WO1998049360A1 - Resin-coated aluminum alloy sheet for drawn and ironed cans - Google Patents

Resin-coated aluminum alloy sheet for drawn and ironed cans Download PDF

Info

Publication number
WO1998049360A1
WO1998049360A1 PCT/JP1998/001875 JP9801875W WO9849360A1 WO 1998049360 A1 WO1998049360 A1 WO 1998049360A1 JP 9801875 W JP9801875 W JP 9801875W WO 9849360 A1 WO9849360 A1 WO 9849360A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum alloy
resin
alloy plate
coated
thermoplastic resin
Prior art date
Application number
PCT/JP1998/001875
Other languages
French (fr)
Japanese (ja)
Inventor
Keiichi Shimizu
Fumio Kunishige
Original Assignee
Toyo Kohan Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Kohan Co., Ltd. filed Critical Toyo Kohan Co., Ltd.
Priority to AU70805/98A priority Critical patent/AU7080598A/en
Publication of WO1998049360A1 publication Critical patent/WO1998049360A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/68Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous solutions with pH between 6 and 8
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2202/00Metallic substrate
    • B05D2202/30Metallic substrate based on refractory metals (Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, W)
    • B05D2202/35Metallic substrate based on refractory metals (Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, W) based on Ti
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2222/00Aspects relating to chemical surface treatment of metallic material by reaction of the surface with a reactive medium
    • C23C2222/20Use of solutions containing silanes

Definitions

  • the present invention relates to a material used for a two-piece can manufactured by processing including drawing and ironing. More specifically, a two-piece can with a thin can wall can be formed by processing including squeezing and ironing, which does not require cooling or lubrication with water or a water-based lubricant, and does not require cleaning of the can after making.
  • the present invention relates to a resin-coated aluminum alloy plate for drawn and ironed cans, which is coated with a thermoplastic resin. Background art
  • 1-DI cans (Drawn and Ironed Can) manufactured by tinning or ironing of an aluminum alloy plate are manufactured as conventional two-piece cans in which the can body and the bottom of the can are integrally formed. Have been.
  • the DI can is tinned or drawn from an aluminum alloy plate, then cooled and lubricated with a large amount of water or a water-based lubricant using several successively arranged ironing dies and punches, and the wall thickness of the can is reduced.
  • Japanese Patent Application Laid-Open No. Hei 6-311223 discloses a method of manufacturing a two-piece can from a resin-coated metal plate by a combined working method including drawing and ironing. This method differs from the conventional DI can manufacturing method in that a resin-coated metal plate coated with a high-temperature volatile lubricant is drawn and then re-drawn in a dry manner without using water or an aqueous lubricant.
  • a two-piece can with a thin can wall is manufactured by a combined machining method that involves simultaneous grinding.
  • the can is degreased and washed after being formed into a two-piece can, Drying and painting processes are not required, and 2-piece cans can be manufactured with almost no pollution of the environment.
  • the present invention has been studied for the purpose of providing a resin-coated aluminum alloy sheet suitable for this combined working method.
  • materials suitable for the composite machining method Japanese Patent Application Laid-Open No. 7-266496 discloses materials with limited yield strength, tensile strength, plate thickness, 5 center line roughness, and the like. Examples include aluminum alloys of JIS 3004 H19. Although the use of a steel is indicated, it has the required strength, but the workability is insufficient for the purpose of the present invention.
  • the adhesion of the resin film coated on these aluminum alloy sheets is greatly affected by the surface condition of the aluminum alloy sheet as a base. Therefore, an aluminum alloy plate subjected to the following surface treatment for the purpose of improving the adhesion between the aluminum alloy plate and the film is used for the above-mentioned processing applications. That is,
  • the aluminum alloy plate is subjected to a phosphoric acid or chromic acid chemical conversion treatment.
  • thermosetting 5 primer is applied to one surface of the thermoplastic resin film or the aluminum alloy plate in advance.
  • the aluminum alloy plate that has been subjected to the surface treatments (1) to (5) above is The adhesiveness of the coating on a flat plate that does not have a good surface, and the adhesiveness of the coating in applications where relatively light processing such as can lids and drawn cans are performed, are sufficiently excellent. In applications where harsh processing is performed, such as canned, drawn, stretched and then ironed, the adhesion of the coating is poor.
  • An object of the present invention is to provide a resin-coated aluminum alloy plate suitable for a combined machining method as disclosed in Japanese Patent Application Laid-Open No. 6-31223.
  • the composite processing method to which the present invention is directed is a processing method in which redrawing and ironing are performed simultaneously using a die having a pair of a redrawing part and an ironing part.
  • One of the features of the combined machining method is to reduce the dimension of the shoulder radius of the die where redrawing is to be performed, and bend and bend back the material at the die shoulder corner to reduce the thickness of the can wall. Is to do.
  • the present invention relates to a resin which is resistant to can wall breakage and has a strength required for a can when performing dry / combined processing including bending / unbending and subsequent ironing at a die shoulder radius portion of a small shoulder radius.
  • the film after 5 "processing is coated with a thermoplastic resin on a surface-treated aluminum alloy plate with sufficient adhesion strength.
  • the resin-coated aluminum alloy sheet for drawn and ironed cans of the present invention is, by weight%, Mn: 0.5%, Mg: 2.2 to 4.0%, Si: ⁇ 0.4%, and Fe: ⁇ 0. containing 6%, and (S i + F e): . ⁇ 0 thickness with 8% of the relationship: 0. 1 8 ⁇ 0.4mm, yield strength: 180 ⁇ 400N / mm 2 of an aluminum alloy
  • a silane coupling agent-treated film is formed on at least one surface of the plate, and both surfaces are coated with a thermoplastic resin.
  • the resin-coated aluminum alloy sheet for drawn and ironed cans of the present invention is, in terms of% by weight, Mn: ⁇ 0.5%, Mg: 2.2 to 4.0%, S i: ⁇ 0.4%, as inevitable impurities.
  • F e containing ⁇ 0. 6%
  • the alloy plate is characterized in that a phosphoric acid chromate-treated film is formed on at least one surface and a silane coupling agent-treated film is formed on an upper layer thereof, and then both surfaces are coated with a thermoplastic resin.
  • the resin-coated aluminum alloy sheet for drawn and ironed cans of the present invention is, by weight, Mn: ⁇ 0.5%, Mg: 2.2 to 4.0%, Si: ⁇ 0.4%, Cu: 0.05 to 0.4%, inevitable Thickness: 0.18 to 0.4 mm, yield strength: 180 to 400 NZm, containing Fe: ⁇ 0.6% as a target impurity and (S i + Fe): ⁇ 0.8% on at least one surface of the aluminum alloy plate of m 2, after forming a silane coupling agent treatment film, wherein the coating the thermoplastic resin on both sides thereof.
  • the resin-coated aluminum alloy plate for drawn and ironed cans of the present invention is, by weight%, Mn: ⁇ 0.5%, Mg: 2.2 to 4.0%, Si: ⁇ 0.4%, Cu: 0.05 to 0.4%, 5 Includes Fe: ⁇ 0.6% as an unavoidable impurity and (S i + Fe): ⁇ 0.8% Sheet thickness: 0.18 to 0. mm, Yield strength: 180-40 ON / m on at least one surface of the aluminum alloy plate of m 2, after forming a phosphate chromate conversion coating and silane cutlet coupling agent treated film thereon, and wherein the covering the thermoplastic resin on both sides thereof.
  • thermoplastic resin is a thermoplastic polyester resin.
  • thermoplastic resin it is desirable that an adhesive layer is interposed between the thermoplastic resin and the aluminum alloy plate, and that both surfaces of the aluminum alloy plate are provided. After coating the thermoplastic resin, it is preferable that a high-temperature volatile lubricant is applied to both surfaces thereof.
  • the present invention is a resin which has excellent strength and workability, particularly excellent drawability and ironing workability in a dry process, and does not peel off a coated resin film even after being subjected to severe processing such as parentheses, and has excellent workability.
  • the target resin-coated aluminum alloy sheets were determined by determining the alloy composition, thickness, yield strength, type of surface treatment, and type of thermoplastic resin. Was developed.
  • the present invention will be described in detail.
  • a can body material of an aluminum DI can is used in order to mix and dissolve scrap generated during the production of an aluminum alloy plate and scrap of an aluminum can after use to facilitate reuse.
  • 3004 material has Mn: 1.0 to 1.5%, Mg: 0.8 to 1.3%, 5052 material has Mn: 0.1% or less, Mg: 2.2 to 2.2. It is specified as 8%.
  • Resin coating of the present invention It is assumed that the Mn content of the aluminum alloy plate to be the coated substrate of the aluminum alloy plate may include the lower limit of the 3004 alloy. By doing so, it becomes possible to significantly increase the mixing ratio of the scrap of the 3004 alloy present in a large amount when the aluminum alloy used in the present invention is manufactured.
  • Mn is inexpensive and is added to provide strength.However, the upper limit of the addition amount is 1.0% of the lower limit of 3004 alloy, considering mixing and reuse of scrap from can body. The following ranges were assumed.
  • the addition of Mn forms an A 1 _Fe—Mn-based crystallized product, but the hard ⁇ -phase, which is a transformation product thereof, is not preferred for the bending / unbending workability which is the subject of the present invention.
  • A1-Fe-Mn-based crystallized substances have a lubricating effect during ironing, and are indispensable for improving ironing workability.
  • the crystallized product is not suitable for the composite processing method for applying the resin-coated aluminum alloy sheet of the present invention.
  • redrawing and ironing are performed simultaneously using a die in which the redrawing part and the ironing part are integrated.
  • the crystallized material significantly impairs the bending and unbending workability at the rounded portion of the die shoulder. In other words, the surface of the aluminum alloy tends to be roughened and cracked during bending and unbending, which lowers the adhesion of the coated resin film.
  • the upper limit of the amount of Mn is set to 0.5% in consideration of the amount of Mg described later. From the viewpoint of reusing the 3004 alloy, a higher value within the above range is preferable.
  • Mg is an element that is more effective in improving the strength than Mn, and has the necessary strength as a can. It is added in order to obtain, but when the amount added is large, the processability is reduced.
  • the upper limit of the amount of Mn is set to 0.5% for the above-mentioned reason, but this is not a range where the workability is sufficiently large. Therefore, the range of the Mg content is set to 2.2 to 4.0% in order to reduce the deterioration of the workability and the fluctuation of the workability.
  • the Mn content is near the upper limit of 0.5% of the present invention, if Mg exceeds 4.0%, the workability becomes poor. On the other hand, if the Mg content is less than 2.2%, the strength becomes insufficient.
  • the preferred range of the amount of Mg in the present invention is made to coincide with the specified range of the 5052 alloy in consideration of productivity of smelting and forging.
  • the two-piece can formed by molding the resin-coated aluminum alloy plate according to the present invention using the above-described composite processing is applied to contents such as beer, carbonated beverages, and nitrogen-filled beverages, where the internal pressure of the can is positive.
  • the internal pressure of the can varies depending on the contents. For this reason, a material with a large amount of Mn and Mg is used for the material for cans filled with contents with high internal pressure of the can. If the pressure strength of the can bottom is insufficient, the can bottom will buckle and become unusable as a product.
  • the pressure resistance of the bottom of the can is mainly affected by the yield strength and thickness of the sheet. If the yield strength is low, it is necessary to increase the sheet thickness, but this will impair economic efficiency. For this reason, from the economical point of view, a high-strength material with a large amount of Mn or Mg added is suitable, but if the strength is increased by increasing the amount of Mn or Mg added, the workability of the material decreases. I do. For applications with relatively severe processing conditions, set the Mn content low and the Mg content high.
  • Si causes a phase transformation in the A1-Fe-Mn crystallized product to form a so-called hard ⁇ phase.
  • This ⁇ phase needs to be added in an amount of 0.1% or more in order to improve ironing workability in the production of DI cans. Is not preferred. Therefore, the upper limit is set to 0.4%.
  • F e is related to Mn and forms an A 1 — F e — Mn crystallized substance.
  • a l _F e — Mn system is preferable for the present invention from the viewpoint of bending and unbending workability as described above. Therefore, the upper limit of Fe, which is the element that forms it, is set to 0.6%. Preferably, it is 0.3% or less.
  • the upper limit of the amount of (S i + Fe) is also set in order to keep the amount of the A1-Fe-Mn crystallized substance, particularly the amount of the hard phase, at a low level.
  • the upper limits of the amounts of Fe and Si are determined as described above, but if each is near the upper limit, the A1-Fe_Mn-based crystallization impairs the workability. Therefore, the upper limit is set to 0.8%, preferably 0.4% or less.
  • the content is preferably 0.4% or less, more preferably 0.2% or less.
  • Addition of Zn has the effect of making the dispersion of the crystallized matter appropriate and reduces the adverse effects of the crystallized matter, so that it is preferably contained in an amount of 0.01 to 0.5%.
  • both the sheet thickness and the lower limit of the yield strength are limited from the viewpoint of the can bottom pressure.
  • the yield strength may be low when the plate thickness is large, and the plate thickness may be small when the yield strength is high.
  • Yield strength alloy composition ⁇ Rumi, and rolling can be increased by work hardening due, processability is insufficient to exceed 400NZmm 2.
  • the yield strength and 4 0 ONZmm 2 the plate thickness or more is required 0. 1 8 mm.
  • the lower limit of the yield strength is set to 18 ONZmm 2 . In this case, if the plate thickness is 0.4 mm, sufficient pressure resistance at the bottom of the can can be obtained.
  • the surface treatment method for an aluminum alloy sheet of the present invention will be described.
  • the aluminum alloy plate is subjected to the following pretreatment including degreasing treatment, alkali treatment, and pickling.
  • degreasing treatment a commercially available degreasing agent is used to The oil adhering to the surface of is removed.
  • the temperature of the treatment liquid is preferably in the range of 30 to 90 ° C, more preferably in the range of 40 to 80 ° C.
  • an aluminum alloy plate is immersed in a treatment solution, or the treatment solution is sprayed on an aluminum alloy plate. A processing time of 1 to 30 seconds is sufficient, and a range of 3 to 15 seconds is more preferable.
  • alkali treatment an aqueous solution containing one or more compounds of alkali metal or ammonium hydroxide, carbonate, bicarbonate, phosphate, silicate, and borate as main components is used. .
  • the oxide film formed on the surface of the aluminum alloy plate is removed. In some cases, the surface of the aluminum alloy plate may be etched.
  • the concentration of the aqueous alkali solution is preferably in the range of 1 to 20%, more preferably in the range of 2 to 10%.
  • the temperature of the processing solution is preferably in the range of 30 to 80 ° C, more preferably in the range of 40 to 60 ° C.
  • a treatment method a force for dipping the aluminum alloy plate in the treatment liquid or a treatment liquid is sprayed on the aluminum alloy plate.
  • a processing time of 1 to 20 seconds is sufficient, and a range of 3 to 10 seconds is more preferable.
  • aqueous solution containing one or more inorganic acids of sulfuric acid, nitric acid, hydrochloric acid, and phosphoric acid as a main component is used for pickling.
  • the pickling is performed to remove the sumat formed on the surface of the aluminum alloy plate by the alkali treatment, but in some cases, fine holes may be formed on the surface of the aluminum alloy plate at the same time.
  • concentration of the aqueous solution of the acid used is preferably in the range of 1 to 10%, more preferably in the range of 1 to 5%.
  • the temperature of the treatment liquid is preferably in the range of room temperature to 60 ° C, more preferably in the range of room temperature to 40 ° C.
  • the aluminum alloy plate is immersed in an aqueous solution of an acid, or an aqueous solution of an acid is sprayed on the aluminum alloy plate.
  • a processing time of 1 to 10 seconds is sufficient, and a range of 1 to 5 seconds is more preferable. This completes the preprocessing.
  • silane treatment using a silane coupling agent is performed after phosphoric acid chromate treatment.
  • This silane treatment is performed.
  • a commercially available silane coupling agent is diluted with a solvent, applied to an aluminum alloy plate, and dried. Although water alone can be used as the solvent, it is preferable to use a mixed solvent of ethanol and water.
  • a mixed solvent in which the mixing ratio of water and ethanol is water: ethanol 1: 4 to 4: 1, preferably 1: 2 to 2: 1.
  • the silane coupling agent is sufficiently uniformly dispersed in the mixed solution, but ethanol is expensive and is not advantageous in cost.
  • the silane coupling agent is not sufficiently uniformly dispersed in the mixed solution 0, and it takes a long time for drying after being applied to the aluminum alloy surface.
  • the concentration of the silane coupling agent is preferably in the range of 0.5 to 20%, more preferably 1 to 10%, based on the mixed solution.
  • the temperature of the treatment liquid is preferably in the range of room temperature to 60 ° C, more preferably in the range of room temperature to 40 ° C.
  • the temperature of the treatment liquid is preferably in the range of room temperature to 60 ° C, more preferably in the range of room temperature to 40 ° C.
  • As a treatment method after immersing an aluminum alloy plate in a treatment liquid, excess liquid is squeezed with a roll and then dried. An immersion time of 1 to 15 seconds is sufficient, and a range of 3 to 10 seconds is more preferable. Processing amount in the range of 0. 3 ⁇ 3 OmgZm 2 is good Mashiku as silicon, 1: range of L OmgZm 2 is more preferable.
  • the phosphoric acid chromate treatment is performed using a commercially available phosphoric acid chromate treatment solution, followed by dipping or spraying.
  • the temperature of the treatment liquid is preferably in the range of room temperature to 80 ° C, more preferably in the range of room temperature to 60 ° C.
  • a processing time of 1 to 10 seconds is sufficient, and a range of 1 to 5 seconds is more preferable.
  • the coating amount is preferably in the range of 3 to 5 Omg / m 2 as chromium, and more preferably in the range of 5 to 3 OmgZm 2 .
  • the coating amount is less than 3 mg / m 2 as chromium, there is almost no effect on the improvement of adhesion, and 5 Omg / m 2 If it exceeds, the amount of adhesion becomes large, the film becomes locally non-uniform, the adhesion decreases, and the appearance is dark brown, which is not preferable.
  • the above silane treatment is performed.
  • thermoplastic resin laminated on at least one surface of the aluminum alloy plate in the present invention a single-layer or multi-layer resin film mainly composed of polyester resin, polyolefin resin, polyamide resin, polycarbonate resin, etc. A resin film obtained by blending two or more of these resins or a resin film obtained by copolymerization can be used.
  • polyethylene terephthalate, ethylene terephthalate repeating copolymer resin mainly composed of units, polybutylene terephthalate, butyl terephthalate repeating Either a polyester resin mainly composed of units, a polyester resin obtained by blending at least two types of these polyester resins, or a multilayer polyester resin obtained by laminating at least two types of the above polyester resins, and a polycarbonate resin, or It consists of a resin in which a polycarbonate resin and at least one of the above polyester resins are blended, and a multilayer resin in which a polycarbonate resin and at least two types of the above polyester resins are laminated.
  • the above resin may be heated and melted, extruded directly onto a metal plate, and laminated.
  • the thickness of the laminated resin film is preferably in the range of 5 to 50 / im, more preferably in the range of 10 to 30m. When the thickness is 5 zm or less, it is difficult to continuously laminate the metal plate at high speed. On the other hand, if the thickness of the resin film to be laminated is 50 or more, it is not preferable in terms of economic efficiency as compared with epoxy resin paints and the like which are widely used as materials for cans.
  • thermoplastic resin film may be directly laminated on an aluminum alloy plate.
  • they may be laminated by interposing a thermosetting adhesive such as an epoxy-phenol resin between a resin film and an aluminum alloy plate.
  • the resin film is laminated on the aluminum alloy plate with the thermosetting adhesive interposed by applying the thermosetting adhesive in advance on one side of the resin film or the aluminum alloy plate that adheres to each other. be able to.
  • the resin-coated aluminum alloy plate of the present invention is obtained by laminating the above-mentioned thermoplastic resin film on the aluminum alloy plate subjected to the above-mentioned surface treatment. Stacking is performed as follows. That is, the surface-treated aluminum alloy sheet continuously fed from the aluminum alloy sheet supply means is heated to a temperature equal to or higher than the melting point of the thermoplastic resin film by using a heating means, and is sent from the film supply means to both surfaces thereof. The discharged thermoplastic resin film is brought into contact, superimposed between a pair of laminating ports, sandwiched and pressed, and immediately cooled immediately.
  • a high-temperature volatile lubricant is applied to the upper surface of the thermoplastic resin film laminated as described above. It is desirable that the high-temperature volatile lubricant be scattered by 50% or more when heated for several minutes at a temperature of about 200 ° C after drawing and ironing.
  • liquid paraffin, synthetic paraffin, natural It is selected according to the processing conditions and the heating conditions after processing from a simple substance such as wax or a mixture of these.
  • properties of the lubricant to be applied those having a melting point in the range of 25 to 80 ° C and a boiling point in the range of 180 to 400 ° C are desirable for achieving the object of the present invention.
  • the amount of application should be determined in consideration of the outer surface of the can, the inner surface of the can, processing conditions, heating conditions after processing, etc., but it is 5 to 100 mg Zm 2 , preferably 3 to 100 mg Zm 2 . A range of 0-6 O mg Zm 2 is suitable.
  • the alloy composition, plate thickness, yield strength, type of surface treatment, and characteristics of thermoplastic resin, etc. of the aluminum alloy plate are limited, and a high-temperature volatile lubricant is applied on the laminated thermoplastic resin. By doing so, a thermoplastic resin-coated aluminum alloy sheet suitable for forming a can having a thin can wall by drawing and ironing can be obtained.
  • the aluminum alloy plate is immersed in a 3% by weight aqueous solution of a commercially available degreasing agent (Safe Cleaner 322N-8 (manufactured by Nippon Paint Co., Ltd.)) heated to 80 ° C for 15 seconds, and then washed with water. Then it was dried.
  • a commercially available degreasing agent Safe Cleaner 322N-8 (manufactured by Nippon Paint Co., Ltd.)
  • the degreased aluminum alloy plate was immersed in a 5% aqueous sodium hydroxide solution heated to 50 ° C. for 10 seconds, washed with water, and dried.
  • the aluminum alloy plate subjected to the alkali treatment was immersed in 1% sulfuric acid at room temperature for 3 seconds, washed with water and dried.
  • a surface-treated aluminum alloy sheet shown in Table 3 was heated to 240 ° C, and a 20 / im copolyester resin consisting of 12% by mole of polyethylene isophthalate and 88% by mole of polyethylene terephthalate on both sides.
  • the biaxially oriented film was abutted, the film and an aluminum alloy plate were sandwiched and laminated by a pair of rolls, immediately immersed in water and quenched. After drying, about S OmgZm 2 was applied to both sides of the grammar wax (boiling point: 115 ° C) to obtain a test plate.
  • the test plate was evaluated for the strength after bending and unbending, the workability by composite processing, the pressure resistance, and the adhesion between the coated resin film and the surface of the aluminum alloy plate after processing.
  • the strength after bending and unbending is determined by adding the tensile strength of the test plate subjected to bending and unbending at a bending radius of 0.5 mm.
  • the yield strength of the test plate before the test was 30% or more, it was evaluated as ⁇ (good), and when it was less than 30%, as X (defective).
  • the evaluation of the composite workability was performed on aluminum alloy sheets having a plate pressure of 0.25 mm, 0.30 mm, 0.40 mm, 0.45 mm as shown below.
  • a 100 mm-diameter drawn can formed at a drawing ratio of 1.6 was processed into a primary redrawn can with a diameter of 75 mm and a can wall thickness of 80% of the original plate thickness, and the subsequent redrawability was evaluated.
  • the redrawing ratio is 1.15
  • the redrawing die radius is 0.4 mm
  • the workability at the die shoulder and ironing part is changed by changing the clearance of the ironing die.
  • the evaluation was made based on the presence or absence of can wall rupture. The case where there was no can wall rupture was evaluated as ⁇ (good), and the case where can wall rupture occurred was evaluated as X (bad).
  • the pressure resistance strength was evaluated by forming a resin-coated aluminum alloy sheet into a can with a diameter of 65 mm by ordinary drawing, doming the bottom of the can, applying internal pressure, and then buckling the can bottom.
  • seat ⁇ force of 3 kgf Roh cm 2 or more 6. ⁇ (good), 6. less than 3 kgf / cm 2 was x (bad).
  • thermoplastic resin film The processing adhesion of the thermoplastic resin film was evaluated as follows. A strip-shaped specimen having a width in the circumferential direction of the can of 15 mm and a length in the height direction of the can of 50 mm was cut out from the drawn and ironed can covered with the polyester film obtained as described above. The entire aluminum alloy is cut from the inner side of the can and the outer side of the can at the can height of 110 mm (Tf: upper end of the can) of this strip-shaped specimen, but the film on the opposite side is cut. A cut was made that did not reach, and a sample was prepared in which only one side of the film was left uncut.
  • the resin-coated aluminum alloy plate for drawn and ironed cans according to the present invention is characterized in that the can wall breakage occurs when performing the combined processing including the bending / returning process at the die shoulder radius portion of the target small shoulder radius and the subsequent ironing process in a dry manner. It is difficult to produce, and it is possible to obtain a drawn and ironed can having the required strength as a can, and it has excellent processing adhesion of the resin film, and the resin film peels off even when subjected to severe processing such as drawing and ironing There is nothing.
  • the aluminum alloy used in the present invention can be obtained.
  • the mixing ratio of scrap of a large amount of 304 alloy can be remarkably increased, so that it is excellent in recyclability.

Abstract

A resin-coated aluminum alloy sheet which makes it possible to form drawn and ironed cans having strengths necessary for suppressing the breakage of the walls when complicated machining inclusive of bending and unbending at a die shoulder radius portion having a small shoulder radius and subsequent ironing are carried out as a dry process, and which can provide an aluminum alloy film having a sufficient adhesive strength after the machining. The sheet is manufactured by applying a silane treatment using a silane coupling agent alone or a composite treatment using both chromium phosphate and a silane coupling agent to an aluminum alloy sheet whose contents of Mn, Mg, Si, Cu, Fe and (Si+Fe), thickness and yield strength are controlled to be in predetermined ranges and then coating the sheet with a thermoplastic resin.

Description

明 細 書 絞りしごき缶用樹脂被覆アルミニウム合金板  Description Resin-coated aluminum alloy plate for drawing and ironing cans
5 技術分野 5 Technical fields
本発明は、 絞りしごき加工を含む加工により製造される 2ピース缶に用いる材 料に関する。 より詳細には、 水、 あるいは水系潤滑剤などによる冷却、 あるいは 潤滑を行うことなく、 製缶後の缶の洗浄を必要としない、 絞りしごき加工を含む 加工により缶壁厚が薄い 2ピース缶を製造するのに適し、 かっこのような厳しい0 加工が施される用途に適した、 皮膜の密着性、 特に加工密着性が要求されるアル ミニゥム合金板に適した表面処理を施したアルミニウム合金板に熱可塑性樹脂を 被覆してなる絞りしごき缶用樹脂被覆アルミニウム合金板に関する。 背景技術  The present invention relates to a material used for a two-piece can manufactured by processing including drawing and ironing. More specifically, a two-piece can with a thin can wall can be formed by processing including squeezing and ironing, which does not require cooling or lubrication with water or a water-based lubricant, and does not require cleaning of the can after making. Aluminum alloy plate with a surface treatment suitable for aluminum alloy plates that require coating adhesion, especially processing adhesion, which is suitable for manufacturing and for applications where strict processing such as parenthesis is performed The present invention relates to a resin-coated aluminum alloy plate for drawn and ironed cans, which is coated with a thermoplastic resin. Background art
1 ? 缶胴部と缶底部が一体で成形される 2ピース缶としては、 ぶりきまたはアルミ ニゥム合金板を絞り加工、 およびしごき加工により得られる D I缶 (Drawn and I roned Can) が従来より製造されている。 D I缶はぶりきまたはアルミニウム合 金板を絞り加工した後、 連続的に配置された数個のしごきダイスとポンチを用い て、 大量の水、 あるいは水系潤滑剤で冷却および潤滑しながら缶壁厚を元板厚の 1-DI cans (Drawn and Ironed Can) manufactured by tinning or ironing of an aluminum alloy plate are manufactured as conventional two-piece cans in which the can body and the bottom of the can are integrally formed. Have been. The DI can is tinned or drawn from an aluminum alloy plate, then cooled and lubricated with a large amount of water or a water-based lubricant using several successively arranged ironing dies and punches, and the wall thickness of the can is reduced. The original thickness
20 1 Z 3程度に薄肉化し、 その後脱脂洗浄、 乾燥し、 塗装が施される。 近年、 特開 平 6— 3 1 2 2 2 3号公報に、 絞りしごき加工を含む複合加工法により、 樹脂被 覆金属板から 2ピース缶を製造する方法が開示されている。 この方法は従来の D I缶の製造法とは異なり、 高温揮発性の潤滑剤を塗布した樹脂被覆金厲板を絞り 加工した後、 水、 あるいは水系潤滑剤を用いることなく、 乾式で再絞りおよびしIt is thinned to about 20 1 Z 3 and then degreased, washed, dried and painted. In recent years, Japanese Patent Application Laid-Open No. Hei 6-311223 discloses a method of manufacturing a two-piece can from a resin-coated metal plate by a combined working method including drawing and ironing. This method differs from the conventional DI can manufacturing method in that a resin-coated metal plate coated with a high-temperature volatile lubricant is drawn and then re-drawn in a dry manner without using water or an aqueous lubricant. I
Z5 ごき加工を同時に行う複合加工法により、 缶壁厚が薄い 2ピース缶を製造するも のである。 この複合加工法によれば、 2ピース缶に成形した後の缶の脱脂洗浄、 乾燥、 塗装工程が不要となり、 環境を殆ど汚染することなく、 2ピース缶を製造 することが可能である。 本発明は、 この複合加工法に適した樹脂被覆アルミニゥ ム合金板を提供することを目的として検討したものである。 複合加工法に適した 材料に関しては、 特開平 7— 266496号公報に、 降伏強度、 抗張力、 板厚、 5 中心線粗さなどを限定した材料が開示され、 実施例に J I S 3004 H19の アルミニウム合金の使用が示されているが、 必要とされる強度は有するものの、 加工性は本発明の目標に対しては、 不十分なものである。 Z5 A two-piece can with a thin can wall is manufactured by a combined machining method that involves simultaneous grinding. According to this combined processing method, the can is degreased and washed after being formed into a two-piece can, Drying and painting processes are not required, and 2-piece cans can be manufactured with almost no pollution of the environment. The present invention has been studied for the purpose of providing a resin-coated aluminum alloy sheet suitable for this combined working method. Regarding materials suitable for the composite machining method, Japanese Patent Application Laid-Open No. 7-266496 discloses materials with limited yield strength, tensile strength, plate thickness, 5 center line roughness, and the like. Examples include aluminum alloys of JIS 3004 H19. Although the use of a steel is indicated, it has the required strength, but the workability is insufficient for the purpose of the present invention.
また、 これらのアルミニウム合金板に被覆される樹脂皮膜の密着性、 特に加工 密着性は、 下地となるアルミニウム合金板の表面状態に大きく影響される。 その0 ため、 アルミニウム合金板と皮膜の密着性を向上させることを目的とした以下に 示すような表面処理を施したアルミニゥム合金板が上記の加工用途に用いられて いる。 すなわち、  In addition, the adhesion of the resin film coated on these aluminum alloy sheets, particularly the processing adhesion, is greatly affected by the surface condition of the aluminum alloy sheet as a base. Therefore, an aluminum alloy plate subjected to the following surface treatment for the purpose of improving the adhesion between the aluminum alloy plate and the film is used for the above-mentioned processing applications. That is,
(1) アルミニウム合金板にリン酸系、 またはクロム酸系の化成処理を施す。 (1) The aluminum alloy plate is subjected to a phosphoric acid or chromic acid chemical conversion treatment.
(2) アルミニウム合金板に熱可塑性樹脂フィルムを被覆する際に、 熱硬化性の 、5 プライマーを、 予め熱可塑性樹脂フィルムの片面あるいはアルミニウム合金板に 塗布する。 (2) When coating the aluminum alloy plate with the thermoplastic resin film, a thermosetting 5 primer is applied to one surface of the thermoplastic resin film or the aluminum alloy plate in advance.
(3) クロム酸を含む溶液を用い、 アルミニウム合金板の表面に径 200オング ストローム以上、 深さ 5; m以下の微細孔の孔占有面積が 5〜 60%である陽極 酸化皮膜を形成させる (特開平 3— 44496号公報) 。  (3) Using a solution containing chromic acid, form an anodic oxide film with a pore occupation area of 5 to 60% of micropores with a diameter of 200 Å or more and a depth of 5 m or less on the surface of the aluminum alloy plate ( JP-A-3-44496).
2.0 (4) アルミニウム合金板を洗浄した後、 大気中で 250〜650°Cの温度範囲 で 2時間以上加熱し、 20オングストローム以上の厚さの酸化皮膜を形成させる (特開平 6— 272015公報) 。  2.0 (4) After cleaning the aluminum alloy plate, heat it in air at a temperature of 250-650 ° C for 2 hours or more to form an oxide film with a thickness of 20 Å or more (Japanese Patent Laid-Open No. 6-272015) .
(5) アルミニウム合金板を洗浄した後、 アルカリ溶液中で交番波形で電解処理 し、 膜厚 500〜5000オングストロームの、 枝分かれした微小孔を有する酸 V5 化皮膜を形成させる (特開平 6— 267638公報) 。  (5) After washing the aluminum alloy plate, it is subjected to an electrolytic treatment in an alkaline solution with alternating waveforms to form an acid V5 film having a thickness of 500 to 5000 angstroms and having branched micropores (JP-A-6-267638). ).
上記の (1) 〜 (5) の表面処理を施したアルミニウム合金板は、 加工を施さ ない平板における皮膜の密着性、 および缶蓋、 絞り缶などの比較的軽度の加工が 施される用途における皮膜の密着性には十分優れているが、 絞りしごき缶、 絞り 加工後ストレッチ加工を施した缶、 絞り加工後ストレッチ加工を施し、 さらにし ごき加工を施した缶などの厳しい加工が施される用途においては皮膜の密着性がThe aluminum alloy plate that has been subjected to the surface treatments (1) to (5) above is The adhesiveness of the coating on a flat plate that does not have a good surface, and the adhesiveness of the coating in applications where relatively light processing such as can lids and drawn cans are performed, are sufficiently excellent. In applications where harsh processing is performed, such as canned, drawn, stretched and then ironed, the adhesion of the coating is poor.
^ 十分ではなく、 特にこれらの缶の缶上部の最も厳しい加工が施される部分では、 加工中に皮膜が剥離したり、 加工後の密着性が極端に低下して、 次工程において 缶に缶蓋を巻しめるための張り出した縁を設けるためのフランジ加工や、 缶上端 の缶径を縮小させるためのネックイン加工を施す際に皮膜が剥離するようになり、 厳しい加工に耐えられない。 ^ Not enough, especially in the most severely processed parts of the upper part of these cans, where the film peels off during processing or the adhesion after processing is extremely reduced. The film peels off when performing flange processing to provide a protruding edge for winding the lid or neck-in processing to reduce the diameter of the can at the top of the can, and cannot withstand severe processing.
) 0 本発明は、 特開平 6— 3 1 2 2 2 3号公報に示されるような複合加工法に適し た樹脂被覆アルミニウム合金板を提供することを目的とする。 本発明が対象とす る複合加工法は、 再絞り加工部としごき加工部が一対となったダイスを用い、 再 絞りおよびしごき加工を同時に行う加工法である。 複合加工法の一つの特徴は、 再絞り加工を行う部分のダイスの肩アールの寸法を小さくし、 このダイス肩ァー5 ル部において材料を曲げ ·曲げ戻し加工し、 缶壁厚を薄肉化することにある。 こ の複合加工においては、 加工する板厚の 2倍乃至数倍程度の小さなダイス肩ァー ルで厳しい曲げ ·曲げ戻し加工を行うため、 材料表面に肌荒れ、 割れを生じ易く、 加工条件によってはこのダイス肩アール部で缶壁破断が生じる。 また、 ダイス肩 アール部で破断を生じない場合においても、 肌荒れ、 表面割れは、 被覆樹脂被膜0 とアルミニウム合金板との密着性の低下をもたらし、 続くしごき加工において缶 壁破断が極めて生じやすくなる。 本発明は、 小さな肩アールのダイス肩アール部 における曲げ ·曲げ戻し加工、 および続くしごき加工を含む複合加工を乾式で行 うに際して、 缶壁破断が生じ難く、 かつ缶として必要な強度を有する樹脂被覆ァ ルミニゥム合金板を導くこと、 および上記のような厳しい成形加工を施しても、5" 加工後の皮膜が十分な密着強度を有する表面処理を施したアルミニウム合金板に 熱可塑性樹脂を被覆してなる熱可塑性樹脂被覆アルミニウム合金板を提供するこ とにある。 発明の開示 An object of the present invention is to provide a resin-coated aluminum alloy plate suitable for a combined machining method as disclosed in Japanese Patent Application Laid-Open No. 6-31223. The composite processing method to which the present invention is directed is a processing method in which redrawing and ironing are performed simultaneously using a die having a pair of a redrawing part and an ironing part. One of the features of the combined machining method is to reduce the dimension of the shoulder radius of the die where redrawing is to be performed, and bend and bend back the material at the die shoulder corner to reduce the thickness of the can wall. Is to do. In this complex machining, severe bending and unbending are performed with a small die shoulder that is about 2 to several times the thickness of the plate to be machined, so that the surface of the material tends to be rough and cracked, and depending on the machining conditions The die wall breaks at the die shoulder radius. Also, even in the case where no break occurs at the die shoulder radius, surface roughness and surface cracking cause a decrease in adhesion between the coating resin film 0 and the aluminum alloy plate, and can wall breakage is extremely likely to occur in subsequent ironing. . The present invention relates to a resin which is resistant to can wall breakage and has a strength required for a can when performing dry / combined processing including bending / unbending and subsequent ironing at a die shoulder radius portion of a small shoulder radius. Deriving a coated aluminum alloy sheet, and even after performing the severe forming process as described above, the film after 5 "processing is coated with a thermoplastic resin on a surface-treated aluminum alloy plate with sufficient adhesion strength. To provide a thermoplastic resin-coated aluminum alloy plate And there. Disclosure of the invention
本発明の絞りしごき缶用樹脂被覆アルミニウム合金板は、 重量%で、 Mn : 0. 5%、 Mg : 2. 2〜4. 0%、 S i :≤0.4%、 不可避的不純物として F e :≤ 0. 6%を含有し、 かつ(S i +F e) :≤0. 8%の関係を有する板厚: 0. 1 8〜0.4mm、 降伏強度: 180〜400N/mm2 のアルミニウム合金板の少 なくとも片面に、 シランカップリング剤処理皮膜を形成した後、 その両面に熱可 塑性樹脂を被覆していることを特徴とする。 The resin-coated aluminum alloy sheet for drawn and ironed cans of the present invention is, by weight%, Mn: 0.5%, Mg: 2.2 to 4.0%, Si: ≤ 0.4%, and Fe: ≤ 0. containing 6%, and (S i + F e): . ≤0 thickness with 8% of the relationship: 0. 1 8~0.4mm, yield strength: 180~400N / mm 2 of an aluminum alloy A silane coupling agent-treated film is formed on at least one surface of the plate, and both surfaces are coated with a thermoplastic resin.
(0 本発明の絞りしごき缶用樹脂被覆アルミニウム合金板は、 重量%で、 Mn :≤ 0. 5%、 Mg : 2. 2〜4. 0%、 S i :≤0.4%、 不可避的不純物として F e :≤ 0. 6%を含有し、 かつ(S i +F e) :≤ 0. 8%の関係を有する板厚: 0. 1 8〜0.4mm、 降伏強度: 180〜400NZmm2 のアルミニウム合金板の少 なくとも片面に、 りん酸クロメート処理皮膜およびその上層にシランカツプリン5 グ剤処理皮膜を形成した後、 その両面に熱可塑性樹脂を被覆していることを特徴 とする。 (0 The resin-coated aluminum alloy sheet for drawn and ironed cans of the present invention is, in terms of% by weight, Mn: ≤ 0.5%, Mg: 2.2 to 4.0%, S i: ≤ 0.4%, as inevitable impurities. F e: containing ≤ 0. 6%, and (S i + F e): sheet thickness having a ≤ 0. 8% relationships: 0. 1 8~0.4mm, yield strength: the 180~400NZmm 2 aluminum The alloy plate is characterized in that a phosphoric acid chromate-treated film is formed on at least one surface and a silane coupling agent-treated film is formed on an upper layer thereof, and then both surfaces are coated with a thermoplastic resin.
本発明の絞りしごき缶用樹脂被覆アルミニウム合金板は、 重量%で、 Mn :≤ 0. 5%, Mg : 2. 2〜4.0%、 S i :≤ 0.4 % , Cu : 0.05~0.4 %、 不可避的不純物として F e :≤ 0. 6 %を含有し、 かつ (S i + F e) :≤ 0. 8 % の関係を有する板厚: 0. 18〜0.4mm、 降伏強度: 180〜400 NZm m2 のアルミニウム合金板の少なくとも片面に、 シランカップリング剤処理皮膜 を形成した後、 その両面に熱可塑性樹脂を被覆していることを特徴とする。 The resin-coated aluminum alloy sheet for drawn and ironed cans of the present invention is, by weight, Mn: ≤ 0.5%, Mg: 2.2 to 4.0%, Si: ≤ 0.4%, Cu: 0.05 to 0.4%, inevitable Thickness: 0.18 to 0.4 mm, yield strength: 180 to 400 NZm, containing Fe: ≤ 0.6% as a target impurity and (S i + Fe): ≤ 0.8% on at least one surface of the aluminum alloy plate of m 2, after forming a silane coupling agent treatment film, wherein the coating the thermoplastic resin on both sides thereof.
本発明の絞りしごき缶用樹脂被覆アルミニウム合金板は、 重量%で、 Mn :≤ 0. 5%、 Mg : 2. 2〜4. 0%、 S i :≤0.4%、 Cu : 0. 05〜0.4 %、5 不可避的不純物として F e :≤ 0. 6 %を含有し、 かつ (S i +F e) :≤0.8 % の関係を有する板厚: 0. 18〜0. mm, 降伏強度: 180〜40 ON/m m2 のアルミニウム合金板の少なくとも片面に、 りん酸クロメート処理皮膜およ びその上層にシランカツプリング剤処理皮膜を形成した後、 その両面に熱可塑性 樹脂を被覆していることを特徴とする。 The resin-coated aluminum alloy plate for drawn and ironed cans of the present invention is, by weight%, Mn: ≤ 0.5%, Mg: 2.2 to 4.0%, Si: ≤ 0.4%, Cu: 0.05 to 0.4%, 5 Includes Fe: ≤ 0.6% as an unavoidable impurity and (S i + Fe): ≤ 0.8% Sheet thickness: 0.18 to 0. mm, Yield strength: 180-40 ON / m on at least one surface of the aluminum alloy plate of m 2, after forming a phosphate chromate conversion coating and silane cutlet coupling agent treated film thereon, and wherein the covering the thermoplastic resin on both sides thereof.
本発明の絞りしごき缶用樹脂被覆アルミニウム合金板においては、 前記熱可塑 性樹脂が熱可塑性ポリエステル樹脂であることが望ましい。  In the resin-coated aluminum alloy plate for a drawn and ironed can of the present invention, it is desirable that the thermoplastic resin is a thermoplastic polyester resin.
また本発明の絞りしごき缶用樹脂被覆アルミニウム合金板においては、 前記熱 可塑性樹脂と前記アルミ合金板との間に接着剤層を介在されていることが望まし く、 前記アルミニウム合金板の両面に前記熱可塑性樹脂を被覆した後、 その両面 に高温揮発性の潤滑剤が塗布されていることが望ましい。 発明を実施するための最良の形態  Further, in the resin-coated aluminum alloy plate for drawn and ironed cans of the present invention, it is desirable that an adhesive layer is interposed between the thermoplastic resin and the aluminum alloy plate, and that both surfaces of the aluminum alloy plate are provided. After coating the thermoplastic resin, it is preferable that a high-temperature volatile lubricant is applied to both surfaces thereof. BEST MODE FOR CARRYING OUT THE INVENTION
本発明は、 強度、 加工性、 特に乾式での絞りしごき加工性に優れ、 かっこのよ うな厳しい加工を施した後も被覆樹脂被膜が剥離することがない、 優れた加工密 着性を有する樹脂被覆アルミニウム合金板を提供するために多岐にわたり検討を 行った結果、 合金組成、 板厚、 降伏強度、 表面処理の種類、 熱可塑性樹脂の種類 などを定めることにより、 目的とする樹脂被覆アルミニウム合金板を開発したも のである。 以下、 本発明を詳細に説明する。  The present invention is a resin which has excellent strength and workability, particularly excellent drawability and ironing workability in a dry process, and does not peel off a coated resin film even after being subjected to severe processing such as parentheses, and has excellent workability. After conducting a wide range of studies to provide coated aluminum alloy sheets, the target resin-coated aluminum alloy sheets were determined by determining the alloy composition, thickness, yield strength, type of surface treatment, and type of thermoplastic resin. Was developed. Hereinafter, the present invention will be described in detail.
まず、 本発明において樹脂被覆アルミニウム合金板の被覆基板となるアルミ二 ゥム合金板の合金成分などを限定する理由を以下に説明する。 なお、 各合金成分 の%は重量%で示す。  First, the reasons for limiting the alloy components and the like of the aluminum alloy plate serving as the coated substrate of the resin-coated aluminum alloy plate in the present invention will be described below. In addition,% of each alloy component is shown by weight%.
本発明においては、 アルミニウム合金板の製造時に発生するスクラップや、 使 用後のアルミニウム缶のスクラップを混合し、 溶解しての再使用を容易とするた め、 アルミニウム D I缶の缶胴材である 3004合金、 および蓋材である 505 2合金の合金成分、 特に Mnと Mgの量を考慮し検討した。 J I S規格において は 3004材は Mn : 1. 0〜1. 5%、 Mg : 0. 8〜1. 3%、 50 52材は M n : 0. 1 % 以下、 Mg : 2. 2〜2. 8%と規定されている。 本発明の樹脂被覆 アルミニウム合金板の被覆基板となるアルミニウム合金板の Mn量は、 3004 合金の下限の Mn量までを含みうることを前提とする。 このようにすることによ り、 本発明に使用するアルミニウム合金を製造する際に、 多量に存在する 300 4合金のスクラップの混合割合を格段に大きくすることが可能となる。 In the present invention, a can body material of an aluminum DI can is used in order to mix and dissolve scrap generated during the production of an aluminum alloy plate and scrap of an aluminum can after use to facilitate reuse. The alloy components of the 3004 alloy and the 5052 alloy as the cover material, especially the amounts of Mn and Mg, were considered. According to JIS standards, 3004 material has Mn: 1.0 to 1.5%, Mg: 0.8 to 1.3%, 5052 material has Mn: 0.1% or less, Mg: 2.2 to 2.2. It is specified as 8%. Resin coating of the present invention It is assumed that the Mn content of the aluminum alloy plate to be the coated substrate of the aluminum alloy plate may include the lower limit of the 3004 alloy. By doing so, it becomes possible to significantly increase the mixing ratio of the scrap of the 3004 alloy present in a large amount when the aluminum alloy used in the present invention is manufactured.
[Mn] [Mn]
Mnは安価であり、 強度が得られるために添加するが、 添加量の上限に関して は、 缶胴材のスクラップを混合再利用することを考慮し、 添加量は 3004合金 の下限の 1. 0 %以下の範囲を前提とした。 Mnの添加により A 1 _F e— Mn 系の晶出物が形成されるが、 その変態生成物である硬質の α相は、 本発明が課題 とする曲げ ·曲げ戻し加工性には好ましくない。 市販のアルミニウム D I加工に おいては、 A 1— F e—Mn系の晶出物はしごき加工時に潤滑作用を有し、 しご き加工性を向上させるため不可欠とされる。 しかし、 本発明においては表面に樹 脂が被覆されたアルミニウム合金板を加工するため、 A 1— F e— Mn系の晶出 物の潤滑作用は必要ではなく、 むしろ加工性が損なわれる。 すなわち、 該晶出物 は本発明の樹脂被覆アルミ合金板の適用を図る複合加工方法には適さないもので ある。 複合加工方法は、 再絞り加工部としごき加工部が一体となったダイスを用 いて再絞り加工としごき加工を同時に行い、 再絞りダイスの肩アールを板厚の数 倍程度以下の小さな肩アールとすることを特徴とするが、 晶出物はそのダイス肩 アール部における曲げ ·曲げ戻し加工性を著しく損なう。 すなわち、 曲げ,曲げ 戻し加工時にアルミニウム合金表面に荒れ、 割れが生じやすく、 それに基づく被 覆樹脂被膜の密着性を低下をもたらす。 さらに晶出物の量、 サイズ、 加工条件に よっては缶壁破断をもたらす。 そのため、 後述する Mg量も考慮し Mn量の上限 を 0. 5 %とする。 3004合金を再利用する点からは、 上記範囲内の高い方が 好ましい。  Mn is inexpensive and is added to provide strength.However, the upper limit of the addition amount is 1.0% of the lower limit of 3004 alloy, considering mixing and reuse of scrap from can body. The following ranges were assumed. The addition of Mn forms an A 1 _Fe—Mn-based crystallized product, but the hard α-phase, which is a transformation product thereof, is not preferred for the bending / unbending workability which is the subject of the present invention. In commercially available aluminum DI processing, A1-Fe-Mn-based crystallized substances have a lubricating effect during ironing, and are indispensable for improving ironing workability. However, in the present invention, since the aluminum alloy plate whose surface is coated with resin is processed, the lubricating action of the A1-Fe-Mn-based crystallized substance is not required, and rather the workability is impaired. That is, the crystallized product is not suitable for the composite processing method for applying the resin-coated aluminum alloy sheet of the present invention. In the combined machining method, redrawing and ironing are performed simultaneously using a die in which the redrawing part and the ironing part are integrated. However, the crystallized material significantly impairs the bending and unbending workability at the rounded portion of the die shoulder. In other words, the surface of the aluminum alloy tends to be roughened and cracked during bending and unbending, which lowers the adhesion of the coated resin film. Furthermore, depending on the amount, size, and processing conditions of the crystallized material, can wall fracture may occur. Therefore, the upper limit of the amount of Mn is set to 0.5% in consideration of the amount of Mg described later. From the viewpoint of reusing the 3004 alloy, a higher value within the above range is preferable.
[Mg]  [Mg]
Mgは、 Mn以上に強度向上に効果のある元素であり、 缶として必要な強度を 得るために添加するが、 添加量が多くなると加工性が低下する。 本発明において は前記の理由により Mn量の上限を 0. 5%とするが、 加工性に十分余裕のある 範囲ではない。 そのため、 加工性の低下、 および加工性の変動を少なくするため に、 Mg量の範囲を 2. 2〜4. 0%とする。 Mn量が本発明の上限の 0. 5 %近 傍にある場合は、 Mgが 4. 0 %を越えると加工性が不良となる。 一方、 Mg量 が 2. 2%未満では強度が不十分となる。 本発明における Mg量の好適範囲は、 溶製、 铸造の生産性を考慮して 5052合金の規定範囲と一致させる。 本発明に よる樹脂被覆アルミニウム合金板を前記の複合加工を用いて成形した 2ピース缶 は、 ビール、 炭酸飲料、 窒素ガス充填飲料など、 缶内圧が陽圧となる内容物に適 用されるが、 内容物によって缶内圧が異なる。 このため、 缶内圧が高い内容物を 充填する缶用材には、 Mn、 Mgの量が多い材料を適用する。 缶底の耐圧強度が 不足すると缶底が座屈変形し、 商品として使用に耐えなくなる。 缶底の耐圧強度 には、 主として、 板の降伏強度、 板厚が影響し、 降伏強度が低い場合は板厚を厚 くすることが必要であるが、 経済性が損なわれることになる。 このため、 経済性 の点から Mn、 Mgの添加量の多い、 高強度の薄板厚の材料が適するが、 Mn、 Mgの添加量の増加による高強度化を行うと、 材料の加工性が低下する。 比較的 厳しい加工条件の用途においては、 Mn量を低めに、 Mg量を高めに設定する。 Mg is an element that is more effective in improving the strength than Mn, and has the necessary strength as a can. It is added in order to obtain, but when the amount added is large, the processability is reduced. In the present invention, the upper limit of the amount of Mn is set to 0.5% for the above-mentioned reason, but this is not a range where the workability is sufficiently large. Therefore, the range of the Mg content is set to 2.2 to 4.0% in order to reduce the deterioration of the workability and the fluctuation of the workability. When the Mn content is near the upper limit of 0.5% of the present invention, if Mg exceeds 4.0%, the workability becomes poor. On the other hand, if the Mg content is less than 2.2%, the strength becomes insufficient. The preferred range of the amount of Mg in the present invention is made to coincide with the specified range of the 5052 alloy in consideration of productivity of smelting and forging. The two-piece can formed by molding the resin-coated aluminum alloy plate according to the present invention using the above-described composite processing is applied to contents such as beer, carbonated beverages, and nitrogen-filled beverages, where the internal pressure of the can is positive. However, the internal pressure of the can varies depending on the contents. For this reason, a material with a large amount of Mn and Mg is used for the material for cans filled with contents with high internal pressure of the can. If the pressure strength of the can bottom is insufficient, the can bottom will buckle and become unusable as a product. The pressure resistance of the bottom of the can is mainly affected by the yield strength and thickness of the sheet. If the yield strength is low, it is necessary to increase the sheet thickness, but this will impair economic efficiency. For this reason, from the economical point of view, a high-strength material with a large amount of Mn or Mg added is suitable, but if the strength is increased by increasing the amount of Mn or Mg added, the workability of the material decreases. I do. For applications with relatively severe processing conditions, set the Mn content low and the Mg content high.
[S i]  [S i]
S iは A 1— F e— Mn系晶出物に相変態を生じさせ、 いわゆる硬質の α相を 形成する。 この α相は D I缶の製造においてはしごき加工性を向上させるために 0. 1 % 以上の添加を必要とするが、 本発明にとっては相変態前の晶出物以上に 曲げ ·曲げ戻し加工性を低下させ、 好ましくない。 したがってその上限を 0. 4 %とする。  Si causes a phase transformation in the A1-Fe-Mn crystallized product to form a so-called hard α phase. This α phase needs to be added in an amount of 0.1% or more in order to improve ironing workability in the production of DI cans. Is not preferred. Therefore, the upper limit is set to 0.4%.
[F e]  [F e]
F eは Mnとの関係で、 A 1— F e— Mn系晶出物を形成する。 A l _F e— Mn系は、 前述のように曲げ ·曲げ戻し加工性の点から本発明にとって好ましく なく、 その形成元素である F eの上限を 0. 6 %とする。 好ましくは 0. 3 %以 下とする。 F e is related to Mn and forms an A 1 — F e — Mn crystallized substance. A l _F e — Mn system is preferable for the present invention from the viewpoint of bending and unbending workability as described above. Therefore, the upper limit of Fe, which is the element that forms it, is set to 0.6%. Preferably, it is 0.3% or less.
[S i +F e] [S i + F e]
(S i + F e) 量も、 A 1— F e—Mn系晶出物の量、 特に硬質なひ相の量 を低いレベルとするため上限を定める。 F e、 S i量の上限を前記の如く定める が、 それぞれが上限近傍である場合、 A 1— F e _Mn系晶出物が加工性を損な う。 よってその上限を 0. 8%、 好ましくは 0. 4%以下とする。  The upper limit of the amount of (S i + Fe) is also set in order to keep the amount of the A1-Fe-Mn crystallized substance, particularly the amount of the hard phase, at a low level. The upper limits of the amounts of Fe and Si are determined as described above, but if each is near the upper limit, the A1-Fe_Mn-based crystallization impairs the workability. Therefore, the upper limit is set to 0.8%, preferably 0.4% or less.
[Cu] [Cu]
Cuは Mgとともに A 1— Cu_Mg系析出物による析出硬化を示し、 高強度 化の点からは有効であり、 0. 05% 以上の添加を必要とするが、 添加量が多く なると加工性を低下させるため、 0.4%以下であることが好ましく、 0. 2%以 下がより好ましい。 Z n添加は晶出物の分散を適正にする効果があり、 晶出物の 弊害を軽減するため、 0. 0 1〜0. 5 %含有することが好ましい。  Cu, together with Mg, exhibits precipitation hardening due to A1-Cu_Mg-based precipitates, which is effective from the viewpoint of increasing the strength.Addition of 0.05% or more is required, but the workability decreases as the addition amount increases. Therefore, the content is preferably 0.4% or less, more preferably 0.2% or less. Addition of Zn has the effect of making the dispersion of the crystallized matter appropriate and reduces the adverse effects of the crystallized matter, so that it is preferably contained in an amount of 0.01 to 0.5%.
次に板厚、 および降伏強度を限定する理由について説明する。  Next, the reasons for limiting the plate thickness and the yield strength will be described.
板厚、 および降伏強度の下限はいずれも缶底耐圧の点から限定する。 缶底の耐 圧強度に関しては、 板厚が厚い場合は降伏強度は低くても差し支えなく、 降伏強 度が高い場合は板厚は薄くても差し支えない、 という関係にある。 降伏強度はァ ルミの合金組成、 および圧延などによる加工硬化により高めることが可能である が、 400NZmm2 を越えると加工性が不十分になる。 しかし、 降伏強度を 4 0 ONZmm2とした場合でも、 板厚は 0. 1 8 mm以上必要である。 一方、 降伏 強度を低くした場合はアルミニウム合金板の板厚を厚くすることが必要となり、 経済的でない。 よって、 降伏強度の下限を 1 8 ONZmm2 とする。 その場合、 板厚が 0. 4mmであれば、 十分な缶底の耐圧強度が得られる。 Both the sheet thickness and the lower limit of the yield strength are limited from the viewpoint of the can bottom pressure. Regarding the withstand pressure strength of the can bottom, the yield strength may be low when the plate thickness is large, and the plate thickness may be small when the yield strength is high. Yield strength alloy composition § Rumi, and rolling can be increased by work hardening due, processability is insufficient to exceed 400NZmm 2. However, even when the yield strength and 4 0 ONZmm 2, the plate thickness or more is required 0. 1 8 mm. On the other hand, when the yield strength is reduced, it is necessary to increase the thickness of the aluminum alloy sheet, which is not economical. Therefore, the lower limit of the yield strength is set to 18 ONZmm 2 . In this case, if the plate thickness is 0.4 mm, sufficient pressure resistance at the bottom of the can can be obtained.
つぎに、 本発明のアルミニウム合金板の表面処理方法について説明する。 まず、 アルミニウム合金板に以下に示す脱脂処理、 アルカリ処理、 および酸洗からなる 前処理を施す。 脱脂処理においては、 市販の脱脂剤を用いてアルミニウム合金板 の表面に付着している油分を除去する。 処理液の温度は 3 0〜9 0 °Cの範囲が好 ましく、 4 0〜8 0 °Cの範囲がより好ましい。 処理方法としてはアルミニウム合 金板を処理液に浸潰するか、 または処理液をアルミニウム合金板にスプレーする。 処理時間は 1〜3 0秒で十分であり、 3〜1 5秒の範囲がより好ましい。 Next, the surface treatment method for an aluminum alloy sheet of the present invention will be described. First, the aluminum alloy plate is subjected to the following pretreatment including degreasing treatment, alkali treatment, and pickling. In the degreasing process, a commercially available degreasing agent is used to The oil adhering to the surface of is removed. The temperature of the treatment liquid is preferably in the range of 30 to 90 ° C, more preferably in the range of 40 to 80 ° C. As a treatment method, an aluminum alloy plate is immersed in a treatment solution, or the treatment solution is sprayed on an aluminum alloy plate. A processing time of 1 to 30 seconds is sufficient, and a range of 3 to 15 seconds is more preferable.
ζ ついで水洗し、 アルカリ処理を施す。 アルカリ処理はアルカリ金属またはアン モニゥムの水酸化物、 炭酸塩、 重炭酸塩、 リン酸塩、 ケィ酸塩、 およびホウ酸塩 の 1種または 2種以上の化合物を主成分とする水溶液が用いられる。 アルカリ処 理においてはアルミニウム合金板の表面に形成されている酸化皮膜を除去する。 場合によってアルミニウム合金板の表面がエッチングされることもある。 用いる洗 Then wash with water and apply alkali treatment. For the alkali treatment, an aqueous solution containing one or more compounds of alkali metal or ammonium hydroxide, carbonate, bicarbonate, phosphate, silicate, and borate as main components is used. . In the alkali treatment, the oxide film formed on the surface of the aluminum alloy plate is removed. In some cases, the surface of the aluminum alloy plate may be etched. Use
10 アルカリ水溶液の濃度は 1〜2 0 %の範囲が好ましく、 2〜 1 0 %の範囲がより 好ましい。 また処理液の温度は 3 0〜8 0 °Cの範囲が好ましく、 4 0〜6 0 °Cの 範囲がより好ましい。 処理方法としてはアルミニウム合金板を処理液に浸漬する 力 または処理液をアルミニウム合金板にスプレーする。 処理時間は 1〜2 0秒 で十分であり、 3〜1 0秒の範囲がより好ましい。 10 The concentration of the aqueous alkali solution is preferably in the range of 1 to 20%, more preferably in the range of 2 to 10%. The temperature of the processing solution is preferably in the range of 30 to 80 ° C, more preferably in the range of 40 to 60 ° C. As a treatment method, a force for dipping the aluminum alloy plate in the treatment liquid or a treatment liquid is sprayed on the aluminum alloy plate. A processing time of 1 to 20 seconds is sufficient, and a range of 3 to 10 seconds is more preferable.
! 5 ついで水洗し、 酸洗を行う。 酸洗は硫酸、 硝酸、 塩酸、 およびリン酸の 1種ま たは 2種以上の無機酸を主成分とする水溶液が用いられる。 酸洗はアルカリ処理 によってアルミニウム合金板の表面に形成されたスマツトを除去するために実施 するが、 場合によって同時にアルミニウム合金板の表面に微細な孔を形成するこ ともある。 用いる酸の水溶液濃度は 1〜1 0 %の範囲が好ましく、 1〜5 %の範 ! 5 Then wash with water and pickle. For pickling, an aqueous solution containing one or more inorganic acids of sulfuric acid, nitric acid, hydrochloric acid, and phosphoric acid as a main component is used. The pickling is performed to remove the sumat formed on the surface of the aluminum alloy plate by the alkali treatment, but in some cases, fine holes may be formed on the surface of the aluminum alloy plate at the same time. The concentration of the aqueous solution of the acid used is preferably in the range of 1 to 10%, more preferably in the range of 1 to 5%.
10 囲がより好ましい。 また処理液の温度は室温〜 6 0 °Cの範囲が好ましく、 室温〜 4 0 °Cの範囲がより好ましい。 処理方法としてはアルミニウム合金板を酸の水溶 液に浸潰するか、 または酸の水溶液をアルミニウム合金板にスプレーする。 処理 時間は 1〜 1 0秒で十分であり、 1〜5秒の範囲がより好ましい。 以上で前処理 が完了する。 10 is more preferred. The temperature of the treatment liquid is preferably in the range of room temperature to 60 ° C, more preferably in the range of room temperature to 40 ° C. As a treatment method, the aluminum alloy plate is immersed in an aqueous solution of an acid, or an aqueous solution of an acid is sprayed on the aluminum alloy plate. A processing time of 1 to 10 seconds is sufficient, and a range of 1 to 5 seconds is more preferable. This completes the preprocessing.
25 上記の前処理を施した後、 本処理を施す。 本発明においては、 シランカツプリ ング剤を用いるシラン処理 (記号 Sで表示する) 、 リン酸クロメート処理後のさ らなるシラン処理 (記号 P Sで表示する) のいずれかの本処理を施す。 まず、 シ ラン処理について説明する。 本発明のシラン処理においては、 市販のシランカツ プリング剤を溶媒で希釈し、 アルミニウム合金板に塗布し乾燥する。 溶媒として は水単独でも使用可能であるが、 エタノールと水の混合溶媒を用いることが好ま25 After the above pre-processing, this processing is performed. In the present invention, silane treatment using a silane coupling agent (indicated by the symbol S) is performed after phosphoric acid chromate treatment. This silane treatment (indicated by the symbol PS) is performed. First, the silane processing will be described. In the silane treatment of the present invention, a commercially available silane coupling agent is diluted with a solvent, applied to an aluminum alloy plate, and dried. Although water alone can be used as the solvent, it is preferable to use a mixed solvent of ethanol and water.
S しい。 例えば、 水とエタノールの混合比率が水:エタノール = 1 : 4〜4 : 1、 好ましくは 1 : 2〜2 : 1の混合溶媒を用いると好結果が得られる。 水に対する エタノールの混合割合が 1 : 4より多い場合は、 シランカップリング剤が混合液 中に十分均一に分散するが、 エタノールが高価であり、 コスト面で有利ではなく なる。 一方混合割合が 4 : 1より少ない場合は、 シランカップリング剤が混合液0 中に十分均一に分散せず、 またアルミニウム合金表面に塗布した後の乾燥に長時 間を要するようになる。 シランカップリング剤の濃度は前記混合溶液に対して 0. 5〜20 %の範囲が好ましく、 1〜 10 %の範囲がより好ましい。 0. 5 %未満 では乾燥後の塗布状態が不均一となりやすく、 十分な密着性が得られない。 20 %を越えると密着性の向上の効果が飽和し、 コスト面で有利ではなくなる。 処理 液の温度は室温〜 60°Cの範囲が好ましく、 室温〜 40°Cの範囲がより好ましい。 処理方法としてはアルミニウム合金板を処理液に浸潰した後、 ロールで余剰の液 を絞り、 次いで乾燥させる。 浸漬時間は 1〜1 5秒で十分であり、 3〜1 0秒の 範囲がより好ましい。 処理量はシリコンとして 0. 3〜3 OmgZm2の範囲が好 ましく、 1〜: L OmgZm2 の範囲がより好ましい。 S For example, good results can be obtained by using a mixed solvent in which the mixing ratio of water and ethanol is water: ethanol = 1: 4 to 4: 1, preferably 1: 2 to 2: 1. When the mixing ratio of ethanol to water is more than 1: 4, the silane coupling agent is sufficiently uniformly dispersed in the mixed solution, but ethanol is expensive and is not advantageous in cost. On the other hand, when the mixing ratio is less than 4: 1, the silane coupling agent is not sufficiently uniformly dispersed in the mixed solution 0, and it takes a long time for drying after being applied to the aluminum alloy surface. The concentration of the silane coupling agent is preferably in the range of 0.5 to 20%, more preferably 1 to 10%, based on the mixed solution. If it is less than 0.5%, the applied state after drying tends to be uneven, and sufficient adhesion cannot be obtained. If it exceeds 20%, the effect of improving the adhesion saturates, and the cost is no longer advantageous. The temperature of the treatment liquid is preferably in the range of room temperature to 60 ° C, more preferably in the range of room temperature to 40 ° C. As a treatment method, after immersing an aluminum alloy plate in a treatment liquid, excess liquid is squeezed with a roll and then dried. An immersion time of 1 to 15 seconds is sufficient, and a range of 3 to 10 seconds is more preferable. Processing amount in the range of 0. 3~3 OmgZm 2 is good Mashiku as silicon, 1: range of L OmgZm 2 is more preferable.
2.0 つぎに、 リン酸クロメート処理を施した後にさらにシラン処理を施す処理につ いて説明する。 リン酸クロメート処理は市販のリン酸クロメート処理処理液を用 レ 、 浸漬処理またはスプレー処理を行う。 処理液の温度は室温〜 80°Cの範囲が 好ましく、 室温〜 60°Cの範囲がより好ましい。 処理時間は 1〜1 0秒で十分で あり、 1〜5秒の範囲がより好ましい。 皮膜量はクロムとして 3〜5 Omg/m2 2 の範囲が好ましく、 5〜3 OmgZm2 の範囲がより好ましい。 皮膜量がクロム として 3mg/m2未満の場合は密着性の向上に殆ど効果がなく、 5 Omg/m2 を越えると付着量が多くなり局部的に皮膜が不均一になり密着性が低下するよう になり、 外観も暗褐色を呈し、 好ましくなくなる。 このリン酸クロメート処理を 施した後に上記のシラン処理を施す。 2.0 Next, the process of performing a silane treatment after the phosphoric acid chromate treatment will be described. The phosphoric acid chromate treatment is performed using a commercially available phosphoric acid chromate treatment solution, followed by dipping or spraying. The temperature of the treatment liquid is preferably in the range of room temperature to 80 ° C, more preferably in the range of room temperature to 60 ° C. A processing time of 1 to 10 seconds is sufficient, and a range of 1 to 5 seconds is more preferable. The coating amount is preferably in the range of 3 to 5 Omg / m 2 as chromium, and more preferably in the range of 5 to 3 OmgZm 2 . If the coating amount is less than 3 mg / m 2 as chromium, there is almost no effect on the improvement of adhesion, and 5 Omg / m 2 If it exceeds, the amount of adhesion becomes large, the film becomes locally non-uniform, the adhesion decreases, and the appearance is dark brown, which is not preferable. After the phosphoric acid chromate treatment, the above silane treatment is performed.
次に、 本発明においてアルミニウム合金板の少なくとも片面に積層される熱可 塑性樹脂としては、 ポリエステル樹脂、 ポリオレフイン樹脂、 ポリアミド樹脂、 ポリカーボネート樹脂などを主成分とした単層または複層の樹脂フィルム、 これ らの樹脂を 2種以上をブレンドした樹脂フィルム、 あるいは共重合した樹脂フィ ルムなどを用いることができる。 特に本発明の厳しい成形加工が施される絞りし ごき缶用には、 ポリエチレンテレフタレ一ト、 エチレンテレフ夕レート繰り返し 単位を主体とする共重合ポリエステル樹脂、 ポリブチレンテレフタレート、 プチ レンテレフ夕レート繰り返し単位を主体とするポリエステル樹脂、 またはこれら のポリエステル樹脂を少なくとも 2種類ブレンドしたポリエステル樹脂、 または 上記のポリエステル樹脂を少なくとも 2種類積層してなる複層のポリエステル樹 脂のいずれか、 さらにポリカーボネート樹脂、 またはポリカーボネート樹脂と上 記のポリエステル樹脂を少なくとも 1種類ブレンドした樹脂、 さらに、 ポリ力一 ボネ一ト樹脂と上記のポリエステル樹脂を少なくとも 2種類積層した複層樹脂か らなり、 公知の押し出し機によりフィルム成形後、 縦横いずれかの一方向、 また は縦横二方向に延伸し、 次いで熱固定して製造される配向樹脂フィルムとした後、 金属板に積層することが好ましい。 または上記の樹脂を加熱溶融し、 直接金属板 上に押し出て積層してもよい。  Next, as the thermoplastic resin laminated on at least one surface of the aluminum alloy plate in the present invention, a single-layer or multi-layer resin film mainly composed of polyester resin, polyolefin resin, polyamide resin, polycarbonate resin, etc. A resin film obtained by blending two or more of these resins or a resin film obtained by copolymerization can be used. Particularly for drawn ironing cans subjected to the severe molding process of the present invention, polyethylene terephthalate, ethylene terephthalate repeating copolymer resin mainly composed of units, polybutylene terephthalate, butyl terephthalate repeating Either a polyester resin mainly composed of units, a polyester resin obtained by blending at least two types of these polyester resins, or a multilayer polyester resin obtained by laminating at least two types of the above polyester resins, and a polycarbonate resin, or It consists of a resin in which a polycarbonate resin and at least one of the above polyester resins are blended, and a multilayer resin in which a polycarbonate resin and at least two types of the above polyester resins are laminated. After forming, it is preferable to stretch in one of the vertical and horizontal directions, or in two vertical and horizontal directions, and then heat-fix to form an oriented resin film, which is then laminated on a metal plate. Alternatively, the above resin may be heated and melted, extruded directly onto a metal plate, and laminated.
積層される樹脂フィルムの厚さは 5〜 5 0 /i mの範囲が好ましく、 1 0〜3 0 mの範囲がより好ましい。 厚さが 5 z m以下の場合、 連続的に高速で金属板に 積層することがむずかしい。 一方、 積層される樹脂フィルムの厚さが 5 0 以 上になると、 製缶用材料に広く使用されているエポキシ系樹脂塗料などと比較し 経済性の点からも好ましくない。  The thickness of the laminated resin film is preferably in the range of 5 to 50 / im, more preferably in the range of 10 to 30m. When the thickness is 5 zm or less, it is difficult to continuously laminate the metal plate at high speed. On the other hand, if the thickness of the resin film to be laminated is 50 or more, it is not preferable in terms of economic efficiency as compared with epoxy resin paints and the like which are widely used as materials for cans.
また、 前記の熱可塑性樹脂フィルムはアルミニウム合金板に直接積層されても よいし、 樹脂フィルムとアルミニウム合金板の間にエポキシ—フエノール樹脂の ような熱硬化性接着剤を介在させて積層されてもよい。 熱硬化性接着剤を樹脂フ イルムまたはアルミニウム合金板のどちらかの、 互いと接着する片面に予め塗布 しておくことにより、 熱硬化性接着剤を介在させて樹脂フィルムをアルミニウム 合金板に積層することができる。 Also, the thermoplastic resin film may be directly laminated on an aluminum alloy plate. Alternatively, they may be laminated by interposing a thermosetting adhesive such as an epoxy-phenol resin between a resin film and an aluminum alloy plate. The resin film is laminated on the aluminum alloy plate with the thermosetting adhesive interposed by applying the thermosetting adhesive in advance on one side of the resin film or the aluminum alloy plate that adheres to each other. be able to.
本発明の樹脂被覆アルミニウム合金板は、 上記の表面処理が施されたアルミ二 ゥム合金板に上記の熱可塑性樹脂フィルムを積層することによって得られる。 積 層は以下のようにして行われる。 すなわち、 アルミニウム合金板供給手段から連 続的に送り出された表面処理アルミニウム合金板を、 加熱手段を用いて熱可塑性 樹脂フィルムの融点以上の温度に加熱し、 その両面に、 フィルム供給手段から送 り出された熱可塑性樹脂フィルムを接触させ、 1対のラミネート口一ルの間で重 ね合わせ、 挟みつけて圧着した後、 直ちに急冷する。  The resin-coated aluminum alloy plate of the present invention is obtained by laminating the above-mentioned thermoplastic resin film on the aluminum alloy plate subjected to the above-mentioned surface treatment. Stacking is performed as follows. That is, the surface-treated aluminum alloy sheet continuously fed from the aluminum alloy sheet supply means is heated to a temperature equal to or higher than the melting point of the thermoplastic resin film by using a heating means, and is sent from the film supply means to both surfaces thereof. The discharged thermoplastic resin film is brought into contact, superimposed between a pair of laminating ports, sandwiched and pressed, and immediately cooled immediately.
最後に、 上記のようにして積層された熱可塑性樹脂フィルムの上面に、 高温揮 発性潤滑剤を塗布する。 高温揮発性潤滑剤は、 絞りしごき加工後に 2 0 0 °C程度 の温度で数分の加熱を施した時に 5 0 %以上飛散することが望ましく、 具体的に は、 流動パラフィン、 合成パラフィン、 天然ワックスなどの単体、 またはこれら の混合物から加工条件、 加工後の加熱条件に応じ選択する。 塗布される潤滑剤の 特性としては融点が 2 5〜8 0 °C、 沸点が 1 8 0〜4 0 0 °Cの範囲にあるものが 本発明の目的を果たすのに望ましい。 また、 塗布量は缶外面となる面、 缶内面と なる面、 加工条件、 加工後の加熱条件等を考慮し、 決定されるべきであるが、 5 〜 1 0 0 m g Zm 2、 好ましくは 3 0〜6 O m g Zm2の範囲が適している。 以上のように、 アルミニウム合金板の合金組成、 板厚、 降伏強度、 表面処理の 種類、 熱可塑性樹脂の特性などを限定し、 さらに積層された熱可塑性樹脂の上に 高温揮発性潤滑剤を塗布することなどにより、 絞りしごき加工により缶壁厚の薄 い缶を成形するのに適した熱可塑性樹脂被覆アルミニウム合金板が得られる。 (実施例) 表 1〜2に示す組成の合金を常法により溶解、 铸造、 面削し、 550°Cで均質 化熱処理を行った後、 熱間圧延、 さらに冷間圧延を行い種々の板厚とした。 つい で 520°Cで 10秒加熱する連続焼鈍を行い、 その後再び冷間圧延し、 0. 16 mm、 0. 18mm, 0. 25mm、 0.40mm, 0.45 mmの板厚とし、 その 両面に下記に示す条件で脱脂処理、 アルカリ処理、 酸洗の前処理を施した。 その 後表 3に示す条件で表面処理を施した。 Finally, a high-temperature volatile lubricant is applied to the upper surface of the thermoplastic resin film laminated as described above. It is desirable that the high-temperature volatile lubricant be scattered by 50% or more when heated for several minutes at a temperature of about 200 ° C after drawing and ironing. Specifically, liquid paraffin, synthetic paraffin, natural It is selected according to the processing conditions and the heating conditions after processing from a simple substance such as wax or a mixture of these. As the properties of the lubricant to be applied, those having a melting point in the range of 25 to 80 ° C and a boiling point in the range of 180 to 400 ° C are desirable for achieving the object of the present invention. The amount of application should be determined in consideration of the outer surface of the can, the inner surface of the can, processing conditions, heating conditions after processing, etc., but it is 5 to 100 mg Zm 2 , preferably 3 to 100 mg Zm 2 . A range of 0-6 O mg Zm 2 is suitable. As described above, the alloy composition, plate thickness, yield strength, type of surface treatment, and characteristics of thermoplastic resin, etc. of the aluminum alloy plate are limited, and a high-temperature volatile lubricant is applied on the laminated thermoplastic resin. By doing so, a thermoplastic resin-coated aluminum alloy sheet suitable for forming a can having a thin can wall by drawing and ironing can be obtained. (Example) Alloys having the compositions shown in Tables 1 and 2 were melted, fabricated, and surface-polished by a conventional method, subjected to a homogenizing heat treatment at 550 ° C, and then hot-rolled and then cold-rolled to various thicknesses. Next, continuous annealing was performed by heating at 520 ° C for 10 seconds, and then cold-rolled again to obtain sheet thicknesses of 0.16 mm, 0.18 mm, 0.25 mm, 0.40 mm, and 0.45 mm. Pretreatments of degreasing, alkali treatment and pickling were performed under the conditions shown. After that, surface treatment was performed under the conditions shown in Table 3.
[前処理条件] [Preprocessing conditions]
•脱脂処理  • Degreasing treatment
80°Cに加熱した市販の脱脂剤 (サ一フクリーナ一 322N— 8 (日本ペイ ント (株) 製) ) の 3重量%水溶液中に、 前記アルミニウム合金板を 15秒間浸 潰した後、 水洗し次いで乾燥した。  The aluminum alloy plate is immersed in a 3% by weight aqueous solution of a commercially available degreasing agent (Safe Cleaner 322N-8 (manufactured by Nippon Paint Co., Ltd.)) heated to 80 ° C for 15 seconds, and then washed with water. Then it was dried.
•アルカリ処理  • Alkali treatment
50°Cに加熱した 5%の水酸化ナトリウム水溶液中に、 前記脱脂処理を施した アルミニウム合金板を 10秒間浸潰した後、 水洗し次いで乾燥した。  The degreased aluminum alloy plate was immersed in a 5% aqueous sodium hydroxide solution heated to 50 ° C. for 10 seconds, washed with water, and dried.
·酸洗  · Pickling
室温の 1 %の硫酸中に前記アルカリ処理を施したアルミニウム合金板を 3秒間 浸漬した後、 水洗し次いで乾燥した。  The aluminum alloy plate subjected to the alkali treatment was immersed in 1% sulfuric acid at room temperature for 3 seconds, washed with water and dried.
表 3に示す表面処理が施されたアルミニウム合金板を 240°Cに加熱し、 その 両面にポリエチレンイソフタレート 12モル%とポリエチレンテレフ夕レート 8 8モル%からなる厚み 20 /imの共重合ポリエステル樹脂二軸配向フィルムを当 接し、 一対のロールでフィルムとアルミニウム合金板を挟み付けて積層し、 直ち に水中に浸潰し急冷した。 乾燥した後、 その両面にグラマ一ワックス (沸点 1 1 5°C) を約 S OmgZm2 塗布し供試板とした。 供試板の評価は、 前述の曲げ · 曲げ戻し後の強度、 複合加工による加工性、 耐圧強度、 加工後の被覆樹脂フィル ムとアルミ合金板表面の密着性について行った。 曲げ ·曲げ戻し後の強度は、 曲 げ半径 0. 5mmでの曲げ,曲げ戻し加工を施した供試板の引っ張り強度が、 加 ェ前の供試板の降伏強度の 30 %以上の場合を〇(良)、 30 %未満を X (不良)と した。 複合加工性の評価は、 アルミニウム合金板の板圧が 0. 25mm, 0. 30 mm、 0. 40mm, 0. 45mmのものについて下記に示すようにして行った。 絞り比 1. 6 で成形した直径 1 00 mmの絞り缶を直径 75mm、 缶壁厚が元板 厚の 80%である一次再絞り缶に加工し、 続く二次再絞り加工性を評価した。 二 次再絞り加工は、 再絞り比を 1. 1 5とし、 再絞りダイス肩アール 0. 4mmと し、 しごきダイスのクリアランスを変更してダイス肩部、 しごき加工部での加工 性を加工時の缶壁破断の発生の有無で評価し、 缶壁破断が無い場合を〇(良)、 缶 壁破断が発生した場合を X (不良)とした。 耐圧強度は、 樹脂被覆アルミニウム合 金板を通常の絞り加工により直径 6 5mmの缶に成形し、 缶底部をドーム加工し た後内圧を付加し、 缶底が座屈する圧力で良否を評価し、 座屈圧力が 6. 3 k g f ノ cm2以上の場合を〇(良)、 6. 3 k g f /cm2未満を x (不良)とした。 A surface-treated aluminum alloy sheet shown in Table 3 was heated to 240 ° C, and a 20 / im copolyester resin consisting of 12% by mole of polyethylene isophthalate and 88% by mole of polyethylene terephthalate on both sides. The biaxially oriented film was abutted, the film and an aluminum alloy plate were sandwiched and laminated by a pair of rolls, immediately immersed in water and quenched. After drying, about S OmgZm 2 was applied to both sides of the grammar wax (boiling point: 115 ° C) to obtain a test plate. The test plate was evaluated for the strength after bending and unbending, the workability by composite processing, the pressure resistance, and the adhesion between the coated resin film and the surface of the aluminum alloy plate after processing. The strength after bending and unbending is determined by adding the tensile strength of the test plate subjected to bending and unbending at a bending radius of 0.5 mm. When the yield strength of the test plate before the test was 30% or more, it was evaluated as 〇 (good), and when it was less than 30%, as X (defective). The evaluation of the composite workability was performed on aluminum alloy sheets having a plate pressure of 0.25 mm, 0.30 mm, 0.40 mm, 0.45 mm as shown below. A 100 mm-diameter drawn can formed at a drawing ratio of 1.6 was processed into a primary redrawn can with a diameter of 75 mm and a can wall thickness of 80% of the original plate thickness, and the subsequent redrawability was evaluated. For secondary redrawing, the redrawing ratio is 1.15, the redrawing die radius is 0.4 mm, and the workability at the die shoulder and ironing part is changed by changing the clearance of the ironing die. The evaluation was made based on the presence or absence of can wall rupture. The case where there was no can wall rupture was evaluated as 〇 (good), and the case where can wall rupture occurred was evaluated as X (bad). The pressure resistance strength was evaluated by forming a resin-coated aluminum alloy sheet into a can with a diameter of 65 mm by ordinary drawing, doming the bottom of the can, applying internal pressure, and then buckling the can bottom. where seat屈圧force of 3 kgf Roh cm 2 or more 6. 〇 (good), 6. less than 3 kgf / cm 2 was x (bad).
熱可塑性樹脂皮膜の加工密着性は、 下記のようにして評価した。 上記のように して得られたポリエステルフィルム被覆絞りしごき缶から、 缶の周方向の幅が 1 5mm、 缶の高さ方向の長さが 50mmの短冊状の試片を切り出した。 この短冊 状の試片の缶高 1 1 0mm (Tf :缶上端部) の部分に、 それぞれ缶内面側、 およ び缶外面側からアルミ二ゥム合金全体を切断するが、 反対側のフィルムには達し ない切れ目を入れ、 一方の側のフィルムのみが切断されずに残った試料を作成し た。 これらの試料を切れ目の部分で 180° に折り曲げ、 折り曲げた一方の部分 において、 切れ目から 5〜 7mm程度の部分でフィルムを強制的に剥離した。 こ のようにして得られた試料の一端と、 前記のフィルムを強制的に剥離した他の一 端をテンシロンの上下のチャックに挟んで固定してテンシロンによる引張測定を 実施し、 強制剥離されずにアルミニウム合金板に被覆されて残ったフィルムがァ ルミニゥム合金板から剥離を開始する引張強度を測定し、 剥離強度とした。 この 剥離強度が 0. 30 k g f以上の場合をを(良)、 0. 30 k g f未満の場合を X (不 良)とした。 上記の評価結果をまとめて表 4〜 5に示す。 供試板の合金組成と機械的特性 ( 1 ) The processing adhesion of the thermoplastic resin film was evaluated as follows. A strip-shaped specimen having a width in the circumferential direction of the can of 15 mm and a length in the height direction of the can of 50 mm was cut out from the drawn and ironed can covered with the polyester film obtained as described above. The entire aluminum alloy is cut from the inner side of the can and the outer side of the can at the can height of 110 mm (Tf: upper end of the can) of this strip-shaped specimen, but the film on the opposite side is cut. A cut was made that did not reach, and a sample was prepared in which only one side of the film was left uncut. These samples were bent at 180 ° at the cuts, and the film was forcibly peeled at about 5-7 mm from the cuts at one of the bent parts. One end of the sample obtained in this way and the other end where the film was forcibly peeled off were clamped between the upper and lower chucks of Tensilon, and the tensile measurement was performed with Tensilon. Then, the tensile strength at which the film coated on the aluminum alloy plate and the remaining film began to peel from the aluminum alloy plate was measured, and the result was defined as the peel strength. The case where the peel strength was 0.30 kgf or more was evaluated as (good), and the case where the peel strength was less than 0.30 kgf was evaluated as X (defective). Tables 4 and 5 summarize the above evaluation results. Alloy composition and mechanical properties of test plate (1)
□ 金 組 成 (重量%) 接着剤 板厚 降伏強 面 使用の 度□ Gold composition (% by weight) Adhesive Thickness Yield strength Degree of use
Mn Mg S i Cu Fe Al 処 右 画) (Mn Mg Si Cu Fe Al treatment right image)
理 (N/匪2 )Natural (N / band 2 )
0. 49 4. 07 0. 22 0. 23 0. 23 残 S 0. 16 3500.49 4.07 0.22 0.23 0.23 Remaining S 0.16 350
0. 43 2. 51 0. 25 0. 24 0. 22 残 S 0. 18 3200.43 2.51 0.25 0.24 0.22 Remaining S 0.18 320
0. 79 2. 55 0. 27 0. 27 0. 29 残 S 0. 25 3300.79 2.55 0.27 0.27 0.29 Remaining S 0.25 330
0. 45 2. 49 0. 23 0. 25 0. 24 残 S 0. 25 3100.45 2.49 0.23 0.25 0.24 Remaining S 0.25 310
0. 46 2. 50 0. 21 0. 36 0. 25 残 S 0. 25 3100.46 2.50 0.21 0.36 0.25 Remaining S 0.25 310
0. 44 2. 51 0. 22 0. 47 0. 23 残 S 0. 25 3100.44 2.51 0.22 0.47 0.23 Remaining S 0.25 310
0. 44 2. 48 0. 46 0. 25 0. 22 S 0. 25 3100.44 2.48 0.46 0.25 0.22 S 0.25 310
0. 46 2. 53 0. 25 0. 23 0. 61 残 S 0. 25 3100.46 2.53 0.25 0.23 0.61 Remaining S 0.25 310
0. 49 2. 51 0. 27 0. 25 0. 33 残 S 0. 25 310 表 2 供試板の合金組成と機械的特性 ( 2 ) 0.49 2.51 0.27 0.25 0.33 Remaining S 0.25 310 Table 2 Alloy composition and mechanical properties of the test plate (2)
Figure imgf000018_0001
Figure imgf000018_0001
(注) #: エポキシ系接着剤 3 アルミニウム合金板の表面処理 (Note) # : Epoxy adhesive 3 Surface treatment of aluminum alloy plate
Figure imgf000019_0001
Figure imgf000019_0001
(注) * :信越化学 (株) 製、 +:溶媒 水/エタノ-ル = 2ノ $ : 日本ペイント (株) 製 (Note) *: Made by Shin-Etsu Chemical Co., Ltd. +: Solvent Water / Ethanol = 2 $ $: Made by Nippon Paint Co., Ltd.
4 供試板の特性評価結果 ( 1 ) 4 Result of characteristic evaluation of test plate (1)
Figure imgf000020_0001
Figure imgf000020_0001
(注) 一: 評価せず 5 供試板の特性評価結果 (2) (Note) I: Not evaluated 5 Result of characteristic evaluation of test plate (2)
Figure imgf000021_0001
Figure imgf000021_0001
(注) 一 : 評価せず (Note) I: Not evaluated
産業上の利用可能性 Industrial applicability
本発明の絞りしごき缶用樹脂被覆アルミニウム合金板は、 目的とする小さな肩 アールのダイス肩アール部における曲げ ·曲げ戻し加工、 および続くしごき加工 を含む複合加工を乾式で行うに際して、 缶壁破断が生じ難く、 缶として必要な強 度を有する絞りしごき缶を得ることが可能で、 かつ樹脂皮膜の加工密着性に優れ ており、 絞りしごき加工のような厳しい加工を施しても樹脂皮膜が剥離すること がない。 さらに、 本発明の樹脂被覆アルミニウム合金板の被覆基板となるアルミ ニゥム合金板の M n量を、 3 0 0 4合金の下限の M n量まで含有することにより、 本発明に使用するアルミニウム合金を製造する際に、 多量に存在する 3 0 0 4合 金のスクラップの混合割合を格段に大きくすることが可能となるので、 リサイク ル性にも優れている。  The resin-coated aluminum alloy plate for drawn and ironed cans according to the present invention is characterized in that the can wall breakage occurs when performing the combined processing including the bending / returning process at the die shoulder radius portion of the target small shoulder radius and the subsequent ironing process in a dry manner. It is difficult to produce, and it is possible to obtain a drawn and ironed can having the required strength as a can, and it has excellent processing adhesion of the resin film, and the resin film peels off even when subjected to severe processing such as drawing and ironing There is nothing. Further, by containing the Mn content of the aluminum alloy plate serving as the coated substrate of the resin-coated aluminum alloy plate of the present invention up to the lower limit of Mn amount of the 304 alloy, the aluminum alloy used in the present invention can be obtained. In manufacturing, the mixing ratio of scrap of a large amount of 304 alloy can be remarkably increased, so that it is excellent in recyclability.

Claims

請 求 の 範 囲 The scope of the claims
1. 重量%で、 Mn :≤0. 5%、 Mg : 2. 2〜4. 0%、 S i :≤0.4%、 不可避的不純物として F e :≤0. 6%を含有し、 かつ(S i + F e) :≤0. 8%1. In weight%, Mn: ≤0.5%, Mg: 2.2 ~ 4.0%, S i: ≤0.4%, Fe: ≤0.6% as inevitable impurities, and ( S i + F e): ≤0.8%
5 の関係を有する板厚: 0. 18〜0.4mm、 降伏強度: 180〜 400 NZmm2 のアルミニウム合金板の少なくとも片面に、 シランカツプリング剤処理皮膜を形 成した後、 その両面に熱可塑性樹脂を被覆してなる絞りしごき缶用樹脂被覆アル ミニゥム合金板。 Thickness having 5 relationship: 0. 18~0.4Mm, yield strength: 180 to 400 on at least one surface of NZmm 2 of the aluminum alloy plate, after form form the silane cutlet coupling agent treated film, thermoplastic resin on both surfaces Resin-coated aluminum alloy plate for drawing and ironing cans coated with
2. 重量%で、 Mn :≤0. 5%、 Mg : 2. 2〜4. 0%、 S i :≤ 0.4 %, |0 不可避的不純物として F e :≤ 0. 6 %を含有し、 かつ(S i +F e) :≤0. 8% の関係を有する板厚: 0. 18〜0.4mm, 降伏強度: 180〜40 ON/mm2 のアルミニウム合金板の少なくとも片面に、 りん酸クロメート処理皮膜およびそ の上層にシランカツプリング剤処理皮膜を形成した後、 その両面に熱可塑性樹脂 を被覆してなる絞りしごき缶用樹脂被覆アルミニウム合金板。 2. In% by weight, Mn: ≤0.5%, Mg: 2.2 ~ 4.0%, S i: ≤ 0.4%, | 0 Contains Fe: ≤ 0.6% as inevitable impurities, And (S i + F e): ≤0.8%, thickness: 0.18 ~ 0.4mm, yield strength: 180 ~ 40 ON / mm 2 At least one side of aluminum alloy plate, phosphoric acid chromate A resin-coated aluminum alloy plate for drawing and ironing cans, which is formed by forming a treated film and a silane coupling agent-treated film on the upper layer, and coating both surfaces with a thermoplastic resin.
I 3. 重量%で、 Mn :≤0. 5%、 Mg : 2. 2〜4. 0 %、 S i :≤ 0.4%, Cu : 0. 05〜0.4%、 不可避的不純物として F e :≤ 0. 6%を含有し、 かつ (S i +F e) :≤0. 8% の関係を有する板厚: 0. 18〜0.4 mm, 降伏強 度: 180〜400N//mm2 のアルミニウム合金板の少なくとも片面に、 シラ ンカツプリング剤処理皮膜を形成した後、 その両面に熱可塑性樹脂を被覆してなI 3. By weight%, Mn: ≤ 0.5%, Mg: 2.2 ~ 4.0%, S i: ≤ 0.4%, Cu: 0.05 ~ 0.4%, Fe: ≤ as inevitable impurities 0. containing 6%, and (S i + F e): . ≤0 thickness with 8% of the relationship: 0. 18 to .4 mm, the yield strength of: 180~400N // mm 2 of an aluminum alloy After forming a silane coupling agent-treated film on at least one surface of the plate, do not coat both surfaces with a thermoplastic resin.
2 る絞りしごき缶用樹脂被覆アルミニウム合金板。 2 Resin-coated aluminum alloy plate for drawing and ironing cans.
4. 重量%で、 Mn :≤0. 5%、 Mg : 2. 2〜4. 0 %、 S i :≤0.4%, Cu : 0. 05〜0.4%、 不可避的不純物として F e :≤0. 6%を含有し、 かつ (S i +F e) :≤ 0. 8 % の関係を有する板厚: 0. 18〜0.4mm、 降伏強 度: 180〜400N/mm2 のアルミニウム合金板の少なくとも片面に、 りん4. By weight%, Mn: ≤0.5%, Mg: 2.2 ~ 4.0%, S i: ≤0.4%, Cu: 0.05 ~ 0.4%, F e: ≤0 as inevitable impurities . containing 6%, and (S i + F e): sheet thickness having a ≤ 0. 8% relationships: 0. 18~0.4Mm, yield strength index: 180~400N / mm 2 of the aluminum alloy plate Phosphorus on at least one side
2S 酸クロメート処理皮膜およびその上層にシランカップリング剤処理皮膜を形成し た後、 その両面に熱可塑性樹脂を被覆してなる絞りしごき缶用樹脂被覆アルミ二 ゥム合金板。 After forming a 2S acid chromate-treated film and a silane coupling agent-treated film on its upper layer, a resin-coated aluminum Aluminum alloy plate.
5 . 前記熱可塑性樹脂が熱可塑性ポリエステル樹脂であることを特徴とする、 請求項 1〜 4のいずれかに記載の絞りしごき缶用樹脂被覆アルミニウム合金板。 5. The resin-coated aluminum alloy plate for a drawn and ironed can according to any one of claims 1 to 4, wherein the thermoplastic resin is a thermoplastic polyester resin.
6 . 前記熱可塑性樹脂と前記アルミ合金板の間に接着剤層を介在させてなる、 請求項 1 ~ 5のいずれかに記載の絞りしごき缶用樹脂被覆アルミニウム合金板。6. The resin-coated aluminum alloy plate for a drawn and ironed can according to any one of claims 1 to 5, wherein an adhesive layer is interposed between the thermoplastic resin and the aluminum alloy plate.
7 . 前記アルミニウム合金板の両面に前記熱可塑性樹脂を被覆した後、 その両 面に高温揮発性の潤滑剤を塗布してなることを特徴とする、 請求項 1〜6のいず れかに記載の絞りしごき缶用樹脂被覆アルミニウム合金板。 7. The aluminum alloy plate is coated with the thermoplastic resin on both surfaces thereof, and then a high-temperature volatile lubricant is applied to both surfaces thereof. The resin-coated aluminum alloy plate for the drawn ironing can described.
PCT/JP1998/001875 1997-04-25 1998-04-23 Resin-coated aluminum alloy sheet for drawn and ironed cans WO1998049360A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU70805/98A AU7080598A (en) 1997-04-25 1998-04-23 Resin-coated aluminum alloy sheet for drawn and ironed cans

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP12156897 1997-04-25
JP9/121568 1997-04-25

Publications (1)

Publication Number Publication Date
WO1998049360A1 true WO1998049360A1 (en) 1998-11-05

Family

ID=14814463

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/001875 WO1998049360A1 (en) 1997-04-25 1998-04-23 Resin-coated aluminum alloy sheet for drawn and ironed cans

Country Status (2)

Country Link
AU (1) AU7080598A (en)
WO (1) WO1998049360A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1297903A1 (en) * 2001-09-28 2003-04-02 Alcan Technology & Management AG Process for manufacturing painted automotive body parts from aluminium alloy
JP2008156757A (en) * 2008-02-18 2008-07-10 Jfe Steel Kk Tinned steel sheet
JP2010236075A (en) * 2009-03-31 2010-10-21 Kobe Steel Ltd Aluminum alloy sheet for can barrel, and method for manufacturing the same
JP2016029218A (en) * 2015-10-05 2016-03-03 株式会社神戸製鋼所 Method for producing aluminum alloy sheet for can barrel
JP2016041852A (en) * 2015-10-05 2016-03-31 株式会社神戸製鋼所 Aluminum alloy sheet for can barrel

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5964781A (en) * 1982-09-30 1984-04-12 Nippon Parkerizing Co Ltd Formation of film on metal surface
JPS63149387A (en) * 1986-12-12 1988-06-22 Furukawa Alum Co Ltd Aluminum material for cap having base film for painting with satisfactory adhesion to ink
JPH02501638A (en) * 1987-10-15 1990-06-07 シーエムビー パッケイジング(ユーケー) リミテド laminated metal sheets
JPH0491825A (en) * 1990-08-03 1992-03-25 Kuwabara Yasunaga Manufacture of coated thin walled can
JPH04362151A (en) * 1991-06-06 1992-12-15 Sky Alum Co Ltd Aluminum alloy hard sheet excellent in formability and its manufacture

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5964781A (en) * 1982-09-30 1984-04-12 Nippon Parkerizing Co Ltd Formation of film on metal surface
JPS63149387A (en) * 1986-12-12 1988-06-22 Furukawa Alum Co Ltd Aluminum material for cap having base film for painting with satisfactory adhesion to ink
JPH02501638A (en) * 1987-10-15 1990-06-07 シーエムビー パッケイジング(ユーケー) リミテド laminated metal sheets
JPH0491825A (en) * 1990-08-03 1992-03-25 Kuwabara Yasunaga Manufacture of coated thin walled can
JPH04362151A (en) * 1991-06-06 1992-12-15 Sky Alum Co Ltd Aluminum alloy hard sheet excellent in formability and its manufacture

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1297903A1 (en) * 2001-09-28 2003-04-02 Alcan Technology & Management AG Process for manufacturing painted automotive body parts from aluminium alloy
JP2008156757A (en) * 2008-02-18 2008-07-10 Jfe Steel Kk Tinned steel sheet
JP4665975B2 (en) * 2008-02-18 2011-04-06 Jfeスチール株式会社 Tinned steel sheet
JP2010236075A (en) * 2009-03-31 2010-10-21 Kobe Steel Ltd Aluminum alloy sheet for can barrel, and method for manufacturing the same
JP2016029218A (en) * 2015-10-05 2016-03-03 株式会社神戸製鋼所 Method for producing aluminum alloy sheet for can barrel
JP2016041852A (en) * 2015-10-05 2016-03-31 株式会社神戸製鋼所 Aluminum alloy sheet for can barrel

Also Published As

Publication number Publication date
AU7080598A (en) 1998-11-24

Similar Documents

Publication Publication Date Title
WO2007029755A1 (en) Resin-coated seamless aluminum can and resin-coated aluminum alloy lid
JP3117727B2 (en) Thermoplastic resin-coated aluminum alloy sheet, method for manufacturing the same, and manufacturing apparatus
JPH09226052A (en) Thermoplastic resin-coated aluminum alloy sheet and method and apparatus for its production
JP5311266B2 (en) Resin-coated seamless aluminum can with excellent corrosion resistance and adhesion
WO1998049360A1 (en) Resin-coated aluminum alloy sheet for drawn and ironed cans
JP3655592B2 (en) Manufacturing method of Sn-plated steel sheet, Sn-plated steel sheet, resin-coated Sn-plated steel sheet obtained by coating a Sn-coated steel sheet with a resin film, and a can using the same
JP3287764B2 (en) Resin-coated aluminum alloy plate for drawing and ironing cans
WO1998049359A1 (en) Resin-coated aluminum alloy sheet for drawn and ironed can
JP3270709B2 (en) Method for producing resin-coated aluminum alloy sheet for drawn ironing can
JPH0598465A (en) Manufacture of thinned resin coated tinned steel sheet for deep drawing excellent in working corrosion resistance
JP3270684B2 (en) Resin-coated aluminum alloy plate for drawing and ironing cans
WO1998049358A1 (en) Resin-coated aluminum alloy sheet for drawn and ironed cans
JPH09276949A (en) Resin coated aluminum alloy sheet for can of drawing/ ironing
JP3350056B2 (en) Method of manufacturing resin-coated aluminum alloy sheet for drawn and ironed cans
JP3270682B2 (en) Method for producing resin-coated aluminum alloy sheet for drawn ironing can
JP2937788B2 (en) Manufacturing method of resin-coated steel sheet for dry drawing and ironing can
JP3261069B2 (en) Surface-treated steel sheet, polyester resin-coated steel sheet having excellent content resistance, and method for producing the same
JPH0780277B2 (en) Polyester resin-coated metal sheet excellent in workability and method for producing the same
JP3270681B2 (en) Method for producing resin-coated aluminum alloy sheet for drawn ironing can
JP3270710B2 (en) Method for producing resin-coated aluminum alloy sheet for drawn ironing can
JP2003277886A (en) Resin-coated steel sheet for shear spun can, method of producing resin-coated steel sheet for shear spun can and shear spun can produced by using the same
WO1997038148A1 (en) Process for producing resin-coated aluminum alloy sheet for drawn/ironed cans
JP3318196B2 (en) Resin-coated aluminum alloy plate for drawing and ironing cans
JP3287763B2 (en) Resin-coated aluminum alloy plate for drawing and ironing cans
WO1998056577A1 (en) Resin-coated aluminum alloy sheet for can lids

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH GM GW HU ID IL IS JP KE KG KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA