercing). Improves puncture resistance. For this reason, in the present invention, the solid solution Mg content of the plate or the can body is 0.7% or more and 2.5% or less in terms of the average content of Mg in the solution separated by the residue extraction method using hot phenol. To do.

Mgは、他の元素量が少ないときには添加あるいは含有させたMgのほぼ全量が固溶するが、他の元素の含有量が多いときには、これら他の元素の含有量との関係で固溶量が左右される。したがって、板や缶胴の固溶強化を確実に図る場合には、通常のMgの含有量ではなく、固溶量を直接測って制御する必要がある。   When Mg is small in the amount of other elements, almost all of the added or contained Mg is in solid solution. However, when the content of other elements is large, the solid solution amount is related to the content of these other elements. It depends. Therefore, in order to ensure solid solution strengthening of the plate and the can body, it is necessary to directly measure and control the solid solution amount, not the normal Mg content.

このため、本発明では、板や缶胴のMgの平均固溶量を、前記熱フェノールによる残渣抽出法により分離された溶液中のMgの平均含有量で0.7%以上、2.5%以下として、このアルミニウム合金板を最薄部の側壁厚さが0.085〜0.110mmの範囲の缶胴にDI成形し、かつ前記塗膜の焼付け相当の熱処理後の側壁の缶軸方向の0.2%耐力を280MPa以上350MPa以下とした場合の耐突き刺し性を向上させる。そして、前記した破壊の起点となるAl−Fe−Mn系化合物量の低減と合わせて、前記薄肉化させ、高強度化させたDI缶胴の耐突き刺し性を目的とするレベルに向上させる。   Therefore, in the present invention, the average solid solution amount of Mg in the plate or can body is 0.7% or more and 2.5% in terms of the average content of Mg in the solution separated by the residue extraction method using hot phenol. In the following, this aluminum alloy plate is DI-molded into a can body having a thinnest side wall thickness in the range of 0.085 to 0.110 mm, and the side wall in the direction of the can axis of the side wall after heat treatment equivalent to the baking of the coating film The puncture resistance is improved when the 0.2% proof stress is 280 MPa or more and 350 MPa or less. And together with the reduction of the amount of the Al—Fe—Mn compound that becomes the starting point of destruction, the stab resistance of the thinned and strengthened DI can body is improved to a target level.

具体的には、前記缶胴に1.7kgf/cm2(=166.6kPa)の内圧をかけ、この缶胴側壁の缶底から缶軸方向の距離L=60mmの部位に、先端が半径0.5mmの半球面である突き刺し針を缶胴側壁に対して垂直に速度50mm/分で突き刺し、この突き刺し針が缶胴側壁を貫通するまでの荷重測定値のうちの最大値で、35N以上のレベルに向上させる。 Specifically, an internal pressure of 1.7 kgf / cm 2 (= 166.6 kPa) is applied to the can body, and the tip has a radius of 0 at a position L = 60 mm in the can axis direction from the bottom of the can body side wall. A piercing needle having a hemispherical surface of 5 mm is pierced perpendicularly to the side wall of the can body at a speed of 50 mm / min, and the maximum value of the measured load until the piercing needle penetrates the side wall of the can body is 35 N or more. Improve to level.

本発明で、板や缶胴のMgの固溶量(前記熱フェノールによる残渣抽出法により分離された溶液中のMgの含有量)を「平均」としたのは、前記した残渣としての化合物中に含まれるMnの含有量と同様、冷延板から製缶される缶胴の耐突き刺し性を目的とするレベルに向上させるためである。すなわち、冷延板の特に板幅方向の製缶部位のMg固溶量を制御するために、後述する実施例の通り、前記Mnと同じく、冷延板の板幅方向中央部、両端部など、板の板幅方向の製缶部位を代表する計3箇所から採取した各試料の前記熱フェノールによる残渣抽出法により分離された各溶液中の各Mgの固溶量を各々測定して、これらの測定値を平均化した平均値としてMg固溶量を規定、評価する。   In the present invention, the “solid” of the solid solution amount of Mg in the plate or can body (the content of Mg in the solution separated by the residue extraction method using hot phenol) is defined as “in average” in the compound as the residue. This is to improve the puncture resistance of the can body manufactured from the cold-rolled sheet to the target level, as in the case of the Mn content contained in the steel sheet. That is, in order to control the amount of Mg solid solution in the canned portion of the cold-rolled sheet, particularly in the sheet width direction, as in the example described later, as in the case of the Mn, the center part in the sheet width direction of the cold-rolled sheet, both ends The solid solution amount of each Mg in each solution separated by the residue extraction method with the hot phenol of each sample collected from a total of three locations representing the can manufacturing site in the plate width direction of the plate, The Mg solid solution amount is defined and evaluated as an average value obtained by averaging the measured values.

板や缶胴のMgの平均固溶量が、前記熱フェノールによる残渣抽出法により分離された溶液中のMgの含有量で0.7%未満と少なくなり過ぎると、前記した破壊の起点となるAl−Fe−Mn系化合物量を低減させたとしても、前記薄肉化させ、高強度化させたDI缶胴の耐突き刺し性を目的とするレベル以上には向上できなくなる。一方、前記Mgの平均固溶量が多いほど耐突き刺し性は高くなるが、固溶Mg量が2.5%を超えて多くなり過ぎると、Mgの固溶強化によって冷延板の耐力が著しく高くなりすぎ、製缶加工に必要なしごき加工性が低下し、ティアオフが発生しやすくなる。したがって、固溶Mg量の制御だけでは、耐突き刺し性と製缶加工性(DI成形性)がトレードオフになる。   If the average solid solution amount of Mg in the plate or can body is too small, less than 0.7% in terms of the Mg content in the solution separated by the hot phenol residue extraction method, it will be the starting point of the destruction described above. Even if the amount of the Al-Fe-Mn compound is reduced, the stab resistance of the thinned and high-strength DI can body cannot be improved beyond the intended level. On the other hand, the greater the average solid solution amount of Mg, the higher the puncture resistance. However, if the solid solution Mg amount exceeds 2.5%, the proof strength of the cold-rolled sheet is remarkably increased due to the solid solution strengthening of Mg. It becomes too high and is not necessary for can manufacturing, and the ironing processability is lowered, and tear-off is likely to occur. Therefore, stab resistance and can manufacturing processability (DI moldability) are traded off only by controlling the solid solution Mg amount.

(製造方法)
次に、本発明におけるアルミニウム合金板の製造方法を説明する。本発明のアルミニウム合金板は、前記成分のアルミニウム合金を溶解、鋳造して鋳塊とする鋳造工程と、鋳塊を熱処理により均質化する均熱処理工程と、均質化した鋳塊を熱間圧延して熱間圧延板とする熱間圧延工程と、熱間圧延板を焼鈍することなく冷間圧延する冷間圧延工程によって製造される。そして、この製造方法において、鋳塊の均熱処理を後述する条件によって2回行うとともに、熱間粗圧延も後述する条件によって行い、冷延後のアルミニウム合金板組織を、本発明で規定する、前記熱フェノールによる残渣抽出法による分離残渣化合物中のMnの平均含有量を1.0%以下(0%を含む)とするとともに、Mgの平均固溶量を前記熱フェノールによる残渣抽出法による分離溶液中のMgの平均含有量として0.7%以上、2.5%以下とする。
(Production method)
Next, the manufacturing method of the aluminum alloy plate in this invention is demonstrated. The aluminum alloy sheet of the present invention includes a casting process for melting and casting the aluminum alloy having the above components to form an ingot, a soaking process for homogenizing the ingot by heat treatment, and hot rolling the homogenized ingot. And a hot rolling process for producing a hot rolled sheet and a cold rolling process for performing cold rolling without annealing the hot rolled sheet. And in this manufacturing method, while performing soaking heat treatment of the ingot twice under the conditions described later, hot rough rolling is also performed under the conditions described later, and the aluminum alloy sheet structure after cold rolling is defined in the present invention, Separation solution by residue extraction method by hot phenol The average content of Mn in the residue compound separated by the residue extraction method with hot phenol is 1.0% or less (including 0%), and the average solid solution amount of Mg is the separation solution by the residue extraction method with hot phenol The average content of Mg is 0.7% or more and 2.5% or less.

(溶解、鋳造)
先ず、アルミニウム合金を溶解し、DC鋳造法等の公知の半連続鋳造法により鋳造し、アルミニウム合金の固相線温度未満まで冷却して鋳塊とする。鋳造速度が40mm/分未満、あるいは冷却速度が0.5℃/秒未満と遅いと、鋳塊中に粗大な金属間化合物が多量に晶出する。一方、鋳造速度が65mm/分、あるいは冷却速度が1.5℃/秒をそれぞれ超えて速いと、鋳塊割れや“す”が発生し易くなって鋳造歩留が低下する。したがって、鋳造において、鋳造速度は40〜65mm/分、冷却速度は0.5〜1.5℃/秒とする。また、この冷却速度は、鋳塊の中央部の温度、すなわち鋳造方向に垂直な面の中央部の温度についてのものであり、アルミニウム合金の液相線温度から固相線温度までの冷却における速度とする。
(Melting, casting)
First, an aluminum alloy is melted, cast by a known semi-continuous casting method such as a DC casting method, and cooled to below the solidus temperature of the aluminum alloy to form an ingot. When the casting rate is less than 40 mm / min or the cooling rate is less than 0.5 ° C./sec, a large amount of coarse intermetallic compounds are crystallized in the ingot. On the other hand, if the casting speed is 65 mm / min or the cooling speed is faster than 1.5 ° C./second, ingot cracking or “soot” is likely to occur and the casting yield is lowered. Accordingly, in casting, the casting speed is 40 to 65 mm / min, and the cooling speed is 0.5 to 1.5 ° C./second. This cooling rate is for the temperature of the central part of the ingot, that is, the temperature of the central part of the surface perpendicular to the casting direction, and the cooling rate from the liquidus temperature to the solidus temperature of the aluminum alloy. And

(均熱処理)
鋳塊を圧延する前に、所定温度で均質化熱処理(均熱処理)することが必要である。熱処理を施すことによって、内部応力を除去し、鋳造時に偏析した溶質元素を均質化し、鋳造時に晶出した金属間化合物を拡散固溶させて、組織が均質化される。
(Soaking)
Before rolling the ingot, it is necessary to perform a homogenization heat treatment (soaking) at a predetermined temperature. By applying heat treatment, internal stress is removed, solute elements segregated during casting are homogenized, and intermetallic compounds crystallized during casting are diffused and dissolved to homogenize the structure.

但し、本発明では、均熱処理を2回均熱とする。この2回均熱とは、2段均熱とは区別される。2段均熱とは、1回目の均熱後に冷却はするものの、200℃以下までは冷却せず、より高温で冷却を停止した上で、その温度で維持した後に、そのままの温度か、より高温に再加熱した上で熱延を開始するものである。これに対して、本発明の2回均熱とは、1回目の均熱後に、一旦室温を含む200℃以下の温度まで冷却し、更に、再加熱し、その温度で一定時間維持した後に、熱延を開始するものである。   However, in the present invention, the soaking process is soaking twice. This two-time soaking is distinguished from two-stage soaking. Two-stage soaking means cooling after the first soaking, but it is not cooled to 200 ° C. or lower, and after stopping the cooling at a higher temperature, after maintaining at that temperature, Hot rolling is started after reheating to a high temperature. In contrast, the second soaking of the present invention means that after the first soaking, once cooled to a temperature of 200 ° C. or less including room temperature, reheated, and maintained at that temperature for a certain period of time, Hot rolling is started.

具体的には、先ず、1回目の均熱温度を580℃以上、融点温度未満とする。この均熱温度を580℃以上とするのは、鋳造時に生成した粗大なAl−Fe−Mn系化合物を固溶させるためである。均熱温度が580℃未満になると、粗大なAl−Fe−Mn系化合物が固溶せずに残存するため、缶胴への冷延板の成形性が低下する。   Specifically, first, the first soaking temperature is set to 580 ° C. or higher and lower than the melting point temperature. The reason for setting the soaking temperature to 580 ° C. or higher is to dissolve the coarse Al—Fe—Mn compound produced during casting. When the soaking temperature is less than 580 ° C., the coarse Al—Fe—Mn compound remains without being dissolved, and the formability of the cold-rolled sheet to the can body decreases.

この1回目の均熱処理後に一旦、室温を含む200℃以下まで冷却する。この際、500〜200℃の間の鋳塊の平均冷却速度を80℃/時間以上とする。この温度間の平均冷却速度80℃/時間未満では、冷却中に生成するAl−Fe−Mn系化合物量が増加するだけでなく、Mg−Si系化合物量も増加して、固溶Mg量が低下する。また、前記2段均熱のように、この冷却を途中の高温状態(200℃を超える)で止め、連続的に2回目の均熱処理を行うと、すでに分散しているAl−Fe−Mn系化合物を核にして、その量が増加するため、200℃以下まで一旦冷却することが必要である。この条件を外れると、DI缶用冷延板の板幅方向や板厚方向に亘る部位の組織を缶胴の耐突き刺し性が優れたものとできない。   After the first soaking process, the temperature is once cooled to 200 ° C. or less including room temperature. Under the present circumstances, the average cooling rate of the ingot between 500-200 degreeC shall be 80 degreeC / hour or more. When the average cooling rate between these temperatures is less than 80 ° C./hour, not only the amount of Al—Fe—Mn compound generated during cooling increases but also the amount of Mg—Si compound increases, and the amount of solid solution Mg increases. descend. Further, as in the case of the two-stage soaking, when the cooling is stopped in the middle high temperature state (above 200 ° C.) and the second soaking is performed continuously, the Al—Fe—Mn system already dispersed is obtained. Since the amount of the compound increases as a nucleus, it is necessary to cool it to 200 ° C. or lower once. If this condition is not satisfied, the structure of the portion extending in the plate width direction and plate thickness direction of the cold rolled sheet for DI can cannot be made excellent in the piercing resistance of the can body.

2回目の均熱温度は450℃以上、550℃以下とする。そして、この2回目の均熱における200〜400℃の温度間の鋳塊の平均加熱速度を30℃/時間を超える速度とする。これは、この2回目の均熱における昇温中にMg−Si系化合物が生成するが、前記200〜400℃の温度間の鋳塊の平均加熱速度を30℃/時間超とすることによって、Mg−Si系化合物が微細かつ高密度に生成し、さらに450℃以上まで昇温する過程で再固溶して固溶Mg量を増加させるだけでなく、2回目均熱中や熱延中に生成する粗大なAl−Fe−Mn系化合物量を低減することができる。したがって、前記熱フェノールによる残渣抽出法で規定するMn量やMg固溶量を満足させ、耐突き刺し性を向上できる。この加熱速度が小さいと、Mg−Si系化合物が微細かつ高密度に生成せず、さらに450℃以上まで昇温する過程で再固溶せずに固溶Mg量を増加させることができず、2回目の均熱中や熱延中に生成する粗大なAl−Fe−Mn系化合物量も増加してしまう。したがって、前記熱フェノールによる残渣抽出法で規定するMn量やMg固溶量を満足できず、耐突き刺し性を向上できなくなる可能性が高い。このため、DI缶用冷延板の板幅方向や板厚方向に亘る部位の組織を缶胴の耐突き刺し性が優れたものとできない。   The second soaking temperature is 450 ° C. or higher and 550 ° C. or lower. And the average heating rate of the ingot between 200-400 degreeC in this soaking | uniform-heating is made into the speed | rate which exceeds 30 degreeC / hour. This is because the Mg-Si-based compound is generated during the temperature increase in the second soaking, but by setting the average heating rate of the ingot between the temperatures of 200 to 400 ° C to more than 30 ° C / hour, Mg-Si compound is finely and densely formed, and is not only re-dissolved in the process of raising the temperature to 450 ° C or higher to increase the amount of dissolved Mg, but also during the second soaking or hot rolling. The amount of coarse Al—Fe—Mn compound to be reduced can be reduced. Therefore, the amount of Mn and the amount of Mg solid solution defined by the residue extraction method using hot phenol can be satisfied, and the puncture resistance can be improved. If this heating rate is small, the Mg-Si-based compound is not finely and densely formed, and the amount of solid solution Mg cannot be increased without re-dissolution in the process of raising the temperature to 450 ° C. or higher. The amount of the coarse Al—Fe—Mn compound generated during the second soaking or hot rolling also increases. Therefore, there is a high possibility that the amount of Mn or the amount of Mg solid solution defined by the residue extraction method using hot phenol cannot be satisfied and the puncture resistance cannot be improved. For this reason, the structure of the site | part over the board width direction and plate | board thickness direction of the cold rolled sheet for DI can cannot be made into the thing which was excellent in the puncture resistance of a can body.

これら1回目、2回目の各均熱処理時間が、各々2時間未満では、鋳塊の均質化が完了していないことがある。一方、8時間を超える均熱処理を行っても効果の向上はなく、生産性が低下する。したがって、1回目、2回目の各均熱処理時間は2〜8時間とすることが好ましいが、特に限定するものではない。   If each of the first and second soaking times is less than 2 hours, homogenization of the ingot may not be completed. On the other hand, even if soaking for more than 8 hours is performed, the effect is not improved and productivity is lowered. Therefore, the first and second soaking times are preferably 2 to 8 hours, but are not particularly limited.

〔熱間圧延〕
前記均熱処理工程で均質化された鋳塊に熱間圧延を行う。まず、鋳塊を粗圧延して、さらに仕上げ圧延により、所定の板厚のアルミニウム合金熱間圧延板とする。
(Hot rolling)
Hot rolling is performed on the ingot homogenized in the soaking process. First, the ingot is roughly rolled, and further is subjected to finish rolling to obtain an aluminum alloy hot rolled plate having a predetermined thickness.

(熱間粗圧延)
450℃以上、550℃以下の温度範囲で、熱間粗圧延を開始する。この粗圧延開始温度が450℃よりも低いと、粗圧延中に析出するMg−Si系化合物の量が増えて、固溶Mg量が減少するだけでなく、圧延自身も困難となる。一方、粗圧延開始温度が550℃を超える場合は、圧延中の焼付きによって板の表面性状が悪化する。
(Hot rough rolling)
Hot rough rolling is started in a temperature range of 450 ° C. or higher and 550 ° C. or lower. If the rough rolling start temperature is lower than 450 ° C., the amount of Mg—Si compound precipitated during the rough rolling increases, so that not only does the solid solution Mg amount decrease, but also the rolling itself becomes difficult. On the other hand, when the rough rolling start temperature exceeds 550 ° C., the surface properties of the plate deteriorate due to seizure during rolling.

また、粗圧延におけるパス間の時間、当該の圧延実施(パス)から次の圧延実施(パス)までに要する時間(パス間の時間)もできるだけ短くする。このパス間の時間は、好ましくは100秒以内のできるだけ短い時間とする。ここでのパス間時間とは、板の長さ方向の中央位置でのミル通過時刻の差を示す。板厚が薄い領域での圧下率が低いほど、そしてパス間時間が長くなるほど、粗圧延中に析出するAl−Fe−Mn系化合物やMg−Si系化合物の量がともに増加する。さらに、この熱間粗圧延において、リバース圧延機であれば数回から数十回の、すべてのパスの定常速度のうちで、最低の定常速度を50m/分以上とする。ここでいう定常速度とは、1パス当たりで圧延速度(ライン速度)が最高でかつ一定となる速度である。熱間粗圧延における全パスでの比較で最低となる定常速度(パス中最低定常速度)が50m/分未満の速度では、圧延時間が長くなって、冷却中に生成するAl−Fe−Mn系化合物量が増加し、前記残渣Mn量が過大となる。このため、これらの条件が外れると、前記熱フェノールによる残渣抽出法で規定するMn量やMg固溶量を満足できず、目的とする缶胴の耐突き刺し性を得られなくなる可能性がある。   Further, the time between passes in rough rolling and the time required from the rolling execution (pass) to the next rolling execution (pass) (time between passes) are made as short as possible. The time between the passes is preferably as short as possible within 100 seconds. The time between passes here shows the difference in the mill passage time at the center position in the length direction of the plate. The amount of Al—Fe—Mn compound and Mg—Si compound precipitated during rough rolling increases as the rolling reduction in the region where the plate thickness is thin and as the time between passes increases. Further, in this hot rough rolling, the lowest steady speed is set to 50 m / min or more among the steady speeds of all passes of several to several tens of times in the case of a reverse rolling mill. The steady speed here is a speed at which the rolling speed (line speed) is maximum and constant per pass. When the steady speed (the lowest steady speed during the pass) is less than 50 m / min in comparison with all passes in the hot rough rolling, the rolling time becomes long, and the Al—Fe—Mn system generated during cooling. The amount of the compound increases, and the amount of the residual Mn becomes excessive. For this reason, if these conditions are not met, the amount of Mn and the amount of Mg solid solution defined by the residue extraction method using hot phenol cannot be satisfied, and the target piercing resistance of the can body may not be obtained.

この熱間粗圧延の終了温度は400℃以上とすることが好ましい。熱延を、粗圧延と仕上げ圧延とに分けて、かつ連続して実施するに際し、熱間粗圧延の終了温度が低くなり過ぎると、次工程の熱間仕上圧延で圧延温度が低くなって、エッジ割れが生じやすくなる。   The end temperature of the hot rough rolling is preferably 400 ° C. or higher. When the hot rolling is divided into rough rolling and finish rolling and continuously performed, if the end temperature of the hot rough rolling is too low, the rolling temperature is lowered in the next hot finishing rolling, Edge cracks are likely to occur.

(熱間仕上圧延)
熱間粗圧延が終了したアルミニウム合金板は、連続的など、速やかに熱間仕上圧延する。速やかに熱間仕上圧延することによって、Al−Fe−Mn系化合物やMg−Si系化合物の増加を防止することができる。熱間粗圧延が終了したアルミニウム合金板は、例えば、5分以内、好ましくは3分以内に熱間仕上圧延することが好ましい。熱間仕上圧延の終了温度は300℃以上とすることが好ましい。300℃未満では、温度が低すぎて板全体が再結晶せずに、部分的に加工組織となるため、特に板幅方向の耳率ばらつきが増加する。
(Hot finish rolling)
The aluminum alloy sheet that has been subjected to the hot rough rolling is hot-finished quickly, such as continuously. By rapidly performing hot finish rolling, an increase in Al-Fe-Mn compounds and Mg-Si compounds can be prevented. The aluminum alloy sheet that has been subjected to the hot rough rolling is preferably hot finish rolled, for example, within 5 minutes, preferably within 3 minutes. The finishing temperature of hot finish rolling is preferably 300 ° C. or higher. If the temperature is less than 300 ° C., the temperature is too low and the entire plate does not recrystallize and partially becomes a processed structure, and thus the ear rate variation in the plate width direction increases in particular.

〔冷間圧延〕
アルミニウム合金熱間圧延板は、焼鈍せずに冷間圧延して所定の板厚のアルミニウム合金板に仕上げる。冷間圧延における総圧延率(冷間加工率)は77〜90%、冷延後の冷延板の板厚は0.25〜0.33mmとすることが好ましい。
(Cold rolling)
The aluminum alloy hot-rolled sheet is cold-rolled without being annealed to finish an aluminum alloy sheet having a predetermined thickness. The total rolling rate (cold working rate) in cold rolling is preferably 77 to 90%, and the thickness of the cold rolled sheet after cold rolling is preferably 0.25 to 0.33 mm.

〔DI缶の作製方法〕
本発明に係るアルミニウム合金板(冷延板)からDI缶の缶胴を作製する方法の一例を以下に説明する。先ず、本発明に係るアルミニウム合金板を円板形状に打ち抜いて(ブランキング加工)、浅いカップ形状に絞り加工し(カッピング加工)、DI成形を施す。これら絞り加工さらにしごき加工を複数回繰り返して徐々に側壁を高くして、所定の底面形状および側壁高さの有底筒形状とする。
[DI can manufacturing method]
An example of a method for producing a can body of a DI can from an aluminum alloy plate (cold rolled plate) according to the present invention will be described below. First, an aluminum alloy plate according to the present invention is punched into a disc shape (blanking process), drawn into a shallow cup shape (capping process), and subjected to DI molding. These drawing and ironing processes are repeated a plurality of times to gradually increase the side wall to obtain a bottomed cylindrical shape having a predetermined bottom surface shape and side wall height.

これらの加工による缶胴の側壁の板厚減少率(しごき加工率)は、60〜70%とすることが好ましい。そして、側壁(開口部)の縁を切り落として整える(トリミング加工)。この状態で、最薄部の側壁厚さが0.085〜0.110mmの範囲の薄肉の缶胴にDI成形される。   It is preferable that the plate | board thickness reduction | decrease rate (ironing process rate) of the side wall of a can body by these processes shall be 60 to 70%. Then, the edge of the side wall (opening) is trimmed and trimmed (trimming process). In this state, DI molding is performed on a thin can body in which the side wall thickness of the thinnest part is in the range of 0.085 to 0.110 mm.

次いで、缶胴は脱脂洗浄され、外面、内面にそれぞれ塗装、塗膜の焼付け(ベーキング)を施され、最薄部の側壁の缶軸方向の強度として、0.2%耐力が280MPa以上350MPa以下程度となる高強度とされる。ちなみに、この強度は、実際に前記塗膜の焼付け(ベーキング)をせずとも、成形された缶胴を本発明で言う「缶胴の塗膜の焼付け相当の熱処理」として、塗膜の焼付け相当の温度と時間を200℃×20分で熱処理した後の強度で、代用できる。   Next, the can body is degreased and cleaned, and the outer surface and the inner surface are respectively painted and baked (baked), and the 0.2% proof stress is 280 MPa to 350 MPa as the strength of the thinnest side wall in the can axis direction. The strength is high. By the way, this strength is equivalent to the baking of the coating film as the “can heat treatment equivalent to the baking of the coating film of the can body” as used in the present invention, without actually baking (baking) the coating film. The strength after heat treatment at 200 ° C. for 20 minutes at a temperature and time can be substituted.

塗膜焼付け後の缶胴は、開口部を縮径し(ネッキング加工)、開口部の縁を外側に拡げて(フランジング加工)、最終の缶胴となる。飲料、食品用途に使用する際には、開口部から内容物(飲料、食品)が缶胴に充填され、別工程で作製された缶蓋を開口部に巻き締めて封止される。   The can body after the coating film is baked has a diameter of the opening (necking process), and an edge of the opening is expanded outward (flanging process) to become a final can body. When used for beverages and foods, the contents (beverages and food) are filled into the can body from the opening, and a can lid produced in a separate process is wound around the opening and sealed.

以上、本発明を実施するための形態について述べたが、以下に、本発明の効果を確認した実施例を、本発明の要件を満たさない比較例と対比して具体的に説明する。なお、本発明はこの実施例に限定されるものではない。   As mentioned above, although the form for implementing this invention was described, the Example which confirmed the effect of this invention is demonstrated concretely compared with the comparative example which does not satisfy | fill the requirements of this invention below. In addition, this invention is not limited to this Example.

(供試材アルミニウム合金板)
表1に示す組成のアルミニウム合金を、溶解し、半連続鋳造法を用いて、各例とも共通して前記した好ましい数値範囲内の鋳造速度および冷却速度で鋳塊を作製した。
(Sample aluminum alloy plate)
An aluminum alloy having the composition shown in Table 1 was melted, and an ingot was produced using a semi-continuous casting method at a casting rate and a cooling rate within the preferable numerical ranges described above in common with each example.

この鋳塊を前記2回均熱し、各例とも共通して600℃の均熱温度で4時間の1回目の均熱後に、一旦室温まで500〜200℃の平均冷却速度(℃/時間)を表1の通り種々変えて冷却した。その後、2回目の均熱として、鋳塊を室温から再度加熱し、200〜400℃の平均加熱速度(℃/時間)を表1の通り種々変える一方、各例とも共通して500℃の均熱温度で4時間の2回目の均熱処理を行った。   This ingot is soaked twice, and in each case, after the first soaking for 4 hours at a soaking temperature of 600 ° C., an average cooling rate (° C./hour) of 500 to 200 ° C. is once brought to room temperature. Various changes were made as shown in Table 1 for cooling. After that, as the second soaking, the ingot was heated again from room temperature, and the average heating rate (° C./hour) of 200 to 400 ° C. was variously changed as shown in Table 1. A second soaking process was performed for 4 hours at a hot temperature.

そして、この温度で熱間粗圧延を開始した。この際、この熱間粗圧延(リバース圧延機)におけるパス回数12のパス間の時間のうち、当該の圧延実施(パス)から次の圧延実施(パス)までに要したパスの時間のうちの最長時間(秒)を、表1の通り種々変えた。また、これらすべてのパスの定常速度のうちで、最低の定常速度(m/分)を、表1の通り種々変えた。そして、各例とも共通して、熱間粗圧延の終了温度は450℃とし、この熱間粗圧延終了後3分以内に熱間仕上圧延を開始し、熱間仕上圧延の終了温度を330℃として、板厚2.5mmの熱間圧延板とした。さらに、この熱間圧延板を荒鈍(焼鈍)することなく、また途中で中間焼鈍を施すことなく、冷間圧延を施して、板厚0.28mmで、板幅が2000mmのコイル状の長尺アルミニウム合金板とした。なお表1のアルミニウム合金板化学成分組成で「−」は、検出限界以下であることを示す。   And hot rough rolling was started at this temperature. At this time, of the time between passes of the pass number of passes 12 in this hot rough rolling (reverse rolling mill), of the time of the pass required from the rolling execution (pass) to the next rolling execution (pass) The maximum time (seconds) was variously changed as shown in Table 1. In addition, among the steady speeds of all these paths, the lowest steady speed (m / min) was variously changed as shown in Table 1. In common with each example, the end temperature of the hot rough rolling is 450 ° C., the hot finish rolling is started within 3 minutes after the end of the hot rough rolling, and the end temperature of the hot finish rolling is 330 ° C. As a hot rolled plate having a thickness of 2.5 mm. Further, this hot rolled sheet is cold rolled without being roughed (annealed) and without being subjected to intermediate annealing in the middle, and is a coil-like length having a sheet thickness of 0.28 mm and a sheet width of 2000 mm. A length aluminum alloy plate was used. In Table 1, “−” in the chemical composition of the aluminum alloy plate indicates that it is below the detection limit.

(缶胴)
得られたコイル状のアルミニウム合金板を、カッピング加工、DI成形(しごき加工率65〜70%)し、開口部をトリミング加工して、外径約66mm、高さ(缶軸方向長)124mm、側壁厚さ0.090mmの有底筒形状の缶胴とした。さらに、この缶胴を脱脂洗浄の後、塗装時の焼付けを想定(模擬)した前記200℃×20分間の条件での熱処理を行って、缶胴供試材とした。
(Can body)
The coiled aluminum alloy plate thus obtained was cupped, DI-molded (ironing rate 65-70%), the opening was trimmed, the outer diameter was about 66 mm, and the height (length in the can axis direction) 124 mm, A bottomed cylindrical can body having a side wall thickness of 0.090 mm was used. Furthermore, after the can body was degreased and washed, heat treatment was performed under the conditions of the above-mentioned 200 ° C. for 20 minutes assuming (simulating) baking during coating, thereby obtaining a can body test material.

〔評価〕
評価は、前記アルミニウム合金冷延板で0.2%耐力および熱フェノール残渣抽出法によるMn系金属間化合物量(化合物残渣におけるMn含有量)、Mg固溶量(分離された溶液中のMg含有量)の測定を行った。また、缶胴(前記塗装焼付け想定の熱処理後)で、DI成形性、耐突き刺し性、0.2%耐力をそれぞれ測定、評価した。これらの結果も表1に示す。
[Evaluation]
Evaluation is 0.2% proof stress with the aluminum alloy cold-rolled sheet and the amount of Mn-based intermetallic compound (Mn content in the compound residue) and Mg solid solution amount (Mg content in the separated solution) Amount) was measured. In addition, DI moldability, puncture resistance, and 0.2% proof stress were measured and evaluated on the can body (after heat treatment assumed for the above-mentioned paint baking). These results are also shown in Table 1.

(組織=熱フェノール残渣抽出法)
前記アルミニウム合金冷延板コイルの長手方向中央部の、板幅方向中央部1箇所と、この中央部からの板幅方向両端部2箇所の計3箇所から採取した各試料を熱フェノールにより溶解した際の、0.1μmのメッシュのフィルターによって分離された残渣としての化合物におけるMn(化合物残渣中のMn)含有量を各々測定して平均化し、前記アルミニウム合金冷延板組織中の化合物の平均Mn含有量を分析値として求めた。同時に、前記各試料における、この残渣より分離された各溶液中のMgの含有量を測定して平均化し、前記アルミニウム合金冷延板組織中の平均Mg固溶量を分析値として求めた。
(Tissue = hot phenol residue extraction method)
Each sample collected from a total of three locations, one central portion in the plate width direction of the center portion in the longitudinal direction of the aluminum alloy cold rolled plate coil, and two end portions in the plate width direction from this central portion was dissolved with hot phenol. The Mn content (Mn in the compound residue) in the compound as a residue separated by a 0.1 μm mesh filter was measured and averaged, and the average Mn of the compound in the aluminum alloy cold-rolled sheet structure was measured. The content was determined as an analytical value. At the same time, the Mg content in each solution separated from this residue in each sample was measured and averaged, and the average Mg solid solution content in the aluminum alloy cold-rolled sheet structure was determined as an analytical value.

(成形性)
前記したDI成形では、アルミニウム合金冷延板コイルの長手方向中央部の、前記板幅方向中央部近傍1箇所と、前記両端部2箇所の各近傍の計3箇所から1000枚ずつブランクを切り出し、しごき加工率65%で連続成形(カッピング加工、DI成形)して製缶した。そして、成形時に不良(ティアオフ、ピンホール等)が発生しなかった場合は成形性が優れているとして「○」、不良が発生した場合は成形性不良として「×」で評価した。
(Formability)
In the DI molding described above, 1000 blanks were cut out from a total of three locations in the vicinity of the central portion in the plate width direction of the center portion in the longitudinal direction of the aluminum alloy cold rolled plate coil and in the vicinity of each of the two ends. Cans were made by continuous molding (cupping, DI molding) at an ironing rate of 65%. When no defects (tear-off, pinholes, etc.) occurred during molding, the moldability was evaluated as “◯”, and when defects occurred, the moldability was evaluated as “x”.

(耐突き刺し性)
各例について、1枚の板から製缶される数多くの缶胴の耐突き刺し性、特に冷延板の板幅方向や板厚方向の各耐突き刺し性が総じて向上されているかを検証した。このために、各例とも、前記アルミニウム合金冷延板コイルの板幅方向中央部、両端部の3箇所から製缶された缶胴が均等に含まれるように、前記成形できた10個全てについて突き刺し試験を実施して、耐突き刺し性を評価した。
(Puncture resistance)
For each example, it was verified whether the piercing resistance of a large number of cans made from a single plate, in particular, the piercing resistance in the plate width direction and the plate thickness direction of the cold-rolled plate was improved as a whole. For this reason, in each example, all the ten pieces that can be formed so that the can bodies made from three places of the center portion in the plate width direction and both end portions of the aluminum alloy cold-rolled plate coil are evenly included. A piercing test was performed to evaluate piercing resistance.

この耐突き刺し性試験は、図1に示すように、缶胴を固定して、1.7kgf/cm2(=166.6kPa)の内圧をかけ、缶胴の側壁の、アルミニウム合金板の圧延方向が缶軸方向と一致し、缶底からの缶軸方向の距離Lが60mmである部位に、先端が半径0.5mmの半球面である突き刺し針を、側壁に対して垂直に、速度50mm/分で突き刺した。そして、突き刺し針が側壁を貫通するまでの荷重(N)を測定し、得られた最大荷重を突き刺し強度とした。 As shown in FIG. 1, this puncture resistance test is performed by fixing the can body, applying an internal pressure of 1.7 kgf / cm 2 (= 166.6 kPa), and rolling the aluminum alloy plate on the side wall of the can body. Is aligned with the can axis direction, and at the site where the distance L in the can axis direction from the can bottom is 60 mm, a piercing needle whose tip is a hemisphere with a radius of 0.5 mm is perpendicular to the side wall at a speed of 50 mm / Stabbed in minutes. And the load (N) until a piercing needle penetrates a side wall was measured, and the obtained maximum load was made into the piercing strength.

耐突き刺し性試験結果において、全缶胴の前記最大荷重が平均で40N以上であったものを、前記アルミニウム合金冷延板の板幅方向全体が耐突き刺し性に優れているとして「◎」、平均で35N以上であったものも「○」と評価した。一方、全缶胴の前記最大荷重が平均で平均が35N未満であったものは、前記アルミニウム合金冷延板の板幅方向や板厚方向全体では耐突き刺し性が不良であるとして「×」で評価した。   In the puncture resistance test results, the average maximum load of all can bodies was 40 N or more. If the overall width direction of the aluminum alloy cold-rolled sheet is excellent in puncture resistance, In addition, it was also evaluated as “◯” that was 35 N or more. On the other hand, if the average maximum load of all can bodies was less than 35N, the puncture resistance of the aluminum alloy cold-rolled sheet was poor in the sheet width direction and the entire sheet thickness direction. evaluated.

本発明では、DI缶の取り扱い乃至使用条件として、缶の内外での圧力差がより大きく、缶胴の変形が大きくなり、耐突き刺し性がより厳しい条件となる、前記1.7kgf/cm2(=166.6kPa)のより低い内圧とした。実際の缶胴の突き刺し時の破裂は、様々な形状のものが衝突することにより起きているが、それら全てを評価することができず、より厳しい評価方法で評価することが求められている。そのため、内圧を下げ、変形を大きくした条件を採用することで、突刺し強度が高くなることを難しくした。 In the present invention, as the handling or use conditions of the DI can, the pressure difference between the inside and outside of the can is larger, the deformation of the can body becomes larger, and the puncture resistance is more severe. 1.7 kgf / cm 2 ( = 166.6 kPa). The actual rupture at the time of piercing of the can body is caused by collisions of various shapes, but it is not possible to evaluate all of them, and there is a demand for evaluation by a stricter evaluation method. Therefore, it was made difficult to increase the puncture strength by adopting the conditions where the internal pressure was lowered and the deformation was increased.

これまでの耐突き刺し性の評価は、通常、より高い、2.0kgf/cm2(=196kPa)の内圧をかけて行われている。このため、同じ試験材料であっても、本発明の試験方法の方が試験条件は厳しく、突刺し強度は低めになる。すなわち、前記2.0kgf/cm2の内圧による試験での突き刺し強度(N)の値と、本発明の試験方法による突き刺し強度(N)の値が例え同じか、あるいは例え、多少低い数値であったとしても、本発明の材料の方が耐突刺し性に優れるといえる。言い換えると、2.0kgf/cm2の内圧試験での耐突き刺し性が優れていたとしても、本発明の1.7kgf/cm2のより低い内圧での耐突き刺し性が優れているとは全く言えない。 The evaluation of puncture resistance so far is usually performed by applying a higher internal pressure of 2.0 kgf / cm 2 (= 196 kPa). For this reason, even with the same test material, the test method of the present invention has stricter test conditions and lower puncture strength. That is, the value of the piercing strength (N) in the test with the internal pressure of 2.0 kgf / cm 2 and the value of the piercing strength (N) by the test method of the present invention are the same, for example, slightly lower values. Even so, it can be said that the material of the present invention is superior in puncture resistance. In other words, even if the penetration resistance of the internal pressure test of 2.0 kgf / cm 2 was excellent, quite be said penetration resistance at lower internal pressure of 1.7 kgf / cm 2 of the present invention is excellent Absent.

(0.2%耐力)
前記冷延板と前記缶胴側壁の0.2%耐力測定のための引張試験は、冷延板と、缶胴(前記塗装焼付け想定の熱処理後)側壁から各々採取した試験片を、JIS Z 2201にしたがって行うとともに、試験片形状はJIS 5 号試験片で行い、試験片の長手方向が圧延方向(缶軸方向)と一致するように作製した。また、クロスヘッド速度は5mm/分で、試験片が破断するまで一定の速度で行った。
(0.2% yield strength)
Tensile tests for measuring 0.2% proof stress of the cold-rolled plate and the side wall of the can body were conducted by using test pieces taken from the cold-rolled plate and the side wall of the can body (after the heat treatment assumed for paint baking), respectively. While performing according to 2201, the shape of the test piece was a JIS No. 5 test piece, and the test piece was prepared so that the longitudinal direction of the test piece coincided with the rolling direction (can axis direction). The crosshead speed was 5 mm / min, and the test piece was run at a constant speed until the test piece broke.

表1に示すように、各発明例1〜11は、アルミニウム合金の組成が本発明範囲内であり、好ましい製造条件で製造されている。すなわち、鋳塊の2回均熱処理における、1回目の均熱後の室温までの冷却の際の500〜200℃の平均冷却速度が80℃/時間以上であり、2回目の均熱の鋳塊の室温からの再加熱の際の200〜400℃の平均加熱速度が30℃/時間以上である。そして、熱間粗圧延におけるパス間の時間のうちの最長時間が100秒以内、最低の定常速度が50m/分以上である。   As shown in Table 1, each of the inventive examples 1 to 11 has a composition of an aluminum alloy within the scope of the present invention, and is manufactured under preferable manufacturing conditions. That is, in the second soaking process of the ingot, the average cooling rate of 500 to 200 ° C. at the time of cooling to room temperature after the first soaking is 80 ° C./hour or more, and the second soaking ingot The average heating rate of 200 to 400 ° C. during reheating from room temperature is 30 ° C./hour or more. And the longest time of the time between passes in hot rough rolling is less than 100 seconds, and the lowest steady speed is 50 m / min or more.

このため、各発明例は、表1の通り、冷間圧延板(DI成形された缶胴側壁)の熱フェノールによる残渣抽出法により分離された粒子サイズが0.1μmを超える化合物中のMnの平均含有量(表1は残渣Mn量と略記)で1.0%以下となる組織であり、Mn系金属間化合物が少ない。同時に、冷間圧延板(DI成形された缶胴側壁)組織のMgの平均固溶量が、前記熱フェノールによる残渣抽出法により分離された溶液中のMgの含有量(表1は固溶Mg量と略記)で0.7%以上、2.5%以下であり、確保されている。   For this reason, as shown in Table 1, each example of the invention shows the Mn content in the compound having a particle size of more than 0.1 μm separated by a hot phenol residue extraction method on a cold-rolled plate (DI-shaped can barrel side wall). The average content (Table 1 is abbreviated as amount of residual Mn) is 1.0% or less, and the amount of Mn-based intermetallic compound is small. At the same time, the average solid solution amount of Mg in the cold-rolled sheet (DI-molded can body side wall) structure is the Mg content in the solution separated by the residue extraction method using hot phenol (Table 1 shows solid solution Mg The amount is abbreviated to 0.7% or more and 2.5% or less.

この結果、各発明例は、DI成形性が良好である前提で、前記アルミニウム合金板を最薄部の側壁厚さが0.090mmの薄肉の缶胴にDI成形し、かつ前記塗膜の焼付け相当の熱処理後の側壁の缶軸方向の0.2%耐力が280MPa以上350MPa以下の高強度とした場合の耐突き刺し性に優れている。しかも、この耐突き刺し性は、缶胴に1.7kgf/cm2(=166.6kPa)の内圧をかけた厳しい評価であるにも関わらず、35N以上あるいは40N以上と優れている。すなわち、缶壁厚さが薄肉化、高強度化された缶胴において、良好な成形性、より厳しい条件での優れた耐突き刺し性が得られた。 As a result, each of the inventive examples is based on the premise that the DI moldability is good, and the aluminum alloy plate is DI molded into a thin can body having a side wall thickness of 0.090 mm at the thinnest portion, and the coating film is baked. The puncture resistance is excellent when the 0.2% proof stress in the can axis direction of the side wall after considerable heat treatment is high strength of 280 MPa to 350 MPa. In addition, this puncture resistance is excellent at 35N or more or 40N or more despite a strict evaluation in which an internal pressure of 1.7 kgf / cm 2 (= 166.6 kPa) is applied to the can body. That is, in a can body having a thin can wall thickness and high strength, good moldability and excellent puncture resistance under more severe conditions were obtained.

これに対して、表1の比較例12〜15は、アルミニウム合金の組成が本発明範囲内であるものの、前記均熱や熱間粗圧延における条件のいずれかが、本発明の前記好ましい条件から外れている。このため、各比較例は、冷間圧延板(DI成形された缶胴側壁)の熱フェノールによる残渣抽出法により分離された粒子サイズが0.1μmを超える化合物中のMnの平均含有量(表1は残渣Mn量と略記)か、Mgの平均固溶量(表1は固溶Mg量と略記)かが外れた組織となっている。この結果、各比較例は、共通して、DI成形性は良好であるものの、最薄部側壁厚さを前記薄肉の缶胴にDI成形し、かつ前記塗膜の焼付け相当の熱処理後の側壁を前記高強度とし、内圧条件が厳しい場合の板幅方向に亘る耐突き刺し性に著しく劣っている。   On the other hand, in Comparative Examples 12 to 15 in Table 1, although the composition of the aluminum alloy is within the scope of the present invention, any of the conditions in the soaking or hot rough rolling is from the preferable conditions of the present invention. It is off. For this reason, each comparative example shows the average content of Mn in a compound having a particle size of more than 0.1 μm separated by a hot phenol residue extraction method on a cold-rolled sheet (DI-shaped can barrel side wall) (Table No. 1 is abbreviated as the amount of residual Mn), or the average solid solution amount of Mg (Table 1 is abbreviated as the solid solution Mg amount) is out of the structure. As a result, although each comparative example has a good DI moldability, the thinnest side wall thickness is DI molded into the thin can body and the side wall after heat treatment corresponding to the baking of the coating film. Is high in strength, and the puncture resistance in the plate width direction when the internal pressure condition is severe is remarkably inferior.

比較例12は、1回目の均熱処理後の室温までの冷却の際の500〜200℃の平均冷却速度が80℃/時間未満と小さすぎる。この結果、冷却中に生成するAl−Fe−Mn系化合物量が増加し、前記残渣Mn量が過大となっている。   In Comparative Example 12, the average cooling rate of 500 to 200 ° C. at the time of cooling to room temperature after the first soaking process is too small as less than 80 ° C./hour. As a result, the amount of Al—Fe—Mn compound generated during cooling increases, and the amount of residual Mn is excessive.

比較例13は、2回目の均熱温度時における200〜400℃の平均加熱速度が30℃/時間未満と小さすぎる。この結果、Mg−Si系化合物が微細かつ高密度に生成せず、さらに450℃以上まで昇温する過程で再固溶せず、前記固溶Mg量が過少となっている。   In Comparative Example 13, the average heating rate of 200 to 400 ° C. at the second soaking temperature is too small as less than 30 ° C./hour. As a result, the Mg—Si-based compound is not formed finely and at a high density, and is not re-dissolved in the process of raising the temperature to 450 ° C. or higher, and the amount of the solid solution Mg is too small.

比較例14は、粗圧延におけるパス間の時間が100秒を超えて長すぎる。この結果、粗圧延中に析出するAl−Fe−Mn系化合物やMg−Si系化合物の量が増加し、特に前記Mg固溶量が過少となっている。   In Comparative Example 14, the time between passes in rough rolling exceeds 100 seconds and is too long. As a result, the amount of Al—Fe—Mn compound or Mg—Si compound precipitated during rough rolling increases, and the Mg solid solution amount is particularly small.

比較例15は、粗圧延におけるパスの定常速度のうち、最低の定常速度が50m/分未満と遅すぎる。この結果、圧延時間が長くなって、冷却中に生成するAl−Fe−Mn系化合物量が増加し、前記残渣Mn量が過大となっている。   The comparative example 15 is too slow with the lowest steady speed of less than 50 m / min among the steady speeds of the path | pass in rough rolling. As a result, the rolling time is lengthened, the amount of Al—Fe—Mn compound generated during cooling is increased, and the amount of residual Mn is excessive.

また、表1の比較例16〜20は、Mn、Mg、Si、Feのいずれかが少なすぎて、アルミニウム合金の組成が本発明の範囲を外れる。   In Comparative Examples 16 to 20 in Table 1, any of Mn, Mg, Si, and Fe is too small, and the composition of the aluminum alloy is outside the scope of the present invention.

比較例16はMg量が過少で、前記固溶Mg量が過少となっている。比較例17はMn量が過多で、前記残渣Mn量が過多となっている。この結果、これら比較例は前記内圧条件が厳しい場合の板幅方向に亘る耐突き刺し性が劣っている。   In Comparative Example 16, the amount of Mg is too small, and the amount of solid solution Mg is too small. In Comparative Example 17, the amount of Mn is excessive, and the amount of residual Mn is excessive. As a result, these comparative examples are inferior in puncture resistance in the plate width direction when the internal pressure conditions are severe.

比較例18はMn量が過少である。比較例19はSi量が過多である。この結果、これらの比較例は、DI成形時に不良が発生したため、缶用としては実用化できず、その後の突き刺し試験も実施する意味がないゆえに中止した。   In Comparative Example 18, the amount of Mn is too small. In Comparative Example 19, the amount of Si is excessive. As a result, since these defectives occurred during DI molding, they could not be put into practical use for cans and were stopped because there was no point in carrying out a subsequent piercing test.

以上、本発明により製造されたDI缶胴用アルミニウム合金板(冷延板)は、アルミニウム合金冷延板から製缶される缶胴の耐突き刺し性を目的とするレベルまで向上させ、缶胴の耐突き刺し性を保障することができる。このため、缶壁厚さが薄肉化、高強度化され、より厳しい使用条件での耐突き刺し性が要求されるDI缶胴に用いられるアルミニウム合金冷延板に最適である。   As described above, the aluminum alloy plate (cold rolled plate) for DI can barrel manufactured according to the present invention improves the piercing resistance of the can barrel made from the aluminum alloy cold rolled plate to a target level. It can ensure puncture resistance. For this reason, the can wall thickness is reduced in thickness and strength, and it is optimal for an aluminum alloy cold-rolled sheet used for a DI can body that requires puncture resistance under more severe use conditions.

Claims (5)

質量%で、Mn:0.3〜1.3%、Mg:1.0〜3.0%、Si:0.1〜0.5%、Fe:0.1〜0.8%を各々含有し、残部がAl及び不可避的不純物からなる組成を有するアルミニウム合金鋳塊を、1回目の均熱後に、一旦室温を含む200℃以下の温度まで冷却し、更に、再加熱し、その温度で一定時間維持した後に、熱延を開始する2回均熱処理するに際して、1回目の均熱温度を580℃以上融点温度未満とし、1回目の均熱処理時間を2時間以上とし、1回目の均熱後の室温までの冷却の際の500〜200℃の平均冷却速度を80℃/時間以上とし、2回目の均熱温度を450℃以上550℃以下とし、2回目の均熱処理時間を2時間以上とし、2回目の均熱の室温からの再加熱の際の200〜400℃の平均加熱速度を30℃/時間以上とし、これら均熱後の鋳塊を熱間粗圧延および熱間仕上げ圧延により熱間圧延板とし、前記熱間圧延板を冷間圧延してアルミニウム合金板とし、このアルミニウム合金板の組織として、熱フェノールによる残渣抽出法により分離された粒子サイズが0.1μmを超える残渣化合物に含まれるMn量を1.0%以下(0%を含む)とするとともに、前記熱フェノールによる残渣抽出法により分離された溶液中のMgの固溶量を0.7%以上、2.5%以下とすることを特徴とするDI缶胴用アルミニウム合金板の製造方法。 In mass%, Mn: 0.3 to 1.3%, Mg: 1.0 to 3.0%, Si: 0.1 to 0.5%, Fe: 0.1 to 0.8%, respectively Then, after the first soaking , the aluminum alloy ingot having the composition consisting of Al and inevitable impurities is once cooled to a temperature of 200 ° C. or less including room temperature, and then reheated to be constant at that temperature. After the time is maintained, when the soaking process is started twice , the first soaking temperature is set to 580 ° C. or higher and less than the melting point temperature, the first soaking time is set to 2 hours or more, and the first soaking is performed. The average cooling rate of 500 to 200 ° C. when cooling to room temperature is 80 ° C./hour or more, the second soaking temperature is 450 ° C. or more and 550 ° C. or less, and the second soaking time is 2 hours or more. , the average pressure of 200 to 400 ° C. during reheating from the second soaking at room temperature The speed is set to 30 ° C./hour or more, the soaked ingot is hot-rolled by hot rough rolling and hot finish rolling, and the hot-rolled plate is cold-rolled to obtain an aluminum alloy plate. As the structure of the aluminum alloy plate, the amount of Mn contained in the residue compound having a particle size exceeding 0.1 μm separated by the residue extraction method using hot phenol is 1.0% or less (including 0%), and the heat A method for producing an aluminum alloy plate for a DI can body, wherein the solid solution amount of Mg in the solution separated by the phenol residue extraction method is 0.7% or more and 2.5% or less. 前記アルミニウム合金鋳塊がさらにCu:0.05〜0.4%を含有する請求項1に記載のDI缶胴用アルミニウム合金板の製造方法。   The manufacturing method of the aluminum alloy plate for DI can bodies of Claim 1 in which the said aluminum alloy ingot contains Cu: 0.05-0.4% further. 前記アルミニウム合金鋳塊がさらにCr:0.001〜0.1%、Zn:0.05〜0.5%の一種または二種を含有する請求項1または2に記載のDI缶胴用アルミニウム合金板の製造方法。   The aluminum alloy for a DI can body according to claim 1 or 2, wherein the aluminum alloy ingot further contains one or two of Cr: 0.001 to 0.1% and Zn: 0.05 to 0.5%. A manufacturing method of a board. 前記アルミニウム合金板が、最薄部の側壁厚さが0.085〜0.110mmの範囲の缶胴にDI成形され、この缶胴が200℃×20分間熱処理された際の、缶胴側壁の缶軸方向の0.2%耐力を280MPa以上350MPa以下である強度特性を有する請求項1乃至3のいずれか1項に記載のDI缶胴用アルミニウム合金板の製造方法。   The aluminum alloy plate is DI-molded into a can body having a thinnest side wall thickness of 0.085 to 0.110 mm, and when the can body is heat-treated at 200 ° C. for 20 minutes, The manufacturing method of the aluminum alloy plate for DI can bodies of any one of Claims 1 thru | or 3 which has the intensity | strength characteristic whose 0.2% yield strength of a can axis direction is 280 Mpa or more and 350 Mpa or less. 前記アルミニウム合金板の耐突き刺し性が、最薄部の側壁厚さが0.085〜0.110mmの範囲の缶胴にDI成形され、この缶胴が200℃×20分間熱処理された際の前記缶胴に、1.7kgf/cm2(=166.6kPa)の内圧をかけ、この缶胴側壁の缶底から缶軸方向の距離L=60mmの部位に、先端が半径0.5mmの半球面である突き刺し針を缶胴側壁に対して垂直に速度50mm/分で突き刺し、この突き刺し針が缶胴側壁を貫通するまでの荷重測定値のうちの最大値で35N以上である請求項1乃至4のいずれか1項に記載のDI缶胴用アルミニウム合金板の製造方法。
The piercing resistance of the aluminum alloy plate is DI molded into a can body having a thinnest side wall thickness of 0.085 to 0.110 mm, and the can body is heat-treated at 200 ° C. for 20 minutes. An internal pressure of 1.7 kgf / cm @ 2 (= 166.6 kPa) is applied to the can body, and the tip is a hemispherical surface with a radius of 0.5 mm at a position L = 60 mm in the can axis direction from the bottom of the can body side wall. The piercing needle is pierced perpendicularly to the can barrel side wall at a speed of 50 mm / min, and the maximum value among the load measurement values until the piercing needle penetrates the can barrel side wall is 35 N or more. The manufacturing method of the aluminum alloy plate for DI can bodies of any one of Claims 1.
JP2016044038A 2016-03-08 2016-03-08 Manufacturing method of aluminum alloy plate for DI can body Expired - Fee Related JP6227691B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016044038A JP6227691B2 (en) 2016-03-08 2016-03-08 Manufacturing method of aluminum alloy plate for DI can body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016044038A JP6227691B2 (en) 2016-03-08 2016-03-08 Manufacturing method of aluminum alloy plate for DI can body

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012026511A Division JP2013163835A (en) 2012-02-09 2012-02-09 Aluminum alloy sheet for di can body

Publications (2)

Publication Number Publication Date
JP2016135926A JP2016135926A (en) 2016-07-28
JP6227691B2 true JP6227691B2 (en) 2017-11-08

Family

ID=56512495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016044038A Expired - Fee Related JP6227691B2 (en) 2016-03-08 2016-03-08 Manufacturing method of aluminum alloy plate for DI can body

Country Status (1)

Country Link
JP (1) JP6227691B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6578048B1 (en) * 2018-09-06 2019-09-18 株式会社神戸製鋼所 Aluminum alloy plate for can body

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08134610A (en) * 1994-11-15 1996-05-28 Furukawa Electric Co Ltd:The Production of aluminum alloy sheet for forming
JP2001003130A (en) * 1999-06-17 2001-01-09 Furukawa Electric Co Ltd:The Aluminum alloy sheet for resin coated can body, and resin coated aluminum alloy sheet for can body
JP2006077296A (en) * 2004-09-10 2006-03-23 Furukawa Sky Kk Aluminum alloy sheet for bottle can having excellent piercing strength
JP4019083B2 (en) * 2005-03-25 2007-12-05 株式会社神戸製鋼所 Aluminum alloy cold rolled sheet for bottle cans with excellent high temperature characteristics
JP5247995B2 (en) * 2005-12-28 2013-07-24 三菱アルミニウム株式会社 Aluminum alloy plate for can body excellent in circulation pinhole resistance and method for producing can body excellent in distribution pinhole resistance
JP5416433B2 (en) * 2008-04-09 2014-02-12 株式会社神戸製鋼所 Aluminum alloy plate for can body and manufacturing method thereof
JP5568031B2 (en) * 2010-03-02 2014-08-06 株式会社神戸製鋼所 Aluminum alloy cold rolled sheet for bottle cans

Also Published As

Publication number Publication date
JP2016135926A (en) 2016-07-28

Similar Documents

Publication Publication Date Title
WO2013118611A1 (en) Aluminum alloy sheet for di can body
US9574258B2 (en) Aluminum-alloy sheet and method for producing the same
US9546411B2 (en) Aluminum-alloy sheet and method for producing the same
JP2007126706A (en) Cold rolled aluminum alloy sheet for bottle can having excellent formability of neck part
JP5416433B2 (en) Aluminum alloy plate for can body and manufacturing method thereof
WO2015119021A1 (en) Aluminum alloy sheet for can lid and production method therefor
JP5568031B2 (en) Aluminum alloy cold rolled sheet for bottle cans
JP5581254B2 (en) Aluminum alloy plate for tab and manufacturing method thereof
KR101718264B1 (en) Aluminum alloy sheet for di can body
JP5379883B2 (en) Aluminum alloy plate and manufacturing method thereof
JP2010236075A (en) Aluminum alloy sheet for can barrel, and method for manufacturing the same
JP5054364B2 (en) Method for producing aluminum alloy plate
JP6227691B2 (en) Manufacturing method of aluminum alloy plate for DI can body
JP2007197815A (en) Aluminum alloy sheet for can body having excellent resistance to circulation pinhole
JP2005240113A (en) Aluminum alloy sheet having excellent ridging mark property
JP2008062255A (en) SUPERPLASTIC MOLDING METHOD FOR Al-Mg-Si BASED ALUMINUM ALLOY SHEET HAVING REDUCED GENERATION OF CAVITY, AND Al-Mg-Si BASED ALUMINUM ALLOY MOLDED SHEET
JP2016041852A (en) Aluminum alloy sheet for can barrel
JP4019084B2 (en) Aluminum alloy cold rolled sheet for bottle cans with excellent high temperature characteristics
WO2016063876A1 (en) Aluminium alloy sheet for can lid
JP2006097076A (en) Aluminum-alloy sheet for bottle can, and its manufacturing method
EP3438302A1 (en) Aluminum alloy sheet and aluminum alloy sheet manufacturing method
JP2017206765A (en) Aluminum alloy sheet for can top
JP2023006447A (en) Aluminum alloy coated sheet for tab
JP5456424B2 (en) Aluminum alloy plate for can body having excellent resistance to distribution pinhole and manufacturing method thereof
JP2009001858A (en) Aluminum alloy sheet for can body having excellent circulation pinhole resistance

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20160603

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170404

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171010

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171011

R150 Certificate of patent or registration of utility model

Ref document number: 6227691

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees