JP2937788B2 - Manufacturing method of resin-coated steel sheet for dry drawing and ironing can - Google Patents

Manufacturing method of resin-coated steel sheet for dry drawing and ironing can

Info

Publication number
JP2937788B2
JP2937788B2 JP2102195A JP2102195A JP2937788B2 JP 2937788 B2 JP2937788 B2 JP 2937788B2 JP 2102195 A JP2102195 A JP 2102195A JP 2102195 A JP2102195 A JP 2102195A JP 2937788 B2 JP2937788 B2 JP 2937788B2
Authority
JP
Japan
Prior art keywords
content
resin
ironing
steel sheet
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2102195A
Other languages
Japanese (ja)
Other versions
JPH08192202A (en
Inventor
慶一 志水
文男 国繁
純一 田辺
厚夫 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Kohan Co Ltd
Original Assignee
Toyo Kohan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Kohan Co Ltd filed Critical Toyo Kohan Co Ltd
Priority to JP2102195A priority Critical patent/JP2937788B2/en
Publication of JPH08192202A publication Critical patent/JPH08192202A/en
Application granted granted Critical
Publication of JP2937788B2 publication Critical patent/JP2937788B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、しごき加工を含む加工
により製造されるツーピース缶用材料の製造方法に関す
る。詳しくは、水、あるいは水系潤滑剤などによる冷却
あるいは潤滑をすることなく、製缶後の缶の洗浄を必要
としない、しごき加工を含む加工により薄肉缶壁のツー
ピース缶を製造するに適した熱可塑性樹脂被覆鋼板の製
造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a two-piece can material produced by processing including ironing. Specifically, without cooling or lubrication with water or a water-based lubricant, there is no need to clean the cans after making them, and heat suitable for manufacturing two-piece cans with thin-walled cans by processing including ironing. The present invention relates to a method for producing a plastic-coated steel sheet.

【0002】[0002]

【従来の技術】従来、缶胴部と缶底部が一体のツーピー
ス缶としては、ぶりき板、アルミニウム板、アルミニウ
ム合金板、電解クロム酸処理鋼板等を素材とするDRD
缶(Drawn and Redrawn Can)、
DI缶(Drawn andIroned Can)が
一般的であり、近年、DTR缶(DrawーThin/
Redraw Can)も実用化されている。DRD缶
は、絞り加工、再絞り加工により製造されるため、缶高
さに比例して缶壁厚さが厚くなる。したがって経済性の
点から、一般的に缶高さの低い缶に適用され、下地金属
板としては電解クロム酸処理鋼板、ぶりき板、アルミニ
ウム合金板が用いられている。一方、絞り加工後、しご
き加工で製造されるDI缶は、その缶壁厚さが元板厚の
1/3程度にできるため、缶高さの高い缶にも経済的に
適用でき、現在、ぶりき板、アルミニウム合金板が用い
られている。また、DRD缶とDI缶では、DRD缶が
予め有機皮膜で被覆された金属板が絞り加工されるのに
対し、DI缶はしごき加工後、塗装される点が大きく異
なる。これはDRD加工とDI加工では、加工度、加工
時の応力状態が大きく異なるためである。有機皮膜被覆
金属板を、加工度、缶壁への面圧が極めて大きな加工で
あるDI加工に適用した場合、有機皮膜の金型への焼き
付き、内外面の有機皮膜の損傷などのため、実用化に至
っていない。
2. Description of the Related Art Conventionally, as a two-piece can in which a can body and a can bottom are integrated, a DRD made of a tin plate, an aluminum plate, an aluminum alloy plate, an electrolytic chromic acid-treated steel plate or the like is used.
Cans (Drawn and Reddraw Can),
DI cans (Drawn and Ironed Can) are common, and in recent years, DTR cans (Draw-Thin /
(Redraw Can) has also been put to practical use. Since the DRD can is manufactured by drawing and redrawing, the can wall thickness increases in proportion to the can height. Therefore, from the viewpoint of economy, it is generally applied to cans having a low can height, and as a base metal plate, an electrolytic chromic acid-treated steel plate, a tin plate, and an aluminum alloy plate are used. On the other hand, DI cans manufactured by ironing after drawing can be economically applied to cans with a high can height because the can wall thickness can be reduced to about 1/3 of the original plate thickness. A tinplate and an aluminum alloy plate are used. Also, the DRD can and the DI can are greatly different in that the metal plate in which the DRD can is previously coated with an organic film is drawn, whereas the DI can is painted after ironing. This is because the degree of processing and the stress state during processing are greatly different between DRD processing and DI processing. When the metal sheet coated with an organic film is applied to DI processing, which is a processing with extremely high degree of processing and surface pressure on the can wall, it is practical due to seizure of the organic film on the mold, damage to the organic film on the inner and outer surfaces, etc. It has not been converted.

【0003】一方、DTR缶は、再絞り加工時の肩アー
ルを小さなものとし、その肩部での曲げ、曲げ戻しを大
きな引っ張り力を加えながら、缶壁を薄くする加工によ
って製造される。DTR缶は絞り加工に酷似する加工に
よって製造されるが、缶壁を引き伸ばし加工するため、
缶壁は元板厚より若干薄いものとなる。また、しごき加
工のように、ダイスとポンチ間で缶壁に大きな面圧が負
荷されることがないため、有機皮膜への負荷がそれほど
大きくなく、有機皮膜の損傷を起こしにくく、有機皮膜
被覆金属板が適用でき、現在、熱可塑性樹脂を被覆した
電解クロム酸処理鋼板が工業的に用いられている。しか
しながら、DTR缶の場合、引っ張り力を主体とした加
工によるため、加工時に、缶壁の破断が起こりやすく、
缶壁厚さは元板厚の80%程度であり、DI缶の缶壁に
比べ厚いものとなっている。
On the other hand, DTR cans are manufactured by making the shoulder radius at the time of redrawing small and making the can wall thin while applying a large tensile force to bending and unbending at the shoulder. DTR cans are manufactured by a process very similar to drawing, but in order to stretch the can wall,
The can wall is slightly thinner than the original plate thickness. Also, unlike ironing, a large surface pressure is not applied to the can wall between the die and the punch, so the load on the organic film is not so large, the organic film is not easily damaged, and the organic film coated metal A plate can be applied, and at present, an electrolytic chromic acid-treated steel sheet coated with a thermoplastic resin is industrially used. However, in the case of the DTR can, since the processing is mainly performed by the tensile force, the can wall is easily broken during the processing,
The can wall thickness is about 80% of the original plate thickness, which is thicker than the DI can wall.

【0004】以上述べたように、DRD缶、DI缶およ
びDTR缶、およびそれらの製造方法はそれぞれ一長一
短を有する。ここで、本発明は、DI缶のように缶高さ
が缶径の2倍程度と高く、かつ缶壁厚さが元板厚の70
〜40%程度と薄い缶を得るのに適した、両面を熱可塑
性樹脂で被覆した鋼板の製造方法を提供することにあ
り、とりわけ本発明が重要とする点は、このような缶を
製造する加工において、現在、DI缶の製造おいて、冷
却、潤滑のため使用されているエマルジョン系、水溶性
潤滑剤などの使用を省略できる熱可塑性樹脂被覆鋼板の
製造方法を提供することにある。予め、熱可塑性樹脂を
積層した鋼板を用いることにより、製缶工程における塗
装焼き付けの省略および、溶剤の飛散を防止することが
でき、さらに、冷却剤および潤滑剤の不使用により、以
後の洗浄、乾燥、廃液処理なども省略できる。すなわ
ち、このような水系の冷却、潤滑剤を用いず、製缶後の
缶の洗浄を必要としない、缶高さが高く、かつ缶壁厚さ
の薄い缶を製造可能な熱可塑性樹脂金属板に関する開示
は見受けられず、もちろん、そのような缶、および缶の
製造に関する開示も見受けられない。本発明と目的を同
じくするものでないが、関連するものとして以下のよう
なものがある。
[0004] As described above, DRD cans, DI cans, DTR cans, and methods for producing them each have advantages and disadvantages. Here, in the present invention, the can height is about twice as large as the can diameter, such as DI can, and the can wall thickness is 70 times the original plate thickness.
An object of the present invention is to provide a method for producing a steel sheet coated with a thermoplastic resin on both sides, which is suitable for obtaining a thin can of about 40%. In processing, it is an object of the present invention to provide a method for producing a thermoplastic resin-coated steel sheet which can omit the use of an emulsion system, a water-soluble lubricant, or the like which is currently used for cooling and lubrication in the production of DI cans. In advance, by using a steel sheet laminated with a thermoplastic resin, the omission of paint baking in the can making process and the scattering of the solvent can be prevented.Furthermore, by using no coolant and lubricant, the subsequent cleaning, Drying and waste liquid treatment can be omitted. That is, a thermoplastic resin metal plate capable of producing a can having a high can height and a thin can wall thickness without such water-based cooling, using a lubricant, and not requiring cleaning of the can after can production. No disclosure is found of course, and no disclosure is found of such cans and their manufacture. Although not having the same purpose as the present invention, the following are related.

【0005】特開昭62ー275172号はツーピース
缶用有機樹脂被覆金属板に関するものであるが、しごき
加工において、加工の厳しい外面側におけるクーラント
(水系冷却、潤滑剤)の保持性を高めることを課題の一
つとしている。すなわち、水系冷却、潤滑剤の使用を前
提としたものであり、本発明の目的と大きく異なるもの
である。また、特公表平2ー501638号も金属シー
トの一方、または両方の面に、ポリエステル樹脂フィル
ムを積層したものをDI缶に加工するものであるが、こ
の金属板のDI成形においては、製缶後の缶の洗浄工程
が簡略化されているものの、製缶後の缶の洗浄を必要と
する潤滑剤の使用を絞り工程で必要としており、製缶後
の缶の洗浄が全く排除されたものではないと考えられ
る。また、特開平4ー91825号は、熱可塑性樹脂被
覆金属板を水系冷却、潤滑剤を用いることなく、すなわ
ち、高温揮発性潤滑性物質を潤滑剤とし、曲げ、曲げ戻
しにより缶壁を薄肉化するもの、いわゆるDTR加工に
関するものであるが、実施例に示されるように、薄肉化
の程度は20%程度であり、本発明の目標とする値に比
べ小さいものである。
Japanese Patent Application Laid-Open No. 62-275172 relates to an organic resin-coated metal plate for a two-piece can. In ironing, it is necessary to enhance the retention of coolant (water-based cooling, lubricant) on the outer surface where processing is severe. This is one of the issues. In other words, it is based on the premise that water-based cooling and the use of a lubricant are used, which greatly differs from the object of the present invention. Japanese Patent Publication No. 2-501638 also discloses a method of processing a metal sheet obtained by laminating a polyester resin film on one or both sides of the metal sheet into a DI can. Although the subsequent can cleaning process has been simplified, the use of a lubricant that requires cleaning of the can after cleaning is required in the squeezing process, and cleaning of the can after manufacturing is completely eliminated. It is not considered. Japanese Patent Application Laid-Open No. Hei 4-91825 discloses that a metal wall coated with a thermoplastic resin can be water-cooled without using a lubricant, that is, a high-temperature volatile lubricating substance is used as a lubricant, and the can wall is thinned by bending and bending back. This is related to what is called DTR processing, but as shown in the examples, the degree of thinning is about 20%, which is smaller than the target value of the present invention.

【0006】[0006]

【発明が解決しようとする課題】本発明の課題は、缶高
さが缶径の2倍程度と高く、かつ、缶壁の厚さが元板厚
の70〜40%程度の厚さの薄いツーピース缶を、水系
冷却、潤滑剤を用いることなく(以下、乾式という)成
形可能で、製缶後の缶の洗浄を必要としない熱可塑性樹
脂被覆鋼板の製造方法を提供するである。缶壁厚さを元
板厚の70〜40%の厚さに薄肉化することにより、薄
肉化の程度に比例して缶高さは高くなる。この点は、本
発明の目的に叶うものではあるが、薄肉化の程度が増大
するに従い、缶壁外面と金型の凝着、表面樹脂層の損
傷、缶壁の破断が起こりやすくなる。特に、水系冷却、
潤滑剤を使用しないことを特徴とする本発明において
は、缶外面の樹脂層の損傷、それに起因する缶壁の破断
は起こりやすく、これらを防止することが最大の課題で
ある。また、加工度が大になるにしたがい、下地鋼板と
積層された樹脂層の密着性が低下するが、十分な密着性
を確保した樹脂被覆鋼板を提供することも本発明の課題
とする点である。
SUMMARY OF THE INVENTION An object of the present invention is to provide a can having a height as high as twice as large as the can diameter and a can wall having a thickness as small as 70 to 40% of the original plate thickness. An object of the present invention is to provide a method for producing a thermoplastic resin-coated steel sheet that can form a two-piece can without water-based cooling and without using a lubricant (hereinafter, referred to as a dry method) and does not require cleaning of the can after can-making. By reducing the thickness of the can wall to 70 to 40% of the original plate thickness, the can height increases in proportion to the degree of the reduction in thickness. Although this point fulfills the object of the present invention, as the degree of thinning increases, adhesion of the mold to the outer surface of the can wall, damage to the surface resin layer, and breakage of the can wall tend to occur. In particular, water-based cooling,
In the present invention, which does not use a lubricant, damage to the resin layer on the outer surface of the can and resulting breakage of the can wall are liable to occur. In addition, as the degree of work increases, the adhesion between the base steel sheet and the laminated resin layer decreases, but it is also an object of the present invention to provide a resin-coated steel sheet with sufficient adhesion. is there.

【0007】[0007]

【課題を解決するための手段】本発明の乾式絞りしごき
加工缶用樹脂被覆鋼板の製造方法は、C量 :0.001
〜0.06%、Mn量 :0.05〜0.50%、Al量:
0.015〜0.13%、Si量≦0.05%、P量≦0.
03%、S量 ≦0.03%で、残部がFeおよび不可避
的不純物からなる熱延板を、酸洗、冷間圧延、連続焼鈍
後、圧延率5〜25%で圧延し、中心線平均粗さ:0.
05〜0.6μm、板厚:0.15〜0.30mmとし、
次いで電解クロム酸処理し、その後その両面に厚さ10
〜50μmの熱可塑性樹脂を被覆し、その表面に高温揮
発性潤滑剤を塗布することを特徴とする。また、本発明
の乾式絞りしごき加工缶用樹脂被覆鋼板の製造方法は、
C量 :0.001〜0.06%、Mn量 :0.05〜0.
50%、Al量:0.015〜0.13%、Si量≦0.
05%、P量≦0.03%、S量 ≦0.03%で、残部
がFeおよび不可避的不純物からなる熱延板を、酸洗、
冷間圧延、連続焼鈍、過時効処理後、圧延率5〜25%
で圧延し、中心線平均粗さ:0.05〜0.6μm、板
厚:0.15〜0.30mmとし、次いで電解クロム酸処
理し、その後その両面に厚さ10〜50μmの熱可塑性
樹脂を被覆し、その表面に高温揮発性潤滑剤を塗布する
ことを特徴とする。そして、本発明の乾式絞りしごき加
工缶用樹脂被覆鋼板の製造方法は、C量:0.001〜
0.06%、Mn量 :0.05〜0.50%、Al量:
0.015〜0.13%、Si量≦0.05%、P量≦0.
03%、S量 ≦0.03%を含有し、さらにNb、T
i、Bの一種、あるいは二種を、それぞれ0.001〜
0.03%、0.005〜0.05%、0.001〜0.0
1%含有し、残部がFeおよび不可避的不純物からなる
熱延板を、酸洗、冷間圧延、連続焼鈍後、圧延率5〜2
5%、中心線平均粗さ:0.05〜0.6μm、板厚:
0.15〜0.30mmとし、次いで電解クロム酸処理
し、その後その両面に厚さ10〜50μmの熱可塑性樹
脂を被覆し、その表面に高温揮発性潤滑剤を塗布するこ
とを特徴とする。このような製造方法においては、熱可
塑性樹脂が、結晶性ポリエステル樹脂であることが望ま
しく、熱可塑性樹脂層が、電解クロム酸処理後に接着剤
を塗布しその上に接着されることが好ましい。
The method for producing a resin-coated steel sheet for dry drawing and ironing cans according to the present invention is as follows.
-0.06%, Mn content: 0.05-0.50%, Al content:
0.015-0.13%, Si content ≦ 0.05%, P content ≦ 0.1%
A hot-rolled sheet having an S content of 0.03% and the balance of Fe and unavoidable impurities is pickled, cold-rolled, and continuously annealed, then rolled at a rolling ratio of 5 to 25%, and center line averaged. Roughness: 0.
0.05 to 0.6 μm, thickness: 0.15 to 0.30 mm,
Then, it is treated with electrolytic chromic acid, and then the thickness of 10
It is characterized in that a thermoplastic resin of about 50 μm is coated, and a high-temperature volatile lubricant is applied to the surface thereof. Further, the method for producing a resin-coated steel sheet for dry drawing and ironing cans of the present invention,
C content: 0.001 to 0.06%, Mn content: 0.05 to 0.5%
50%, Al content: 0.015 to 0.13%, Si content ≦ 0.1
Pickling a hot rolled sheet having a P content of 0.05%, an S content of 0.03%, and an S content of 0.03%, with the balance being Fe and unavoidable impurities;
Cold rolling, continuous annealing, after overage treatment, rolling rate 5-25%
The center line average roughness: 0.05 to 0.6 μm, the plate thickness: 0.15 to 0.30 mm, and then electrolytic chromic acid treatment, and then a thermoplastic resin with a thickness of 10 to 50 μm on both surfaces And applying a high-temperature volatile lubricant to the surface thereof. And the manufacturing method of the resin-coated steel plate for dry drawing and ironing cans of the present invention is as follows.
0.06%, Mn content: 0.05 to 0.50%, Al content:
0.015-0.13%, Si content ≦ 0.05%, P content ≦ 0.1%
03%, S content ≦ 0.03%, Nb, T
One or two of i and B are respectively 0.001 to
0.03%, 0.005 to 0.05%, 0.001 to 0.0
A hot rolled sheet containing 1%, the balance being Fe and unavoidable impurities, was pickled, cold rolled, continuously annealed, and then subjected to a rolling reduction of 5 to 2
5%, center line average roughness: 0.05 to 0.6 μm, plate thickness:
0.15 to 0.30 mm, then electrolytic chromic acid treatment, thereafter coating both sides with a thermoplastic resin having a thickness of 10 to 50 μm, and applying a high-temperature volatile lubricant to the surface. In such a production method, it is desirable that the thermoplastic resin is a crystalline polyester resin, and it is preferable that the thermoplastic resin layer be coated with an adhesive after electrolytic chromic acid treatment and adhered thereon.

【0008】[0008]

【作用】以上のように、鋼板の化学組成、焼鈍方法、お
よび焼鈍後の圧延率、圧延後の表面粗度、表面処理の種
類、さらに、積層される熱可塑性樹脂の特性を定め、高
温揮発性潤滑剤を塗布することなどにより乾式加工性、
缶強度、加工後の密着性、耐食性に優れた乾式絞りしご
き加工缶用樹脂被覆鋼板が得られる。ここで、乾式加工
をより大きな加工度で、問題なく実施するためには、加
工方法についても本発明の目的に適するものとすること
が望ましい。本発明による樹脂被覆鋼板の加工を、再絞
り加工としごき加工を特定の条件下で行う複合加工方
法、すなわち、内外面に積層された熱可塑性樹脂層の損
傷および缶壁の破断が起こりにくい減厚加工方法で加工
することにより、本発明による樹脂被覆鋼板の特徴が、
より効果的に発揮される。さらに、熱可塑性樹脂として
は、ポリエチレンテレフタレート樹脂、エチレンテレフ
タレート単位を主体とする共重合ポリエステル樹脂がよ
り適している。また、積層された熱可塑性樹脂層の上面
に高温揮発性潤滑剤を塗布するのは乾式加工性を高める
ためであり、該高温揮発性潤滑剤を成形加工後の加熱に
より除去することができ、脱脂、水洗、乾燥などの工程
を省略することができる。
As described above, the chemical composition of the steel sheet, the annealing method, the rolling ratio after annealing, the surface roughness after rolling, the type of surface treatment, and the characteristics of the laminated thermoplastic resin are determined. Dry workability by applying a lubricant
A dry-drawn and ironed can-coated resin-coated steel sheet excellent in can strength, adhesion after processing, and corrosion resistance is obtained. Here, in order to carry out the dry processing at a higher processing degree without any problem, it is desirable that the processing method is also suitable for the purpose of the present invention. The processing of the resin-coated steel sheet according to the present invention is a combined processing method in which redrawing and ironing are performed under specific conditions, that is, reduction of damage to the thermoplastic resin layer laminated on the inner and outer surfaces and rupture of the can wall. By processing by the thick processing method, the features of the resin-coated steel sheet according to the present invention are:
It is more effective. Further, as the thermoplastic resin, a polyethylene terephthalate resin and a copolymerized polyester resin mainly composed of ethylene terephthalate units are more suitable. Further, the high-temperature volatile lubricant is applied to the upper surface of the laminated thermoplastic resin layer in order to enhance dry workability, and the high-temperature volatile lubricant can be removed by heating after molding, Steps such as degreasing, washing with water, and drying can be omitted.

【0009】[0009]

【実施例】以下、本発明の限定理由、作用などについて
図面に基づき詳細に説明する。図1は、本発明による乾
式絞りしごき加工缶用樹脂被覆鋼板の、断面を示す模式
図であり、図2は、本発明による乾式絞りしごき加工缶
用樹脂被覆鋼板から、缶高さが高く、缶壁の薄い缶を、
乾式で成形加工する工程の一態様に関する概略図であ
り、図3は、本発明による乾式絞りしごき加工缶用樹脂
被覆鋼板から、缶高さが高く、缶壁の薄い缶を、乾式で
成形加工するのに適した、再絞り加工としごき加工を同
時に行う複合加工の一部断面の模式図であり、図4は、
本発明による乾式絞りしごき加工缶用樹脂被覆鋼板から
成形された缶の断面図であり、図5は、本発明による乾
式絞りしごき加工缶用樹脂被覆鋼板から成形された缶の
缶壁厚みのプロフィルの一例を示す図である。本発明
は、乾式で缶壁厚さを元板厚の70〜40%に減厚加工
でき、かつ、缶強度、耐食性、密着性に優れる樹脂被覆
鋼板を得ることを目的とし、その加工方法も含めて、多
くの研究を重ねた結果、導き得たものである。本発明
は、乾式、かつ大きな加工度で缶壁を減厚加工するのに
適した、両面に熱可塑性樹脂を積層した鋼板を得ること
を課題とするが、その課題を解決するため一番問題とな
ることは、加工による発熱、その熱による積層された熱
可塑性樹脂層の軟化、溶融、その結果としての下地鋼板
と金型の直接接触、さらには缶壁の破断である。加工に
よる発熱は、金属板の変形および摩擦が影響し、変形に
よる発熱は加工度および変形抵抗が小さいほど少なく、
また図3に示す本発明が望ましいとする複合加工におけ
るしごき加工においては、変形抵抗が小さいほど面圧が
低く、面圧×摩擦係数に比例する摩擦発熱も小さくな
る。また、積層された樹脂層の温度が同じであっても、
面圧が小さいほど該樹脂層の損傷は軽減される。それゆ
えこの樹脂層の損傷に関し、加工度が同じであっても変
形量が少ない方が、また、材料の変形抵抗は、でき得る
限り小さい方が該樹脂層の損傷は軽減される。ここで、
図3におけるしごき加工に到るまでに、材料は絞り加
工、再絞り加工を受けるため、加工による硬化が少ない
方が本発明の目的に適する。このように、加工後も変形
抵抗が小さいといった点から、鋼板の化学組成を定め
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The reasons for limiting the present invention and the operation thereof will be described below in detail with reference to the drawings. FIG. 1 is a schematic view showing a cross section of the resin-coated steel sheet for dry drawing and ironing can according to the present invention. FIG. 2 shows that the can height is high from the resin-coated steel sheet for dry drawing and ironing can according to the present invention. A thin can with a can wall
FIG. 3 is a schematic view of one embodiment of a process of forming in a dry process, and FIG. 3 is a process of dry forming a thin can having a high can height from a resin-coated steel plate for a dry drawing and ironing process according to the present invention. FIG. 4 is a schematic diagram of a partial cross section of a combined machining that performs redrawing and ironing simultaneously, which is suitable for performing
FIG. 5 is a cross-sectional view of a can formed from the resin-coated steel sheet for dry drawing and ironing can according to the present invention. FIG. 5 is a profile of the can wall thickness of the can formed from the resin-coated steel sheet for dry drawing and ironing can according to the present invention. It is a figure showing an example of. An object of the present invention is to obtain a resin-coated steel sheet that can be dry-processed to reduce the thickness of a can wall to 70 to 40% of the original sheet thickness, and that has excellent can strength, corrosion resistance, and adhesion. It has been derived as a result of many studies including this. The object of the present invention is to obtain a steel sheet laminated with a thermoplastic resin on both sides, which is suitable for dry-type and for reducing the thickness of a can wall with a large working ratio. What is caused is heat generated by processing, softening and melting of the laminated thermoplastic resin layer due to the heat, resulting in direct contact between the base steel sheet and the mold, and further, breakage of the can wall. The heat generated by processing is affected by the deformation and friction of the metal plate.
In addition, in the ironing process in the composite machining shown in FIG. 3 which is desirable for the present invention, the smaller the deformation resistance, the lower the surface pressure, and the smaller the frictional heat generated in proportion to the surface pressure × the coefficient of friction. Also, even if the temperature of the laminated resin layers is the same,
The smaller the surface pressure, the less damage to the resin layer. Therefore, regarding the damage to the resin layer, the smaller the amount of deformation and the smaller the deformation resistance of the material as much as possible, the less the damage to the resin layer even if the degree of processing is the same. here,
Since the material undergoes drawing and redrawing before the ironing in FIG. 3, it is more suitable for the purpose of the present invention that the hardening due to the processing is smaller. As described above, the chemical composition of the steel sheet is determined from the viewpoint that the deformation resistance is small even after the working.

【0010】まず、鋼板の化学組成を定める理由につい
て説明する。Cは、その量の増加により鋼を硬質化し、
かつ結晶粒を微細化する。結晶粒が微細であると、加工
による肌荒れが少なく、積層された熱可塑性樹脂層との
密着性の点において望ましいが、結晶粒が小さいと加工
による硬化が大きくなる。鋼の硬化は、本発明の目的と
する乾式の絞りしごき加工、あるいは絞りしごき加工後
の缶上端部のネック加工に適さず、C量の上限を0.0
6%とする。一方、C量が0.001%以下になると、
加工硬化は小さいものの、結晶粒が大きくなり、本発明
が適用を前提とする再絞り、しごき加工においても肌荒
れが生じやすく、積層された熱可塑性樹脂層との加工密
着性、肌荒れによる応力集中が生じ、加工時に、破断が
起こりやすい。
First, the reason for determining the chemical composition of a steel sheet will be described. C hardens steel by increasing its amount,
And refine the crystal grains. When the crystal grains are fine, the surface roughness due to processing is small, and it is desirable in terms of adhesion to the laminated thermoplastic resin layer. However, when the crystal grains are small, the hardening due to processing increases. The hardening of steel is not suitable for dry drawing and ironing as the object of the present invention or necking of the can upper end after drawing and ironing, and the upper limit of the amount of C is 0.0.
6%. On the other hand, when the C amount becomes 0.001% or less,
Although the work hardening is small, the crystal grains are large, the re-drawing premised on the application of the present invention, the rough surface is likely to occur even in the ironing process, the work adhesion with the laminated thermoplastic resin layer, the stress concentration due to the rough surface is reduced. Occurs and easily breaks during processing.

【0011】Mnも鋼を硬質化するため、少ない方が望
ましく、その上限を 0.5%に限定する。一方、Mnは
鋼中のSによる熱間脆性を防止するために必要であり、
その下限を0.05%とする。Alは脱酸剤として添加
するが、脱酸残査が0.015%以下であると、脱酸が
不安定であり、一方、0.13 %を越えると硬質化し、
かつ、コストアップをも招く。S量が増加すると、硫化
物系介在物が増加し加工性を悪くするとともに、耐食性
も低下するため、その上限を0.03 %とする。Si、
Pはいずれも鋼を硬質化し、本発明が課題とする乾式加
工性を阻害するため、それぞれの上限を0.05%、0.
03%とする。Ti、Nb、Bを添加するのは鋼中の固
溶C、固溶Nを低減し、加工硬化を抑制するためであ
る。下限以下であると、その効果が不十分であり、上限
以上になると、結晶粒の微細化が進み、加工硬化が大き
くなり乾式加工に適さない。Ti、Nb、Bの添加をよ
り効果的にするためには、C量、およびN量を少ないレ
ベルにしておくことが望ましく、C量は 0.001〜
0.06でもよいが、好ましくは0.001〜0.03%
の範囲である。また、N量についても限定しないが、
0.005% 以下とすることが望ましい。
[0011] Since Mn also hardens the steel, it is desirable that the amount is small, and the upper limit is limited to 0.5%. On the other hand, Mn is necessary to prevent hot brittleness due to S in steel,
The lower limit is set to 0.05%. Al is added as a deoxidizing agent, but if the deoxidizing residue is less than 0.015%, deoxidizing is unstable, while if it exceeds 0.13%, it hardens,
In addition, the cost is increased. When the amount of S increases, the amount of sulfide-based inclusions increases to deteriorate the workability and the corrosion resistance also decreases. Therefore, the upper limit is set to 0.03%. Si,
Each of P hardens steel and impairs dry workability, which is the subject of the present invention.
03%. The addition of Ti, Nb, and B is for reducing solid solution C and solid solution N in steel and suppressing work hardening. If the amount is less than the lower limit, the effect is insufficient. If the amount is more than the upper limit, the crystal grains are refined and work hardening becomes large, which is not suitable for dry processing. In order to make the addition of Ti, Nb and B more effective, it is desirable to keep the C content and the N content at small levels.
0.06, but preferably 0.001-0.03%
Range. Also, the amount of N is not limited,
It is desirable to make it 0.005% or less.

【0012】冷間圧延後の再結晶焼鈍を、連続焼鈍、あ
るいは連続焼鈍+過時効処理とする理由を以下に説明す
る。本発明による鋼板が適用される絞りしごき缶は、材
質に関して高度な均質性が要求される。この材質の均質
性に関して、連続焼鈍を実施する。望ましい連続焼鈍条
件は鋼成分により異なるが、均熱温度600〜800
℃、均熱時間10秒〜3分とすればよい。また連続焼鈍
後、必要に応じ、過時効処理を実施する。過時効処理に
より、固溶C、Nが減少し、以後の加工による硬化が小
さなものとなる。加工硬化を小さくすることにより、絞
りしごき加工による減厚加工時の有機樹脂への負荷が少
なく、またその減厚加工後の缶壁が軟質となるため、以
後のネックイン加工性が優れたものとなる。軟質であ
り、延性に富む缶壁は、ネックイン加工に適するが、高
度のネックイン加工性が要求される場合、過時効処理を
実施する。過時効処理は、連続焼鈍後、300〜450
℃で30秒〜10分程度の熱処理を含むものとする。
The reason why the recrystallization annealing after the cold rolling is continuous annealing or continuous annealing + overaging treatment will be described below. The drawn and ironed can to which the steel sheet according to the present invention is applied requires a high degree of homogeneity in material. Regarding the homogeneity of this material, continuous annealing is performed. Desirable continuous annealing conditions vary depending on the steel composition.
C. and a soaking time of 10 seconds to 3 minutes. After continuous annealing, if necessary, an overaging treatment is performed. By the overaging treatment, solid solution C and N are reduced, and hardening by subsequent processing becomes small. By reducing the work hardening, the load on the organic resin during the thickness reduction by drawing and ironing is small, and the can wall after the thickness reduction becomes soft, so that the neck-in workability afterwards is excellent. Becomes A soft and ductile can wall is suitable for neck-in processing, but when a high degree of neck-in workability is required, an overage treatment is performed. The overaging treatment is performed after continuous annealing, and is performed at 300 to 450
A heat treatment at about 30 seconds to about 10 minutes is included.

【0013】一方、加工後の缶は、缶内が陽圧、あるい
は陰圧の状態で用いられるが、そのような圧に耐えるた
めには缶底、缶壁ともに一定以上の強度が必要である。
とりわけ、缶内が陽圧の場合、缶底の耐圧強度が問題と
なるが、耐圧強度は大略(板厚)2 ×降伏強度と正比例
の関係で影響するので、耐圧強度には板厚と降伏強度が
影響する。また、必要耐圧強度は内容物によっても異な
る。この耐圧強度の点から、連続焼鈍後、あるいは連続
焼鈍+過時効処理後の圧延率の下限を定める。圧延率が
下限以下であると、缶底の耐圧強度の点から鋼板の元板
厚みを薄くできず、経済的な缶を得ることが難しくな
る。また、圧延率の上限は、絞りしごき加工時の缶壁の
破断の点から定める。このため圧延率は5〜25%、好
ましくは8〜20%である。圧延率が高いほど、缶壁破
断が起りやすく、そのため、圧延率の上限を25%とす
るが、缶壁破断の起りやすさは鋼の組成、鋼板の製造条
件などにより異なる。鋼中のC量が高い場合、あるい
は、絞りしごき加工条件が厳しい場合は、圧延率は最大
で20%とすることが望ましい。缶壁破断は、圧延方向
と垂直位置の缶壁で起りやすいが、C量に比例するセメ
ンタイトが圧延率に比例して、繊維状に配列することに
より、圧延方向と垂直位置の延性が損なわれるためと考
えられる。ここで、連続焼鈍+過時効処理後の圧延率を
5〜25%、好ましくは8〜20%とすると、鋼板の圧
延方向の引張降伏強度はそれぞれ、33〜58kg/m
2、35〜55kg/mm2程度となる。ここで板厚
は、前記降伏強度と板厚の関係を参考として定めるが、
缶底の耐圧強度の点から0.15mm以上とすることが
必要である。また、上限は経済性の点から、0.3mm
とする。
[0013] On the other hand, the processed can is used in a state where the pressure inside the can is positive or negative, and in order to withstand such pressure, both the can bottom and the can wall must have a certain strength. .
In particular, when the pressure inside the can is positive, the pressure resistance of the bottom of the can becomes a problem. However, the pressure resistance is roughly (plate thickness) 2 × yield strength, which is directly proportional to the pressure resistance. Strength affects. Further, the required compressive strength differs depending on the contents. From the viewpoint of the pressure resistance, the lower limit of the rolling reduction after continuous annealing or after continuous annealing and overaging treatment is determined. When the rolling ratio is less than the lower limit, the thickness of the base steel sheet cannot be reduced from the viewpoint of the pressure resistance of the can bottom, and it is difficult to obtain an economical can. The upper limit of the rolling reduction is determined from the point of breaking of the can wall during drawing and ironing. Therefore, the rolling reduction is 5 to 25%, preferably 8 to 20%. The higher the rolling ratio, the more easily the can wall breaks. Therefore, the upper limit of the rolling ratio is set to 25%, but the likelihood of the can wall break depends on the composition of the steel, the manufacturing conditions of the steel sheet, and the like. When the C content in the steel is high, or when the drawing and ironing conditions are severe, the rolling reduction is desirably 20% at the maximum. Can wall breakage is likely to occur on the can wall in the vertical direction with respect to the rolling direction, but when the cementite in proportion to the C content is arranged in a fibrous form in proportion to the rolling ratio, the ductility in the rolling direction and the vertical position is impaired. It is thought to be. Here, assuming that the rolling reduction after the continuous annealing + overaging treatment is 5 to 25%, preferably 8 to 20%, the tensile yield strength in the rolling direction of the steel sheet is 33 to 58 kg / m, respectively.
m 2 , about 35 to 55 kg / mm 2 . Here, the thickness is determined with reference to the relationship between the yield strength and the thickness,
It is necessary to be 0.15 mm or more from the viewpoint of the pressure resistance of the bottom of the can. The upper limit is 0.3 mm from the viewpoint of economy.
And

【0014】つぎに、鋼板に積層する樹脂は熱可塑性樹
脂であり、好ましくは結晶性ポリエステル樹脂とし、そ
の厚さを10〜50μmとし、さらに、180〜260
℃の融点を有するポリエステル樹脂とする。その理由に
ついて説明する。本発明は乾式での加工を前提とする
が、積層される樹脂を熱可塑性樹脂とすることにより、
しごき加工時の潤滑効果がより効果的なものとなる。し
ごき加工時、缶外面はしごきダイスとの摩擦により発熱
するが、その発熱により軟化し、潤滑作用をもたらすも
のと推察される。しごきダイスの温度を高めると、潤滑
作用は顕著となるが、さらに温度を高くすると、しごき
ダイス内の樹脂がさらに軟化し、鋼板の変形抵抗に比例
した面圧に抗しきれず、鋼板としごきダイスが直接接触
し、缶壁の破断を生じる。それゆえ、熱可塑性樹脂が軟
化しすぎることは好ましくなく、しごきダイス温度を適
切な温度範囲、好ましくは25℃〜積層される熱可塑性
樹脂のガラス転移温度とすることが望ましい。一方、積
層される熱可塑性樹脂も低い温度で軟化することは好ま
しくなく、その軟化のしやすさの指標として融点を用い
ると、融点180℃以上の熱可塑性樹脂を用いることが
本発明の樹脂被覆鋼板が対象とする乾式加工での成形性
を改善するので、より好ましい。すなわち、工業生産に
おいて、絞り加工、しごき加工を連続で実施するが、そ
の場合、加工条件にもよるが、缶壁温度は100℃以上
となることがあり、融点が低いと、軟化あるいは溶融
し、得られる缶体の外観が損なわれたり缶内面に鉄露出
部が生じ、耐食性が低下する。さらに、熱可塑性樹脂が
工具に付着して連続生産が困難になる。この点からも1
80℃以上の融点を有する熱可塑性樹脂を用いることが
好ましい。また、積層される熱可塑性樹脂の融点が26
0℃以上であると、加工時の軟化による十分な潤滑効果
が得られない。以上の理由により、積層される熱可塑性
樹脂の融点の上限は260℃に、下限は180℃に限定
することがより好ましい。また、積層された熱可塑性樹
脂層の厚さを10〜50μmとするが、その厚さが10
μm以下の場合、しごき加工時に缶外面はしごきダイス
と下地鋼板が直接接触する危険性が大となり、缶壁の破
断の危険性が増大する。また、缶内面側の耐食性も不十
分となる恐れがある。さらに、熱可塑性樹脂を鋼板上に
連続的に安定して積層することが難しくなる。一方、積
層された熱可塑性樹脂の厚さの上限は、絞り加工時にし
わが発生しやすくなること、および、経済性の点から5
0μmに限定する。
Next, the resin to be laminated on the steel sheet is a thermoplastic resin, preferably a crystalline polyester resin, having a thickness of 10 to 50 μm, and a thickness of 180 to 260 μm.
A polyester resin having a melting point of ° C. The reason will be described. The present invention is premised on dry processing, but by making the laminated resin a thermoplastic resin,
The lubrication effect at the time of ironing becomes more effective. During ironing, the outer surface of the can generates heat due to friction with the ironing die, but is presumed to be softened by the heat and provide a lubricating effect. When the temperature of the ironing die is increased, the lubricating effect becomes remarkable, but when the temperature is further increased, the resin in the ironing die further softens and cannot withstand the surface pressure proportional to the deformation resistance of the steel plate. Are in direct contact, causing rupture of the can wall. Therefore, it is not preferable that the thermoplastic resin is excessively softened, and it is desirable that the ironing die temperature be in an appropriate temperature range, preferably 25 ° C. to the glass transition temperature of the thermoplastic resin to be laminated. On the other hand, it is not preferable that the laminated thermoplastic resin also softens at a low temperature. When the melting point is used as an index of the ease of softening, it is possible to use a thermoplastic resin having a melting point of 180 ° C. or more. It is more preferable because the formability of the steel sheet in the target dry processing is improved. That is, in industrial production, drawing and ironing are continuously performed. In that case, depending on the processing conditions, the can wall temperature may be 100 ° C. or higher, and when the melting point is low, the can is softened or melted. In addition, the appearance of the obtained can body is impaired, or an exposed iron portion is formed on the inner surface of the can body, and the corrosion resistance is reduced. Further, the thermoplastic resin adheres to the tool, making continuous production difficult. 1 from this point
It is preferable to use a thermoplastic resin having a melting point of 80 ° C. or higher. Further, the melting point of the laminated thermoplastic resin is 26.
If the temperature is 0 ° C. or higher, a sufficient lubricating effect due to softening during processing cannot be obtained. For the above reasons, it is more preferable that the upper limit of the melting point of the laminated thermoplastic resin is limited to 260 ° C. and the lower limit is set to 180 ° C. Further, the thickness of the laminated thermoplastic resin layer is set to 10 to 50 μm, and the thickness is set to 10 μm.
In the case of μm or less, the risk of direct contact between the ironing die and the base steel sheet on the outer surface of the can during ironing increases, and the risk of breakage of the can wall increases. Also, the corrosion resistance on the inner surface side of the can may be insufficient. Further, it becomes difficult to continuously and stably laminate the thermoplastic resin on the steel sheet. On the other hand, the upper limit of the thickness of the laminated thermoplastic resin is set at 5 from the viewpoint that wrinkles are likely to occur during drawing and that the cost is low.
Limited to 0 μm.

【0015】180〜260℃の融点を有する熱可塑性
樹脂の中で、より好ましい樹脂はポリエステル樹脂であ
り、具体的には、ポリエチレンテレフタレート、ポリブ
チレンテレフタレート、エチレンテレフタレート単位を
主体とした共重合ポリエステル樹脂、あるいはこれらの
混合物からなるポリエステル樹脂があげられる。特に7
5〜95モル%のポリエチレンテレフタレートと5〜2
5モル%のポリエチレンイソフタレート、ポリエチレン
セバケートあるいはポリエチレアジペートなどからなる
共重合ポリエステル樹脂、ポリエチレンテレフタレート
または上記のポリエステル樹脂に、ポリブチレンテレフ
タレートをブレンドしたポリエステル樹脂が好ましい。
Among the thermoplastic resins having a melting point of 180 to 260 ° C., a more preferred resin is a polyester resin, and specifically, a copolymerized polyester resin mainly composed of polyethylene terephthalate, polybutylene terephthalate, and ethylene terephthalate units. Or a polyester resin comprising a mixture thereof. Especially 7
5 to 95 mol% of polyethylene terephthalate and 5-2
It is preferable to use 5 mol% of a copolymerized polyester resin such as polyethylene isophthalate, polyethylene sebacate, or polyethylepipate, or a polyester resin obtained by blending polyethylene terephthalate or the above polyester resin with polybutylene terephthalate.

【0016】上記のポリエステル樹脂を鋼板に積層する
方法として、鋼板の両面に直接溶融したポリエステル樹
脂を押し出し積層する方法、溶融押し出し後、常法によ
りフィルム成形した未延伸あるいは延伸配向させたフィ
ルムを熱融着により、または接着剤を介して積層する方
法、およびこれらの方法を併用した方法などがあり、い
ずれの方法も本発明の樹脂被覆鋼板の製造方法として適
用可能であるが、成形加工された缶において、積層され
た樹脂層の耐衝撃加工性、腐食性の強い内容物に対する
耐透過性などの点から、二軸配向ポリエステル樹脂フィ
ルムを用いることが好ましい。その場合、熱融着により
積層したポリエステル樹脂層の面配向係数が、鋼板と非
接触の面(フリー面)で0.01〜0.10、鋼板と接触
する面で0.00〜0.05の範囲にあるように積層条件
を選び積層することがもっとも好ましい。すなわち、積
層後のポリエステル樹脂層の鋼板と接する面における面
配向係数が 0.05以上の場合、積層されたポリエステ
ル樹脂層は加工時に剥離しやすくなり実用的でない。
As a method of laminating the above polyester resin on a steel sheet, a method of extruding and laminating a polyester resin melted directly on both surfaces of the steel sheet, and a method of subjecting an unstretched or stretch-oriented film formed into a film by a conventional method after melt extrusion to a conventional method. There is a method of laminating by fusion or through an adhesive, and a method of using these methods in combination.Either method is applicable as a method for producing the resin-coated steel sheet of the present invention, In the can, it is preferable to use a biaxially oriented polyester resin film from the viewpoints of impact resistance of the laminated resin layer, permeation resistance to highly corrosive contents, and the like. In that case, the plane orientation coefficient of the polyester resin layer laminated by heat fusion is 0.01 to 0.10 on the surface not in contact with the steel plate (free surface), and 0.000 to 0.05 on the surface in contact with the steel plate. It is most preferable to select the lamination conditions so as to fall within the range described above. That is, when the plane orientation coefficient of the surface of the laminated polyester resin layer in contact with the steel sheet is 0.05 or more, the laminated polyester resin layer is easily peeled off during processing, which is not practical.

【0017】一方、積層されたポリエステル樹脂層のフ
リー面における面配向係数が 0.01以下である場合、
ポリエステル樹脂の二軸配向性はほとんど消失した状態
であり、絞りしごき缶に乾式で成形加工すると、積層さ
れたポリエステル樹脂層に亀裂が入ることがあり、腐食
性の強い内容物を充填する缶に用いることは難しい。ま
た、フリ−面における面配向係数が 0.10を越える
と、積層されたポリエステル樹脂層の展延性が乏しくな
り、加工条件が厳しくなると、加工時に該樹脂層に亀裂
が入ることがある。したがって、本発明の樹脂被覆鋼板
において、積層されたポリエステル樹脂層のフリー面に
おける面配向係数は0.01〜0.10、鋼板と接触する
面の面配向係数は0.00〜0.05の範囲にすることが
好ましい。なお、上記のポリエステル樹脂フィルムを接
着剤層を介して鋼板に積層することは腐食性の強い内容
物を充填する缶の内面用には好ましく、その場合、積層
されたポリエステル樹脂層の面配向係数は上記のように
制御することは特に必要としない。用いられる接着剤は
公知のものも使用可能であるが、エポキシ基を分子内に
有する熱硬化性重合組成物がより好ましく、熱可塑性樹
脂フィルムの鋼板と接する面に塗布、乾燥しても、ある
いは鋼板の表面に塗布、乾燥してもよい。
On the other hand, when the plane orientation coefficient on the free surface of the laminated polyester resin layer is 0.01 or less,
The biaxial orientation of the polyester resin has almost disappeared, and if it is dry-formed into a drawn and ironed can, the laminated polyester resin layer may crack, making it difficult to fill highly corrosive contents. Difficult to use. On the other hand, if the plane orientation coefficient on the free surface exceeds 0.10, the spreadability of the laminated polyester resin layer becomes poor, and if the processing conditions become severe, the resin layer may crack during processing. Therefore, in the resin-coated steel sheet of the present invention, the plane orientation coefficient of the free surface of the laminated polyester resin layer is 0.01 to 0.10, and the plane orientation coefficient of the surface in contact with the steel sheet is 0.000 to 0.05. It is preferable to be within the range. Laminating the polyester resin film on a steel sheet via an adhesive layer is preferable for the inner surface of a can filled with highly corrosive contents, in which case, the plane orientation coefficient of the laminated polyester resin layer is preferable. Does not particularly need to be controlled as described above. Known adhesives can be used as the adhesive used, but a thermosetting polymer composition having an epoxy group in the molecule is more preferable, and is applied to the surface of the thermoplastic resin film that comes in contact with the steel sheet, or dried, or You may apply and dry on the surface of a steel plate.

【0018】上記の積層されたポリエステル樹脂層の面
配向係数は、つぎに示す方法で求められる。まずポリエ
ステル樹脂被覆鋼板を希塩酸中に浸漬し、鋼板を溶解さ
せ、ポリエステル樹脂層のみを採取する。つぎに、採取
したポリエステル樹脂層(フィルム)を水洗、乾燥し、
屈折率計を用いて該フィルムの各面(鋼板と接していた
面およびフリー面)における長さ方向、幅方向および厚
さ方向のそれぞれの屈折率を測定する。この屈折率を用
い、フィルムの各面における面配向係数は、つぎの式に
より求められる。 A=(B+C)/2ーD ここで、Aは、フィルムの面配向係数、Bは、フィルム
の長さ方向の屈折率、Cは、フィルムの幅方向の屈折
率、Dは、フィルムの厚さ方向の屈折率を示す。上記の
方法により測定される屈折率はフィルムの各面の表面か
ら5μm以内の厚さにおける平均値を示しているので、
フィルムの各面(鋼板と接していた面およびフリー面)
の面配向係数を区別することが可能である。
The plane orientation coefficient of the laminated polyester resin layer is determined by the following method. First, a polyester resin-coated steel sheet is immersed in dilute hydrochloric acid to dissolve the steel sheet, and only the polyester resin layer is collected. Next, the collected polyester resin layer (film) is washed with water and dried,
Using a refractometer, the refractive index in each of the length direction, the width direction, and the thickness direction of each surface of the film (the surface in contact with the steel plate and the free surface) is measured. Using this refractive index, the plane orientation coefficient on each surface of the film is determined by the following equation. A = (B + C) / 2-D Here, A is the plane orientation coefficient of the film, B is the refractive index in the length direction of the film, C is the refractive index in the width direction of the film, and D is the thickness of the film. The refractive index in the vertical direction. Since the refractive index measured by the above method indicates an average value at a thickness within 5 μm from the surface of each surface of the film,
Each side of the film (surface in contact with steel plate and free surface)
Can be distinguished from each other.

【0019】さらに、本発明においては、熱融着により
積層したポリエステル樹脂層の鋼板と非接触の面(フリ
ー面)および鋼板と接する面の面配向係数を好ましい範
囲に制御することを容易にするため、それぞれ融点が異
なる上層樹脂と下層樹脂の二層からなるポリエステル樹
脂の二軸配向フィルムを用いることも可能である。
Further, in the present invention, it is easy to control the plane orientation coefficient of the non-contact surface (free surface) of the polyester resin layer laminated by heat fusion and the surface in contact with the steel plate within a preferable range. Therefore, it is also possible to use a biaxially oriented film of a polyester resin composed of two layers of an upper resin and a lower resin having different melting points.

【0020】上記のポリエステル樹脂フィルムのIV値
(極限粘度、固有粘度)も本発明で用いられるポリエステ
ル樹脂フィルムの重要な要因の一つである。IV値は分
子量と正の相関関係にあり、フィルムの剛直性および樹
脂フィルムの成形性に大きな影響を与える因子である。
すなわち、IV値が 0.50以下の場合、積層後のポリ
エステル樹脂層の面配向係数が好ましい範囲にあって
も、絞りしごき缶に成形したのちの耐衝撃性に乏しく、
衝撃を受けた部分の内面側のポリエステル樹脂層に微細
な亀裂が無数に生じ、鋼表面が露出するようになる。ま
た、IV値が 0.70以上の場合、しごき加工時に粘性
抵抗が高く、実用上問題を生じることがある。
The IV value of the above polyester resin film
(Intrinsic viscosity, intrinsic viscosity) is also one of the important factors of the polyester resin film used in the present invention. The IV value is positively correlated with the molecular weight and is a factor that has a great influence on the rigidity of the film and the moldability of the resin film.
That is, when the IV value is 0.50 or less, even if the plane orientation coefficient of the polyester resin layer after lamination is in a preferable range, the impact resistance after forming into a drawn and ironed can is poor,
Numerous fine cracks are formed in the polyester resin layer on the inner surface side of the impacted portion, and the steel surface is exposed. When the IV value is 0.70 or more, the viscous resistance during ironing is high, which may cause a practical problem.

【0021】本発明においては、鋼板の缶外面となる面
に顔料で着色された熱可塑性樹脂を積層することも美的
観点から重要な要因の一つである。すなわち、缶の外面
に印刷されるデザインの鮮映性を向上させるために、酸
化チタン系の白色顔料を樹脂製造工程で含有させること
も可能である。顔料としては、無機系、有機系および白
色以外の色の顔料の適用も可能であり、用途により選択
される。添加量は1〜20%で良好な印刷性が得られ
る。
In the present invention, laminating a thermoplastic resin colored with a pigment on the outer surface of the steel plate can also be one of the important factors from an aesthetic point of view. That is, in order to improve the sharpness of the design printed on the outer surface of the can, a titanium oxide-based white pigment can be included in the resin production process. As the pigment, pigments of colors other than inorganic, organic, and white are also applicable, and are selected according to the application. Good printability can be obtained when the addition amount is 1 to 20%.

【0022】また、本発明においてはビスフェノールA
ポリカーボネート、6ーナイロン、6,6ーナイロン、
6ー6,6ーコポリマーナイロン、6,10ーナイロ
ン、7ーナイロン、12ーナイロンなどのポリアミド樹
脂、あるいはポリエチレンナフタレートなどの熱可塑性
樹脂を用いることも可能である。さらに、これらの熱可
塑性樹脂を単独で用いることも可能であり、前記のポリ
エステル樹脂と共押し出しで得られる二層構造、あるい
は三層構造のフィルムの上層、あるいは中間層として、
また、これらの熱可塑性樹脂を前記ポリエステル樹脂に
ブレンドした樹脂を用いることも可能である。また、該
ブレンド樹脂フィルムの上層として上記のポリエステル
樹脂層を設けた二層フィルムの適用も可能である。な
お、上記の熱可塑性樹脂には、必要に応じ他の特性を損
なわない範囲で安定剤、酸化防止剤、帯電防止剤、滑
剤、腐食防止剤などの添加剤を加えることも可能であ
る。
In the present invention, bisphenol A
Polycarbonate, 6-nylon, 6,6-nylon,
It is also possible to use a polyamide resin such as 6-6,6-copolymer nylon, 6,10-nylon, 7-nylon, 12-nylon, or a thermoplastic resin such as polyethylene naphthalate. Further, it is also possible to use these thermoplastic resins alone, a two-layer structure obtained by co-extrusion with the polyester resin, or as an upper layer of a three-layer film, or as an intermediate layer,
Further, it is also possible to use a resin obtained by blending these thermoplastic resins with the polyester resin. Further, a two-layer film provided with the above-mentioned polyester resin layer as an upper layer of the blend resin film is also applicable. It should be noted that additives such as a stabilizer, an antioxidant, an antistatic agent, a lubricant, and a corrosion inhibitor can be added to the above-mentioned thermoplastic resin as needed, as long as other properties are not impaired.

【0023】熱可塑性樹脂が積層される鋼板には電解ク
ロム酸処理鋼板が好ましく、用いる鋼板の中心線平均粗
さを0.05〜0.6μmとするのは、鋼板と積層される
熱可塑性樹脂との密着性および耐食性を目的に叶うもの
とするためである。電解クロム酸処理により形成される
皮膜は、下層が金属クロム、上層がクロム水和酸化物か
らなる二層構造を有する皮膜であり、下層の金属クロム
量は30〜200mg/m2、上層のクロム水和酸化物
はクロム量として5〜25mg/m2の範囲が適してい
る。中心線平均粗さは 0.6μm以上であると、加工条
件によっては、積層された熱可塑性樹脂の加工密着性が
問題となり、加工度の大きな缶上端部で積層された熱可
塑性樹脂層が剥離することがあり、0.6 μmを上限と
した。また下限は性能面からではなく、経済的に中心線
平均粗さ0.05 μm以下の鋼板を安定して製造するの
が困難であり、この点から下限を 0.05μmとした。
The steel sheet on which the thermoplastic resin is laminated is preferably an electrolytic chromic acid-treated steel sheet, and the center line average roughness of the steel sheet used is set to 0.05 to 0.6 μm because the thermoplastic resin laminated with the steel sheet is used. This is for achieving adhesion and corrosion resistance with the object. The film formed by the electrolytic chromic acid treatment is a film having a two-layer structure in which the lower layer is composed of chromium metal and the upper layer is composed of hydrated chromium oxide. The amount of chromium metal in the lower layer is 30 to 200 mg / m 2 , and the amount of chromium in the upper layer is The amount of the hydrated oxide is preferably in the range of 5 to 25 mg / m 2 as the amount of chromium. If the center line average roughness is 0.6 μm or more, the processing adhesion of the laminated thermoplastic resin becomes a problem depending on the processing conditions, and the laminated thermoplastic resin layer is peeled off at the upper end of the can with a high degree of processing. In some cases, the upper limit was set to 0.6 μm. Further, the lower limit is not from the viewpoint of performance, but it is economically difficult to stably produce a steel sheet having a center line average roughness of 0.05 μm or less. From this point, the lower limit is set to 0.05 μm.

【0024】積層された熱可塑性樹脂層の上面に塗布す
る高温揮発性潤滑剤は、本発明が課題とする乾式絞りし
ごき加工を、高加工度で、かつ高速で実施するに際し、
重要な役割を果たす。また、高温揮発性潤滑剤は、加工
後200℃程度の温度で数分の加熱を施した時、50%
以上飛散することが望ましく、具体的には、流動パラフ
ィン、合成パラフィン、天然ワックスなどの単体、また
はこれらの混合物から加工条件、加工後の加熱条件に応
じ選択する。塗布される潤滑剤の特性としては融点が2
5〜80℃、沸点が180〜400℃の範囲にあるもの
が本発明の目的を果たすのに望ましい。また、塗布量は
缶外面となる面、缶内面となる面、加工条件、加工後の
加熱条件等を考慮し、決定されるべきであるが、5〜1
00mg/m2、好ましくは30〜60mg/m2 の範
囲が適している。
The high-temperature volatile lubricant applied to the upper surface of the laminated thermoplastic resin layer is used for dry drawing and ironing, which is a subject of the present invention, at a high processing rate and at a high speed.
Play an important role. In addition, the high-temperature volatile lubricant, when heated for several minutes at a temperature of about 200 ℃ after processing, 50%
It is desirable that the particles be scattered as described above. Specifically, the material is selected from liquid paraffin, synthetic paraffin, natural wax, or other simple substance, or a mixture thereof according to processing conditions and heating conditions after processing. As a characteristic of the applied lubricant, the melting point is 2
Those having a boiling point of 5 to 80 ° C and a boiling point of 180 to 400 ° C are desirable for achieving the object of the present invention. The amount of application should be determined in consideration of the surface to be the outer surface of the can, the surface to be the inner surface of the can, processing conditions, heating conditions after processing, and the like.
A range of 00 mg / m 2 , preferably 30-60 mg / m 2 is suitable.

【0025】以上のように、鋼板の化学組成、焼鈍方
法、焼鈍後の冷間圧延率、圧延板の表面粗度、表面処理
の種類、熱可塑性樹脂の特性を限定し、さらに積層され
た熱可塑性樹脂の上に高温揮発性潤滑剤を塗布すること
などにより、乾式絞りしごき加工で缶高さが缶径の2倍
程度と高く、缶壁厚さが元板厚の70〜40%程度の缶
壁の薄い缶を成形するのに適した樹脂被覆鋼板が得られ
る。
As described above, the chemical composition of the steel sheet, the annealing method, the cold rolling reduction after annealing, the surface roughness of the rolled sheet, the type of surface treatment, and the characteristics of the thermoplastic resin are limited. By applying a high temperature volatile lubricant on the plastic resin, the can height is twice as large as the can diameter by dry drawing and ironing, and the can wall thickness is about 70 to 40% of the original plate thickness. A resin-coated steel sheet suitable for forming a thin can having a can wall is obtained.

【0026】ここで、絞りしごき加工に関し、以下に説
明する。再絞り加工としごき加工を同時に行う複合加工
により、缶壁厚さの減厚を行えば、本発明の目的が極め
て効果的に達成される。本発明の樹脂被覆鋼板から、前
記複合加工を含む加工により缶高さが高く、缶壁厚さの
薄い缶を製造するためのプロセスの1態様を以下に説明
する。まず、図1に示す本発明による樹脂被覆鋼板か
ら、図2に示すように、ブランク5を打ち抜き、絞り缶
6とする工程、絞り缶6を、絞り缶6よりも缶径の小さ
い再絞り缶7とする工程、再絞り缶7をさらに図3に示
すように、缶径の小さい缶に再絞り加工しながら、同時
にしごき加工する複合加工により絞りしごき缶8とする
工程、さらに、缶上端部がトリミングし、トリム缶12
とし、次いで缶上端部をネックイン(缶径を縮小する加
工)、フランジ加工し、図4に示す最終缶に仕上げられ
る。本発明の樹脂被覆鋼板が課題とする缶高さが高く、
缶壁厚さ薄い缶を得ることに関し、上記の工程におい
て、複合加工の役割も少なくなく、複合加工の概略を図
3に示すが、複合加工においては、再絞り加工ダイス1
4に続き、しごき加工部16を配置し、再絞り加工を行
いながらしごき加工を行う。このようにしごき加工部に
後方張力を効果的に付加しながらしごき加工を行うこと
により、外面の樹脂層の損傷が起こり難くなる。また、
再絞り加工部としごき加工部間の缶壁10の長さLは、
以後のネックイン加工のため厚くすべき寸法を考慮して
定める。また、再絞りダイス14、しごきダイス15の
温度は、25℃〜積層された樹脂のガラス転移温度の範
囲とすれば、本発明の課題を解決するのに効果的であ
る。ここで、熱可塑性樹脂を被覆した元板厚 0.20m
mの電解クロム酸処理鋼板を図2の加工工程にしたがっ
て加工し、トリミングした缶12の缶高さ方向の缶壁厚
さ(積層された樹脂層を剥離した鋼板のみの厚さ)分布
の一例を図5に示す。図5において、缶胴部の厚さは、
約0.120mm (元板厚に対し40%の減厚)と薄
く、缶上端部は約 0.160mm(元板厚に対し20%
の減厚)と厚く、以後のネックイン加工に適した状態と
なっている。また、図3の加工方法から容易に理解され
るが、ポンチ13の外径を、缶胴に対応する部分と、缶
上端部に対応する部分を同一とした場合、缶胴部と缶上
端部の厚み段差は缶外面側に形成され、DI缶が缶内面
側に厚み段差を有するのとは逆の状態となる。図2、図
3、図4、図5は缶外面側に厚み段差が形成される場合
の態様について示す。一方、DI缶の場合と同じく、缶
上端部に対応するポンチの外径を細くすれば、缶内面側
に厚み段差が形成されることは申すまでもない。缶外面
側に段差が存在しても、外観に殆ど影響せず、また、缶
内面側に段差が存在しても、成形後の缶のポンチの取り
外し性に殆ど影響しない。すなわち、段差が内面側、外
面側いずれに形成される場合であっても品質、製造上何
等問題となるものではない。
Here, the drawing and ironing will be described below. If the thickness of the can wall is reduced by the combined processing in which redrawing and ironing are performed simultaneously, the object of the present invention can be achieved very effectively. One embodiment of a process for producing a can having a high can height and a thin can wall thickness from the resin-coated steel sheet of the present invention by processing including the composite processing will be described below. First, as shown in FIG. 2, a blank 5 is punched from the resin-coated steel sheet according to the present invention shown in FIG. 1 to form a drawn can 6, and the drawn can 6 is redrawn in a smaller diameter than the drawn can 6. As shown in FIG. 3, the re-drawing can 7 is further re-drawn into a small-diameter can, and simultaneously the re-drawing can 7 is pressed and ironed at the same time to form a drawn and ironed can 8. Trims and trims 12
Then, the upper end portion of the can is neck-in (processing to reduce the diameter of the can), flanged, and finished in the final can shown in FIG. The can height, which is the subject of the resin-coated steel sheet of the present invention, is high,
Regarding obtaining a can having a thin can wall thickness, in the above-mentioned steps, the role of the composite processing is not limited, and the outline of the composite processing is shown in FIG.
Following 4, the ironing part 16 is arranged, and ironing is performed while performing redrawing. By performing the ironing while effectively applying the rearward tension to the ironed portion in this manner, the resin layer on the outer surface is less likely to be damaged. Also,
The length L of the can wall 10 between the redrawing part and the ironing part is:
The thickness is determined in consideration of the size to be thickened for the subsequent neck-in processing. If the temperature of the redrawing die 14 and the ironing die 15 is in the range of 25 ° C. to the glass transition temperature of the laminated resin, it is effective to solve the problem of the present invention. Here, the base plate thickness of the thermoplastic resin is 0.20 m
An example of the distribution of the can wall thickness (thickness of only the steel sheet from which the laminated resin layer has been peeled) in the can height direction of the can 12 obtained by processing the electrolytic chromic acid-treated steel sheet of m in accordance with the processing step of FIG. Is shown in FIG. In FIG. 5, the thickness of the can body is
Approximately 0.120mm (reduced by 40% of the original thickness), and the upper end of the can is approximately 0.160mm (20% of the original thickness)
) And is in a state suitable for subsequent neck-in processing. Further, as can be easily understood from the processing method of FIG. 3, when the outer diameter of the punch 13 is the same as the portion corresponding to the can body and the portion corresponding to the can upper end, the can body and the upper end of the can are provided. Is formed on the outer surface side of the can, which is the opposite state of the DI can having the thickness step on the inner surface side of the can. FIGS. 2, 3, 4, and 5 show embodiments in which a thickness step is formed on the outer surface of the can. On the other hand, as in the case of the DI can, if the outer diameter of the punch corresponding to the upper end of the can is reduced, it is needless to say that a thickness step is formed on the inner surface side of the can. Even if there is a step on the outer surface of the can, it hardly affects the appearance, and even if there is a step on the inner surface of the can, it hardly affects the removability of the punch of the can after molding. That is, even if the step is formed on either the inner surface side or the outer surface side, there is no problem in quality and manufacturing.

【0027】(実施例1)表1に示す化学組成を有する
6種類の鋼を転炉で溶製し、スラブとし熱間圧延を仕上
げ温度900℃で終了し、650℃で巻き取り、1.8
mmの熱延板とした。該熱延板を酸洗後冷間圧延し、板
厚0.18〜0.30mmの冷延板とし、それぞれ表2お
よび表3に示す焼鈍方法(CA:連続焼鈍、CA+O
A:連続焼鈍+過時効処理)で、さらに表2および表3
に示した焼鈍後圧延率で圧延し、0.18mm の板厚を
有する13種類の圧延板を作成した。これらの圧延板に
電解クロム酸処理(金属クロム量:120mg/m2
クロム水和酸化物中のクロム量:18mg/m2)を施
し、さらに以下の要領で熱可塑性樹脂を被覆した。ま
ず、これらの原板を240℃に加熱し、缶内面側となる
面にはポリエチレンテレフタレート88モル%、ポリエ
チレンイソフタレート12モル%からなる二軸延伸した
共重合ポリエステル樹脂フィルム(厚さ:25μm、面
配向係数:0.126 、融点:229℃)、缶外面側と
なる面には酸化チタン顔料を添加し白色に着色した前記
と同一組成の二軸延伸した共重合ポリエステル樹脂フィ
ルム(厚さ:20μm)を同時に積層し、直ちに水中に
浸漬冷却した。積層後、乾燥し、その両面にパラフィン
系ワックスを約50mg/m2 塗布し、以後の加工を実
施した。まず、直径160mmのブランクに打ち抜き
後、缶径が100mmの絞り缶とした。ついで再絞り加
工により缶径80mmの再絞り缶とした。この再絞り缶
を複合加工により再絞り加工と同時にしごき加工を行
い、缶径66mmの絞りしごき缶とした。この複合加工
において、缶の上端部となる再絞り加工部としごき加工
部間の間隔は20mm、再絞りダイスの肩アールは板厚
の 1.5倍、再絞りダイスとポンチのクリアランスは板
厚の 1.0倍、しごき加工部のクリアランスは元板厚の
55%、となる条件で加工した。いずれの加工において
も水系冷却、潤滑剤は使用せず、乾式で実施し、缶壁の
破断の有無、缶外面の状態、ネックイン加工性、下地の
電解クロム酸処理鋼板と被覆された樹脂層の密着性を評
価した。なおこの複合加工では、矢印方向に成形し、缶
上端部にフランジを残す状態で成形を終了し、ポンチを
後退させ、矢印と反対方向に複合成形後の缶を取り出
す。ついで、缶上端をトリミングし、ネックイン加工、
フランジ加工を施すことにより、本発明による樹脂被覆
鋼板が目的とする缶高さが高く、缶壁厚さの薄く、さら
に缶蓋を巻き締め得る状態の缶となる。缶壁の破断率、
缶外面の状態、下地鋼板と被覆された樹脂層の密着性は
以下に示す基準で評価した。 1)缶壁の破断率 ◎:0%、○:1%未満、△:1〜5% 2)缶外面の状態(きずの発生率で評価) ◎:0%、○:1%未満、△:1〜5% 3)ネックイン加工性 ◎:良好、○:しわ、疵は軽微で、実用上問題なし、
△:実用上問題あり 4)被覆された樹脂層の加工密着性(ネックイン加工後
の剥離程度で評価) ◎:良好、○:わずかに剥離するが、実用上問題なし、
△:実用上問題あり この結果を表2および表3に示す。
(Example 1) Six types of steels having the chemical compositions shown in Table 1 were melted in a converter, turned into slabs, hot-rolled at a finishing temperature of 900 ° C, and wound at 650 ° C. 8
mm hot rolled sheet. The hot-rolled sheet was pickled and then cold-rolled to obtain a cold-rolled sheet having a thickness of 0.18 to 0.30 mm. The annealing method shown in Tables 2 and 3 (CA: continuous annealing, CA + O)
A: Continuous annealing + overage treatment), and Tables 2 and 3
Then, 13 types of rolled sheets having a sheet thickness of 0.18 mm were prepared by rolling at the rolling ratios after annealing shown in (1). These rolled sheets were subjected to electrolytic chromic acid treatment (amount of chromium metal: 120 mg / m 2 ,
Chromium in hydrated chromium oxide: 18 mg / m 2 ), and coated with a thermoplastic resin in the following manner. First, these original plates were heated to 240 ° C., and a biaxially stretched copolyester resin film (thickness: 25 μm, surface: 88 mol% of polyethylene terephthalate, 12 mol% of polyethylene isophthalate) was formed on the inner surface of the can. Orientation coefficient: 0.126, melting point: 229 ° C., and biaxially stretched biaxially stretched copolyester resin film (thickness: 20 μm) of the same composition as described above colored with titanium oxide pigment and colored white on the outer surface of the can ) Were simultaneously laminated and immediately immersed in water and cooled. After lamination, drying was performed, and paraffin-based wax was applied on both sides at about 50 mg / m 2, and the subsequent processing was performed. First, after punching into a blank having a diameter of 160 mm, a drawn can having a can diameter of 100 mm was obtained. Subsequently, a redrawn can having a can diameter of 80 mm was obtained by redrawing. This redrawn can was subjected to ironing simultaneously with redrawing by composite processing to obtain a drawn and ironed can having a can diameter of 66 mm. In this combined processing, the distance between the redrawing part and the ironing part, which is the upper end of the can, is 20 mm, the shoulder radius of the redrawing die is 1.5 times the plate thickness, and the clearance between the redrawing die and the punch is the plate thickness. It was processed under the condition that the clearance of the ironed portion was 55% of the original plate thickness. Water-based cooling and lubricants were not used in any of the processes, but were carried out in a dry manner.The presence or absence of breakage of the can wall, the condition of the outer surface of the can, neck-in workability, the electrolytic chromic acid treated steel sheet as the base and the resin layer coated Was evaluated for adhesion. In this composite processing, the molding is finished in the direction of the arrow, leaving the flange at the upper end of the can, the punch is retracted, and the can after the composite molding is taken out in the direction opposite to the arrow. Then, trim the upper end of the can,
By performing the flange processing, the resin-coated steel sheet according to the present invention has a high can height, a thin can wall thickness, and a can in a state in which the can lid can be tightly wound. Can wall breakage rate,
The condition of the outer surface of the can and the adhesion between the base steel sheet and the coated resin layer were evaluated according to the following criteria. 1) Rupture rate of can wall :: 0%, ○: less than 1%, Δ: 1 to 5% 2) State of can outer surface (evaluated by flaw occurrence rate) :: 0%, 、: less than 1%, Δ : 1 to 5% 3) Neck-in workability :: good, :: wrinkles and scratches are slight, no problem in practical use,
△: Practical problem 4) Processing adhesion of the coated resin layer (evaluated by the degree of peeling after neck-in processing) ◎: Good, ○: Slight peeling, but no practical problem,
Δ: Practical problem The results are shown in Tables 2 and 3.

【0028】(実施例2)表2に示す鋼板D−2、D−
3、D−4、D−5に実施例1と同様な電解クロム酸処
理 (金属クロム量:75mg/m2、クロム水和酸化物
中のクロム量:13mg/m2) を施し、熱可塑性樹脂
積層用の原板とした。これらの電解クロム酸処理鋼板を
240℃に加熱し、缶内面側となる面にはポリエチレン
テレフタレート88モル%、ポリエチレンイソフタレー
ト12モル%からなる二軸延伸した共重合ポリエステル
樹脂フィルム (厚さ:12μm、面配向係数:0.12
6、融点:229℃)、缶外面側となる面には酸化チタ
ン顔料を添加し、白色に着色した前記と同一組成の二軸
延伸した共重合ポリエステル樹脂フィルム(厚さ:12
μm)を同時に積層し、直ちに水中に浸漬冷却した。つ
いで乾燥後、その両面にパラフィン系ワックス約50m
g/m2 塗布した。その後、実施例1と同じ条件で成形
加工を施し、実施例1ど同様な方法で評価した。この結
果を表4に示す。
(Example 2) Steel sheets D-2 and D- shown in Table 2
3, D-4 and D-5 were subjected to the same electrolytic chromic acid treatment as in Example 1 (metal chromium content: 75 mg / m 2 , chromium content in hydrated chromium oxide: 13 mg / m 2 ), and thermoplasticity was obtained. An original plate for resin lamination was used. These electrolytic chromic acid-treated steel sheets were heated to 240 ° C., and a biaxially stretched copolyester resin film comprising polyethylene terephthalate 88 mol% and polyethylene isophthalate 12 mol% (thickness: 12 μm) , Plane orientation coefficient: 0.12
6, melting point: 229 ° C.), a titanium oxide pigment was added to the outer surface of the can, and a biaxially stretched copolyester resin film (thickness: 12) having the same composition as the above and colored white
μm) were simultaneously laminated and immediately immersed in water and cooled. Then, after drying, on both sides about 50m of paraffin wax
g / m 2 . Thereafter, molding was performed under the same conditions as in Example 1, and evaluation was performed in the same manner as in Example 1. Table 4 shows the results.

【0029】(実施例3)表2に示す鋼板D−2、D−
3、D−4、D−5に実施例1と同様な電解クロム酸処
理(金属クロム量:135mg/m2 、クロム水和酸化
物中のクロム量:15mg/m2 )を施し、熱可塑性樹
脂被覆用の原板とした。これらの電解クロム酸処理鋼板
を235℃に加熱し、缶内面側となる面には上層がポリ
エチレンテレフタレート88モル%、ポリエチレンイソ
フタレート12モル%からなる共重合ポリエステル樹脂
層、下層がポリエチレンテレフタレート94モル%、ポ
リエチレンイソフタレート6モル%からなる共重合ポリ
エステル樹脂層の二軸延伸した二層の共重合ポリエステ
ル樹脂フィルム(上層の厚さ:15μm、下層の厚さ:
5μm、上層の融点:229℃、下層の融点:226
℃、上層の面配向係数:0.123、下層の面配向係
数: 0.083)を、缶外面側となる面には実施例1と
同じ組成の白色に着色した二軸延伸共重合ポリエステル
樹脂フィルム(厚さ:15μm)を同時に積層し、直ち
に水中に浸漬冷却した。ついで、乾燥後、その両面にパ
ラフィン系ワックスを約50mg/m2 塗布した。その
後、実施例1と同じ条件で成形加工を施し、実施例1と
同様な方法で評価した。この結果を表5に示す。
(Example 3) Steel plates D-2 and D- shown in Table 2
3, D-4 and D-5 were subjected to the same electrolytic chromic acid treatment as in Example 1 (the amount of chromium metal: 135 mg / m 2 , the amount of chromium in chromium hydrated oxide: 15 mg / m 2 ), and the thermoplasticity was obtained. An original plate for resin coating was used. These electrolytic chromic acid-treated steel sheets were heated to 235 ° C., and the upper layer was a copolymer polyester resin layer composed of 88 mol% of polyethylene terephthalate and 12 mol% of polyethylene isophthalate, and the lower layer was 94 mol of polyethylene terephthalate on the inner side of the can. %, A biaxially stretched copolyester resin film composed of 6% by mol of polyethylene isophthalate (thickness of upper layer: 15 μm, thickness of lower layer:
5 μm, melting point of upper layer: 229 ° C., melting point of lower layer: 226
° C, the plane orientation coefficient of the upper layer: 0.123, the plane orientation coefficient of the lower layer: 0.083), and a white colored biaxially stretched copolyester resin having the same composition as in Example 1 on the outer surface of the can. Films (thickness: 15 μm) were simultaneously laminated and immediately immersed in water and cooled. Then, after drying, about 50 mg / m 2 of paraffin wax was applied to both surfaces. Thereafter, molding was performed under the same conditions as in Example 1, and evaluation was performed in the same manner as in Example 1. Table 5 shows the results.

【0030】(実施例4)表2に示す鋼板D−2、D−
3、D−4、D−5に実施例1と同様な電解クロム酸処
理(金属クロム量:95 mg/m2、クロム水和酸化物
中のクロム量:15 mg/m2)を施し、熱可塑性樹脂
積層用の原板とした。これらの電解クロム酸処理鋼板を
240℃に加熱し、缶内面側となる面には、予めエポキ
シ・フェノール系プライマーを鋼板と接する面に乾燥重
量で0.5mg/m2塗布したポリエチレンテレフテレー
ト88モル%、ポリエチレンイソフタレート12モル%
からなる二軸延伸した共重合ポリエステル樹脂フィルム
(厚さ:20μm、面配向係数:0.126、融点:2
29℃) を、缶外面側となる面には、実施例1と同じ
組成の酸化チタン顔料を添加し、白色に着色した二軸延
伸共重合ポリエステル樹脂フィルム(厚さ:15μm)
を同時に積層し、直ちに水中に浸漬冷却した。ついで乾
燥後、その両面にパラフィン系ワックスを約50mg/
2 塗布した。その後実施例1と同じ条件で成形加工を
施し、実施例1と同様な方法で評価した。評価した結果
を、表4、表5、および表6に示したが、本発明の熱可
塑性樹脂被覆鋼板は、乾式で成形加工される、缶高さが
高く、缶壁厚さの薄い缶用に適していることがわかる。
この結果を表6に示す。
(Example 4) Steel sheets D-2 and D- shown in Table 2
3, D-4 and D-5 were subjected to the same electrolytic chromic acid treatment as in Example 1 (metal chromium content: 95 mg / m 2 , chromium content in hydrated chromium oxide: 15 mg / m 2 ) An original plate for laminating a thermoplastic resin was used. These electrolytic chromic acid-treated steel sheets were heated to 240 ° C., and polyethylene terephthalate coated with an epoxy / phenol primer in a dry weight of 0.5 mg / m 2 beforehand on the inner surface side of the can was prepared. 88 mol%, polyethylene isophthalate 12 mol%
A biaxially stretched copolyester resin film (thickness: 20 μm, plane orientation coefficient: 0.126, melting point: 2)
29 ° C.) On the surface to be the outer surface of the can, a titanium oxide pigment having the same composition as in Example 1 was added, and the biaxially stretched copolymerized polyester resin film colored white (thickness: 15 μm)
Were simultaneously immersed and cooled in water. Then, after drying, about 50 mg /
and m 2 is applied. Thereafter, molding was performed under the same conditions as in Example 1, and evaluation was performed in the same manner as in Example 1. The evaluation results are shown in Tables 4, 5 and 6, wherein the thermoplastic resin-coated steel sheet of the present invention is dry-formed, has a high can height, and has a high can wall thickness. It turns out that it is suitable for.
Table 6 shows the results.

【0031】[0031]

【表1】 [Table 1]

【0032】[0032]

【表2】 [Table 2]

【0033】[0033]

【表3】 [Table 3]

【0034】[0034]

【表4】 [Table 4]

【0035】[0035]

【表5】 [Table 5]

【0036】[0036]

【表6】 [Table 6]

【0037】[0037]

【発明の効果】本発明による乾式絞りしごき加工缶用樹
脂被覆鋼板は、缶高さが高く、缶壁厚さの薄いしごき缶
を、乾式で成形加工するのに適している。
The resin-coated steel sheet for dry drawing and ironing cans according to the present invention is suitable for dry-forming ironing cans having a high can height and a thin can wall.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による乾式絞りしごき加工缶用樹脂被覆
鋼板の、断面を示す模式図である。
FIG. 1 is a schematic view showing a cross section of a resin-coated steel sheet for dry drawing and ironing cans according to the present invention.

【図2】本発明による乾式絞りしごき加工缶用樹脂被覆
鋼板から、缶高さが高く、缶壁の薄い缶を、乾式で成形
加工する工程の一態様に関する概略図である。
FIG. 2 is a schematic view showing one embodiment of a process of dry-forming a can having a high can height and a thin can wall from a resin-coated steel plate for dry drawing and ironing cans according to the present invention.

【図3】本発明による乾式絞りしごき加工缶用樹脂被覆
鋼板から、缶高さが高く、缶壁の薄い缶を、乾式で成形
加工するのに適した、再絞り加工としごき加工を同時に
行う複合加工の一部断面の模式図である。
FIG. 3 is a drawing and ironing process simultaneously performed from a resin-coated steel sheet for a dry drawing and ironing can according to the present invention, which is suitable for dry-forming a can having a high can height and a thin can wall. It is a schematic diagram of the partial cross section of compound processing.

【図4】本発明による乾式絞りしごき加工缶用樹脂被覆
鋼板から成形された缶の断面図である。
FIG. 4 is a cross-sectional view of a can formed from a resin-coated steel plate for a dry drawing and ironing can according to the present invention.

【図5】本発明による乾式絞りしごき加工缶用樹脂被覆
鋼板から成形された缶の缶壁厚みのプロフィルの一例を
示す図である。
FIG. 5 is a view showing an example of a can wall thickness profile of a can formed from a resin-coated steel plate for a dry drawing and ironing can according to the present invention.

【符号の説明】[Explanation of symbols]

1 鋼板 2 熱可塑性樹脂層 3 電解クロム酸処理皮膜 4 高温揮発性潤滑剤 5 ブランク 6 絞り缶 7 再絞り缶 8 再絞りしごき缶 9 薄肉缶壁 10 缶上端部 11 残存フランジ 12 トリム缶 13 ポンチ 14 再絞りダイス 15 しごきダイス 16 しごき加工部 17 しわ押さえ 18 矢印 19 缶底 20 ネック L 再絞り加工部としごき加工部の間隔 DESCRIPTION OF SYMBOLS 1 Steel plate 2 Thermoplastic resin layer 3 Electrolytic chromic acid treatment film 4 High temperature volatile lubricant 5 Blank 6 Drawing can 7 Redrawing can 8 Redrawing and ironing can 9 Thin can wall 10 Can upper end 11 Residual flange 12 Trim can 13 Punch 14 Redrawing die 15 Ironing die 16 Ironing part 17 Wrinkle holder 18 Arrow 19 Can bottom 20 Neck L Distance between redrawing part and ironing part

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C25D 11/38 301 C25D 11/38 301A (58)調査した分野(Int.Cl.6,DB名) B21B 1/22 B21B 3/00 B32B 15/08 B21D 51/18 B21D 51/26 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 identification symbol FI C25D 11/38 301 C25D 11/38 301A (58) Field surveyed (Int.Cl. 6 , DB name) B21B 1/22 B21B 3 / 00 B32B 15/08 B21D 51/18 B21D 51/26

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 C量 :0.001〜0.06%、Mn量
:0.05〜0.50%、Al量:0.015〜0.13
%、Si量≦0.05%、P量≦0.03%、S量 ≦0.
03%で、残部がFeおよび不可避的不純物からなる熱
延板を、酸洗、冷間圧延、連続焼鈍後、圧延率5〜25
%で圧延し、中心線平均粗さ:0.05〜0.6μm、板
厚:0.15〜0.30mmとし、次いで電解クロム酸処
理し、その後その両面に厚さ10〜50μmの熱可塑性
樹脂を被覆し、その表面に高温揮発性潤滑剤を塗布する
ことを特徴とする乾式絞りしごき加工缶用樹脂被覆鋼板
の製造方法。
1. C content: 0.001 to 0.06%, Mn content: 0.05 to 0.50%, Al content: 0.015 to 0.13
%, Si content ≤ 0.05%, P content ≤ 0.03%, S content ≤ 0.0
A hot-rolled sheet having a balance of 03% and Fe and unavoidable impurities was subjected to pickling, cold rolling, continuous annealing, and a rolling reduction of 5 to 25.
%, The center line average roughness: 0.05 to 0.6 μm, the plate thickness: 0.15 to 0.30 mm, and then electrolytic chromic acid treatment. A method for producing a resin-coated steel sheet for dry drawing and ironing cans, which comprises coating a resin and applying a high-temperature volatile lubricant to the surface thereof.
【請求項2】 C量 :0.001〜0.06%、Mn量
:0.05〜0.50%、Al量:0.015〜0.13
%、Si量≦0.05%、P量≦0.03%、S量 ≦0.
03%で、残部がFeおよび不可避的不純物からなる熱
延板を、酸洗、冷間圧延、連続焼鈍、過時効処理後、圧
延率5〜25%で圧延し、中心線平均粗さ:0.05〜
0.6μm、板厚:0.15〜0.30mmとし、次いで
電解クロム酸処理し、その後その両面に厚さ10〜50
μmの熱可塑性樹脂を被覆し、その表面に高温揮発性潤
滑剤を塗布することを特徴とする乾式絞りしごき加工缶
用樹脂被覆鋼板の製造方法。
2. C content: 0.001 to 0.06%, Mn content: 0.05 to 0.50%, Al content: 0.015 to 0.13
%, Si content ≤ 0.05%, P content ≤ 0.03%, S content ≤ 0.0
A hot-rolled sheet having a balance of 03% and Fe and unavoidable impurities is rolled at a rolling ratio of 5 to 25% after pickling, cold rolling, continuous annealing, and overaging, and has a center line average roughness of 0%. .05-
0.6 μm, plate thickness: 0.15 to 0.30 mm, then treated with electrolytic chromic acid, and then both sides have a thickness of 10 to 50
A method for producing a resin-coated steel sheet for dry drawing and ironing cans, characterized by coating a thermoplastic resin of μm and applying a high-temperature volatile lubricant to the surface thereof.
【請求項3】 C量 :0.001〜0.06%、Mn量
:0.05〜0.50%、Al量:0.015〜0.13
%、Si量≦0.05%、P量≦0.03%、S量 ≦0.
03%を含有し、さらにNb、Ti、Bの一種、あるい
は二種を、それぞれ0.001〜0.03%、0.005
〜0.05%、0.001〜0.01%含有し、残部がF
eおよび不可避的不純物からなる熱延板を、酸洗、冷間
圧延、連続焼鈍後、圧延率5〜25%、中心線平均粗
さ:0.05〜0.6μm、板厚:0.15〜0.30mm
とし、次いで電解クロム酸処理し、その後その両面に厚
さ10〜50μmの熱可塑性樹脂を被覆し、その表面に
高温揮発性潤滑剤を塗布することを特徴とする乾式絞り
しごき加工缶用樹脂被覆鋼板の製造方法。
3. Content of C: 0.001 to 0.06%, Content of Mn: 0.05 to 0.50%, Content of Al: 0.015 to 0.13
%, Si content ≤ 0.05%, P content ≤ 0.03%, S content ≤ 0.0
Nb, Ti, and B, or 0.001 to 0.03% and 0.005%, respectively.
-0.05%, 0.001-0.01%, with the balance being F
e, and a hot-rolled sheet comprising unavoidable impurities is pickled, cold-rolled and continuously annealed, and then subjected to a rolling reduction of 5 to 25%, a center line average roughness of 0.05 to 0.6 μm, and a thickness of 0.15. ~ 0.30mm
And then subjected to electrolytic chromic acid treatment, and thereafter, both sides thereof are coated with a thermoplastic resin having a thickness of 10 to 50 μm, and a high-temperature volatile lubricant is applied to the surface thereof. Steel plate manufacturing method.
【請求項4】 前記熱可塑性樹脂が、結晶性ポリエステ
ル樹脂である請求項1〜3のいずれかに記載の乾式絞り
しごき加工缶用樹脂被覆鋼板の製造方法。
4. The method for producing a resin-coated steel sheet for a dry drawing and ironing can according to claim 1, wherein the thermoplastic resin is a crystalline polyester resin.
【請求項5】 熱可塑性樹脂層が、前記電解クロム酸処
理後に接着剤を塗布しその上に接着されることを特徴と
する請求項1〜4のいずれかに記載の乾式絞りしごき加
工缶用樹脂被覆鋼板の製造方法。
5. The dry drawing ironing can according to claim 1, wherein the thermoplastic resin layer is coated with an adhesive after the electrolytic chromic acid treatment and is adhered thereon. Manufacturing method of resin coated steel sheet.
JP2102195A 1995-01-13 1995-01-13 Manufacturing method of resin-coated steel sheet for dry drawing and ironing can Expired - Lifetime JP2937788B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2102195A JP2937788B2 (en) 1995-01-13 1995-01-13 Manufacturing method of resin-coated steel sheet for dry drawing and ironing can

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2102195A JP2937788B2 (en) 1995-01-13 1995-01-13 Manufacturing method of resin-coated steel sheet for dry drawing and ironing can

Publications (2)

Publication Number Publication Date
JPH08192202A JPH08192202A (en) 1996-07-30
JP2937788B2 true JP2937788B2 (en) 1999-08-23

Family

ID=12043387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2102195A Expired - Lifetime JP2937788B2 (en) 1995-01-13 1995-01-13 Manufacturing method of resin-coated steel sheet for dry drawing and ironing can

Country Status (1)

Country Link
JP (1) JP2937788B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170063744A (en) 2014-10-28 2017-06-08 제이에프이 스틸 가부시키가이샤 Steel sheet for two-piece can and manufacturing method therefor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110462086B (en) * 2017-03-27 2021-08-17 杰富意钢铁株式会社 Two-piece steel sheet for can and method for producing same
CN109722604B (en) * 2017-10-30 2021-02-19 宝山钢铁股份有限公司 Tin plate for two-piece spray can and manufacturing method thereof
CN113997023B (en) * 2021-11-23 2023-02-17 惠州深赛尔化工有限公司 Processing method of anti-cracking and butanone-scrubbing-resistant industrial product storage tank

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170063744A (en) 2014-10-28 2017-06-08 제이에프이 스틸 가부시키가이샤 Steel sheet for two-piece can and manufacturing method therefor

Also Published As

Publication number Publication date
JPH08192202A (en) 1996-07-30

Similar Documents

Publication Publication Date Title
US5686194A (en) Resin film laminated steel for can by dry forming
JP3046217B2 (en) Resin-coated aluminum plate for dry drawing and ironing can
JP2937788B2 (en) Manufacturing method of resin-coated steel sheet for dry drawing and ironing can
CA2142531A1 (en) Resin film laminated aluminum sheet for can by dry forming
JP3140929B2 (en) Resin-coated steel sheet for dry drawing and ironing can
JP2711947B2 (en) Method for producing resin-coated tin-plated steel sheet for thinned deep drawn cans with excellent processing corrosion resistance
JPH1191773A (en) Coated aluminum seamless can, and its manufacture
JP3887009B2 (en) Steel plate for thinned deep-drawn ironing can and manufacturing method thereof
JP2534589B2 (en) Polyester resin coated steel plate and original plate for thinned deep drawn can
JP3287764B2 (en) Resin-coated aluminum alloy plate for drawing and ironing cans
JP3949283B2 (en) Polyester resin-coated aluminum plate for seamless cans and method for producing seamless cans
JPH09285827A (en) Manufacture of drawing and ironing can
JP3270709B2 (en) Method for producing resin-coated aluminum alloy sheet for drawn ironing can
JP3270684B2 (en) Resin-coated aluminum alloy plate for drawing and ironing cans
JP2000006979A (en) Polyester resin-coated aluminum seamless can and its manufacture
JP5407279B2 (en) Easy-open can lid made of resin-coated steel sheet and method for producing the same
JP5462159B2 (en) Resin-coated steel sheet capable of providing a squeezed iron can excellent in glitter and a method for producing the same
JP2000006967A (en) Polyester resin-coated aluminum seamless can and manufacture thereof
JP2003277886A (en) Resin-coated steel sheet for shear spun can, method of producing resin-coated steel sheet for shear spun can and shear spun can produced by using the same
JP4102145B2 (en) Resin-coated steel sheet and seamless can body for dry-drawing and ironing cans
JP3318196B2 (en) Resin-coated aluminum alloy plate for drawing and ironing cans
WO1998049360A1 (en) Resin-coated aluminum alloy sheet for drawn and ironed cans
JP2000334886A (en) Laminate for can-making and seamless can using the same
JP3270710B2 (en) Method for producing resin-coated aluminum alloy sheet for drawn ironing can
JP3571753B2 (en) High-rigidity surface-treated thin steel sheet for drawing or drawing and ironing cans

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990525

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080611

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090611

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090611

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100611

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100611

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110611

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 14

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term