JP4667722B2 - Aluminum alloy can body design method - Google Patents

Aluminum alloy can body design method Download PDF

Info

Publication number
JP4667722B2
JP4667722B2 JP2003091432A JP2003091432A JP4667722B2 JP 4667722 B2 JP4667722 B2 JP 4667722B2 JP 2003091432 A JP2003091432 A JP 2003091432A JP 2003091432 A JP2003091432 A JP 2003091432A JP 4667722 B2 JP4667722 B2 JP 4667722B2
Authority
JP
Japan
Prior art keywords
aluminum alloy
content
strength
thickness
piercing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003091432A
Other languages
Japanese (ja)
Other versions
JP2004300457A5 (en
JP2004300457A (en
Inventor
清一 平野
洋 横井
直樹 時實
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP2003091432A priority Critical patent/JP4667722B2/en
Publication of JP2004300457A publication Critical patent/JP2004300457A/en
Publication of JP2004300457A5 publication Critical patent/JP2004300457A5/ja
Application granted granted Critical
Publication of JP4667722B2 publication Critical patent/JP4667722B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Laminated Bodies (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、アルミニウム合金缶ボディの設計方法、詳しくは、絞り加工またはDI加工(絞り、しごき加工)により缶ボディに成形し塗装焼付けあるいは熱処理した場合、缶体の耐突き刺し強度に優れたアルミニウム合金缶ボディの設計方法に関する。
【0002】
【従来の技術】
アルミニウム合金板からなる飲料缶の缶ボディは、板材に塗油を施し、カップ成形、DI加工、トリミング、洗浄、乾燥、塗装、焼付け、ネッキングおよびフランジ加工の工程を経て製造されるが、飲料の充填工程、缶蓋の巻き締め工程や、飲料が充填された缶体の運搬、取扱い過程で、とくに薄肉の缶ボディが突起物に押し当てられると、缶ボディに凹みが生じ、あるいは突起物の先端が缶ボディを突き刺し、貫通して、内容物が漏洩するという問題が生じる。内容物漏洩は、とくに2000年以降の食品の安全性が強く求められる今日においては、商品として致命的な問題である。
【0003】
上記の問題を解決するために、缶ボディの壁部の引張強さを低下させて伸びを増大させて耐突き刺し性を向上させようとする手法が提案されている(特許文献1参照)が、缶ボディの壁厚が例えば0.105mm未満のように薄肉化された場合には、缶ボディとして壁部の強度が十分でなくなるという難点があり、突き刺し強度を或る水準に維持する必要から、缶ボディの壁厚の薄肉化に行き詰まりが生じており、とくに、商品の品質に厳しい我が国においては、過去10年以上も缶ボディの壁厚の薄肉化が進行しておらず、突き刺し強度の高い材料の開発が強く望まれており、缶ボディ材開発の最重要課題となっている。
【0004】
このように缶ボディ材に大きな変化が出なかった理由は、缶ボディ材として、アルミニウムにMnを添加した3000系(Al−Mn系)アルミニウム合金が使用されてきたことにある。これは、缶ボディ成形は、DI成形がベースであったため、安定量産を考慮した場合、Al−Mn−Fe−(Si)系の硬い金属間化合物を缶ボディ中に分散させ、DI成形時に金型へのアルミニウムの焼き付きを防止するダイクリーニング効果を持たせる必要があったためである。
【0005】
上記Al−Mn系アルミニウム合金に、主要合金成分としてMgを添加し強度を向上させた缶ボディ用アルミニウム合金も提案されている。Mgの添加は、耐圧強度の必要な5182合金に代表される缶エンド材と、成形性が要求される缶ボディ材を、とくにリサイクルの観点から同じ成分で得ようとする材質統合化の流れにも対応し得るものである。
【0006】
例えば、Mg:0.5〜6.0%を含有するアルミニウム合金板(特許文献2参照)、Mg:0.2〜6.0%を含有するアルミニウム合金板(特許文献3参照)、Mg:0.3〜5%を含有するアルミニウム合金板(特許文献4参照)、Mg:0.3〜4.0%を含有するアルミニウム合金板(特許文献5参照)、Mg:0.5〜5.0%を含有するアルミニウム合金板(特許文献6参照)、Mg:3.0〜6.0%を含有するアルミニウム合金板(特許文献7参照)、Mg:0.80〜6.00%を含有するアルミニウム合金板(特許文献8、特許文献9、特許文献10、特許文献11参照)が提案されている。
【0007】
しかしながら、上記のアルミニウム合金板は、Mg含有量が1%程度の従来の缶ボディ用アルミニウム合金、JIS3004合金(Al−1.0〜1.5%Mn−0.8〜1.3%Mg)、3104合金(Al−0.8〜1.4%Mn−0.8〜1.3%Mg)あるいはAA3204合金(Al−0.8〜1.5%Mn−0.8〜1.5%Mg)に比べて、強度の向上が得られるが、耐突き刺し強度の観点からは必ずしも満足できるものではない。
【0008】
【特許文献1】
特開平8−199273号公報(請求項)
【特許文献2】
特開昭58−224145号(請求項)
【特許文献3】
特開昭61−261466号(請求項)
【特許文献4】
特開昭57−120648号(請求項)
【特許文献5】
特開平5−112854号(請求項)
【特許文献6】
特開平3−207840号(請求項)
【特許文献7】
特開平4−362151号(請求項)
【特許文献8】
特開2000−309838(請求項)
【特許文献9】
特開2000−309839号(請求項)
【特許文献10】
特開2001−3130号(請求項)
【特許文献11】
特開2001−32032号(請求項)
【0009】
【発明が解決しようとする課題】
本発明は、缶の耐突き刺し性、缶材の合金成分、缶ボディの壁厚の関係について繰り返し試験を行い検討を加えた結果としてなされたものであり、その目的は、上記従来の3000系(Al−Mn系)をベースとするものではなく、Mgの添加をベースとして設計され、所定の缶体強度を有するとともに、耐突き刺し強度を向上させた缶ボディ用アルミニウム合金板から絞り加工またはDI加工により成形されるアルミニウム合金缶ボディの設計方法を提供することにある。
【0010】
【課題を解決するための手段】
上記の目的を達成するための本発明の請求項1によるアルミニウム合金缶ボディの設計方法は、Mg:1.5〜6%、Si:0.05%以上0.20%未満、Fe:0.05〜0.6%、Cu:0.02〜0.3%、Mn:0.01%以上0.40%未満を含有し、残部Alおよび不可避的不純物からなる組成を有するアルミニウム合金の冷間圧延板からDI成形または絞り成形により成形される缶ボディを下記の式1および式2を用いて設計する方法であって、該缶ボディは、塗装焼付け相当の熱処理を施された缶ボディの壁部の缶軸方向の引張強さと伸びが合金成分を調整することにより前記Mgの含有量の増加と共に向上し、塗装焼付けした後、塗膜などの表面皮膜を脱膜した後の缶ボディの壁部(壁厚:0.07mm〜0.14mm)の缶軸方向の引張強さが300MPa〜500MPa、伸びが3%〜8%であり、塗膜などの表面皮膜を脱膜した後の壁厚tに対する突き刺し強度y を式2を用いて壁厚0.105mmの缶の突き刺し強度(y 0.105 )に換算して35N以上の耐突き刺し性をそなえ、缶ボディの壁部の厚さを0.07〜0.14mmの特定の厚さにした場合の缶の突き刺し強度(y)とMgの含有量(%)との相関が式1で与えられる特性を有するものとし、式1および式2を用いて、壁部の厚さを特定することにより、所定の突き刺し強度を得るためのMg含有量決定する、または、Mg含有量を特定することにより、所定の突き刺し強度を得るための壁部の厚さを決定する、または、突き刺し強度を特定することにより、所定の壁部の厚さに対するMg含有量を決定することを特徴とする。
式1:y(N)=a×Mg含有量(%)+b(但し、a:1.5〜3、b:20〜50)
式2:y 0.105 (N)=y (N)+(0.105−t)(mm)×c(但し、c:400±100)
【0011】
請求項2によるアルミニウム合金缶ボディの設計方法は、請求項1において、前記アルミニウム合金板のMg含有量が、2〜6%であることを特徴とする。
【0016】
請求項3によるアルミニウム合金缶ボディの設計方法は、請求項1または2において、前記アルミニウム合金板のFe含有量が、0.05〜0.4%であることを特徴とする。
【0019】
請求項4によるアルミニウム合金缶ボディの設計方法は、請求項1〜3のいずれかにおいて、前記アルミニウム合金板が缶ボディに成形する前に樹脂層が被覆されてなることを特徴とする。
【0020】
【発明の実施の形態】
本発明の缶ボディ用アルミニウム合金板における合金成分の意義および限定理由は以下のとおりである。
Mg:成形される缶ボディの強度を高めるよう機能するもので、好ましい含有量は1.5%〜6%の範囲である。1.5%未満では現行条件での缶ボディの製造工程において35N以上の突き刺し強度(缶ボディの壁厚0.105mm)を得ることは容易ではない。また、Mg量の増加に伴い、熱間圧延での生産性が低下するので、とくに6%を超えての含有は、大量生産に必要な缶ボディ材を得るためには好ましくない。Mgのより好ましい含有範囲は2〜6%、さらに好ましい含有範囲は2〜5.5%、最も好ましい含有範囲は2.5%〜5%である。
【0021】
また、MgとSi、Fe、Cuなどの成分を調整することにより、Mg:1.5〜6%を主要合金成分として含有するアルミニウム合金板において、このアルミニウム合金板から成形され、塗装焼付け相当の熱処理を施された缶ボディの壁部の缶軸方向の引張強さと伸びがMgの含有量の増加と共に向上する特性をそなえたものとなり、且つ、缶の突き刺し強度35N以上(缶ボディの壁厚0.105mm)の耐突き刺し性をそなえ、缶ボディの壁厚を特定した場合、突き刺し強度がMg含有量と正の相関を持ち、特定された壁厚に対して、所定の突き刺し強度を得るためのMg含有量が決定できるようになる。
【0022】
Cu:成形される缶ボディの強度を、付加的に向上させるよう機能する。さらに、Mg含有量の増加に伴い析出し易くなるβ相(Al3 Mg2 )化合物の粒界析出を抑制し、耐食性を向上させる。好ましい含有量は0.3%以下の範囲であり、0.3%を超えて含有すると熱間圧延での生産性が低下する。Mgを2%以上含有す場合には0.02%以上の添加が好ましい。
【0023】
Si:不純物として不可避的に含まれるものである。0.4%以下の範囲とするのが好ましく、0.4%を超えると、粗大なMg2 Si金属間化合物を生成し易くなる。Siが0.05%未満では、材料の製造において99.9%以上の純度の地金の使用が多くなり、再生材を多く使用する缶ボディ材としてはリサイクルの観点から好ましくない。
【0024】
0.05〜0.4%のSiがMnとともに添加された場合、硬いAl−Mn−Si−Fe系化合物が生成し、DI成形のような成形においてはダイクリーニング効果を高めるが、缶ボディ成形前に板面を樹脂被覆する場合には、ダイクリーニング性を付与する必要はないから、Mnを積極的に添加する必要がなく、Mnが少ない場合には、Si量が多いと粒界にMg2 SiあるいはSiが析出し易くなり、曲げ加工性が低下してフランジ加工性などが阻害され易くなるため、Si含有量は0.20%未満に制限するのが好ましい。上記曲げ加工性の低下は、とくに、圧延途中に中間焼鈍を含まずに熱間圧延−冷間圧延するという標準的な缶ボディ材製造工程に従って製造された材料を、圧延方向と直角方向(90°方向)に曲げる曲げ加工において顕著にあらわれる。
【0025】
Fe:不純物として不可避的に含まれるものである。0.6%以下の範囲とするのが好ましく、0.6%を超えると、粗大なAl−Fe系金属間化合物を生成し易くなる。Feが0.05%未満では、材料の製造において99.9%以上の純度の地金の使用が多くなり、再生材を多く使用する缶ボディ材としてはリサイクルの観点から好ましくない。0.05〜0.6%の範囲のFeをMnとともに添加すると、硬いAl−Mn−Fe(Si)系化合物が生成し、DI成形においてダイクリーニング効果を高めることができる。
【0026】
Mn:成形される缶ボディの強度を付加的に向上させ、さらに、Al−Mn−Fe−(Si)系金属間化合物を分散させて、しごき加工時の金型への焼付きを防止し、しごき加工性を向上させるよう機能するもので、好ましい含有量は1.5%以下の範囲である。1.5%を超えると、Al6 Mnの粗大な晶出物が発生し、しごき加工時に破胴が生じ易くなるなど、缶ボディの成形が難しくなる。
【0027】
なお、Mnの含有範囲は、樹脂を被覆しない従来の缶ボディ用アルミニウム合金板の場合には、金型への焼付き防止の観点から0.4〜1.5%が好ましい。樹脂を被覆する缶ボディ用アルミニウム合金で、樹脂を両面に被覆する場合は、被覆樹脂の存在により金型へアルミニウム板が直接接触することがなく、また缶外面側などの片面に被覆する場合は、一方の金型にしか接触しないことから、いずれも0.01%〜0.4%未満とすることができる。
【0028】
その他の不純物:不純物として、0.3%以下のZn、0.3%以下のCr、鋳塊の結晶粒微細化材として通常添加されるTi:0.2%以下、B:0.1%以下が含有されていても、本発明の効果に影響することはない。また、上記の範囲のZn、Crを含有させることにより強度を調整することもできる。
【0029】
缶壁厚:材料強度との関係において、缶体強度、すなわち缶軸方向の強度および突き刺し強度に影響する。好ましい缶壁厚は0.07〜0.14mmであり、0.07mm未満では成形可能な材料強度の上限であっても、壁厚が薄すぎて缶体強度が不十分となり、0.14mm超えると、缶体強度は充分あるが、缶体重量が大きくなり過ぎる。必要な缶体強度を得るには、壁厚0.14mm以下で充分である。
【0030】
缶ボディの壁厚を0.07〜0.14mmに特定した場合の缶の突き刺し強度(y)とMg含有量(%)(x)との相関は下記の式で与えられる。
y(N)=ax+b(但し、a:1.5〜3、b:20〜50)
図1は、壁厚が0.10mmの場合における上記の式に従う直線Aの例および壁厚が0.09mmの場合における上記の式に従う直線Bの例を示すものである。壁厚0.07〜0.14mmの範囲における突き刺し強度(y)とMg含有量%(x)との関係において、好ましいaの値は1.5〜3の範囲、bの値は20〜50の範囲である。また、所定の壁厚(t)の缶の突き刺し強度(y)に対して、壁厚0.105mmの缶の突き刺し強度(y0.105)は、下記の式で求めることができる。
0.105(N)=y(N)+(0.105−t)(mm)×c(但し、c:400±100)
【0031】
本発明によれば、図1からわかるように、Mg含有量を特定すれば、壁厚と突き刺し強度との間に相関があり、突き刺し強度を特定すれば、Mg含有量と壁厚との間に相関があるから、特定されたMg含有量において、所定の突き刺し強度を得るための壁厚を決定することができ、所定の壁厚で所定の突き刺し強度を得るためのMg含有量を決定することができる。
【0032】
缶壁部の引張強さと伸び:伸びが大きければ大きいほど、耐突き刺し性には有利であるが、逆に引張強さは小さくなり、缶軸強度および突き刺し強度からなる缶体強度の点では不利となる。引張強さが大きく且つ伸びのある材料が望まれるが、通常のアルミニウム合金では引張強さと伸びは相反して連動するために、両者をほどよくバランスさせることが必要となる。試験、検討の結果、この目的に合う唯一の合金元素はMgであり、他のSi、Feなど他の成分との調整によりMg含有量の増加に伴って引張強さと伸びを向上させる強度特性を得ることができること、Mgの添加が耐突き刺し強度の向上に有効であることを見出した。
【0033】
本発明において突き刺し強度を向上させるための、引張強さと伸びのバランスは、引張強さで300MPa〜500MPa、伸びで3%〜8%である。引張強さが300MPa未満では必要な缶体強度が得られず、500MPa超えると、3%以上の伸びが得られず、耐突き刺し性が劣化する。伸びが3%未満では耐突き刺し性が劣化し、8%を超えると、300MPa以上の引張強さが得られず、突き刺し強度や缶軸強度が小さくなりすぎる。
【0034】
樹脂被覆:アルカリ洗浄などによる脱脂、リン酸クロメート処理あるいはリン酸ジルコニウム処理などによる化成処理(下地処理)を施したアルミニウム合金板の、両面あるいは片面に、ポリエステル系、ポリオレフィン系、ポリアミド系の樹脂を被覆する。被覆方法としては、フィルムにした樹脂を熱融着でアルミニウム合金板表面にラミネートする方法、樹脂を溶融させて直接被覆する方法などがある。樹脂の被覆の際には、アルミニウム合金板を200〜300℃に加熱する。これら一連の処理は、切り板で実施しても、コイル材を使用して連続的に実施してもよい。
【0035】
従来の缶ボディの成形は、前記のように、アルミニウム合金板をカップ成形、DI加工により底付きの円筒状容器を成形し、開口部をトリミング加工、ネッキング加工、フランジ加工することにより行われる。
【0036】
塗装焼付け工程は、通常、缶ボディ成形のトリミング加工後、200〜220℃で5〜20分程度加熱する条件で行われる。缶ボディ成形前に樹脂被覆をしない従来型のアルミニウム合金板を使用する場合には、内容物および外的要因からの耐食性のために缶外面を印刷してから缶内面に樹脂塗装する。樹脂被覆を施す場合には、樹脂被覆が両面の時は外面印刷のみ、樹脂被覆が缶内面の片面の時は反対面(缶外面)の印刷が施される。
【0037】
本発明によるアルミニウム合金板(アルミニウム−マグネシウム合金板)は、前記の組成を有するアルミニウム合金をDC鋳造し、得られた鋳塊を常法に従って均質化処理後、熱間圧延、冷間圧延を経て製造することを基本とする。必要に応じて、冷間圧延の前あるいは途中に中間焼鈍、冷間圧延の後に最終熱処理を施すこともできる。アルミニウム合金板の最終厚さは0.20〜0.45mmとする。
【0038】
【実施例】
以下、本発明の実施例を比較例と対比して説明し、その効果を立証する。なお、これらの本実施例は本発明の一実施態様を示すものであり、本発明はこれらに限定されるものではない。
【0039】
実施例1、比較例1
表1に示す組成のアルミニウム合金をDC鋳造により造塊し、得られた鋳塊を、常法に従って均質化処理、熱間圧延後、冷間圧延して、厚さ0.235〜0.30mmの冷間圧延板とした。
【0040】
得られた冷間圧延板を、一部は、下記の方法で缶外面側の片面樹脂被覆を行った後、残りは、樹脂被覆を行うことなしに、絞り成形、DI成形などにより缶ボディに成形した。ついで、樹脂被覆を行ったものについては、樹脂の密着性を増すために200℃で30秒間熱処理し、樹脂被覆を行わなかったものについては、内外面に塗装、焼付けに相当する205℃で10分間の熱処理を施した。
【0041】
樹脂被覆:冷間圧延板をアルカリ洗浄後、リン酸クロメート(Cr付着量20mg/m2 )の化成処理を行い、ついで、15μm厚さのポリエステル系樹脂フィルムを200℃に加熱したヒートロールで板の片面のみ熱融着でラミネートした。さらに、270℃で30秒間保持後、水冷した。
【0042】
缶ボディに成形し、塗装焼付け相当の熱処理を施した後の缶、予め樹脂被覆をした板から缶ボディを成形し、上記の熱処理を行った缶を試験材として、以下の方法で突き刺し強度、引張強さを測定した。結果を表2に示す。なお、表1において、本発明の条件を外れたものには下線を付した。
【0043】
突き刺し強度:上記で得られた缶ボディから、缶ボディを構成するアルミニウム合金自体の特性をみるために樹脂皮膜を脱膜した。ついで、測定を容易にするために缶ボディ(缶胴)のネック部を切り落とした後、缶胴部を測定装置に取り付け、196kPaの内圧をかけた状態で、直径1mm、先端R0.5mmの針を、50mm/分の速度で、缶壁部に突き刺した時の最大荷重を測定した。n=10とし、その平均値を求めた。単位はNである。なお、現在市販されているアルミニウム合金缶の缶胴には塗膜などが付けられているから、塗膜などが無い時に比べて、突き刺し強度は最大で10N増加する。
【0044】
引張試験:上記により得られた缶胴体の缶壁部を缶軸方向に引張った。缶壁部の0.105mm厚さが中央になるように引張試験片を採取し、引張チャック間の平行部の幅を8mm、標点間距離を10mmとした。伸びと引張強さの値はJISZ2241に準じて求めた。引張試験片は、アルミニウム合金自体の特性をみるために、内外面の樹脂被膜あるいは塗膜を脱膜してから供試した。n=4とし、その平均値を求めた。
【0045】
【表1】

Figure 0004667722
【0046】
【表2】
Figure 0004667722
【0047】
表2に示すように、本発明に従う試験材No.1〜はいずれも、35N以上の突き刺し強度をそなえ、引張強さ300MPa以上、伸び3%以上の優れた特性を有している。なお、試験材No.8〜11(合金H〜K)は参考として示すものである。
【0048】
これに対して、試験材No.12はMgの含有量が多いため、熱間圧延で割れ易く量産時の生産性に支障が生じる。試験材No.13はSiおよびFeの含有量が多いため、20μm以上の粗大な金属間化合物が形成し圧延工程で割れが生じた。試験材No.14はCuの含有量が多いため、圧延工程で板端部に耳割れが生じた。試験材No.15はMgの含有量が少ないため突き刺し強度が十分でない。試験材No.16は従来の3004合金でMgの含有量が少なく、突き刺し強度が低い。
【0049】
実施例2、比較例2
実施例1および比較例1で造塊したアルミニウム合金(A、C、P)の鋳塊を、実施例1と同様に均質化処理、熱間圧延後、冷間圧延した。
【0050】
得られた冷間圧延板から、実施例1と同様にして、缶壁厚0.085〜0.120mmの試験材を作製し、実施例1と同一の方法で突き刺し強度、引張強さを測定した。結果を表3に示す。
【0051】
表3に示すように、本発明に従う試験材No.17〜23はいずれも、優れた突き刺し強度をそなえ、引張強さ300MPa以上、伸び3%以上の優れた特性を有している。これに対して、従来の3004合金から作製された試験材No.24〜25は、壁厚0.105mmにおいて突き刺し強度が35N未満であった。
【0052】
【表3】
Figure 0004667722
【0053】
【発明の効果】
本発明によれば、増大した缶体強度を有するとともに、耐突き刺し強度も向上した缶ボディ用アルミニウム合金板から絞り加工またはDI加工により成形されるアルミニウム合金缶ボディの設計方法が提供され、缶の壁厚を特定することにより、Mg含有量と突き刺し強度との間に相関があるから、その壁厚で所定の突き刺し強度を得るためのMg含有量を決定することができ、Mg含有量を特定することにより、壁厚と突き刺し強度との間に相関があるから、そのMg含有量で所定の突き刺し強度を得るための壁厚を決定することができ、突き刺し強度を特定することにより、Mg含有量と壁厚との間に相関があるから、その突き刺し強度で所定の壁厚に対するMg含有量を決定することができる。
【図面の簡単な説明】
【図1】本発明において缶ボディの壁厚を特定した場合におけるMg含有量と突き刺し強度との関係を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for designing an aluminum alloy can body, and more specifically, an aluminum alloy having excellent piercing resistance of a can body when formed into a can body by drawing or DI processing (drawing and ironing) and then subjected to paint baking or heat treatment. The present invention relates to a can body design method .
[0002]
[Prior art]
Can bodies of beverage cans made of aluminum alloy plates are manufactured through the process of cup forming, DI processing, trimming, cleaning, drying, painting, baking, necking and flanging, after the plate material is oiled. When the thin can body is pressed against the protrusions during the filling process, can lid tightening process, transporting and handling cans filled with beverages, the can body will be dented or A problem arises that the tip pierces and penetrates the can body and the contents leak. Content leakage is a fatal problem as a product, especially in today's day when food safety after 2000 is strongly demanded.
[0003]
In order to solve the above problem, a method has been proposed in which the tensile strength of the wall portion of the can body is reduced to increase the elongation and improve the puncture resistance (see Patent Document 1). When the wall thickness of the can body is reduced to, for example, less than 0.105 mm, there is a problem that the strength of the wall portion as the can body becomes insufficient, and it is necessary to maintain the piercing strength at a certain level. The wall thickness of the can body has become stagnant. Especially in Japan, where the quality of products is severe, the wall thickness of the can body has not progressed for more than 10 years, and the piercing strength is high. The development of materials is strongly desired, and is the most important issue for the development of can body materials.
[0004]
The reason why the can body material did not change significantly is that a 3000 series (Al-Mn series) aluminum alloy in which Mn is added to aluminum has been used as the can body material. This is because, since can body molding was based on DI molding, when considering stable mass production, a hard intermetallic compound of Al-Mn-Fe- (Si) system was dispersed in the can body, and gold was formed during DI molding. This is because it was necessary to have a die cleaning effect to prevent aluminum from sticking to the mold.
[0005]
An aluminum alloy for can bodies has been proposed in which Mg is added as a main alloy component to the Al—Mn-based aluminum alloy to improve the strength. The addition of Mg is due to the trend toward material integration that seeks to obtain can end materials represented by 5182 alloy, which requires pressure strength, and can body materials that require formability, with the same components from the viewpoint of recycling. Can also respond.
[0006]
For example, an aluminum alloy plate containing Mg: 0.5 to 6.0% (see Patent Document 2), an aluminum alloy plate containing Mg: 0.2 to 6.0% (see Patent Document 3), Mg: Aluminum alloy plate containing 0.3 to 5% (see Patent Document 4), Mg: 0.3 to 4.0% aluminum alloy plate (see Patent Document 5), Mg: 0.5 to 5. Aluminum alloy plate containing 0% (see Patent Document 6), Mg: 3.0 to 6.0% aluminum alloy plate (see Patent Document 7), Mg: 0.80 to 6.00% Aluminum alloy plates (see Patent Literature 8, Patent Literature 9, Patent Literature 10, and Patent Literature 11) have been proposed.
[0007]
However, the above aluminum alloy sheet is a conventional can body aluminum alloy having a Mg content of about 1%, JIS 3004 alloy (Al-1.0 to 1.5% Mn-0.8 to 1.3% Mg). 3104 alloy (Al-0.8 to 1.4% Mn-0.8 to 1.3% Mg) or AA3204 alloy (Al-0.8 to 1.5% Mn-0.8 to 1.5%) Although strength is improved as compared with Mg), it is not always satisfactory from the viewpoint of puncture resistance.
[0008]
[Patent Document 1]
JP-A-8-199273 (Claims)
[Patent Document 2]
JP 58-224145 (Claims)
[Patent Document 3]
JP-A-61-261466 (Claims)
[Patent Document 4]
Japanese Patent Laid-Open No. 57-120648 (Claims)
[Patent Document 5]
Japanese Patent Laid-Open No. 5-112854 (Claims)
[Patent Document 6]
Japanese Patent Laid-Open No. 3-207840 (Claims)
[Patent Document 7]
JP-A-4-362151 (Claims)
[Patent Document 8]
JP 2000-309838 (Claims)
[Patent Document 9]
JP 2000-309839 (Claims)
[Patent Document 10]
JP 2001-3130 (Claims)
[Patent Document 11]
JP-A-2001-32032 (Claims)
[0009]
[Problems to be solved by the invention]
The present invention was made as a result of repeated tests and studies on the relationship between the puncture resistance of the can, the alloy component of the can material, and the wall thickness of the can body. The purpose of the present invention is the conventional 3000 series ( It is designed based on the addition of Mg, not based on (Al-Mn)), and has a predetermined can strength, and has been subjected to drawing processing or DI processing from an aluminum alloy plate for can bodies with improved puncture strength An object of the present invention is to provide a method for designing an aluminum alloy can body formed by the above method .
[0010]
[Means for Solving the Problems]
In order to achieve the above object, the method of designing an aluminum alloy can body according to claim 1 of the present invention includes Mg: 1.5 to 6%, Si: 0.05% or more and less than 0.20%, Fe: 0.00. Cold of an aluminum alloy containing 0.5 to 0.6%, Cu: 0.02 to 0.3%, Mn: 0.01% or more and less than 0.40%, and having a composition comprising the balance Al and inevitable impurities A method of designing a can body formed from a rolled plate by DI molding or drawing using the following formulas 1 and 2, wherein the can body is a wall of the can body that has been subjected to heat treatment equivalent to paint baking. tensile strength and elongation of the can axial parts is improved with increasing content of the Mg by adjusting the alloy components, after paint baking, the walls of the can body after coating removal a surface film such as a coating film Part (wall thickness: 0.07 mm to 0.14 mm The can axis direction tensile strength of 300MPa~500MPa, elongation is 3% to 8%, the wall strength y t piercing against the wall thickness t after coating removal a surface film, such as a coating using Equation 2 The piercing strength (y 0.105 ) of a can with a thickness of 0.105 mm has a piercing resistance of 35 N or more, and the wall thickness of the can body is set to a specific thickness of 0.07 to 0.14 mm. correlation of piercing strength of the can in the case of the (y) Mg content (%) and is assumed to have a given that characteristics in equation 1, using equation 1 and equation 2, identify the thickness of the wall portion by be Rukoto determines the Mg content to obtain a predetermined piercing strength, or, by identifying the Mg content, determining the thickness of the wall portion for obtaining a predetermined piercing strength, or, the Rukoto to identify the piercing strength, the thickness of the predetermined wall portion And determining the Mg content against.
Formula 1: y (N) = a × Mg content (%) + b (provided that a: 1.5 to 3, b: 20 to 50)
Formula 2: y 0.105 (N) = y t (N) + (0.105−t) (mm) × c (where c: 400 ± 100)
[0011]
The method of designing an aluminum alloy can body according to claim 2 is characterized in that, in claim 1, the Mg content of the aluminum alloy plate is 2 to 6%.
[0016]
A method for designing an aluminum alloy can body according to claim 3 is characterized in that, in claim 1 or 2, the Fe content of the aluminum alloy plate is 0.05 to 0.4%.
[0019]
Designing method of an aluminum alloy can body by claim 4, in any one of claims 1 to 3, wherein the aluminum alloy sheet and a resin layer is coated before formed into a can body.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
The significance and reasons for limitation of the alloy components in the aluminum alloy sheet for can bodies of the present invention are as follows.
Mg: Functions to increase the strength of the molded can body, and the preferred content is in the range of 1.5% to 6%. If it is less than 1.5%, it is not easy to obtain a piercing strength (can body wall thickness of 0.105 mm) of 35 N or more in the can body manufacturing process under the current conditions. Moreover, since productivity in hot rolling decreases as the amount of Mg increases, the content exceeding 6% is not preferable in order to obtain a can body material necessary for mass production. A more preferable content range of Mg is 2 to 6%, a more preferable content range is 2 to 5.5%, and a most preferable content range is 2.5% to 5%.
[0021]
In addition, by adjusting components such as Mg, Si, Fe, and Cu, an aluminum alloy plate containing Mg: 1.5 to 6% as a main alloy component is formed from this aluminum alloy plate and is equivalent to paint baking. It has the characteristics that the tensile strength and elongation in the can axis direction of the wall portion of the heat-treated can body improve with increasing Mg content, and the piercing strength of the can is 35 N or more (wall thickness of the can body When the wall thickness of the can body is specified with a piercing resistance of 0.105 mm), the piercing strength has a positive correlation with the Mg content, and a predetermined piercing strength is obtained for the specified wall thickness. Mg content can be determined.
[0022]
Cu: functions to additionally improve the strength of the molded can body. Furthermore, the grain boundary precipitation of the β-phase (Al 3 Mg 2 ) compound that easily precipitates with an increase in the Mg content is suppressed, and the corrosion resistance is improved. The preferable content is in the range of 0.3% or less, and when the content exceeds 0.3%, the productivity in hot rolling is lowered. When 2% or more of Mg is contained, 0.02% or more is preferably added.
[0023]
Si: Inevitable as an impurity. A range of 0.4% or less is preferable, and if it exceeds 0.4%, a coarse Mg 2 Si intermetallic compound is easily generated. If Si is less than 0.05%, the use of a bare metal having a purity of 99.9% or more in the production of the material increases, which is not preferable from the viewpoint of recycling as a can body material using a large amount of recycled material.
[0024]
When 0.05 to 0.4% of Si is added together with Mn, a hard Al-Mn-Si-Fe compound is formed, which improves the die cleaning effect in molding such as DI molding, but can body molding When the plate surface is coated with resin before, it is not necessary to impart die cleaning properties, so there is no need to positively add Mn. When Mn is small, if the amount of Si is large, the grain boundary has Mg 2 Si or Si is liable to precipitate, and the bending workability is lowered and the flange workability is liable to be hindered. Therefore, the Si content is preferably limited to less than 0.20%. The decrease in the bending workability is particularly caused when a material manufactured in accordance with a standard can body material manufacturing process in which hot rolling-cold rolling is performed without including intermediate annealing during rolling is performed in a direction perpendicular to the rolling direction (90 This is noticeable in bending work that bends in the direction of °.
[0025]
Fe: inevitably contained as an impurity. A range of 0.6% or less is preferable, and if it exceeds 0.6%, a coarse Al—Fe intermetallic compound is likely to be formed. If Fe is less than 0.05%, the use of a bare metal having a purity of 99.9% or more in the production of the material increases, and it is not preferable from the viewpoint of recycling as a can body material using a large amount of recycled material. When Fe in the range of 0.05 to 0.6% is added together with Mn, a hard Al-Mn-Fe (Si) -based compound is generated , and the die cleaning effect can be enhanced in DI molding .
[0026]
Mn: Further improving the strength of the can body to be molded, and further dispersing the Al-Mn-Fe- (Si) intermetallic compound to prevent seizure to the mold during ironing, It functions to improve ironing workability, and the preferred content is in the range of 1.5% or less. If it exceeds 1.5%, a coarse crystallized product of Al 6 Mn is generated, and it becomes difficult to form a can body during ironing, making it difficult to form a can body.
[0027]
In addition, in the case of the conventional aluminum alloy plate for can bodies which does not coat | cover resin, the content range of Mn is preferably 0.4 to 1.5% from the viewpoint of preventing seizure to the mold. When the resin is coated on both sides with an aluminum alloy for the can body that coats the resin, the aluminum plate does not come into direct contact with the mold due to the presence of the coating resin, and when coating on one side such as the outer surface of the can Since only one mold is in contact with each other, both can be made 0.01% to less than 0.4%.
[0028]
Other impurities: As impurities, Zn of 0.3% or less, Cr of 0.3% or less, Ti usually added as a crystal grain refining material for ingots: 0.2% or less, B: 0.1% Even if the following is contained, the effect of the present invention is not affected. Moreover, intensity | strength can also be adjusted by containing Zn and Cr of said range.
[0029]
Can wall thickness: In relation to material strength, it affects the strength of the can body, that is, the strength in the axial direction of the can and the piercing strength. The preferable can wall thickness is 0.07 to 0.14 mm. If it is less than 0.07 mm, even if it is the upper limit of the material strength that can be molded, the wall thickness is too thin and the can body strength is insufficient, exceeding 0.14 mm. The can body strength is sufficient, but the can body weight becomes too large. A wall thickness of 0.14 mm or less is sufficient to obtain the required can strength.
[0030]
The correlation between the piercing strength (y) of the can and the Mg content (%) (x) when the wall thickness of the can body is specified as 0.07 to 0.14 mm is given by the following equation.
y (N) = ax + b (however, a: 1.5-3, b: 20-50)
FIG. 1 shows an example of a straight line A according to the above formula when the wall thickness is 0.10 mm and an example of a straight line B according to the above formula when the wall thickness is 0.09 mm. In the relationship between the piercing strength (y) and the Mg content% (x) in the wall thickness range of 0.07 to 0.14 mm, a preferable value of a is in the range of 1.5 to 3, and a value of b is in the range of 20 to 50. Range. Further, with respect to the piercing strength of the can of a predetermined wall thickness (t) (y t), piercing the can wall thickness 0.105mm intensity (y 0.105) can be obtained by the following equation.
y 0.105 (N) = y t (N) + (0.105−t) (mm) × c (where c: 400 ± 100)
[0031]
According to the present invention, as can be seen from FIG. 1, if the Mg content is specified, there is a correlation between the wall thickness and the piercing strength, and if the piercing strength is specified, the Mg content and the wall thickness are related. Therefore, it is possible to determine a wall thickness for obtaining a predetermined piercing strength at a specified Mg content, and to determine an Mg content for obtaining a predetermined piercing strength at a predetermined wall thickness. be able to.
[0032]
Tensile strength and elongation of the can wall: The greater the elongation, the more advantageous the puncture resistance, but the lower the tensile strength, the more disadvantageous in terms of the strength of the can body consisting of the can axis strength and piercing strength. It becomes. A material having a large tensile strength and elongation is desired, but in a normal aluminum alloy, the tensile strength and elongation are linked in a reciprocal manner, and thus it is necessary to balance the two appropriately. As a result of testing and examination, the only alloying element that meets this purpose is Mg, and it has strength characteristics that improve tensile strength and elongation with increasing Mg content by adjusting with other components such as Si and Fe. It has been found that addition of Mg is effective in improving puncture strength.
[0033]
In the present invention, the balance between tensile strength and elongation for improving the piercing strength is 300 to 500 MPa in terms of tensile strength and 3 to 8% in terms of elongation. If the tensile strength is less than 300 MPa, the required can strength cannot be obtained. If the tensile strength exceeds 500 MPa, an elongation of 3% or more cannot be obtained, and the puncture resistance deteriorates. If the elongation is less than 3%, the puncture resistance is deteriorated, and if it exceeds 8%, the tensile strength of 300 MPa or more cannot be obtained, and the puncture strength and can axis strength become too small.
[0034]
Resin coating: Polyester, polyolefin, and polyamide resins are applied to both sides or one side of an aluminum alloy sheet that has been subjected to degreasing by alkali cleaning, chemical conversion treatment (primary treatment) such as phosphoric acid chromate treatment or zirconium phosphate treatment. Cover. As a coating method, there are a method of laminating a resin made into a film on the surface of an aluminum alloy plate by heat fusion, a method of directly coating a resin by melting it, and the like. In coating the resin, the aluminum alloy plate is heated to 200 to 300 ° C. These series of treatments may be carried out with a cut plate or continuously using a coil material.
[0035]
As described above, a conventional can body is formed by cup-molding an aluminum alloy plate, forming a cylindrical container with a bottom by DI processing, and trimming, necking, and flanging the opening.
[0036]
The paint baking process is usually performed under conditions of heating at 200 to 220 ° C. for about 5 to 20 minutes after can body trimming. When using a conventional aluminum alloy plate without resin coating before can body molding, the outer surface of the can is printed and then the inner surface of the can is coated with resin for corrosion resistance from the contents and external factors. When the resin coating is applied, only the outer surface printing is performed when the resin coating is on both sides, and the opposite surface (can outer surface) is printed when the resin coating is one side of the inner surface of the can.
[0037]
An aluminum alloy plate (aluminum-magnesium alloy plate) according to the present invention is obtained by subjecting an aluminum alloy having the above composition to DC casting, and homogenizing the obtained ingot according to a conventional method, followed by hot rolling and cold rolling. It is based on manufacturing. If necessary, a final heat treatment may be performed before or during the cold rolling and after the intermediate annealing and the cold rolling. The final thickness of the aluminum alloy plate is 0.20 to 0.45 mm.
[0038]
【Example】
Hereinafter, examples of the present invention will be described in comparison with comparative examples to prove the effects. These examples show one embodiment of the present invention, and the present invention is not limited to them.
[0039]
Example 1 and Comparative Example 1
An aluminum alloy having the composition shown in Table 1 was ingoted by DC casting, and the resulting ingot was homogenized according to a conventional method, hot-rolled, and then cold-rolled to a thickness of 0.235 to 0.30 mm. The cold-rolled plate was used.
[0040]
Part of the obtained cold-rolled sheet was subjected to single-sided resin coating on the outer surface side of the can by the following method, and the rest was applied to the can body by drawing, DI molding or the like without performing resin coating. Molded. Subsequently, the resin coating was heat-treated at 200 ° C. for 30 seconds to increase the resin adhesion, and the resin coating was not carried out at 205 ° C. corresponding to painting and baking on the inner and outer surfaces. A minute heat treatment was applied.
[0041]
Resin coating: After the cold-rolled sheet alkali washing, subjected to chemical conversion treatment of chromate phosphate (Cr coating weight 20 mg / m 2), then the plate with a heat roll heated 15μm polyester resin film having a thickness of the 200 ° C. Only one side was laminated by heat fusion. Further, after being kept at 270 ° C. for 30 seconds, it was cooled with water.
[0042]
Can after being molded into a can body and subjected to heat treatment equivalent to painting and baking, a can body is molded from a resin-coated plate in advance, and the can subjected to the above heat treatment as a test material, the piercing strength by the following method, Tensile strength was measured. The results are shown in Table 2. In Table 1, those outside the conditions of the present invention are underlined.
[0043]
Puncture strength: The resin film was removed from the can body obtained above in order to see the characteristics of the aluminum alloy itself constituting the can body. Next, after cutting off the neck part of the can body (can body) for easy measurement, the can body part is attached to the measuring device, and a needle having a diameter of 1 mm and a tip R of 0.5 mm is applied with an internal pressure of 196 kPa. Was measured at the speed of 50 mm / min. The average value was determined with n = 10. The unit is N. In addition, since the coating body etc. are attached to the can body of the aluminum alloy can marketed now, the piercing strength increases by 10N at maximum compared with the case where there is no coating film etc.
[0044]
Tensile test: The can wall portion of the can body obtained as described above was pulled in the can axis direction. A tensile test piece was collected so that the thickness of the can wall portion was 0.105 mm in the center, the width of the parallel portion between the tensile chucks was 8 mm, and the distance between the gauge points was 10 mm. The values of elongation and tensile strength were determined according to JISZ2241. Tensile test specimens were tested after removing the resin coating or coating on the inner and outer surfaces in order to see the characteristics of the aluminum alloy itself. n = 4 and the average value was obtained.
[0045]
[Table 1]
Figure 0004667722
[0046]
[Table 2]
Figure 0004667722
[0047]
As shown in Table 2, the test material No. Each of Nos. 1 to 7 has a piercing strength of 35 N or more, and has excellent properties such as a tensile strength of 300 MPa or more and an elongation of 3% or more. The test material No. 8 to 11 (alloys H to K) are shown for reference.
[0048]
In contrast, test material No. Since No. 12 has a high Mg content, it is easily cracked by hot rolling, resulting in hindrance to productivity during mass production. Test material No. Since No. 13 has a large content of Si and Fe, a coarse intermetallic compound of 20 μm or more was formed, and cracking occurred in the rolling process. Test material No. No. 14 had a large Cu content, so that an edge crack occurred at the end of the plate during the rolling process. Test material No. No. 15 has insufficient piercing strength because of its low Mg content. Test material No. No. 16 is a conventional 3004 alloy with low Mg content and low piercing strength.
[0049]
Example 2 and Comparative Example 2
Ingots of the aluminum alloys (A, C, P) ingoted in Example 1 and Comparative Example 1 were subjected to homogenization treatment, hot rolling, and cold rolling in the same manner as in Example 1.
[0050]
A test material having a can wall thickness of 0.085 to 0.120 mm was produced from the obtained cold-rolled sheet in the same manner as in Example 1, and the piercing strength and tensile strength were measured in the same manner as in Example 1. did. The results are shown in Table 3.
[0051]
As shown in Table 3, the test material No. Nos. 17 to 23 have excellent piercing strength, and have excellent properties such as a tensile strength of 300 MPa or more and an elongation of 3% or more. In contrast, the test material No. 1 made from a conventional 3004 alloy was used. Nos. 24 to 25 had a piercing strength of less than 35 N at a wall thickness of 0.105 mm.
[0052]
[Table 3]
Figure 0004667722
[0053]
【The invention's effect】
According to the present invention, which has an increased can body strength, the design method of an aluminum alloy can body is formed by drawing or DI processing an aluminum alloy sheet for a can body was also improved resistance piercing strength is provided, the can the Rukoto to identify the wall thickness, because there is a correlation between the piercing strength of Mg content, it is possible to determine the Mg content to obtain a predetermined piercing strength at its wall thickness, the Mg content the Rukoto be identified, since there is a correlation between the wall thickness and piercing strength, it is possible to determine the wall thickness for obtaining a predetermined piercing strength at its Mg content, by Rukoto to identify the piercing strength Since there is a correlation between the Mg content and the wall thickness , the Mg content for a predetermined wall thickness can be determined by the piercing strength .
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between Mg content and piercing strength when the wall thickness of a can body is specified in the present invention.

Claims (4)

Mg:1.5〜6%(質量%、以下同じ)、Si:0.05%以上0.20%未満、Fe:0.05〜0.6%、Cu:0.02〜0.3%、Mn:0.01%以上0.40%未満を含有し、残部Alおよび不可避的不純物からなる組成を有するアルミニウム合金の冷間圧延板からDI成形または絞り成形により成形される缶ボディを下記の式1および式2を用いて設計する方法であって、該缶ボディは、塗装焼付け相当の熱処理を施された缶ボディの壁部の缶軸方向の引張強さと伸びが合金成分を調整することにより前記Mgの含有量の増加と共に向上し、塗装焼付けした後、塗膜などの表面皮膜を脱膜した後の缶ボディの壁部(壁厚:0.07mm〜0.14mm)の缶軸方向の引張強さが300MPa〜500MPa、伸びが3%〜8%であり、塗膜などの表面皮膜を脱膜した後の壁厚(t)に対する突き刺し強度(y )を式2を用いて壁厚0.105mmの缶の突き刺し強度(y 0.105 )に換算して35N以上の耐突き刺し性をそなえ、缶ボディの壁部の厚さを0.07〜0.14mmの特定の厚さにした場合の缶の突き刺し強度(y)とMgの含有量(%)との相関が式1で与えられる特性を有するものとし、式1および式2を用いて、壁部の厚さを特定することにより、所定の突き刺し強度を得るためのMg含有量決定する、または、Mg含有量を特定することにより、所定の突き刺し強度を得るための壁部の厚さを決定する、または、突き刺し強度を特定することにより、所定の壁部の厚さに対するMg含有量を決定することを特徴とするアルミニウム合金缶ボディの設計方法
式1:y(N)=a×Mg含有量(%)+b(但し、a:1.5〜3、b:20〜50)
式2:y 0.105 (N)=y (N)+(0.105−t)(mm)×c(但し、c:400±100)
Mg: 1.5-6% (mass%, the same applies hereinafter), Si: 0.05% or more and less than 0.20%, Fe: 0.05-0.6%, Cu: 0.02-0.3% , Mn: 0.01% or more and less than 0.40%, a can body formed by DI molding or drawing from a cold rolled sheet of an aluminum alloy having a composition comprising the balance Al and inevitable impurities a method of designing using equation 1 and equation 2, the can body, the tensile strength and elongation of the can axis direction of the wall portion of the can body that has been subjected to heat treatment baking finish corresponding to adjust the alloy components the improved with increasing content of Mg, after paint baking, the wall portion of the can body after coating removal a surface film, such as the coating film (wall thickness: 0.07mm~0.14mm) by the can axis direction Has a tensile strength of 300 MPa to 500 MPa and an elongation of 3% to 8 , And the the piercing for the wall thickness (t) after coating removal a surface film such as the film strength (y t) the piercing of the can wall thickness 0.105mm using Equation 2 intensity (y 0.105) Convert to provided a more penetration resistance 35N, the piercing strength (y) and the content of Mg of the can in the case where the thickness of the wall portion of the can body to a particular thickness of 0.07~0.14Mm ( correlation with%) is assumed to have a given that characteristics in equation 1, using equation 1 and equation 2, by Rukoto to identify the thickness of the wall portion, Mg content for obtaining a predetermined piercing strength determining, or, by identifying the Mg content, determining the thickness of the wall portion for obtaining a predetermined piercing strength, or by Rukoto to identify the piercing strength, the thickness of the predetermined wall portion aluminum case, characterized in that to determine the Mg content relative to Design method of the can body.
Formula 1: y (N) = a × Mg content (%) + b (however, a: 1.5 to 3, b: 20 to 50)
Formula 2: y 0.105 (N) = y t (N) + (0.105−t) (mm) × c (where c: 400 ± 100)
前記アルミニウム合金板のMg含有量が、2〜6%であることを特徴とする請求項1記載のアルミニウム合金缶ボディの設計方法2. The design method of an aluminum alloy can body according to claim 1, wherein the Mg content of the aluminum alloy plate is 2 to 6%. 前記アルミニウム合金板のFe含有量が、0.05〜0.4%であることを特徴とする請求項1または2記載のアルミニウム合金缶ボディの設計方法The method for designing an aluminum alloy can body according to claim 1 or 2, wherein the aluminum content of the aluminum alloy plate is 0.05 to 0.4%. 前記アルミニウム合金板が缶ボディに成形する前に樹脂層が被覆されてなることを特徴とする請求項1〜3のいずれかに記載のアルミニウム合金缶ボディの設計方法 The method for designing an aluminum alloy can body according to any one of claims 1 to 3, wherein a resin layer is coated before the aluminum alloy plate is formed on the can body .
JP2003091432A 2003-03-28 2003-03-28 Aluminum alloy can body design method Expired - Fee Related JP4667722B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003091432A JP4667722B2 (en) 2003-03-28 2003-03-28 Aluminum alloy can body design method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003091432A JP4667722B2 (en) 2003-03-28 2003-03-28 Aluminum alloy can body design method

Publications (3)

Publication Number Publication Date
JP2004300457A JP2004300457A (en) 2004-10-28
JP2004300457A5 JP2004300457A5 (en) 2006-03-30
JP4667722B2 true JP4667722B2 (en) 2011-04-13

Family

ID=33404798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003091432A Expired - Fee Related JP4667722B2 (en) 2003-03-28 2003-03-28 Aluminum alloy can body design method

Country Status (1)

Country Link
JP (1) JP4667722B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150087419A (en) 2012-12-27 2015-07-29 가부시키가이샤 고베 세이코쇼 Aluminum alloy sheet for di can body
KR20160084862A (en) 2012-02-09 2016-07-14 가부시키가이샤 고베 세이코쇼 Manufacturing method of aluminum alloy sheet for di can body

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008057030A (en) * 2005-09-09 2008-03-13 Universal Seikan Kk Di can
JP5247996B2 (en) * 2005-12-28 2013-07-24 三菱アルミニウム株式会社 Aluminum alloy plate for can body excellent in circulation pinhole resistance and method for producing can body excellent in distribution pinhole resistance
JP5247995B2 (en) * 2005-12-28 2013-07-24 三菱アルミニウム株式会社 Aluminum alloy plate for can body excellent in circulation pinhole resistance and method for producing can body excellent in distribution pinhole resistance
JP5247994B2 (en) * 2005-12-28 2013-07-24 三菱アルミニウム株式会社 Aluminum alloy plate for can body excellent in circulation pinhole resistance and method for producing can body excellent in distribution pinhole resistance
JP2016041852A (en) * 2015-10-05 2016-03-31 株式会社神戸製鋼所 Aluminum alloy sheet for can barrel
JP2016029218A (en) * 2015-10-05 2016-03-03 株式会社神戸製鋼所 Method for producing aluminum alloy sheet for can barrel

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57120648A (en) * 1981-01-16 1982-07-27 Kobe Steel Ltd Baking hardenable al alloy
JPS58224145A (en) * 1982-06-22 1983-12-26 Sumitomo Light Metal Ind Ltd Aluminum alloy plate forming small edge by deep drawing and its manufacture
JPS61261466A (en) * 1985-05-14 1986-11-19 Sumitomo Light Metal Ind Ltd Manufacture of hard rolled sheet of aluminum alloy excelling in formability
JPS63145758A (en) * 1987-11-07 1988-06-17 Kobe Steel Ltd Production of al alloy sheet for packaging
JP2745254B2 (en) * 1991-06-06 1998-04-28 スカイアルミニウム株式会社 Aluminum alloy hard plate excellent in local overhang property and method of manufacturing the same
JP3190957B2 (en) * 1991-10-21 2001-07-23 株式会社神戸製鋼所 Manufacturing method of aluminum alloy sheet for packaging with excellent pitting corrosion resistance
JPH09276949A (en) * 1996-04-18 1997-10-28 Toyo Kohan Co Ltd Resin coated aluminum alloy sheet for can of drawing/ ironing
JP3381137B2 (en) * 1997-09-18 2003-02-24 東洋製罐株式会社 Coated aluminum seamless cans
JP2000309839A (en) * 1999-04-21 2000-11-07 Furukawa Electric Co Ltd:The Aluminum alloy for resin-coated can barrel and resin- coated aluminum alloy sheet for can barrel
JP2000309838A (en) * 1999-04-21 2000-11-07 Furukawa Electric Co Ltd:The Aluminum alloy for resin-coated can barrel and resin- coated aluminum alloy sheet for can barrel
JP2001003130A (en) * 1999-06-17 2001-01-09 Furukawa Electric Co Ltd:The Aluminum alloy sheet for resin coated can body, and resin coated aluminum alloy sheet for can body
JP2001032032A (en) * 1999-07-23 2001-02-06 Furukawa Electric Co Ltd:The Aluminum alloy material to be coated with resin, and its manufacture

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160084862A (en) 2012-02-09 2016-07-14 가부시키가이샤 고베 세이코쇼 Manufacturing method of aluminum alloy sheet for di can body
KR20150087419A (en) 2012-12-27 2015-07-29 가부시키가이샤 고베 세이코쇼 Aluminum alloy sheet for di can body

Also Published As

Publication number Publication date
JP2004300457A (en) 2004-10-28

Similar Documents

Publication Publication Date Title
JP4019082B2 (en) Aluminum alloy plate for bottle cans with excellent high temperature characteristics
US9546411B2 (en) Aluminum-alloy sheet and method for producing the same
JP2012188703A (en) Aluminum-alloy sheet for resin coated can body, and method for producing the same
JP4019083B2 (en) Aluminum alloy cold rolled sheet for bottle cans with excellent high temperature characteristics
JP5416433B2 (en) Aluminum alloy plate for can body and manufacturing method thereof
JP5923665B2 (en) Highly formable intergranular corrosion-resistant AlMg strip
JP5568031B2 (en) Aluminum alloy cold rolled sheet for bottle cans
WO2014129385A1 (en) Aluminum alloy plate for can body and production method therefor
JP5670215B2 (en) Aluminum alloy plate for can body and manufacturing method thereof
JP4667722B2 (en) Aluminum alloy can body design method
JP4791072B2 (en) Aluminum alloy plate for beverage can body and manufacturing method thereof
JP2010236075A (en) Aluminum alloy sheet for can barrel, and method for manufacturing the same
JP2004068061A (en) Aluminum alloy sheet superior in stab resistance for can body
JP4510320B2 (en) Hot-dip aluminized steel sheet with excellent corrosion resistance after processing and manufacturing method thereof
JP2016041852A (en) Aluminum alloy sheet for can barrel
JP5113411B2 (en) Aluminum alloy plate for packaging container and method for producing the same
JP4019084B2 (en) Aluminum alloy cold rolled sheet for bottle cans with excellent high temperature characteristics
WO1995004166A1 (en) Steel sheet of high stress-corrosion-cracking resistance for cans and method of manufacturing the same
JP4771726B2 (en) Aluminum alloy plate for beverage can body and manufacturing method thereof
JP2016180175A (en) Resin-coated aluminum alloy sheet for drawn ironed can excellent in glossiness after making can and resin coated aluminum alloy sheet for drawn ironed can
JPH0931584A (en) Aluminum alloy sheet for can lid, excellent in corrosion resistance and age softening resistance, and its production
JP2002322530A (en) Aluminum foil for container and production method therefor
JP2006097076A (en) Aluminum-alloy sheet for bottle can, and its manufacturing method
JP4262826B2 (en) Aluminum alloy laminate coating material for can body and manufacturing method thereof
WO2016152790A1 (en) Aluminum alloy sheet for resin-coated drawn and wall-ironed cans having excellent post-manufacture gloss and resin-coated aluminum alloy sheet for drawn and wall-ironed cans

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080619

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080715

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4667722

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees