JP3046217B2 - Resin-coated aluminum plate for dry drawing and ironing can - Google Patents

Resin-coated aluminum plate for dry drawing and ironing can

Info

Publication number
JP3046217B2
JP3046217B2 JP7031835A JP3183595A JP3046217B2 JP 3046217 B2 JP3046217 B2 JP 3046217B2 JP 7031835 A JP7031835 A JP 7031835A JP 3183595 A JP3183595 A JP 3183595A JP 3046217 B2 JP3046217 B2 JP 3046217B2
Authority
JP
Japan
Prior art keywords
resin
aluminum plate
coated
ironing
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7031835A
Other languages
Japanese (ja)
Other versions
JPH07266496A (en
Inventor
慶一 志水
文男 国繁
厚夫 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Kohan Co Ltd
Original Assignee
Toyo Kohan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26370346&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3046217(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Toyo Kohan Co Ltd filed Critical Toyo Kohan Co Ltd
Priority to JP7031835A priority Critical patent/JP3046217B2/en
Publication of JPH07266496A publication Critical patent/JPH07266496A/en
Application granted granted Critical
Publication of JP3046217B2 publication Critical patent/JP3046217B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Details Of Rigid Or Semi-Rigid Containers (AREA)
  • Metal Rolling (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、しごき加工を含む加工
により製造するツ−ピ−ス缶用の材料に関する。詳しく
は、水、あるいは水系潤滑剤等による冷却あるいは潤滑
をすることなく、製缶後の缶の洗浄を必要としない、し
ごき加工を含む加工により薄肉缶壁のツ−ピ−ス缶を製
造するに適した熱可塑性樹脂被覆アルミニウム板および
熱可塑性樹脂被覆アルミニウム合金板に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a material for a two-piece can manufactured by processing including ironing. Specifically, a two-piece can with a thin can wall is manufactured by processing including ironing without cooling or lubricating with water or a water-based lubricant or the like, and without requiring cleaning of the can after can-making. The present invention relates to a thermoplastic resin-coated aluminum plate and a thermoplastic resin-coated aluminum alloy plate that are suitable for use.

【0002】[0002]

【従来の技術】従来、缶胴部と缶底部が一体のツ−ピ−
ス缶としては、ぶりき板、アルミニウム板、アルミニウ
ム合金板、電解クロム酸処理鋼板等を素材とするDRD
缶(Drawn and Redrawn Can)、
DI缶(Drawn andIroned can)
が、一般的であり、近年DTR缶(Draw−Thin
/Redraw Can)も実用化されている。DRD
缶は、絞り加工、再絞り加工により製造されるため、缶
高さに比例して缶壁厚みが厚くなる。それゆえ、経済性
の点から、一般的に缶高さの低い缶に適用され、下地金
属板としては電解クロム酸処理鋼板、ぶりき、アルミニ
ウム合金板が用いられている。一方、絞り加工後、しご
き加工され製造されるDI缶は、その缶壁厚みが元板厚
の1/3程度とされ得るため、缶高さの高い缶にも経済
的に適用され、現在ぶりき、アルミニウム合金板が用い
られている。またDRD缶とDI缶では、DRD缶の場
合は予め有機皮膜が被覆された金属板が絞り加工される
のに対し、DI缶の場合はしごき加工後、塗装される点
が異なる。これは、DRD加工とDI加工では加工度お
よび加工時の応力状態が大きく異なるためである。有機
皮膜被覆金属板を、加工度および缶壁への面圧が極めて
大きな加工であるDI加工に適用した場合、有機皮膜の
金型への焼き付き、内外面の有機皮膜の損傷などのた
め、実用化には至っていない。一方、DTR缶は、再絞
り加工時のダイスの肩ア−ルを小さなものとし、その肩
部での曲げ、曲げ戻しを大きな引っ張り力を加えながら
行い、缶壁を薄くする加工によって製造される。DTR
缶の場合、絞り加工に酷似する加工によるものではある
が、缶壁を、引き伸ばし加工するため、缶壁は元板厚よ
りは若干薄いものとなる。また、しごき加工のように、
ダイスとポンチ間で缶壁に大きな面圧が負荷されること
がないために、有機皮膜への負荷がそれほど大きくな
く、有機皮膜の損傷を起こしにくいため有機皮膜被覆金
属板が適用でき、現在電解クロム酸処理鋼板に熱可塑性
樹脂を被覆したものが工業的に実施されている。しかし
ながらDTR缶の場合は、引っ張り力を主体とした加工
によるため、加工時、缶壁の破断が起こり易く、缶壁厚
みは元板厚の80%程度であり、DI缶に比べ厚いもの
となっている。ここで、下地金属板としてアルミニウム
合金板が実用化されていないのは、曲げ、曲げ戻し加工
により薄肉化する方法に電解クロム酸処理鋼板ほど適し
ていないことに起因する。
2. Description of the Related Art Conventionally, a cane body and a can bottom have been integrated into one piece.
DRD made of tinplate, aluminum plate, aluminum alloy plate, electrolytic chromic acid treated steel plate, etc.
Cans (Drawn and Reddraw Can),
DI can (Drawn and Ironed can)
However, in recent years, DTR cans (Draw-Thin
/ Redraw Can) has also been put to practical use. DRD
Since the can is manufactured by drawing and redrawing, the thickness of the can wall increases in proportion to the height of the can. Therefore, from the viewpoint of economy, it is generally applied to cans having a low can height, and as a base metal plate, an electrolytic chromic acid-treated steel plate, tinplate, and an aluminum alloy plate are used. On the other hand, DI cans that are manufactured by drawing and ironing after drawing can be economically applied to cans with a high can height because the wall thickness of the can can be reduced to about 1/3 of the original plate thickness. In this case, an aluminum alloy plate is used. Further, the DRD can and the DI can are different in that the metal plate previously coated with the organic film is drawn in the case of the DRD can, whereas the DI can is painted after ironing. This is because the degree of processing and the stress state during processing are greatly different between DRD processing and DI processing. When the metal sheet coated with an organic film is applied to DI processing, which is a processing with extremely high processing degree and surface pressure on the can wall, it is practically used due to seizure of the organic film on the mold and damage to the organic film on the inner and outer surfaces. It has not been converted. On the other hand, DTR cans are manufactured by making the shoulder radius of the dies at the time of redrawing small, performing bending and unbending at the shoulders while applying a large tensile force, and thinning the can wall. . DTR
In the case of a can, it is a process very similar to drawing, but since the can wall is stretched, the can wall is slightly thinner than the original plate thickness. Also, like ironing,
Since a large surface pressure is not applied to the can wall between the die and the punch, the load on the organic film is not so large, and the organic film is hardly damaged. A chromic acid-treated steel sheet coated with a thermoplastic resin is industrially used. However, in the case of DTR cans, since the process is mainly performed by tensile force, the can wall is easily broken during processing, and the can wall thickness is about 80% of the original plate thickness, which is larger than the DI can. ing. Here, the reason that an aluminum alloy plate has not been put to practical use as a base metal plate is that it is not as suitable as a method of electrolytic chromic acid-treated steel plate for a method of thinning by bending and bending back.

【0003】以上述べた如く、DRD缶、DI缶および
DTR缶、およびそれらの製缶方法はそれぞれ一長一短
を有する。ここで、本発明は、DI缶のように缶高さ
が、缶径の2倍程度と高く、かつ缶壁厚みが、元板厚の
70〜30%程度の厚さの缶を得るのに適した両面有機
樹脂被覆金属板を提供することにあり、とりわけ本発明
が重要とする点は、このような缶を製造する加工におい
て、現在、DI缶の製造において冷却、潤滑のため使用
されているエマルジョン系、水溶性潤滑剤等の使用を省
略できる有機樹脂被覆金属板を提供することにある。予
め有機樹脂を被覆した金属板を用いることにより、製缶
工程での塗装焼き付けの省略、溶剤飛散を防止すること
ができ、冷却剤および潤滑剤の不使用により、以後の洗
浄、乾燥、廃液処理等が省略できる。すなわち、本発明
は、経済性に優れ、かつ環境保護に適する素材を提供す
ることにある。ここで、このような水系冷却、潤滑剤を
用いず、製缶後の缶の洗浄を必要としない、缶高さが高
く、かつ缶壁厚みの薄い缶をもたらし得る有機皮膜被覆
金属板に関する開示は見受けられず、勿論、そのような
缶、および缶の製造に関する開示も見受けられない。本
発明と目的を同じくするものではないが、関連するもの
として以下のようなものがある。特開昭62−2751
72号は、ツ−ピ−ス缶用有機樹脂被覆金属板に関する
ものであるが、しごき加工において加工の厳しい外面側
に関し、ク−ラント(水系冷却、潤滑剤)の保持性を高め
るとことを課題の一つとしている。このことは水系冷
却、潤滑剤の使用を前提としたものであり、本発明の目
的とは大きく異なるものである。また、特公表平2−5
01638号も金属シ−トの一方、または両方の面にポ
リエステルフィルムを積層したものをDI缶に加工する
ものであるが、この金属板のDI成形においては、製缶
後の缶の洗浄工程が簡略化されているものの、製缶後の
缶の洗浄を必要とする潤滑剤の使用を絞り工程で必要と
しており、製缶後の缶の洗浄が全く排除されたものでは
ないと考えられる。また、特開平4−91825号は、
熱可塑性樹脂被覆金属板を水系冷却、潤滑剤を用いるこ
となく、すなわち高温揮発性潤滑性物質を潤滑剤とし、
曲げ、曲げ戻しにより薄肉化するものであるが、実施例
に示される如く、薄肉化の程度は20%程度と、本発明
の目標とする値に比べ小さいものである。
As described above, DRD cans, DI cans and DTR cans, and their methods of making can each have advantages and disadvantages. Here, the present invention is intended to obtain a can having a can height as high as about twice the can diameter and a can wall thickness of about 70 to 30% of the original plate thickness like a DI can. It is an object of the present invention to provide a suitable double-sided organic resin-coated metal plate, and in particular, it is important to provide a process for producing such a can, which is currently used for cooling and lubrication in the production of DI cans. It is an object of the present invention to provide an organic resin-coated metal plate which can omit the use of an emulsion system, a water-soluble lubricant or the like. The use of a metal plate pre-coated with an organic resin eliminates the need to bake the paint during the can-making process and prevents the scattering of solvents, and eliminates the use of coolants and lubricants, allowing subsequent washing, drying and waste liquid treatment. Etc. can be omitted. That is, an object of the present invention is to provide a material which is excellent in economy and suitable for environmental protection. Here, an organic film-coated metal plate capable of providing a can having a high can height and a thin can wall thickness without using such water-based cooling, using a lubricant, and not requiring cleaning of the can after can manufacturing is disclosed. And, of course, no disclosure of such cans and their manufacture. Although not having the same purpose as the present invention, the following are related. JP-A-62-2751
No. 72 relates to an organic resin-coated metal plate for a two-piece can, and it is intended to improve the retention of a coolant (water-based cooling, lubricant) on the outer surface side where ironing is difficult. This is one of the issues. This presupposes the use of water-based cooling and the use of a lubricant, which is greatly different from the object of the present invention. Special publication 2-5
No. 01638 also processes a sheet obtained by laminating a polyester film on one or both sides of a metal sheet into a DI can. In the DI molding of this metal sheet, the washing step of the can after the can-making is carried out. Although simplified, the use of a lubricant that requires cleaning of the can after the can is required in the squeezing step, and it is considered that cleaning of the can after the can is not completely excluded. Also, JP-A-4-91825 discloses that
Water-based cooling of the thermoplastic resin coated metal plate, without using a lubricant, that is, a high-temperature volatile lubricating substance as a lubricant,
Although the thickness is reduced by bending and unbending, as shown in the examples, the degree of thinning is about 20%, which is smaller than the target value of the present invention.

【0004】[0004]

【発明が解決しようとする課題】本発明は、缶高さが缶
径の2倍程度と高く、かつ缶壁の厚みが元板厚の70〜
30%程度の厚さのツ−ピ−ス缶を、水系冷却、潤滑剤
を用いることなく(以下乾式という)、成形可能ならし
める有機皮膜被覆金属板を提供することを目的とする。
缶壁厚を70〜30%の厚さに薄肉化することにより、
薄肉化の程度に比例して缶高さは高くなる。この点は、
本発明の目的に叶うものではあるが、薄肉化の程度が増
大するに従い、缶壁外面と金型の凝着、表面皮膜の損
傷、缶壁破断が起こり易くなる。特に、水系冷却、潤滑
剤を使用しないことを特徴とする本発明においては、缶
外面の有機皮膜の損傷、それに起因する破断が起こり易
く、これらを防止することが最大の課題となる。また、
加工度が高くなるに従い、下地金属板と被覆樹脂の密着
性が低下するが、十分な密着性を確保することも本発明
の課題とする点である。
According to the present invention, the height of the can is as high as about twice the diameter of the can and the thickness of the can wall is 70 to 70 times the original plate thickness.
An object of the present invention is to provide an organic film-coated metal sheet that can be formed into a 30-inch thick two-piece can without using water-based cooling or a lubricant (hereinafter referred to as a dry method).
By reducing the thickness of the can wall to 70-30%,
The can height increases in proportion to the degree of thinning. This point
Although satisfying the object of the present invention, as the degree of thinning increases, adhesion of the mold to the outer surface of the can wall, damage to the surface film, and breakage of the can wall are more likely to occur. In particular, in the present invention, which is characterized by using water-based cooling and not using a lubricant, damage to the organic film on the outer surface of the can and rupture due to the damage are liable to occur. Also,
As the degree of processing increases, the adhesion between the base metal plate and the coating resin decreases, but it is also an object of the present invention to ensure sufficient adhesion.

【0005】[0005]

【課題を解決するための手段】本発明は、缶壁厚みの薄
いツ−ピ−ス缶への乾式での加工が容易であり、加工さ
れた缶が、十分な耐圧強度、耐食性を有し、加工された
のちも金属板と被覆樹脂の密着性が十分である有機樹脂
被覆金属板を提供することにある。容器用金属板の種類
としては、鋼板(電解クロム酸処理鋼板、ぶりき板
等)、アルミニウム板、アルミニウム合金板(以下、ア
ルミニウム板、アルミニウム合金板を総称してアルミニ
ウム板という)があるが、乾式加工性の点で変形強度の
低いアルミニウム板が優れると考え本発明の対象をアル
ミニウム板に限定し研究を行った。そしてこの乾式加工
性を高め、缶の強度を本発明の目的に適するものとする
ため、アルミニウム板の降伏強度を15〜50kg/mm2
抗張力を15〜55kg/mm2、板厚を0.15〜0.50m
m、降伏比を0.7以上、1未満とする。また、アルミ
ニウム板と被覆樹脂との加工後の密着性を問題なきもの
とするため、アルミニウム板に表面処理を施し、さらに
密着性をより優れたものとするために、アルミニウム板
の結晶粒径を10〜50μm、中心線平均粗さを0.0
5〜0.7μmとする。また、被覆する樹脂は熱可塑性
樹脂は、なかでも結晶性ポリエステル樹脂が好ましく、
その厚みは5〜50μm、融点は180〜260℃を好
適範囲とするが、これらのことにより、乾式加工性、お
よび加工後の耐食性が優れたものとなる。その樹脂の種
類としてはポリエチレンテレフタレ−ト樹脂、エチレン
テレフタレ−ト単位を主体とする共重合樹脂等が適す
る。また、熱可塑性樹脂の表面に高温揮発性潤滑剤を塗
布するのは乾式加工性を高めるためであり、該高温揮発
性潤滑剤は成形後の加熱により除去することができ、脱
脂、水洗、乾燥等の工程を省略することができる。以上
のようにアルミニウム板および被覆樹脂の特性を定め、
高温揮発性潤滑剤の塗布等により、乾式加工性、缶強
度、加工後の密着性、耐食性に優れた乾式絞りしごき樹
脂被覆アルミニウム板が得られる。ここで、乾式加工を
より大きな加工度で問題なく実施するためには、加工方
法についても本発明の目的に適するものとすることが望
ましい。本発明は乾式加工性、缶強度、加工後の密着
性、耐食性に優れた樹脂被覆アルミニウム板を提供する
ことを目的とするものであるが、本発明の樹脂被覆アル
ミニウム板の加工を、再絞り加工としごき加工を特定の
条件下で行う加工方法、すなわち、内外面皮膜の損傷、
および缶壁破断の起こりにくい減厚加工法で加工するこ
とにより、本発明の樹脂被覆アルミニウム板の特徴がよ
り効果的に発揮される。
SUMMARY OF THE INVENTION According to the present invention, dry can be easily processed into a two-piece can having a thin can wall, and the processed can has sufficient pressure resistance and corrosion resistance. Another object of the present invention is to provide an organic resin-coated metal plate having sufficient adhesion between the metal plate and the coating resin even after being processed. Examples of the type of container metal plate include a steel plate (electrolytic chromic acid-treated steel plate, tinplate, etc.), an aluminum plate, and an aluminum alloy plate (hereinafter, the aluminum plate and the aluminum alloy plate are collectively referred to as an aluminum plate). Considering that an aluminum plate having a low deformation strength is superior in terms of dry workability, the present invention was limited to the aluminum plate and studied. In order to enhance the dry processability and make the strength of the can suitable for the purpose of the present invention, the yield strength of the aluminum plate is set to 15 to 50 kg / mm 2 ,
Tensile strength 15-55kg / mm 2 , thickness 0.15-0.50m
m, the yield ratio is 0.7 or more and less than 1. Further, in order to make the adhesion between the aluminum plate and the coating resin after processing no problem, the aluminum plate is subjected to a surface treatment, and in order to further improve the adhesion, the crystal grain size of the aluminum plate is reduced. 10 to 50 μm, center line average roughness 0.0
5 to 0.7 μm. In addition, the resin to be coated is preferably a thermoplastic resin, in particular, a crystalline polyester resin,
The thickness is preferably in the range of 5 to 50 μm and the melting point is in the range of 180 to 260 ° C., but by these, the dry processability and the corrosion resistance after the process are excellent. Suitable types of the resin include polyethylene terephthalate resin and copolymer resin mainly composed of ethylene terephthalate unit. The reason for applying a high-temperature volatile lubricant to the surface of the thermoplastic resin is to enhance dry processability. The high-temperature volatile lubricant can be removed by heating after molding, and is degreased, washed with water, and dried. And other steps can be omitted. Determine the properties of the aluminum plate and coating resin as described above,
By applying a high-temperature volatile lubricant or the like, a dry drawn ironing resin-coated aluminum plate excellent in dry workability, can strength, adhesion after working, and corrosion resistance can be obtained. Here, in order to carry out the dry processing at a higher working ratio without any problem, it is desirable that the working method is also suitable for the purpose of the present invention. An object of the present invention is to provide a resin-coated aluminum plate having excellent dry workability, can strength, adhesion after processing, and corrosion resistance. Machining method in which machining and ironing are performed under specific conditions, that is, damage to inner and outer coatings,
By processing by a thickness reducing method that hardly causes can wall breakage, the characteristics of the resin-coated aluminum plate of the present invention are more effectively exhibited.

【0006】[0006]

【作用】以下に本発明の限定理由、作用などにつき詳細
に説明する。本発明は、乾式で缶壁厚を元板厚の70〜
30%に減厚加工でき、かつ缶強度、耐食性、密着性に
優れる樹脂被覆金属板を得ることを目的とし、その加工
方法をも含めて、多くの研究を重ねた結果、導き得たも
のである。本発明は、予めその両面に有機皮膜を被覆し
た金属板を乾式、かつ大きな加工度で減厚加工すること
を課題とするが、その課題を果たすにおいて一番の問題
となるのは、加工による発熱、その熱に基づく外面皮膜
の軟化、溶融、その結果としての下地金属と金型との直
接接触、さらには缶壁破断である。加工発熱は、金属板
の変形および摩擦が影響し、変形による発熱は変形抵抗
が小さいほど少なく、また図3に示す本発明が望ましい
とする複合加工におけるしごき加工においては、変形抵
抗が小さいほど面圧が低く、面圧×摩擦係数に比例する
摩擦発熱も少なくなる。また、有機皮膜の温度が同じで
あっても面圧が小さいほど皮膜損傷は軽減される。それ
ゆえ、この皮膜損傷に関し、しごき加工をうける材料の
変形抵抗は、できる限り小さい材料の方が適する。ま
た、図3におけるしごき加工に到るまでに材料は、絞り
加工、再絞り加工の加工を受けるため、加工による硬化
が少ないほうが本発明の目的に適する。以上の理由によ
り、本発明の樹脂被覆金属板の下地金属板を、アルミニ
ウム板に限定する。
The reason for the limitation and the operation of the present invention will be described in detail below. In the present invention, the can wall thickness is 70-
Aiming to obtain a resin-coated metal plate that can be reduced in thickness to 30% and that has excellent can strength, corrosion resistance, and adhesion. is there. The object of the present invention is to dry-process a metal plate coated with an organic film on both sides thereof in advance, and to reduce the thickness with a large degree of processing. Heat generation, softening and melting of the outer coating due to the heat, resulting in direct contact between the base metal and the mold, and furthermore, can wall breakage. The heat generated by the processing is affected by the deformation and friction of the metal plate, and the heat generated by the deformation is smaller as the deformation resistance is smaller. Also, in the ironing process in the composite processing shown in FIG. The pressure is low, and the frictional heat generated in proportion to the surface pressure × the coefficient of friction is also reduced. Further, even if the temperature of the organic film is the same, the film damage is reduced as the surface pressure is reduced. Therefore, with respect to this film damage, the material having the smallest possible deformation resistance suitable for ironing is more suitable. In addition, since the material is subjected to drawing and redrawing before the ironing in FIG. 3, it is more suitable for the purpose of the present invention that the material hardened by the processing is smaller. For the above reasons, the base metal plate of the resin-coated metal plate of the present invention is limited to an aluminum plate.

【0007】一方、加工後の缶は缶内が陽圧、あるいは
陰圧の状態で用いられるが、そのような圧に耐えるため
には缶底、缶壁とも一定以上の強度が必要である。とり
わけ缶内が陽圧の場合、缶底の耐圧強度が問題となる
が、耐圧強度は大略(板厚)2×降伏強度と正比例の関
係で影響するので、耐圧強度には板厚と降伏強度が影響
する。アルミニウム板の降伏強度、抗張力および板厚の
下限は、この耐圧強度を考慮して定める。また、降伏強
度、および抗張力の上限は、しごき加工時の皮膜損傷の
点から定める。上限以上であると皮膜損傷、缶壁破断が
起こり易くなる。さらに、降伏強度/抗張力で表される
降伏比を0.7以上、1未満とするのは、缶底強度に影
響する降伏強度は高く、一方、しごき加工時の皮膜損傷
に影響する加工後の変形抵抗は小さい方が、目的に適す
るためであり、その点から降伏比の上、下限を定める。
板厚の上限に関しては、耐圧の点で、0.5mm以上必
要な例は少なく、また経済的な面からも上限を0.5m
mとする。板厚の下限を0.15mmに限定したのは、
均一な厚さのアルミニウム板を連続的に安定して高速生
産する点からであり、あえて下限を限定することはな
い。
[0007] On the other hand, the processed can is used in a state where the pressure inside the can is positive or negative, and in order to withstand such pressure, both the can bottom and the can wall must have a certain strength. In particular, when the pressure inside the can is positive, the pressure strength of the bottom of the can becomes a problem, but the pressure strength is roughly (plate thickness) 2 × Yield strength. Influences. The lower limit of the yield strength, tensile strength and thickness of the aluminum plate is determined in consideration of the pressure resistance. Further, the upper limit of the yield strength and the tensile strength is determined from the viewpoint of film damage during ironing. If it is more than the upper limit, the film is likely to be damaged and the can wall is broken. Furthermore, the reason that the yield ratio expressed by yield strength / tensile strength is 0.7 or more and less than 1 is that the yield strength affecting the bottom strength of the can is high, while the yield strength after ironing affects the coating damage during ironing. The smaller the deformation resistance, the more suitable for the purpose. From that point, the upper and lower limits of the yield ratio are determined.
With respect to the upper limit of the plate thickness, there are few cases where the thickness is required to be 0.5 mm or more in terms of pressure resistance, and the upper limit is set to 0.5 m in terms of economy.
m. The lower limit of the plate thickness is limited to 0.15mm,
This is because an aluminum plate having a uniform thickness is continuously and stably produced at a high speed, and the lower limit is not intentionally limited.

【0008】次に、アルミニウム板に被覆する有機皮膜
を熱可塑性樹脂とし、好ましくは、結晶性ポリエステル
樹脂とし、その厚みを5〜50μmとし、また融点を1
80〜260℃とする理由について説明する。本発明
は、乾式での加工を前提とするが、被覆樹脂を熱可塑性
樹脂とすることにより、しごき加工時の潤滑効果がより
効果的なものとなる。しごき加工時、缶外面はしごきダ
イスとの摩擦により発熱するが、その発熱により軟化
し、潤滑作用をもたらすものと推察される。しごきダイ
スの温度を高めると潤滑作用は顕著となるが、さらに温
度を高くするとしごきダイス内の樹脂がさらに軟化し、
アルミニウム板の変形抵抗に比例した面圧に抗しきれ
ず、アルミニウム板としごきダイスが直接接触し、缶壁
破断を生じる。それゆえ熱可塑性樹脂が軟化しすぎるこ
とは好ましくなく、しごきダイスの温度を適切な温度範
囲、好ましくは、25℃〜被覆熱可塑性樹脂のガラス転
移温度とすることが望ましい。一方、被覆する熱可塑性
樹脂についても低い温度での軟化は好ましくなく、その
軟化し易さの指標として融点を用い、その融点を180
℃以上とすることにより、本発明が対象とする乾式加工
での成形性が改善される。すなわち、工業生産において
は、絞り加工としごき加工は連続で実施されるが、その
場合、加工条件によっては缶壁温度が100℃以上とな
ることがあり、樹脂の融点が低い場合は軟化あるいは溶
融し、外観が損なわれたり、缶内面にアルミニウム露出
部が生じる。さらに、樹脂が工具に付着して連続生産す
るのが困難になる。それゆえ、融点としては180℃以
上であることが望ましい。また、融点が260℃以上で
あると、加工時の軟化に基づく十分な潤滑効果が得られ
ない。以上の理由により、熱可塑性樹脂の融点の上、下
限を定める。また、熱可塑性樹脂の厚みを5〜50μm
とするが、厚みが5μm以下の場合、缶外面側に関して
は、しごきダイスと下地金属が直接接触し易く、破断の
危険が増大し、内面側に関しては、耐食性が不十分なも
のとなる。また、5μm以下になると安定した被覆作業
が難しくなる。一方、上限は、厚くなると絞り加工時、
しわが発生し易くなること、および経済性の点から50
μmを上限とする。
Next, the organic film to be coated on the aluminum plate is made of a thermoplastic resin, preferably a crystalline polyester resin, having a thickness of 5 to 50 μm and a melting point of 1 μm.
The reason for setting the temperature to 80 to 260 ° C. will be described. The present invention is premised on dry processing, but by using a thermoplastic resin as the coating resin, the lubricating effect at the time of ironing becomes more effective. During ironing, the outer surface of the can generates heat due to friction with the ironing die, but is presumed to be softened by the heat and provide a lubricating effect. If the temperature of the ironing die is increased, the lubricating effect becomes remarkable, but if the temperature is further increased, the resin in the ironing die further softens,
It cannot withstand the surface pressure proportional to the deformation resistance of the aluminum plate, and the ironing die and the ironing die come into direct contact with each other, causing the can wall to break. Therefore, it is not preferable that the thermoplastic resin is excessively softened, and it is desirable that the temperature of the ironing die be in an appropriate temperature range, preferably 25 ° C to the glass transition temperature of the coated thermoplastic resin. On the other hand, the softening of the thermoplastic resin to be coated at a low temperature is not preferable, and the melting point is used as an index of the softness.
By setting the temperature to not less than ° C., the moldability in dry processing targeted by the present invention is improved. That is, in industrial production, drawing and ironing are performed continuously. In that case, depending on the processing conditions, the can wall temperature may be 100 ° C. or higher, and if the melting point of the resin is low, the can is softened or melted. However, the appearance is impaired and an aluminum exposed portion is formed on the inner surface of the can. Furthermore, the resin adheres to the tool, making continuous production difficult. Therefore, the melting point is desirably 180 ° C. or higher. If the melting point is 260 ° C. or higher, a sufficient lubricating effect based on softening during processing cannot be obtained. For the above reasons, the upper and lower limits of the melting point of the thermoplastic resin are determined. Further, the thickness of the thermoplastic resin is 5 to 50 μm.
However, when the thickness is 5 μm or less, the ironing die and the underlying metal are likely to come into direct contact with each other on the outer surface side of the can, increasing the risk of breakage, and having insufficient corrosion resistance on the inner surface side. On the other hand, when the thickness is 5 μm or less, stable coating work becomes difficult. On the other hand, the upper limit is that when thickened,
50 from the viewpoint of easy wrinkling and economy.
μm is the upper limit.

【0009】180〜260℃の融点を有するポリエス
テル樹脂としては、ポリエチレンテレフタレ−ト、ポリ
ブチレンテレフタレ−ト、エチレンテレフタレ−ト単位
を主体とした共重合ポリエステル樹脂、ブチレンテレフ
タレ−ト単位を主体とした共重合ポリエステル樹脂、あ
るいはこれらの混合物からなるポリエステル樹脂が挙げ
られる。具体的には、75〜95モル%のポリエチレン
テレフタレ−トと5〜25モル%のポリエチレンイソフ
タレ−ト、ポリエチレンセバケ−トあるいはポリエチレ
ンアジペ−トなどからなる共重合ポリエステル樹脂、ポ
リエチレンテレフタレ−トまたは、上記の共重合ポリエ
ステル樹脂に、ポリブチレンテレフタレ−トをブレンド
したポリエステル樹脂が挙げられる。
Examples of the polyester resin having a melting point of 180 to 260 ° C. include polyethylene terephthalate, polybutylene terephthalate, copolymerized polyester resin mainly composed of ethylene terephthalate unit, and butylene terephthalate unit. Or a polyester resin composed of a mixture thereof. Specifically, a copolymerized polyester resin comprising 75 to 95 mol% of polyethylene terephthalate and 5 to 25 mol% of polyethylene isophthalate, polyethylene sebacate or polyethylene adipate, polyethylene terephthalate Tartrate or polyester resin obtained by blending polybutylene terephthalate with the above-mentioned copolymerized polyester resin can be used.

【0010】さらに、上記のポリエステル樹脂は、樹脂
を熱溶融し、押出機からアルミニウム板上に直接押し出
し積層する、あるいは常法のフィルム製膜法により作成
された未延伸無配向、あるいは延伸配向性を有するフィ
ルムを、アルミニウム板に熱融着により積層する等、の
方法によりアルミニウム板に被覆される。缶に成形加工
したのちのフィルムの耐衝撃性、腐食性の強い内容物に
対する耐透過性の観点からは、二軸延伸配向性を有する
ポリエステル樹脂フィルムを、熱融着により積層するこ
とがより好ましい。その場合、熱融着により被覆したの
ちのポリエステル樹脂フィルムの面配向係数が、アルミ
ニウム板と非接触の面(フリ−面)で、0.01〜0.
10、アルミニウム板と接触する面で0.00〜0.0
5の範囲にあるように被覆することが好ましい。すなわ
ち、被覆後のポリエステル樹脂フィルムのアルミニウム
板と接する面における面配向係数が0.05以上の場合
は被覆後のポリエステル樹脂フィルムは剥離し易くな
り、実用的ではない。
Further, the above polyester resin is heated and melted and directly extruded and laminated on an aluminum plate from an extruder, or unstretched non-oriented or stretch-oriented film formed by a conventional film forming method. Is coated on the aluminum plate by a method such as laminating a film having the above formula on the aluminum plate by heat fusion. Impact resistance of the film after forming into a can, from the viewpoint of permeation resistance to highly corrosive contents, it is more preferable to laminate a polyester resin film having biaxial orientation orientation by heat fusion. . In that case, the plane orientation coefficient of the polyester resin film after coating by thermal fusion is 0.01 to 0.
10, 0.00-0.0 on the surface that contacts the aluminum plate
It is preferable that the coating be performed so as to be in the range of 5. That is, when the plane orientation coefficient of the surface of the coated polyester resin film in contact with the aluminum plate is 0.05 or more, the coated polyester resin film is easily peeled, which is not practical.

【0011】一方、被覆後のポリエステル樹脂フィルム
のフリ−面における面配向係数が、0.01以下である
場合は、被覆後のポリエステル樹脂フィルムの二軸配向
性は殆ど消失した状態である。このような、ポリエステ
ル樹脂フィルムを被覆したアルミニウム板を絞りしごき
缶に成形しようとすると、フィルムに亀裂が発生しやす
く、耐食性、耐衝撃性が低下する。フリ−面における面
配向係数が、0.1を越えるとフィルムの展延性が乏し
くなり、加工条件が厳しくなると加工時にフィルムにク
ラックを生ずるようになる。したがって、本発明におい
て被覆後のポリエステル樹脂フィルムのフリ−面におけ
る面配向係数は0.01〜0.10の範囲にあることが
好ましく、アルミニウム板と接触する面の面配向係数は
0.00〜0.05の範囲にあることが好ましい。な
お、上記のポリエステル樹脂を接着剤層を介してアルミ
ニウム板に被覆することは腐食性の強い内容物を充填す
る缶の内面用には好ましく、その場合、被覆されるポリ
エステル樹脂層の面配向係数は、上記のように制御する
ことは特に必要としない。用いられる接着剤は公知のも
のも使用可能であるが、エポキシ基を分子内に有する熱
硬化性重合組成物がより好ましく、熱可塑性樹脂のアル
ミニウム板と接する面に塗布、乾燥しても、あるいはア
ルミニウム板の表面に塗布、乾燥してもよい。
On the other hand, when the plane orientation coefficient of the free side of the coated polyester resin film is 0.01 or less, the biaxial orientation of the coated polyester resin film has almost disappeared. When such an aluminum plate coated with a polyester resin film is squeezed and formed into an iron can, the film is liable to crack, and the corrosion resistance and impact resistance are reduced. If the plane orientation coefficient on the free surface exceeds 0.1, the extensibility of the film becomes poor, and if the processing conditions become severe, cracks occur in the film during processing. Therefore, in the present invention, the plane orientation coefficient of the free surface of the coated polyester resin film is preferably in the range of 0.01 to 0.10, and the plane orientation coefficient of the surface in contact with the aluminum plate is 0.00 to 0.10. It is preferably in the range of 0.05. In addition, it is preferable to coat the above-mentioned polyester resin on an aluminum plate via an adhesive layer for the inner surface of a can filled with highly corrosive contents. In this case, the plane orientation coefficient of the coated polyester resin layer is preferable. Does not particularly need to be controlled as described above. Known adhesives can be used as the adhesive to be used, but a thermosetting polymer composition having an epoxy group in the molecule is more preferable, and is applied to the surface of the thermoplastic resin in contact with the aluminum plate, or dried, or It may be applied to the surface of an aluminum plate and dried.

【0012】ポリエステル樹脂フィルムのアルミニウム
板と接する面、およびフリ−面における面配向係数は、
次に示す方法により決定される。まず、ポリエステル樹
脂フィルム被覆アルミニウム板を希塩酸中に浸漬し、ア
ルミニウム板を溶解させ、ポリエステル樹脂のみを回収
する。次に回収したポリエステル樹脂フィルムを、水
洗、乾燥し、屈折率計を用いてフィルムの各面(アルミ
ニウム板と接していた面およびフリ−面)における長さ
方向、幅方向、および厚さ方向のそれぞれの屈折率を測
定する。そして、フィルムの各面における面配向係数
は、つぎの式により決定される。 A=(B+C)/2−D ここでAは、フィルムの面配向係数、Bは、フィルムの
長さ方向の屈折率、Cは、フィルムの幅方向の屈折率、
Dは、フィルムの厚さ方向の屈折率を示す。上記の方法
により測定される屈折率は、フィルムの各面の表面から
5μm以内の厚さにおける平均値を示しているので、フ
ィルムの各面(アルミニウム板と接していた面およびフ
リ−面)の面配向係数を区別することが可能である。
The plane orientation coefficient of the surface of the polyester resin film in contact with the aluminum plate and the free surface are as follows:
It is determined by the following method. First, an aluminum plate coated with a polyester resin film is immersed in dilute hydrochloric acid to dissolve the aluminum plate and collect only the polyester resin. Next, the collected polyester resin film is washed with water, dried, and measured in a length direction, a width direction, and a thickness direction on each surface (the surface in contact with the aluminum plate and the free surface) using a refractometer. Measure each refractive index. Then, the plane orientation coefficient on each side of the film is determined by the following equation. A = (B + C) / 2-D where A is the plane orientation coefficient of the film, B is the refractive index in the length direction of the film, C is the refractive index in the width direction of the film,
D indicates the refractive index in the thickness direction of the film. Since the refractive index measured by the above method indicates an average value at a thickness within 5 μm from the surface of each surface of the film, the refractive index of each surface of the film (the surface in contact with the aluminum plate and the free surface) It is possible to distinguish plane orientation coefficients.

【0013】さらに、本発明においては、熱融着により
被覆したのちポリエステル樹脂フィルムのアルミニウム
板と非接触の面(フリ−面)、およびアルミニウム板と
接する面の面配向係数を好適範囲内に制御することを容
易にするために、それぞれ融点が異なる上層樹脂と下層
樹脂の二層からなる、ポリエステル樹脂フィルムを適用
することも可能である。
Further, in the present invention, after being coated by heat fusion, the plane orientation coefficient of the surface of the polyester resin film which is not in contact with the aluminum plate (free surface) and the surface which is in contact with the aluminum plate are controlled within a preferred range. In order to facilitate this, it is also possible to apply a polyester resin film composed of two layers, an upper resin and a lower resin, each having a different melting point.

【0014】上記のポリエステルフィルムのIV値(極
限粘度、固有粘度)も本発明の重要な要因の一つであ
る。IV値は分子量と正の相関関係にあり、フィルムの
剛直性および樹脂フィルムの成形性に大きな影響を与え
る因子である。すなわち、IV値が0.5以下の場合、
被覆したのちの面配向係数が好適範囲内に制御されてい
ても、絞りしごき缶に成形した後のフィルムの耐衝撃性
が乏しく、衝撃を受けた部分の内面側のフィルムに、微
細な亀裂が無数に生じ、金属部分が露出するようにな
る。また、IV値が0.70以上の場合、しごき加工時
に粘性抵抗が高く、実用上問題を生じることがある。
The IV value (intrinsic viscosity, intrinsic viscosity) of the above polyester film is also one of the important factors of the present invention. The IV value is positively correlated with the molecular weight and is a factor that has a great influence on the rigidity of the film and the moldability of the resin film. That is, when the IV value is 0.5 or less,
Even if the plane orientation coefficient after coating is controlled within a suitable range, the impact resistance of the film formed into a drawn and ironed can is poor, and fine cracks are formed in the film on the inner surface side of the impacted portion. It occurs innumerably and metal parts become exposed. When the IV value is 0.70 or more, the viscous resistance during ironing is high, which may cause a practical problem.

【0015】本発明においては、アルミニウム板の缶の
外面となる面が、顔料で着色されたポリエステル樹脂フ
ィルムで被覆されたアルミニウム板を適用することも、
美的観点から重要な要因の一つである。すなわち、缶の
外面に印刷されるデザインの鮮映性を向上させるため
に、酸化チタン系の白色顔料等をフィルムに含有させる
ことも可能である。顔料としては、無機系、有機系およ
び白色以外の色の顔料も適用可能であり、用途により選
択する。添加量が1〜20%で良好な印刷性が得られ
る。
In the present invention, it is possible to use an aluminum plate in which the outer surface of the aluminum plate can is coated with a polyester resin film colored with a pigment.
It is one of the important factors from an aesthetic point of view. That is, in order to improve the sharpness of the design printed on the outer surface of the can, a titanium oxide-based white pigment or the like can be contained in the film. As the pigments, pigments of colors other than inorganic, organic, and white are also applicable, and are selected according to the application. Good printability is obtained when the addition amount is 1 to 20%.

【0016】さらに、本発明においては、ビスフェノ−
ルAポリカ−ボネ−ト、6−ナイロン、6,6−ナイロ
ン、6−6,6−コ−ポリマ−ナイロン、6,10−ナ
イロン、7−ナイロン、12−ナイロンなどのポリアミ
ド樹脂、およびポリエチレンナフタレート等の熱可塑性
樹脂を被覆したアルミニウム板を用いることも可能であ
る。またこれらの熱可塑性樹脂を単独で適用することも
可能であり、前記のポリエステル樹脂と複合された二
層、あるいは三層構造のフィルムの上層、あるいは中間
層として、またこれらの熱可塑性樹脂に前記のポリエス
テル樹脂をブレンドした樹脂からなるフィルムとして適
用することも可能である。さらに、該ブレンド樹脂の上
層として、上記のポリエステル樹脂層を設けた二層フィ
ルムからなる熱可塑性樹脂フィルムを適用することも可
能である。なお、上記のすべての熱可塑性樹脂につい
て、必要に応じ、他の特性を損なわない範囲で安定剤、
酸化防止剤、帯電防止剤、滑剤、腐食防止剤などの添加
物を樹脂中に加え得る。
Further, in the present invention, bispheno-
Polyamide resins such as Poly-A polycarbonate, 6-nylon, 6,6-nylon, 6-6,6-co-polymer nylon, 6,10-nylon, 7-nylon, 12-nylon, and polyethylene It is also possible to use an aluminum plate coated with a thermoplastic resin such as naphthalate. It is also possible to apply these thermoplastic resins alone, as a two-layer composite with the polyester resin, or as an upper layer of a three-layer structure film, or as an intermediate layer, and to these thermoplastic resins, It is also possible to apply as a film made of a resin blended with the above polyester resin. Further, as the upper layer of the blended resin, it is also possible to apply a thermoplastic resin film composed of a two-layered film provided with the above polyester resin layer. In addition, for all of the above thermoplastic resins, if necessary, stabilizers as long as other properties are not impaired,
Additives such as antioxidants, antistatic agents, lubricants, corrosion inhibitors and the like can be added to the resin.

【0017】アルミニウム板の結晶粒径、中心線平均粗
さは、熱可塑性樹脂との密着性、耐食性に影響する。本
発明においてアルミニウム板の結晶粒径はつぎのように
定義する。すなわち、アルミニウム板圧延方向に平行な
断面を観察面とし、倍率200倍の視野における3cm
×3cm(実際の寸法:150μm×150μm)の範
囲で観察されるより大きな3個の結晶粒の結晶粒径の平
均値を、アルミニウムの結晶粒径とする。ここで各結晶
粒の結晶粒径は、それぞれの結晶粒の断面の長寸法と短
寸法の平均値とする。ここで長寸法は、結晶粒の中心を
通る線分のうちの最も長い線分の長さを長寸法とする。
また、結晶粒の中心を通り、長寸法線分と直交する線分
の長さを短寸法とする。以上に示したように、アルミニ
ウム断面の観察面で観察されるより大きな結晶粒の寸法
をもって結晶粒径を定義するのはつぎに示す理由によ
る。すなわち、アルミニウムの結晶粒が全て同一の直径
を有する球体である、と仮定したとき、その断面におい
ては各結晶粒の断面は種々の直径の円として観察され
る。これらの種々の直径の円のうち、最大のものが球体
の直径、すなわち真の結晶粒径となる。このことから、
アルミニウム断面の観察面で観察されるより大きな結晶
粒の寸法をもってアルミニウム板の結晶粒と定義する。
本発明においては結晶粒径が50μm以上であると、絞
り加工において肌荒れを生じ、密着性を低下させるとと
もに、樹脂皮膜の欠陥も生じやすく、耐食性を悪化させ
る。また、結晶粒径が10μm以下になると硬質化する
こと、および製造する上で、急速加熱を必要とする等、
設備面での制約がある。
The crystal grain size and the center line average roughness of the aluminum plate affect the adhesion to the thermoplastic resin and the corrosion resistance. In the present invention, the crystal grain size of the aluminum plate is defined as follows. That is, a cross section parallel to the rolling direction of the aluminum plate was set as an observation surface, and 3 cm in a visual field at a magnification of 200 times.
The average value of the crystal grain diameters of three larger crystal grains observed in a range of × 3 cm (actual size: 150 μm × 150 μm) is defined as the crystal grain diameter of aluminum. Here, the crystal grain size of each crystal grain is an average value of the long dimension and the short dimension of the cross section of each crystal grain. Here, the long dimension is the length of the longest line segment among the line segments passing through the center of the crystal grain.
The length of a line passing through the center of the crystal grain and orthogonal to the long dimension line is defined as a short dimension. As described above, the crystal grain size is defined based on the larger crystal grain size observed on the observation surface of the aluminum cross section for the following reason. That is, assuming that all the aluminum crystal grains are spheres having the same diameter, the cross section of each crystal grain is observed as a circle having various diameters in the cross section. Of these circles of various diameters, the largest is the diameter of the sphere, that is, the true grain size. From this,
The crystal grain of the aluminum plate is defined as the larger crystal grain size observed on the observation surface of the aluminum cross section.
In the present invention, when the crystal grain size is 50 μm or more, roughening is caused in the drawing process, the adhesion is reduced, and a defect of the resin film is liable to occur, thereby deteriorating the corrosion resistance. In addition, when the crystal grain size becomes 10 μm or less, it becomes hard, and in manufacturing, rapid heating is required.
There are restrictions on facilities.

【0018】また、中心線平均粗さに関しては、0.7
μm以上であると、加工条件によっては密着性が問題と
なる場合があり、0.7μmを上限とした。また下限は
性能面からではなく、経済的に0.05μm以下のもの
を製造するのが困難であり、この点から下限は0.05
μmが望ましい。
Further, regarding the center line average roughness, 0.7
If it is not less than μm, adhesion may become a problem depending on the processing conditions, and the upper limit is set to 0.7 μm. In addition, the lower limit is not from the performance point of view, but it is difficult to economically produce the one having a thickness of 0.05 μm or less.
μm is desirable.

【0019】アルミニウム板には、被覆する樹脂皮膜と
の十分な密着性を得るために、表面処理を施す。表面処
理は、化成処理、電解クロム酸処理、陽極酸化処理から
選択する。化成処理の種類としては、クロム酸塩系、燐
酸−クロム酸塩系、ノンクロメ−ト系等から、加工条
件、処理設備を考慮して選択する。皮膜量は、化成処理
の種類にもよるが、5〜100mg/m2 の範囲内が好
ましい。また、さらに密着性が要求される場合は、電解
クロム酸処理、陽極酸化処理などが適する。
The aluminum plate is subjected to a surface treatment in order to obtain sufficient adhesiveness with the resin film to be coated. The surface treatment is selected from chemical treatment, electrolytic chromic acid treatment, and anodizing treatment. The type of chemical conversion treatment is selected from chromate-based, phosphoric acid-chromate-based, non-chromate-based, etc. in consideration of processing conditions and processing equipment. The coating amount depends on the type of chemical conversion treatment, but is preferably in the range of 5 to 100 mg / m 2 . Further, when further adhesiveness is required, electrolytic chromic acid treatment, anodizing treatment and the like are suitable.

【0020】熱可塑性樹脂の表面に塗布する高温揮発性
潤滑剤は、本発明が課題とする乾式加工を高加工度で、
かつ高速で実施するに際し、重要な役割を果たす。ま
た、高温揮発性潤滑剤は、加工後に施される200℃程
度で数分の加熱で、50%以上飛散することが望まし
く、具体的には、流動パラフィン、合成パラフィン、天
然ワックス等の単体、あるいは、これらの混合物から加
工条件、加工後の加熱条件に応じ選択する。潤滑剤の特
性としては融点が25〜80℃で、沸点が180〜40
0℃の範囲にあるものが本発明の目的を果たすに望まし
い。また塗布量としては、5〜100mg/m2、望ま
しくは30〜60mg/m2塗布する。この塗布量の選
定においては、缶外面となる面、缶内面となる面等も考
慮する。
The high-temperature volatile lubricant to be applied to the surface of the thermoplastic resin has a high degree of workability in dry processing which is an object of the present invention,
It plays an important role in running at high speed. In addition, it is desirable that the high-temperature volatile lubricant is scattered by 50% or more by heating at about 200 ° C. for several minutes after processing, and specifically, a simple substance such as liquid paraffin, synthetic paraffin, and natural wax. Alternatively, it is selected from these mixtures according to the processing conditions and the heating conditions after the processing. The lubricant has a melting point of 25 to 80 ° C and a boiling point of 180 to 40.
Those in the range of 0 ° C. are desirable to achieve the purpose of the present invention. As the coating amount, 5~100mg / m 2, preferably 30-60 mg / m 2 is applied. In selecting the coating amount, the surface to be the outer surface of the can and the surface to be the inner surface of the can are also taken into consideration.

【0021】以上のように、アルミニウム板の特性、熱
可塑性樹脂の特性を限定し、熱可塑性樹脂の表面に高温
揮発性潤滑剤を塗布すること等により、缶高さが缶径の
2倍程度と高く、缶壁厚が元板厚の70〜30%程度の
缶壁の薄い缶を、乾式の絞りしごき加工により、成形す
るに適する樹脂被覆アルミニウム板となる。ここで、絞
りしごき加工に関し、以下に説明する、再絞り加工とし
ごき加工を同時に行う複合加工を適用し、缶壁厚みの減
厚を行うことにより、本発明の樹脂被覆アルミニウム板
の目的とするところが、極めて効果的に達成される。
As described above, by limiting the properties of the aluminum plate and the properties of the thermoplastic resin and applying a high-temperature volatile lubricant to the surface of the thermoplastic resin, the can height is about twice the can diameter. Thus, a thin can with a can wall thickness of about 70 to 30% of the original plate thickness can be formed into a resin-coated aluminum plate suitable for molding by dry drawing and ironing. Here, with respect to the drawing and ironing, the composite processing of simultaneously performing the redrawing and the ironing described below is applied, and by reducing the thickness of the can wall, the object of the resin-coated aluminum plate of the present invention is achieved. However, it is achieved very effectively.

【0022】前記の複合加工を含む加工により、本発明
の樹脂被覆アルミニウム板を、缶高さが高く、壁厚の薄
い缶に製造するプロセスの一態様を以下に説明する。ま
ず、図1に示す樹脂被覆アルミニウム板から、図2に示
すようにブランク5に打ち抜き、絞り缶6とする工程、
絞り缶6を、絞り缶6よりも缶径の小さい再絞り缶7と
する工程、再絞り缶7をさらに図3に示すように、径の
小さい缶に再絞り加工しながら、同時にしごき加工する
複合加工により絞りしごき缶8とする工程、さらには、
缶上端部がトリミングされトリム缶12とされ、ついで
缶上端部をネックイン(缶径を縮小する加工)、フラン
ジ加工し、図4に示す最終缶に仕上げられる。本発明の
樹脂被覆アルミニウム板が課題とする缶高さが高く、壁
厚が薄い缶を得ることに関し、上記工程の中で、複合加
工の役割も少なくなく、複合加工の概略を図3に示す
が、複合加工においては、再絞り加工ダイス14に続
き、しごき加工部16を配置し、再絞り加工を行いなが
らしごき加工を行う。このようにしごき加工部に後方張
力を、効果的に付加しながら、しごき加工を行うことに
より、外面の被覆樹脂の損傷が起こり難くなる。また再
絞り加工部としごき加工部間の缶壁10の長さLは、以
後のネックイン加工のため、厚くすべき寸法を考慮して
定める。また、再絞りダイス14、しごきダイス15の
温度は、25℃〜被覆樹脂皮膜のガラス転移温度の範囲
とすれば、本発明の課題を解決するにより効果的とな
る。ここで元板厚0.25mmのアルミニウム板を図2
の加工工程に従って加工し、トリミングした缶12の缶
高さ方向の缶壁厚さ(被覆した樹脂層を剥離したアルミ
ニウム板の厚さ)分布の一例を図5に示す。図5におい
て、缶胴部の厚さは0.14mm(元板厚に対し40%
の減厚)であり、缶上端部は約0.20mm(元板厚に
対し20%の減厚)と厚く、以後のネックイン加工に適
した状態となっている。また、図3の加工方法から容易
に理解されるが、ポンチ13の外径を、缶胴に対応する
部分と、缶上端部に対応する部分を同一とした場合、缶
胴部と缶上端部の厚み段差は缶外面側に形成され、DI
缶が缶内面側に厚み段差を有するのとは逆の状態とな
る。図2、図3、図4、図5は、缶外面側に厚み段差が
形成される場合の態様について示す。一方、DI缶の場
合と同じく、缶上端部に対応するポンチの外径を細くす
れば、缶内面側に厚み段差が形成されることは申すまで
もない。缶外面側に段差が存在しても、外観に殆ど影響
せず、また、缶内面側に段差が存在しても、成形後の缶
のポンチの取り外し性に殆ど影響しない。すなわち、段
差が内面側、外面側いずれに形成される場合であっても
品質、製造上何等問題となるものではない。
An embodiment of a process for producing the resin-coated aluminum plate of the present invention into a can having a high can height and a thin wall by the processing including the above-described composite processing will be described below. First, as shown in FIG. 2, a blank 5 is punched from the resin-coated aluminum plate shown in FIG.
A step of turning the drawn can 6 into a redrawn can 7 having a smaller can diameter than the drawn can 6, and simultaneously ironing while redrawing the redrawn can 7 into a small diameter can as shown in FIG. The process of drawing and ironing can 8 by combined processing,
The upper end of the can is trimmed to be a trim can 12, and then the upper end of the can is neck-in (processing to reduce the diameter of the can) and flanged to finish the final can shown in FIG. In relation to obtaining a can having a high can height and a thin wall thickness, which is a subject of the resin-coated aluminum plate of the present invention, the role of the composite processing in the above steps is not small, and the outline of the composite processing is shown in FIG. However, in the composite machining, an ironing part 16 is arranged following the redrawing die 14, and ironing is performed while performing redrawing. By performing the ironing while effectively applying the rearward tension to the ironed portion in this way, the coating resin on the outer surface is less likely to be damaged. Further, the length L of the can wall 10 between the redrawing portion and the ironing portion is determined in consideration of a dimension to be thickened for neck-in processing thereafter. Further, if the temperature of the redrawing die 14 and the ironing die 15 is in the range of 25 ° C. to the glass transition temperature of the coating resin film, it is more effective to solve the problem of the present invention. Here, an aluminum plate having an original plate thickness of 0.25 mm is shown in FIG.
FIG. 5 shows an example of the distribution of the can wall thickness (the thickness of the aluminum plate from which the coated resin layer is peeled off) in the can height direction of the can 12 processed and trimmed according to the processing step of FIG. In FIG. 5, the thickness of the can body is 0.14 mm (40% of the original plate thickness).
The upper end of the can is as thick as about 0.20 mm (20% smaller than the original plate thickness), which is suitable for neck-in processing thereafter. Further, as can be easily understood from the processing method of FIG. 3, when the outer diameter of the punch 13 is the same as the portion corresponding to the can body and the portion corresponding to the can upper end, the can body and the upper end of the can are provided. Is formed on the outer surface of the can, and DI
This is in a state opposite to the case where the can has a thickness step on the inner surface side of the can. FIGS. 2, 3, 4 and 5 show embodiments in which a thickness step is formed on the outer surface of the can. On the other hand, as in the case of the DI can, if the outer diameter of the punch corresponding to the upper end of the can is reduced, it is needless to say that a thickness step is formed on the inner surface side of the can. Even if there is a step on the outer surface of the can, it hardly affects the appearance, and even if there is a step on the inner surface of the can, it hardly affects the removability of the punch of the can after molding. That is, even if the step is formed on either the inner surface side or the outer surface side, there is no problem in quality and manufacturing.

【0023】[0023]

【実施例】【Example】

実施例1 表1に示す特性を有する金属板A、B、C、D、E、F
を240℃に加熱し、缶内面側、あるいは両面に、以下
の要領で熱可塑性樹脂を被覆した。缶内面側となる面に
はポリエチレンテレフタレ−ト88モル%、ポリエチレ
ンイソフタレ−ト12モル%からなる共重合ポリエステ
ル樹脂の二軸延伸フィルム(厚さ:25μm、面配向係
数:0.126、融点:229℃)、缶外面となる面に
は酸化チタン系顔料を添加し白色に着色した、前記と同
一組成の共重合ポリエステル樹脂の二軸延伸フィルム
(厚さ:15μm)を被覆し、直ちに水中に浸漬冷却し
た。被覆後乾燥し、その両面にパラフィン系ワックスを
約50mg/m2 塗布し、以後の加工を実施した。まず
直径160mmのブランクに打ち抜き後、缶径が100
mmの絞り缶とした。次いで再絞り加工により、缶径8
0mmの再絞り缶とした。この再絞り缶を複合加工によ
り、再絞り加工と同時にしごき加工を行い、缶径66m
mの絞りしごき缶とした。この複合加工において、缶の
上端部となる再絞り加工部としごき加工部間の間隔は2
0mm、再絞りダイスの肩ア−ルは板厚の1.5倍、再
絞りダイスとポンチのクリアランスは板厚の1.0倍、
しごき加工部のクリアランスは元板厚の50%なる条件
で試験した。いずれの加工においても水系冷却、潤滑剤
は使用せず、乾式で行い、缶壁破断の発生の有無、缶外
面の状態、缶内面の金属露出、下地金属と被覆樹脂の密
着性を評価した。なお、この複合加工では、矢印方向に
成形し、缶上端部にフランジを残す状態で成形を終了
し、ポンチを後退させ、矢印と反対方向に複合成形後の
缶を取り出す。次いで缶上端をトリミングし、ネックイ
ン加工、フランジ加工することにより、本発明の樹脂被
覆アルミニウム板が目的とする、缶高さが高く、缶壁が
薄く、さらに蓋を巻き締め得る状態の缶となる。缶壁の
破断率、缶外面の状態、缶内面の金属露出、下地アルミ
ニウム板と被覆樹脂の密着性は以下に示す基準で評価し
た。 1)缶壁の破断率 ◎:0%、○:10%未満、△:10%以上、30%未
満、×:30%以上 2)缶外面の状態(きずの発生率で評価) ◎:0%、○:10%未満、△:10%以上、30%未
満、×:30%以上 3)缶内面の金属露出(エナメルレーター値(ERV:
mA)で評価) ◎:0以上、0.05mA未満、○:0.05mA以
上、0.5mA未満、△:0.5mA以上、5mA未
満、×:5mA以上 4)被覆された樹脂層の加工密着性(ネックイン加工後
の剥離程度で評価) ◎:まったく剥離なし、○:わずかに剥離するが、実用
上問題ない、△:かなり剥離、×:缶上部全体が剥離
た。また、いずれの評価においても、評価対象がない場
合は、符号《−》で示した。
Example 1 Metal plates A, B, C, D, E, and F having the characteristics shown in Table 1
Was heated to 240 ° C., and a thermoplastic resin was coated on the inner surface or both surfaces of the can in the following manner. A biaxially stretched film of a copolyester resin composed of 88 mol% of polyethylene terephthalate and 12 mol% of polyethylene isophthalate (thickness: 25 μm, plane orientation coefficient: 0.126, Melting point: 229 ° C.), and the surface to be the outer surface of the can was coated with a biaxially stretched film (thickness: 15 μm) of a copolyester resin having the same composition as described above, which was colored white by adding a titanium oxide pigment. It was immersed in water and cooled. After coating, the coating was dried, and a paraffin-based wax was applied on both sides at about 50 mg / m 2, and the subsequent processing was performed. First, after punching into a blank of 160 mm in diameter,
mm drawn cans. Then, by redrawing, can diameter 8
It was a 0 mm redrawable can. The redrawing can is subjected to ironing at the same time as redrawing by composite processing, and the can diameter is 66 m.
m drawn and ironed cans. In this combined processing, the interval between the redrawing processing part which is the upper end part of the can and the ironing processing part is 2
0 mm, the shoulder radius of the redrawing die is 1.5 times the plate thickness, the clearance between the redrawing die and the punch is 1.0 times the plate thickness,
The clearance of the ironed portion was tested under the condition of 50% of the original plate thickness. In each of the processes, water-based cooling and a lubricant were not used, and a dry process was performed. The presence or absence of can wall breakage, the state of the outer surface of the can, the metal exposure on the inner surface of the can, and the adhesion between the base metal and the coating resin were evaluated. In this composite processing, the molding is finished in a state where a flange is left at an upper end portion of the can, the punch is retracted, and the can after composite molding is taken out in a direction opposite to the arrow. Next, by trimming the upper end of the can, neck-in processing, and flange processing, the resin-coated aluminum plate of the present invention is intended to have a high can, a thin can wall, and a can in a state in which the lid can be further wound. Become. The rupture rate of the can wall, the state of the outer surface of the can, the metal exposure on the inner surface of the can, and the adhesion between the base aluminum plate and the coating resin were evaluated according to the following criteria. 1) Break rate of can wall :: 0%, ○: less than 10%, Δ: 10% or more, less than 30%, ×: 30% or more 2) State of can outer surface (evaluated by the rate of occurrence of flaws) :: 0 %, ○: less than 10%, Δ: 10% or more, less than 30%, ×: 30% or more 3) Metal exposure on the inner surface of the can (enamellator value (ERV:
): 0 or more, less than 0.05 mA, :: 0.05 mA or more, less than 0.5 mA, Δ: 0.5 mA or more, less than 5 mA, ×: 5 mA or more 4) Processing of coated resin layer Adhesion (evaluated by the degree of peeling after neck-in processing) :: No peeling at all, ○: Slight peeling, but no problem in practical use, Δ: Pretty peeling, ×: The entire upper part of the can was peeled. In addition, in any of the evaluations, when there is no evaluation target, it is indicated by a symbol <<->>.

【0024】実施例2 表1に示す特性を有する金属板A、Eを240℃に加熱
し、以下の要領でその両面に熱可塑性樹脂を被覆した。
缶内面側となる面には、ポリエチレンテレフタレ−ト8
8モル%、ポリエチレンイソフタレ−ト12モル%から
なる共重合ポリエステル樹脂の二軸延伸フィルム(厚
さ:6μm、面配向係数:0.126、融点:229
℃)、缶外面となる面には酸化チタン系顔料を添加し、
白色に着色した前記と同一組成の共重合ポリエステル樹
脂の二軸延伸フィルム(厚さ:8μm)を被覆し、直ちに
水中に浸漬冷却した。被覆後、乾燥し、その両面にパラ
フィン系ワックスを約50mg/m2 塗布し、以後の加
工は、実施例1と同じ条件で行った。
Example 2 Metal plates A and E having the characteristics shown in Table 1 were heated to 240 ° C., and both surfaces were coated with a thermoplastic resin in the following manner.
Polyethylene terephthalate 8 is placed on the inner side of the can.
Biaxially stretched film of a copolymerized polyester resin consisting of 8 mol% and polyethylene isophthalate 12 mol% (thickness: 6 μm, plane orientation coefficient: 0.126, melting point: 229)
℃), titanium oxide pigment is added to the outer surface of the can,
A biaxially stretched film (thickness: 8 μm) of a copolyester resin having the same composition as the above and colored white was coated and immediately immersed in water and cooled. After coating, the coating was dried, and about 50 mg / m 2 of paraffin-based wax was applied to both surfaces, and the subsequent processing was performed under the same conditions as in Example 1.

【0025】実施例3 表1に示す特性を有する金属板A、C、を235℃に加
熱し、以下の要領でその両面に熱可塑性樹脂を被覆し
た。缶内面側となる面に上層がポリエチレンテレフタレ
−ト88モル%、ポリエチレンイソフタレ−ト12モル
%からなる共重合ポリエステル樹脂(厚さ:15μm、
融点:229℃)、下層がポリエチレンテレフタレ−ト
94モル%、ポリエチレンイソフタレ−ト6モル%から
なる共重合ポリエステル樹脂45%重量と、ポリブチレ
ンテレフタレ−ト55%を混合した樹脂からなるフィル
ム(厚さ:5μm、融点:226℃)からなる二層の二
軸延伸フィルム(面配向係数:0.123(上層)、
0.083(下層))、他の外面となる面には、実施例
1と同じ白色に着色した二軸延伸フィルム(厚さ:15
μm)を被覆し、直ちに水中に浸漬冷却した。被覆後、
乾燥し、その両面にパラフィン系ワックスを約50mg
/m2 塗布し、以後の加工は、実施例1と同じ条件で行
い、評価した。
Example 3 Metal plates A and C having the characteristics shown in Table 1 were heated to 235 ° C., and both surfaces were coated with a thermoplastic resin in the following manner. On the inner side of the can, a copolyester resin (thickness: 15 μm, upper layer comprising 88 mol% of polyethylene terephthalate and 12 mol% of polyethylene isophthalate)
(Melting point: 229 DEG C.), the lower layer of which is composed of a resin obtained by mixing 45% by weight of a copolyester resin composed of 94 mol% of polyethylene terephthalate and 6 mol% of polyethylene isophthalate, and 55% of polybutylene terephthalate. A biaxially stretched film (plane orientation coefficient: 0.123 (upper layer) composed of a film (thickness: 5 μm, melting point: 226 ° C.),
0.083 (lower layer), and the other outer surface is a white-colored biaxially stretched film (thickness: 15) as in Example 1.
μm) and immediately immersed in water and cooled. After coating,
Dry, about 50mg of paraffin wax on both sides
/ M 2 and the subsequent processing was performed under the same conditions as in Example 1 and evaluated.

【0026】実施例4 表1に示す特性を有する金属板A、E、を240℃に加
熱し、その両面に以下の要領で熱可塑性樹脂を被覆し
た。缶内面側となる面にはポリエチレンテレフタレ−ト
88モル%、ポリエチレンイソフタレ−ト12モル%か
らなる共重合ポリエステル樹脂の二軸延伸フィルム(厚
さ:25μm、面配向係数:0.126、融点:229
℃)の金属板側に、エポキシ・フェノ−ル樹脂を塗布
(乾燥重量:0.5g/m2 )したものを、また缶外面
となる面には酸化チタン系顔料を添加し白色に着色し
た、前記と同一組成の共重合ポリエステル樹脂の二軸延
伸フィルム(厚さ:10μm)を被覆し、直ちに水中に
浸漬冷却し、被覆後乾燥し、その両面にパラフィン系ワ
ックスを約50mg/m2 塗布したもの、塗布しないも
のを作成し、以後の加工を実施例1と同じく実施し、評
価した。以上の結果を、表2、表3、表4に示すが、結
果から本発明の樹脂被覆アルミニウム板は、缶高さが高
く、缶壁厚みの薄い缶を乾式の加工により得るのに適し
たものであることが分かる。
Example 4 Metal plates A and E having the characteristics shown in Table 1 were heated to 240 ° C., and both surfaces were coated with a thermoplastic resin in the following manner. A biaxially stretched film of a copolyester resin composed of 88 mol% of polyethylene terephthalate and 12 mol% of polyethylene isophthalate (thickness: 25 μm, plane orientation coefficient: 0.126, Melting point: 229
℃) on the side of the metal plate, an epoxy phenol resin was applied (dry weight: 0.5 g / m 2 ), and a titanium oxide pigment was added to the outer surface of the can to be colored white. A biaxially stretched film (thickness: 10 μm) of a copolyester resin having the same composition as above was coated, immediately immersed in water and cooled, coated and dried, and coated with paraffin wax at about 50 mg / m 2 on both sides. The processed and uncoated ones were prepared, and the subsequent processing was performed and evaluated in the same manner as in Example 1. The above results are shown in Tables 2, 3, and 4. From the results, the resin-coated aluminum plate of the present invention is suitable for obtaining a can having a high can height and a thin can wall thickness by dry processing. It turns out to be something.

【0027】[0027]

【表1】 [Table 1]

【0028】[0028]

【表2】 [Table 2]

【0029】[0029]

【表3】 [Table 3]

【0030】[0030]

【表4】 [Table 4]

【0031】[0031]

【発明の効果】本発明の乾式絞りしごき樹脂被覆アルミ
ニウム板は、乾式で、缶高さが高く、缶壁厚みの薄い絞
りしごき缶を形成するに適する。
The dry drawn ironing resin-coated aluminum plate of the present invention is dry, suitable for forming a drawn ironed can having a high can height and a thin can wall.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の乾式絞りしごき缶用樹脂被覆アルミニ
ウム板の断面を示す模式図である。
FIG. 1 is a schematic view showing a cross section of a resin-coated aluminum plate for a dry draw ironing can of the present invention.

【図2】本発明の乾式絞りしごき缶用樹脂被覆アルミニ
ウム板から、乾式で、缶高さが高く、壁厚の薄い缶を成
形する工程の、一態様に関する概略図である。
FIG. 2 is a schematic view relating to one embodiment of a step of forming a dry, high-height, thin-walled can from a resin-coated aluminum plate for a dry-drawing and ironing can of the present invention.

【図3】本発明の乾式絞りしごき缶用樹脂被覆アルミニ
ウム板から、乾式で、缶高さが高く、壁厚の薄い缶を成
形するのに適する、再絞り加工としごき加工を同時に行
う複合加工の、一部断面を模式的に示す模式図である。
FIG. 3 is a composite process of simultaneously performing redrawing and ironing from a resin-coated aluminum plate for a dry drawing ironing can according to the present invention, which is suitable for forming a dry, high can, and thin wall can. 3 is a schematic view schematically showing a partial cross section of FIG.

【図4】本発明の乾式絞りしごき缶用樹脂被覆アルミニ
ウム板から成形された缶の断面図である。
FIG. 4 is a cross-sectional view of a can formed from a resin-coated aluminum plate for a dry draw-ironing can according to the present invention.

【図5】本発明の乾式絞りしごき缶用樹脂被覆アルミニ
ウム板から成形された缶の缶壁厚みのプロフィルの一例
を示す図である。
FIG. 5 is a view showing an example of a can wall thickness profile of a can formed from a resin-coated aluminum plate for a dry draw ironing can of the present invention.

【符号の説明】[Explanation of symbols]

1 アルミニウム板 2 熱可塑性樹脂 3 表面処理皮膜 4 高温揮発性潤滑剤 5 ブランク 6 絞り缶 7 再絞り缶 8 再絞りしごき缶 9 薄肉缶壁 10 缶上端部 11 残存フランジ 12 トリム缶 13 ポンチ 14 再絞りダイス 15 しごきダイス 16 しごき加工部 17 しわ押さえ 18 矢印 19 缶底 20 ネック L 再絞り加工部としごき加工部の間隔 REFERENCE SIGNS LIST 1 aluminum plate 2 thermoplastic resin 3 surface treatment film 4 high-temperature volatile lubricant 5 blank 6 drawn can 7 redrawn draw 8 redrawn drawn iron can 9 thin can wall 10 can upper end 11 remaining flange 12 trim can 13 punch 14 redrawn Die 15 Ironing die 16 Ironing part 17 Wrinkle holder 18 Arrow 19 Can bottom 20 Neck L Distance between redrawing part and ironing part

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI B65D 25/14 B65D 25/14 A C22C 21/00 C22C 21/00 E (58)調査した分野(Int.Cl.7,DB名) B32B 15/08 B21B 1/22 B21D 22/20 B65D 25/14 ──────────────────────────────────────────────────続 き Continuation of front page (51) Int.Cl. 7 identification code FI B65D 25/14 B65D 25/14 A C22C 21/00 C22C 21/00 E (58) Fields investigated (Int. Cl. 7 , DB Name) B32B 15/08 B21B 1/22 B21D 22/20 B65D 25/14

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 降伏強度が15〜50kg/mm2、抗張力が
15〜55kg/mm2、中心線平均粗さが0.05〜0.7
μm、板厚が0.15〜0.50mmの表面処理してな
るアルミニウム板、あるいはアルミニウム合金板の両面
に、厚み5〜50μmの熱可塑性樹脂を被覆した後、そ
の表面に高温揮発性潤滑剤を塗布した乾式絞りしごき加
工缶用樹脂被覆アルミニウム板。
1. Yield strength: 15 to 50 kg / mm 2 , tensile strength: 15 to 55 kg / mm 2 , center line average roughness: 0.05 to 0.7
After coating both sides of a surface-treated aluminum plate or an aluminum alloy plate having a thickness of 0.15 to 0.50 mm with a thermoplastic resin having a thickness of 5 to 50 μm, the surface is coated with a high-temperature volatile lubricant. A resin-coated aluminum plate for dry drawing and ironing cans coated with a.
【請求項2】 請求項1のアルミニウム板、あるいはア
ルミニウム合金板の結晶粒径が10〜50μm、降伏比
が0.7以上、1未満である乾式絞りしごき加工缶用樹
脂被覆アルミニウム板。
2. A resin-coated aluminum plate for a dry drawing and ironing can, wherein the aluminum plate or the aluminum alloy plate according to claim 1 has a crystal grain size of 10 to 50 μm and a yield ratio of 0.7 or more and less than 1.
【請求項3】 請求項1の熱可塑性樹脂が、結晶性ポリ
エステル樹脂である乾式絞りしごき加工缶用樹脂被覆ア
ルミニウム板。
3. A resin-coated aluminum plate for a dry drawing and ironing can, wherein the thermoplastic resin of claim 1 is a crystalline polyester resin.
【請求項4】 アルミニウム板、あるいはアルミニウム
合金板と熱可塑性樹脂の間に接着剤層が介在する請求項
1の乾式絞りしごき加工缶用樹脂被覆アルミニウム板。
4. The resin-coated aluminum plate for a dry drawing and ironing can according to claim 1, wherein an adhesive layer is interposed between the aluminum plate or the aluminum alloy plate and the thermoplastic resin.
JP7031835A 1994-02-14 1995-01-30 Resin-coated aluminum plate for dry drawing and ironing can Expired - Lifetime JP3046217B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7031835A JP3046217B2 (en) 1994-02-14 1995-01-30 Resin-coated aluminum plate for dry drawing and ironing can

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6-37507 1994-02-14
JP3750794 1994-02-14
JP7031835A JP3046217B2 (en) 1994-02-14 1995-01-30 Resin-coated aluminum plate for dry drawing and ironing can

Publications (2)

Publication Number Publication Date
JPH07266496A JPH07266496A (en) 1995-10-17
JP3046217B2 true JP3046217B2 (en) 2000-05-29

Family

ID=26370346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7031835A Expired - Lifetime JP3046217B2 (en) 1994-02-14 1995-01-30 Resin-coated aluminum plate for dry drawing and ironing can

Country Status (1)

Country Link
JP (1) JP3046217B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102858643A (en) * 2010-02-04 2013-01-02 皇冠包装技术公司 Can body
CN105745035A (en) * 2013-11-19 2016-07-06 新布里萨什肯联铝业 Method for manufacturing brilliant metal sealing caps
US9545655B2 (en) 2010-02-04 2017-01-17 Crown Packaging Technology, Inc. Can manufacture
US9555459B2 (en) 2010-04-12 2017-01-31 Crown Packaging Technology, Inc. Can manufacture

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3270709B2 (en) * 1996-04-10 2002-04-02 東洋鋼鈑株式会社 Method for producing resin-coated aluminum alloy sheet for drawn ironing can
JP3350056B2 (en) 1996-04-10 2002-11-25 東洋鋼鈑株式会社 Method of manufacturing resin-coated aluminum alloy sheet for drawn and ironed cans
DE19781716B4 (en) 1996-04-10 2009-12-10 Toyo Kohan Co., Ltd. Process for producing a resin-coated aluminum alloy sheet for drawn and ironed cans
JP2003094562A (en) * 2001-09-20 2003-04-03 Sky Alum Co Ltd Polyester resin film-coated aluminum sheet having superb adhesive properties and high heat resistance
JP2003094555A (en) * 2001-09-20 2003-04-03 Sky Alum Co Ltd Resin film-coated aluminum sheet having superb adhesive and processability and manufacturing method therefor
JP4779295B2 (en) * 2003-12-03 2011-09-28 Jfeスチール株式会社 Resin-coated metal plate for container and method for producing the same
JP5125044B2 (en) * 2006-09-25 2013-01-23 東洋製罐株式会社 Method for producing resin-coated can
JP2009078303A (en) * 2009-01-21 2009-04-16 Toyo Seikan Kaisha Ltd Apparatus for manufacturing resin coated metallic seamless can body
JP2016137626A (en) * 2015-01-27 2016-08-04 株式会社Uacj Resin coated aluminum material and manufacturing method therefor, aluminum resin conjugation material and manufacturing method therefor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102858643A (en) * 2010-02-04 2013-01-02 皇冠包装技术公司 Can body
US9334078B2 (en) 2010-02-04 2016-05-10 Crown Packaging Technology, Inc. Can manufacture
US9545655B2 (en) 2010-02-04 2017-01-17 Crown Packaging Technology, Inc. Can manufacture
US9555459B2 (en) 2010-04-12 2017-01-31 Crown Packaging Technology, Inc. Can manufacture
CN105745035A (en) * 2013-11-19 2016-07-06 新布里萨什肯联铝业 Method for manufacturing brilliant metal sealing caps

Also Published As

Publication number Publication date
JPH07266496A (en) 1995-10-17

Similar Documents

Publication Publication Date Title
JP3046217B2 (en) Resin-coated aluminum plate for dry drawing and ironing can
JP5102042B2 (en) Method of drawing and ironing resin-coated metal plate, and resin-coated drawing and ironing can using the same
EP0666168A1 (en) Resin-laminated steel sheet
WO1997035717A1 (en) Thermoplastic resin coated aluminum alloy sheet, and method and apparatus for production thereof
JP4628047B2 (en) Method of squeezing and ironing resin-coated metal plate, and resin-coated squeezing and ironing can using the same
JP3017079B2 (en) Thermoplastic resin-coated aluminum alloy sheet, method and apparatus for producing the same
JP2002347176A (en) Metal plate coated with thermoplastic resin and can using the metal plate
CA2142531A1 (en) Resin film laminated aluminum sheet for can by dry forming
JP3381137B2 (en) Coated aluminum seamless cans
JP3140929B2 (en) Resin-coated steel sheet for dry drawing and ironing can
JP2937788B2 (en) Manufacturing method of resin-coated steel sheet for dry drawing and ironing can
JP5530436B2 (en) Composite Al material for squeezing and ironing can and method for producing squeezing and ironing can
JP3655592B2 (en) Manufacturing method of Sn-plated steel sheet, Sn-plated steel sheet, resin-coated Sn-plated steel sheet obtained by coating a Sn-coated steel sheet with a resin film, and a can using the same
JP3949283B2 (en) Polyester resin-coated aluminum plate for seamless cans and method for producing seamless cans
JP5462159B2 (en) Resin-coated steel sheet capable of providing a squeezed iron can excellent in glitter and a method for producing the same
JPH09285827A (en) Manufacture of drawing and ironing can
JP2000006979A (en) Polyester resin-coated aluminum seamless can and its manufacture
JP2004106245A (en) Resin coated steel sheet for dry drawn-ironed can and seamless can body
JP3270684B2 (en) Resin-coated aluminum alloy plate for drawing and ironing cans
JP2000006967A (en) Polyester resin-coated aluminum seamless can and manufacture thereof
JPH09287044A (en) Resin coated aluminum alloy sheet for drawn and ironed can
JP3282994B2 (en) Surface treatment method of steel sheet, surface treated steel sheet, and thermoplastic resin coated steel sheet using the surface treated steel sheet
JP2581624B2 (en) Method for producing polyester resin-coated steel sheet for thinned deep drawn cans with excellent impact resistance
JP2934182B2 (en) Resin coated metal plate for thinned deep drawn cans
JPH11302898A (en) Surface treatment of steel sheet, surface treated steel sheet and thermoplastic resin coated steel sheet using surface treated steel sheet

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000307

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080317

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090317

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090317

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110317

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120317

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120317

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140317

Year of fee payment: 14

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term