JPS63145758A - Production of al alloy sheet for packaging - Google Patents

Production of al alloy sheet for packaging

Info

Publication number
JPS63145758A
JPS63145758A JP28179887A JP28179887A JPS63145758A JP S63145758 A JPS63145758 A JP S63145758A JP 28179887 A JP28179887 A JP 28179887A JP 28179887 A JP28179887 A JP 28179887A JP S63145758 A JPS63145758 A JP S63145758A
Authority
JP
Japan
Prior art keywords
weight
alloy
cold rolling
less
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28179887A
Other languages
Japanese (ja)
Inventor
Hideyoshi Usui
碓井 栄喜
Takahisa Sawada
沢田 隆久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP28179887A priority Critical patent/JPS63145758A/en
Publication of JPS63145758A publication Critical patent/JPS63145758A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce an Al alloy sheet having excellent deep drawing and redrawing properties, by subjecting an ingot of the Al alloy contg. Mg, Mn and other alloy elements to a soaking treatment then to hot rolling and intermediate annealing followed by finish cold rolling at a specific reduction ratio. CONSTITUTION:The ingot of the Al alloy which contains, by weight %, 1-6% Mg and 0.1-2% Mn as essential components, contains <=0.4% in total 1 or 2 kinds of Cr and Fe, or further satisfies additionally one or both of the two conditions to contain 0.02-0.2% Ti and 0.0001-0.03% B or to contain 1 or 2 kinds of 0.2-1.0% Si and 0.2-2.5% Cu as essential components is subjected to the soaking treatment at >=480 deg.C and is then hot rolled to 2-6mm thickness. The steel is then subjected to cold rolling and intermediate annealing at 300-600 deg.C at need then to finish cold rolling to about 0.3mm thickness at 30-80% reduction ratio. The Al alloy sheet for packaging in which the occupying area rate of the intermetallic compd. in >=0.5mum dimensional range viewed from the surface of the rolled sheet is 3.5% and which has the excellent deep drawing and redrawing properties is produced.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、缶、キャップ或は箱容器等の包装用に適用さ
れる、深絞り性及び再綬ら性の優れたAl合金板の製造
方法に関するものである。
Detailed Description of the Invention [Industrial Field of Application] The present invention is directed to the production of an Al alloy plate with excellent deep drawability and re-rippability, which is applied to packaging such as cans, caps, and boxes/containers. It is about the method.

[従来の技術] 包装用Al合金板に要求される品質特性としては、 (1)強度が高いこと、 (2)絞り加工性が良いこと、 (3)耳の発生が少ないこと、 (4)肌荒れが生じないこと、 (5)耐食性が良好であること、 等が挙げられる。[Conventional technology] The quality characteristics required for packaging aluminum alloy plates are as follows: (1) High strength; (2) Good drawing workability, (3) less occurrence of ears; (4) No skin irritation occurs; (5) Good corrosion resistance; etc.

この種の用途には従来よりJIS規格のAl100゜A
3003 、^3105.ASO52,A^5:152
 、A3004 、AA5042 、A5182゜等多
数のAl合金が使用されている。
Conventionally, JIS standard Al100°A has been used for this type of application.
3003, ^3105. ASO52, A^5:152
, A3004, AA5042, A5182°, and many other Al alloys are used.

[発明が解決しようとする問題点] ところが上記の様なAl合金は、包装用材料として使用
するうえで次の様な欠点を有している。
[Problems to be Solved by the Invention] However, the above-mentioned Al alloys have the following drawbacks when used as packaging materials.

Al100 :耳率が高く且つそのばらつきも大きく、
更には強度も不十分である。特に 成形加工後塗装・印刷を施す場合、通 常は180〜200℃程度の焼付処理 が行なわれるが、そのときの強度低下 が著しく、炭酸飲料の様にガス圧をか けて密封する場合に耐圧強度が問題に 、 なる。
Al100: High ear rate and large variation,
Furthermore, the strength is insufficient. In particular, when painting or printing is applied after molding, a baking process is usually performed at a temperature of about 180 to 200°C, but the strength decreases significantly during this process, and when sealing under gas pressure, such as with carbonated drinks, the pressure resistance is becomes a problem.

A3003  :結晶粒径が大きい為肌荒れを起こし易
く外観に問題がある。
A3003: Due to the large crystal grain size, it tends to cause rough skin and has problems in appearance.

A3004 、^3105.A3052.A^5042
゜A3182.A^5352 :何れもそこそこの強度
を有しており、耳の発生率も少なく絞り加工性 も良好であるが、2〜3回に亘って深 絞り加工を行ないトータル絞り率が 60〜70%にも達する場合には加工 割れを起こす子とがある。また更に高 強度が要求される場合には冷間加工率 を上げて加工硬化を促進させたり、或 は強度向上元素であるMg量を増加す ることが考えられるが、前者の場合耳 率が高くなるばかりでなく絞り性も急 激に悪化し、また後者の方法ではMg 量を僅かに増加しただけでも絞り性が 著しく低下してしまう。
A3004, ^3105. A3052. A^5042
゜A3182. A^5352: All of them have a reasonable strength, have a low incidence of ears, and have good drawing workability, but the total drawing rate is 60-70% after deep drawing 2 to 3 times. In some cases, cracks may occur due to machining. Furthermore, if even higher strength is required, it may be possible to increase the cold working rate to promote work hardening, or to increase the amount of Mg, which is a strength-improving element. Not only this, but also the drawability deteriorates rapidly, and in the latter method, even a slight increase in the amount of Mg causes a marked drop in the drawability.

本発明はこうした状況のもとで、従来の包装用Al合金
に指摘される前述の様な欠点を解消し、特に高強度で深
絞り性および再絞り性の優れたAl合金板の製造方法を
提供しようとするものである。。
Under these circumstances, the present invention solves the above-mentioned drawbacks of conventional packaging aluminum alloys, and provides a method for producing aluminum alloy sheets that have particularly high strength and excellent deep drawability and redrawability. This is what we are trying to provide. .

[問題点を解決する為の手段] 本発明に係る包装用Al合金板の製造方法は、4つの発
明からなるものであり、′TS1発明の要旨はMg:1
〜6%(重量%の意味、組成成分については以下同じ)
及びMn:0..1〜2%を必須成分として含むと共に
、Fe及びCrのいずれか一方苦しくは両方を、総和と
して0.4%以下含み、残部がAl及び不純物であるA
l合金を溶解・鋳造し、480℃以上の温度で均熱処理
した後熱間圧延を行ない、次いで冷間圧延を行ない又は
行なうことなく300〜600℃の中間焼鈍に付し、更
に加工率30〜80%で仕上げ冷間圧延を行ない、圧延
仮表面からみた寸法範囲0.5μm以上の金属間化合物
の面積占有率を3.5%以下に抑えた点にある。そして
第2〜4の発明は(イ)第1発明の構成々分の他に0.
02〜0.2%のTi及び0.0001〜0.3%のB
を必須成分として含有するという条件及び(ロ)0.2
〜1%のSi、0.2〜2.5%のCuよりなる群から
選択される1種又は2種の合金元素を含む、という2つ
の条件の一方又は両方を付加的に満足することを要旨と
するものである。
[Means for solving the problems] The method for manufacturing an Al alloy plate for packaging according to the present invention consists of four inventions, and the gist of the 'TS1 invention is that Mg: 1
~6% (the meaning of weight % and the composition components are the same below)
and Mn: 0. .. A containing 1 to 2% as an essential component, and 0.4% or less of Fe and Cr, preferably both, as a total, with the remainder being Al and impurities.
The l alloy is melted and cast, soaked at a temperature of 480°C or higher, then hot rolled, then subjected to intermediate annealing at 300 to 600°C with or without cold rolling, and further processed at a working rate of 30 to 600°C. Finish cold rolling is performed at 80%, and the area occupation rate of intermetallic compounds having a size range of 0.5 μm or more as seen from the temporary rolling surface is suppressed to 3.5% or less. The second to fourth inventions are (a) 0.
02-0.2% Ti and 0.0001-0.3% B
The condition that it contains as an essential component and (b) 0.2
In addition, one or both of the two conditions of containing one or two alloying elements selected from the group consisting of ~1% Si and 0.2-2.5% Cu This is a summary.

[作用] 以下Al合金の化学成分や加工条件等を定めた理由を説
明しつつ夫々の作用を明確にする。
[Function] Hereinafter, the reasons for determining the chemical composition and processing conditions of the Al alloy will be explained, and the respective functions will be clarified.

まず本発明では、合金元素として1〜6%のMgと0.
1〜2%のMnを含むと共に、Fe及びCrのいずれか
一方若しくは両方を、総和とじて0.4重量%以下含む
Al合金を使用するが、これらの化学成分を特定した理
由は次の通りである。
First, in the present invention, 1 to 6% of Mg and 0.6% of Mg are used as alloying elements.
An Al alloy containing 1 to 2% Mn and one or both of Fe and Cr in a total of 0.4% by weight or less is used, and the reason for specifying these chemical components is as follows. It is.

Mg:1〜6% Al合金板に十分な強度を与えるうえで欠くことので酋
ない元素であり、目的達成の為には1%以上含有させな
ければならない。しかし多過ぎると圧延性や成形性が低
下するので6%以下に抑える必要がある。Mgのより好
ましい含有率は2〜6%である。
Mg: 1-6% Mg is an indispensable element because it is essential for providing sufficient strength to the Al alloy plate, and must be contained in an amount of 1% or more in order to achieve the purpose. However, if it is too large, the rollability and formability will deteriorate, so it is necessary to keep it to 6% or less. A more preferable Mg content is 2 to 6%.

M n : 0.1〜2% Mgと同様機械的強度を高める為の必須成分であり、特
にMg量が多い場合はMg単独のものに比べて焼付塗装
後の強度低下を抑える地圧延性を高める作用がある。こ
うした効果は0.1%以上含有させることによって有効
に発揮されるが、反面5過るとAla  (Mn、Fe
)や、6.16Mn等の金属間化合物の成長によって絞
り加工時に割れが発生し易くなるので2%以下に抑えな
ければならない。Mnのより好ましい含有率は0.3〜
1.5%の範囲である。
Mn: 0.1-2% Like Mg, it is an essential component for increasing mechanical strength, and especially when the amount of Mg is large, it improves the ground rolling ability to suppress the strength loss after baking coating compared to Mg alone. It has an enhancing effect. These effects are effectively exhibited by containing 0.1% or more, but on the other hand, if the content exceeds 5%, Ala (Mn, Fe
) and 6.16Mn, etc., which tend to cause cracks during drawing, so it must be kept at 2% or less. A more preferable Mn content is 0.3 to
The range is 1.5%.

CF e 十Cr ) : 0.4%以下Fe及びCr
は、Mn量によってその程度は異なるが、Ala Fe
、Al2Cr7 s Ale (Mn、Fe)或はAl
2  (Cr、Fe)等の全屈化合物を生成して絞り加
工時の割れ感受性を著しく高めるので、こうした問題を
回避する為にはFeとCrの合計量を0.4%以下に抑
えなければならない。特に2〜3回に亘って深絞り加工
を行ない、トータル絞り率が60〜70%にも達するよ
うな場合は非常にffi要である。尚飲料缶用ボディー
材の様にしごき加工が加えられる場合、Feによフて形
成される上記金属間化合物は潤滑効果を発揮するので用
途によっては積極的に含有させることもあるが、本発明
方法によって製造される合金では絞り性および再絞り性
を高めるためその含有率は上記の理由から0.4%以下
に抑えるへ各である。またFeやCrの含有率を低レベ
ルに抑えることによる他の効果として耐食性も高められ
る。
CF e 10Cr): 0.4% or less Fe and Cr
Although the degree differs depending on the amount of Mn,
, Al2Cr7 s Ale (Mn, Fe) or Al
2 (Cr, Fe) etc. are generated, which significantly increases cracking susceptibility during drawing.To avoid this problem, the total amount of Fe and Cr must be kept below 0.4%. No. Particularly when deep drawing is performed two to three times and the total drawing ratio reaches 60 to 70%, ffi is extremely important. When ironing is applied to body materials for beverage cans, the intermetallic compound formed by Fe exhibits a lubricating effect, so it may be actively included depending on the application. In the alloy produced by this method, the content is limited to 0.4% or less for the reasons mentioned above in order to improve drawability and redrawability. Corrosion resistance is also improved as another effect of suppressing the content of Fe and Cr to a low level.

本発明で使用する合金の必須元素は以上の通りであり、
残Qi(成分はAl及び不可避不純物であるが、必要に
よっては更に下記の様な元素を配合することによって性
能を更に改善することも有効である。
The essential elements of the alloy used in the present invention are as follows,
The remaining Qi (components are Al and unavoidable impurities, but if necessary, it is also effective to further improve the performance by adding the following elements.

Si:0.2〜1%、Cu : 0.2〜2.5%従来
のAl−Mg−Mn系合金には殆んどの場合少盆のSi
やCuが含まれているが積極的に添加することにより物
性はさらに改善される。即ちSiは絞り性を高める作用
があり、この効果は0.2%以上含有させることによっ
て有効に発揮される。しかしその効果は1%程度で飽和
状態に達するので、それ以上の添加は全く無意味である
Si: 0.2-1%, Cu: 0.2-2.5% In most cases, conventional Al-Mg-Mn alloys contain a small amount of Si.
The physical properties can be further improved by actively adding Cu. That is, Si has the effect of increasing drawability, and this effect is effectively exhibited by containing it in an amount of 0.2% or more. However, the effect reaches saturation at about 1%, so adding more than that is completely meaningless.

またCuは合金の機械的強度及び絞り性を高める働ぎが
ある他、溶体化処理によりMgと共に固溶し、ベーキン
グ時に微細なAl−Cu−Mg系析出物を生成して硬化
させる作用もあり、こうした効果は0,2%以上含有さ
せることによって有効に発揮される。しかし多過ぎると
圧延性及び耐食性が低下するので2.5%以下に抑えな
ければならない。
In addition, Cu has the function of increasing the mechanical strength and drawability of the alloy, and also has the effect of forming a solid solution with Mg during solution treatment and producing fine Al-Cu-Mg-based precipitates during baking, resulting in hardening. These effects can be effectively exhibited by containing 0.2% or more. However, if it is too large, the rolling properties and corrosion resistance will deteriorate, so it must be kept at 2.5% or less.

T  i  : 0.02〜0.2 %、 B  : 
0.0001〜0.03%Ti及びBは何れも合金の結
晶組織を微細化するばかりでなく、セル組織も微細化し
絞り性を高める作用があり、Tiは0.02%以上、ま
たBは0.0001%以上含有させることによっ、てそ
の効果が現われる。しかしこれらの効果はTiで0.2
%程度、Bで0.03%程度で飽和状態に達しそれ以上
の添加は無駄である。
Ti: 0.02-0.2%, B:
Both 0.0001 to 0.03% Ti and B not only refine the crystal structure of the alloy, but also refine the cell structure and improve drawability. By containing 0.0001% or more, the effect becomes more apparent. However, these effects are 0.2
%, and B reaches a saturation state at about 0.03%, and adding more than that is wasteful.

本発明方法によって製造される合金板は上記のAl−M
g−Mn系合金を溶解・鋳造した後、熱間及び冷間圧延
することによって得られるが、最終板材に求められる特
性として、「圧延仮表面からみた0、5μm以上の寸法
範囲の金属間化合物の面積占有率が3.5%以下」とい
う要件が必須的に規定される。即ち本発明者等が多数の
実験データを整理して纏めたところによると、絞り成形
時に生ずる割れの発生原因は前述の如き種々の金属間化
合物の中でも粒大物の存在にあり、特に圧延仮表面から
みな金属間化合物が粒大物の存在にあり、金属間化合物
が粗大で且つ大量に含まれていると咎に割れが発生し易
くなることが確認された。そして金属間化合物の大量さ
が0.5μm未満であれば割れ発生の起点となることは
なく、また0、5μm以上の大損さであっても金属間化
合物の面積占有率が3.5%以下であれば、割れ等を生
ずることなく高レベルの絞り成形性を発揮し得ることが
確認された。尚金属間化合物の面積占有率とは、Alマ
トリックス中において前述の如各金属間化合物が占める
面積の総和を言い、この占有率は例えば粒子アナライザ
ーを使用し、SEM像をドツト解析によりコンピュータ
lA理し、全視野に対する晶出物の面積率を求める。ま
たこの方法により粒子大損さおよび数の分布を簡単に知
ることがで酋る。
The alloy plate manufactured by the method of the present invention is the above-mentioned Al-M
It is obtained by hot and cold rolling after melting and casting a g-Mn alloy, but the characteristics required for the final sheet material are ``intermetallic compounds with a size range of 0.5 μm or more as seen from the temporary rolling surface.'' The requirement that the area occupancy rate of the area is 3.5% or less is mandatory. In other words, the present inventors have compiled a large amount of experimental data and found that the cause of cracks that occur during drawing is the presence of large grains among the various intermetallic compounds mentioned above, and in particular, the presence of large grains on the temporary rolling surface. It was confirmed that intermetallic compounds exist in the presence of large grains, and that if the intermetallic compounds are coarse and contained in large quantities, cracks are likely to occur in the grain. If the large amount of intermetallic compounds is less than 0.5 μm, it will not become a starting point for cracking, and even if there is a large loss of 0.5 μm or more, the area occupation rate of the intermetallic compounds is 3.5% or less. It was confirmed that a high level of drawability can be achieved without causing cracks or the like. The area occupancy rate of intermetallic compounds refers to the total area occupied by each of the above-mentioned intermetallic compounds in the Al matrix. Then, determine the area ratio of the crystallized material to the entire field of view. This method also allows us to easily know the distribution of particle size and number.

次に上記の様な要求特性を有する合金板を得る為の処理
乃至加工条件について工程順に説明する。
Next, processing and processing conditions for obtaining an alloy plate having the above-mentioned required characteristics will be explained in order of process.

(1)溶解・鋳造条件 まず鋳造温度は670〜750℃の範囲が好ましい、鋳
塊の晶出物を微細化し深絞り性を高めるうえでは高温の
方が好ましいが、前述のA、1−Mg−Mn系合金を処
理対象とする本発明では鋳造温度が750℃を超えると
渇洩れを生ずる恐れがでてくる。一方温度が低過ぎると
鋳造時の樋内で合金溶湯が凝固し歩留りが低下するばか
りでなく、初晶として巨大な金属間化合物が生成し深絞
り性等を著しく阻害することがあるので670℃以上に
するのがよい、また鋳造時の冷却速度は、晶出物を微細
化するうえで速い方が好ましいのは当然であるが、通常
1〜b 定される。
(1) Melting/casting conditions First, the casting temperature is preferably in the range of 670 to 750°C.A high temperature is preferable in order to refine the crystallized substances in the ingot and improve deep drawability, but the above-mentioned A, 1-Mg In the present invention, which targets -Mn alloys, if the casting temperature exceeds 750°C, there is a risk of leakage. On the other hand, if the temperature is too low, not only will the molten alloy solidify in the gutter during casting and the yield will decrease, but also giant intermetallic compounds will form as primary crystals, which can significantly impede deep drawability. The cooling rate at the time of casting is usually set at 1 to b, although it is natural that a faster cooling rate is preferable in order to make the crystallized substances finer.

(1り均熱条件 均熱は480℃以上の温度で行なわなければならない。(1) Soaking conditions Soaking must be carried out at a temperature of 480°C or higher.

即ち480℃未満では極めて微細なAl6Mnの析出物
が大量に生成して圧延板の再結晶時点における粒界8勤
を抑制し、再結晶温度を高めるばかりでなく再結晶後の
結晶粒を粗大化し、更には再結晶後の集合組織に変化な
籾たして(′2絞り工程で圧延方向に対し45度方向の
耳が発生し易くなる。従って方向性を制御し深絞り性を
高めるうえで480℃以上の均熱温度を採用することが
不可欠の要件となる。尚均熱温度の上限はM g量によ
って異なるが、バーニングによるM gの局部的な溶解
−を回避する意味では590を以下に抑えるのがよい。
That is, if the temperature is lower than 480°C, a large amount of extremely fine precipitates of Al6Mn are generated, suppressing the formation of grain boundaries at the time of recrystallization of the rolled plate, and not only increasing the recrystallization temperature but also coarsening the crystal grains after recrystallization. Furthermore, as the texture of the paddy changes after recrystallization ('2), 45 degree edges to the rolling direction are likely to occur in the drawing process. It is essential to adopt a soaking temperature of 480°C or higher.Although the upper limit of the soaking temperature varies depending on the amount of Mg, it is recommended to set it below 590 to avoid local dissolution of Mg due to burning. It is best to keep it to

また好ましい均熱所要時間は均熱温度に応じて適宜決め
ればよく、一般的には1〜24時間の範囲から選定され
る。
Further, the preferable soaking time may be appropriately determined depending on the soaking temperature, and is generally selected from the range of 1 to 24 hours.

・(Ill )熱間圧延 終了温度は250℃以上とするのがよ′く、250℃未
満では方向性が大量くなる傾向がみられる。また熱延終
了板厚は方向性を小さくする意味で薄い方が良いが、薄
過ぎると強度不足になるので2〜6II1m程度が最良
である。
- (Ill) The hot rolling end temperature is preferably 250°C or higher; if it is lower than 250°C, there is a tendency for a large amount of directional properties to occur. In addition, the thinner the hot-rolled plate thickness is, the better in order to reduce the directionality, but if it is too thin, the strength will be insufficient, so the best thickness is about 2 to 6 II 1 m.

(IV )中間焼鈍 この中間焼鈍は、上記熱間圧延をそのまま或は更に適度
の冷間圧延を施した後、再結晶により集合組織を形成し
深絞り耳を小さくする他、結晶粒を微細且つ均一にする
うえで不可欠の工程であり、バッチ焼鈍及び連続暁鐘の
如何を問うものではないが、温度は300〜600℃の
範囲から選定しなければならない、しかして300℃未
満では再結晶が起こらず、一方600℃を超えると再結
晶粒が成長し過ぎてしわ発生等の原因となる。
(IV) Intermediate annealing This intermediate annealing is performed by applying the above-mentioned hot rolling as it is or after further applying appropriate cold rolling, forming a texture by recrystallization and reducing the deep drawing edges, as well as making the crystal grains finer and This is an essential process for uniformity, and it does not matter whether batch annealing or continuous annealing is used, but the temperature must be selected from the range of 300 to 600°C, as recrystallization will not occur below 300°C. On the other hand, if the temperature exceeds 600°C, recrystallized grains will grow too much, causing wrinkles and the like.

尚絞り性の改碧及び方向性の制御という趣旨からすれば
、連続焼鈍により急速加熱−急速冷却を行なう方が好ま
しい。
From the viewpoint of improving the drawability and controlling the directionality, it is preferable to perform rapid heating and rapid cooling by continuous annealing.

(V)仕上げ冷間圧延 方向性を少なくし且つ強度を適正にコントロールする為
加工率を30〜80%の範囲に設定すべきであり、30
%未満では十分な強度が得られず、−歩80%を超える
と方向性や深絞り性に問題が出てくる。
(V) Finish cold rolling In order to reduce the directionality and properly control the strength, the processing rate should be set in the range of 30 to 80%.
If it is less than 80%, sufficient strength will not be obtained, and if it exceeds 80%, problems will arise with directionality and deep drawability.

以上本発明で採用される処理乃至加工条件を説明したが
、これらの工程のうち特に重要なのは(I+)〜(V)
の各工程であるので、本発明ではこれらの工程を実施す
る際の条件を厳密に規定している。
The processing and processing conditions adopted in the present invention have been explained above, but among these steps, (I+) to (V) are particularly important.
In the present invention, the conditions for carrying out these steps are strictly defined.

[実施例] 実施例1 第1表に示す化学成分(但しSi、Cu、及びTiはい
ずれも不純物)の合金溶湯を使用し連続鋳造法(鋳造温
r!1710℃、冷却速度2〜b秒)によりJりさ55
mmの鋳塊を製造した。次いで590℃で6時間(但し
No、9及びNo、10は510℃で6時間)均熱処理
した後、終了温度300℃で終了板厚4■まで熱間圧延
し、更に0.75mm厚まで冷間圧延した。その後51
5℃(但しNo、11〜14は370℃×2時間、40
℃/Hr !;’、、温)で中間焼鈍(連続焼鈍炉使用
・・・保持時間0秒、)OO℃/分にて急速加熱・急速
冷却)を行ない、更に厚さ0.3mmまで冷間圧延(加
工率60%(但しNo、12は55%、No、13は5
0%))シた。得られた各合金板の冷間圧延のままで機
械的性質及び200℃×20分の加熱処理(通常の塗装
焼付条件に相当)後の機械的性質を調べたところ、第2
表に示す結果を得た。
[Example] Example 1 A molten alloy having the chemical components shown in Table 1 (Si, Cu, and Ti are all impurities) was used by continuous casting method (casting temperature r! 1710°C, cooling rate 2 to b seconds) ) by J Risa55
A mm ingot was produced. After soaking at 590°C for 6 hours (6 hours at 510°C for Nos., 9, and 10), hot rolling was carried out at a finishing temperature of 300°C to a final thickness of 4 cm, and further cooled to a thickness of 0.75 mm. It was rolled for a while. then 51
5℃ (However, No. 11 to 14 are 370℃ x 2 hours, 40
°C/Hr! Intermediate annealing (using a continuous annealing furnace...holding time: 0 seconds; rapid heating and rapid cooling at 00°C/min) at 0.3 mm, followed by cold rolling (processing) to a thickness of 0.3 mm. Rate 60% (However, No. 12 is 55%, No. 13 is 5.
0%)) When we examined the mechanical properties of each of the obtained alloy plates as cold-rolled and after heat treatment at 200°C for 20 minutes (corresponding to normal paint baking conditions), we found that
The results shown in the table were obtained.

また各合金板を200℃×20分加熱処理後下記の深絞
り試験に供し、併せて耳率(42絞り率)も測定した。
Further, each alloy plate was subjected to the following deep drawing test after being heat-treated at 200° C. for 20 minutes, and the selvage ratio (drawing ratio: 42) was also measured.

更に粒子ブラナイザーにより各板材表面の金属間化合物
の面積占有率を求め、第2表に併記する結果を得た。
Furthermore, the area occupancy of intermetallic compounds on the surface of each plate was determined using a particle planner, and the results are also shown in Table 2.

尚第2表において「絞り加工時の割れ発生」欄は、試験
を3回行なって、割れが発生しなかった(表中、O印で
表わす)回数、及び割れが発生した(表中、x印で表わ
す)回数を表わす、従つて例えば「OOX」は、3回の
うち2回は割れが発生せず絞り加工に成功し、1回は割
れが発生したことを表わす(以下第4.6,8,10.
及び12表においても同じ)。
In Table 2, the column "Crack occurrence during drawing" shows the number of times the test was conducted three times and no cracks occurred (indicated by O in the table), and the number of times cracks occurred (indicated by x in the table). Therefore, for example, "OOX" indicates that two out of three times the drawing process was successful without any cracks, and one time a crack occurred (hereinafter referred to as Section 4.6). , 8, 10.
and Table 12).

く深絞り試験法〉 試験板 :板厚0.3+nm 、60%冷間加工板(2
00℃×20分加熱後) 絞り工程ニブランク径(83,:l+nmφ)−1次絞
り(50mmφ :40%)−2次絞り (40mmφ :20%)→3次絞り (Xmm中) しわ押え: 1次絞り・・・1000kg 2次絞り・・・しわが発生する値(最低値)と絞れなく
なる値(最大値)の平 均値 3次絞り・・・しわ押えを変えることにより問題なく絞
り得る値 潤滑油:ジョンソンワックス#700 (ジョンソン社i!i)、50%水溶液(以下余白゛) 第1及び2表からも明らかな様に、本発明の規定要件を
満たす合金板(No、1.2,7.9゜11.14,1
5.17及び18)は0.5μm以上の寸法範囲の金属
間化合物の面積率が3.5%以下であり、比較材と比較
した場合、深絞り性及び再絞り性に優れていた。No、
3〜5はFeが、No、10はMgが、またNo、12
及び13はいずれもCrが多すぎ、またNo、16はF
e+Crが多すぎることを示している。No、6は比較
材であるが、深絞り性及び再絞り性に優れるが強度が低
すぎた。またNo、F3は強度が高すぎて深絞り性及び
再絞り性に問題があった。更に耳率も高かった。
Deep drawing test method> Test plate: plate thickness 0.3+nm, 60% cold worked plate (2
(After heating at 00℃ x 20 minutes) Drawing process blank diameter (83,:l+nmφ) - 1st drawing (50mmφ: 40%) - 2nd drawing (40mmφ: 20%) → 3rd drawing (in Xmm) Wrinkle presser: 1 Next drawing...1000kg Secondary drawing...Average value of the value at which wrinkles occur (minimum value) and the value at which squeezing becomes impossible (maximum value)Third drawing...Value that can be squeezed without problems by changing the wrinkle presserLubrication Oil: Johnson Wax #700 (Johnson Company i!i), 50% aqueous solution (hereinafter referred to as "margin") As is clear from Tables 1 and 2, alloy plate (No. 1.2, 7.9°11.14,1
5.17 and 18) had an area ratio of intermetallic compounds in the size range of 0.5 μm or more of 3.5% or less, and had excellent deep drawability and redrawability when compared with the comparative materials. No,
3 to 5 are Fe, No, 10 are Mg, and No, 12
and No. 13 both have too much Cr, and No. and No. 16 have F
This indicates that e+Cr is too large. No. 6 was a comparative material, and although it had excellent deep drawability and redrawability, its strength was too low. Further, No. F3 had too high strength and had problems in deep drawability and redrawability. Furthermore, the listening rate was also high.

実施例2 第3表に示す化学成分(但しTi及び0.2%未満のS
i及びCuは不純物)の合金溶湯を使用し半連続鋳造法
(鋳造温度720t、冷却速度2〜b た。次いで510℃で4時間均熱処理した後、終了温度
300℃で終了板厚2.5 mmまで熱間圧延し更に0
.75mm厚まで冷間圧延した。その後515℃で中間
焼鈍(連続焼鈍炉使用・・・保持時間0秒、700℃/
分にて急速加熱・急速冷却)を行ない更に厚さ0.3 
mmまで冷間圧延(加工率60%)した。
Example 2 Chemical components shown in Table 3 (with the exception of Ti and less than 0.2% S)
A semi-continuous casting method was used (casting temperature: 720 t, cooling rate: 2-b) using an alloy molten metal (i and Cu are impurities).Next, after soaking at 510°C for 4 hours, the final plate thickness was 2.5 at a final temperature of 300°C. Hot rolled to mm and further 0
.. It was cold rolled to a thickness of 75 mm. Then intermediate annealing at 515℃ (continuous annealing furnace used...holding time 0 seconds, 700℃/
(rapid heating/quick cooling in minutes) to further reduce the thickness to 0.3
It was cold-rolled (processing rate: 60%) to a thickness of 60%.

得られた各合金板の冷間圧延のままの機械的性質及び2
00℃×20分の加熱処理後の機械的性質を測定すると
共に、実施例1と同様にして深絞り試験及び金属間化合
物の面積占有率を測定し、第4表に示す結果を得た。
Mechanical properties of each obtained alloy plate as cold rolled and 2
The mechanical properties after the heat treatment at 00° C. for 20 minutes were measured, and the deep drawing test and area occupation rate of the intermetallic compound were measured in the same manner as in Example 1, and the results shown in Table 4 were obtained.

第3表 第3及び4表からも明らかな様に、本発明の規定要件を
充足する合金板(No、19.20及び22〜24)は
比較材或は従来材に比べて強度が高いにもかかわらず、
より優れた深絞り性及び再絞り性を示した。またSt及
びCuの含有量が不純物程度であるNo、17(第1及
び第3表)に比べて制限量内で十分St及びCuが制限
量の範囲で積極添加された上記のものは、より優れた深
絞り性及び再絞り性を示した。特にNo、22及び23
は、ベーキングに際して強度が高くなり、しかも深絞り
性及び再絞り性に優れていた。一方Si又はCuが過剰
に添加されたもの(No、21或は25)は深絞り性及
び再絞り性が劣った。
As is clear from Tables 3 and 4 of Table 3, the alloy plates (No. 19.20 and 22 to 24) that meet the specified requirements of the present invention have higher strength than comparative materials or conventional materials. Nevertheless,
It showed better deep drawability and redrawability. In addition, compared to No. 17 (Tables 1 and 3), in which the content of St and Cu is at the level of impurities, the above-mentioned one in which St and Cu are actively added within the limit amount is more effective. It showed excellent deep drawability and redrawability. Especially No. 22 and 23
had high strength during baking and excellent deep drawability and redrawability. On the other hand, those to which Si or Cu was added excessively (No. 21 or 25) had poor deep drawability and redrawability.

実施例3 第5表に示す化学成分(但しSi及びCuは不純物)の
合金溶湯を使用し金型鋳造法(温度700℃、冷却速度
2〜b 50mmの鋳塊を製造した0次いで510℃で6時間均
熱処理した後、終了温度300℃で終了板厚31まで熱
間圧延し、更に0.75a+a+厚まで冷間圧延した。
Example 3 A molten alloy having the chemical components shown in Table 5 (Si and Cu are impurities) was used to produce a 50 mm ingot using a mold casting method (temperature 700°C, cooling rate 2-b). After soaking for 6 hours, it was hot rolled to a final thickness of 31 at a final temperature of 300°C, and further cold rolled to a thickness of 0.75a+a+.

その後で中間焼鈍(連続焼鈍炉使用・・・係持時間0秒
、)OO℃/分で急速加熱、急速冷却)を行ない、以下
実施例1と同様にして冷間圧延(加工率50〜60%)
し、機械的性買等を調べた。
Thereafter, intermediate annealing (using a continuous annealing furnace...holding time: 0 seconds), rapid heating and rapid cooling at 00°C/min), followed by cold rolling (processing rate 50-60) in the same manner as in Example 1. %)
and investigated mechanical sex trafficking.

また実施例1と同様絞り試験及び金属間化合物の面積占
有率を求めた。
Further, in the same manner as in Example 1, the drawing test and the area occupation rate of the intermetallic compound were determined.

結果を第6表に示す。The results are shown in Table 6.

第5及び6表から明らかな様にTi及びBを添加したN
o、27.29及び30の合金の方はTi及びBを添加
しないNo、28の合金より絞り加工時の割れが更に少
なくTi及びBの添加効果が明らかとなった。
As is clear from Tables 5 and 6, N added with Ti and B
Alloys No. 0, 27.29 and 30 had even fewer cracks during drawing than alloy No. 28 to which Ti and B were not added, making the effect of the addition of Ti and B clear.

実施例4 第7表に示す化学成分の合金溶湯を使用して実施例2と
同様の工程で合金板を製造した。
Example 4 An alloy plate was manufactured in the same process as in Example 2 using a molten alloy having the chemical components shown in Table 7.

得られた各合金板の冷間圧延のままの機械的性質及びZ
oo℃×20分の加熱処理後の機械的性質を測定すると
共に、実施例1と同様にして深絞り試験及び金属間化合
物の面積占有率を測定し第8表に示す結果を得た。
Mechanical properties and Z of each obtained alloy plate as cold rolled
Mechanical properties were measured after heat treatment at oo°C for 20 minutes, and the deep drawing test and area occupation rate of intermetallic compounds were measured in the same manner as in Example 1, and the results shown in Table 8 were obtained.

第7表 第7及び8表からも明らかな様にNo、31゜32及び
33の発明合金をそれぞれ実施例2のNo、18.21
及び22合金と比較すると、明らかにTiおよびBの添
加効果がみられた。
Table 7 As is clear from Tables 7 and 8, the invention alloys No. 31°, 32 and 33 were mixed with No. 18.21 of Example 2, respectively.
When compared with alloys 2 and 22, the effect of adding Ti and B was clearly seen.

実施例5 第9表に示す化学成分(Si及びTiは不純物)の合金
溶湯を使用し、半連続鋳造法(鋳造温度710℃、冷却
速度2〜b 50II11の鋳塊を製造した6次いで510℃。
Example 5 A molten alloy having the chemical components shown in Table 9 (Si and Ti are impurities) was used to produce an ingot using a semi-continuous casting method (casting temperature 710°C, cooling rate 2~b 50II11). .

480℃及び450℃の3水準で6時間均熱処理した後
、終了温度300℃、270℃及び230℃で終了板厚
3III11まで熱間圧延し、更に0.75mm厚まで
冷間圧延した。その後360tで中間焼鈍(2時間保持
、40℃/Hr昇降温)を行ない、更に厚さ0.3 m
a+まで冷間圧延(加工率60%)した。
After soaking for 6 hours at 3 levels of 480°C and 450°C, it was hot rolled to a final thickness of 3III11 at finishing temperatures of 300°C, 270°C and 230°C, and further cold rolled to a thickness of 0.75mm. After that, intermediate annealing was performed at 360 tons (held for 2 hours, temperature raised and lowered at 40°C/Hr), and the thickness was further increased to 0.3 m.
It was cold rolled to a+ (processing rate 60%).

得られた各合金板の冷間圧延のままの機械的性質及び2
00℃×20分の加熱処理後の機械的性質を調べたとこ
ろ第10表に示す結果を得た。また実施例1と同様、絞
り性、耳率等を求めた。
Mechanical properties of each obtained alloy plate as cold rolled and 2
The mechanical properties after heat treatment at 00° C. for 20 minutes were examined, and the results shown in Table 10 were obtained. Further, in the same manner as in Example 1, the drawability, selvage ratio, etc. were determined.

第9表 第1O表から明らかな様に、均熱条件450℃×6時間
のものは絞り性及び再絞り性共に悪く、耳率も高かった
。また480℃及び510℃均熱のものでは熱間圧延終
了温度の高いものほど深絞り性及び再絞り性が優れ、又
耳率も低かった。
As is clear from Table 9 and Table 1O, when the soaking condition was 450°C for 6 hours, both the drawability and re-drawability were poor, and the selvage rate was high. In addition, among those soaked at 480° C. and 510° C., the higher the hot rolling end temperature, the better the deep drawability and redrawability were, and the lower the selvage ratio.

実施例6 第11表に示す化学成分(St及びTiは不純物)の合
金溶湯を使用し、半連続鋳造法(鋳造温度710℃、冷
却速度2〜b 600a+mの鋳塊を製造した0次いで510℃で4時
間均熱処理した後、終了温度320℃、終了板厚:3+
mまで熱間圧延し、所定板厚まで冷間圧延した後、48
0℃で中間焼#i@(連続加熱炉使用・・・保持時間0
秒、900℃/分昇降温)し更に厚さ0.3 mmまで
冷間圧延した(、加工率20,40゜)0及び90%)
、また比較材として中間焼鈍なしのものも加えた。
Example 6 A molten alloy having the chemical components shown in Table 11 (St and Ti are impurities) was used to produce an ingot using a semi-continuous casting method (casting temperature 710°C, cooling rate 2-b 600a+m). After soaking for 4 hours, the final temperature was 320℃, and the final plate thickness was 3+.
After hot rolling to a thickness of 48 m and cold rolling to a predetermined thickness,
Intermediate firing at 0℃ #i@ (continuous heating furnace used...holding time 0
(temperature raising/lowering at 900°C/min) and then cold-rolled to a thickness of 0.3 mm (processing rate 20, 40°) 0 and 90%).
A material without intermediate annealing was also added as a comparison material.

得られた各合金板の機械的性質を調べたところ、第12
表に示す結果を得た。また前記各実施例と同様、絞り性
及び耳率を求めた。
When the mechanical properties of each alloy plate obtained were investigated, the 12th
The results shown in the table were obtained. In addition, similar to each of the above Examples, the drawability and the selvage rate were determined.

第11表 第12表かられかる様に、冷間加工率20%のものは耳
率が圧延方向に対して、O°〜90°方向に出ており、
成形性はよくなかった。また冷間加工率90%および中
間焼鈍なしのものは強度が高すぎて成形性が悪かった。
As can be seen from Table 11 and Table 12, the edge ratio of the cold working ratio of 20% is in the direction of 0° to 90° with respect to the rolling direction.
The moldability was not good. In addition, those with a cold working ratio of 90% and no intermediate annealing had too high strength and poor formability.

また耳率も高いため深絞り用には不適であった。これに
対し冷間加工率40%及び70%のものは成形性、耳率
及び深絞り性についていずれも良好な結果が得られた。
In addition, the selvage rate was high, making it unsuitable for deep drawing. On the other hand, samples with a cold working rate of 40% and 70% gave good results in terms of formability, edge ratio, and deep drawability.

[発明の効果] 本発明は以上の様に構成されるが、要は構成元素の種類
と含有率を特定すると共に、圧延仮表面からみた金属間
化合物の面積占有率を低レベルに抑えることによって、
強度及び深絞り加工性の優れたAl−Mg−Mn系の包
装用合金板を、本発明で規定する熱処理条件や圧延条件
等を採用することによって再現性良く製造することがで
きることとなった。
[Effects of the Invention] The present invention is configured as described above, but the key point is to specify the types and contents of the constituent elements and to suppress the area occupation rate of intermetallic compounds as seen from the rolling temporary surface to a low level. ,
It has become possible to manufacture an Al-Mg-Mn-based packaging alloy sheet with excellent strength and deep drawing workability with good reproducibility by employing the heat treatment conditions, rolling conditions, etc. specified in the present invention.

Claims (4)

【特許請求の範囲】[Claims] (1)Mg:1〜6重量%及びMn:0.1〜2重量%
を必須成分として含むと共に、Fe及びCrのいずれか
一方若しくは両方を、総和として0.4重量%以下含み
、残部がAl及び不純物であるAl合金を溶解・鋳造し
、480℃以上の温度で均熱処理した後熱間圧延を行な
い、次いで冷間圧延を行ない又は行なうことなく300
〜600℃の中間焼鈍に付し、更に加工率30〜80%
で仕上げ冷間圧延を行ない、圧延板表面からみた寸法範
囲0.5μm以上の金属間化合物の面積占有率を3.5
%以下とすることを特徴とする深絞り性及び再絞り性の
優れた包装用Al合金板の製造方法。
(1) Mg: 1-6% by weight and Mn: 0.1-2% by weight
An Al alloy containing 0.4% by weight or less of either or both of Fe and Cr as an essential component, with the balance being Al and impurities is melted and cast, and then homogenized at a temperature of 480°C or higher. After heat treatment, hot rolling is performed, and then cold rolling is performed or no rolling is performed.
~600℃ intermediate annealing, further processing rate 30~80%
Finish cold rolling is performed at
% or less.
(2)Mg:1〜6重量%、Mn:0.1〜2重量%を
必須成分として含むと共に、Fe及びCrのいずれか一
方若しくは両方を、総和として0.4重量%以下含み、
さらにSi:0.2〜1重量%、Cu:0.2〜2.5
重量%のうちから選択される1種または2種を合金元素
として含み、残部がAl及び不純物であるAl合金を溶
解・鋳造し、480℃以上の温度で均熱処理した後熱間
圧延を行ない、次いで冷間圧延を行ない又は行なうこと
なく300〜600℃の中間焼鈍に付し、更に加工率3
0〜80%で仕上げ冷間圧延を行ない、圧延板表面から
みた寸法範囲0.5μm以上の金属間化合物の面積占有
率を3.5%以下とすることを特徴とする、深絞り性及
び再絞り性の優れた包装用Al合金板の製造方法。
(2) Contains Mg: 1 to 6% by weight, Mn: 0.1 to 2% by weight as essential components, and also contains 0.4% by weight or less of either or both of Fe and Cr as a total,
Furthermore, Si: 0.2 to 1% by weight, Cu: 0.2 to 2.5
An Al alloy containing one or two selected from % by weight as alloying elements and the remainder being Al and impurities is melted and cast, soaked at a temperature of 480° C. or higher, and then hot rolled, Then, it is subjected to intermediate annealing at 300 to 600°C with or without cold rolling, and further processed at a processing rate of 3.
Deep drawability and re-rollability characterized by performing finish cold rolling at 0 to 80%, and making the area occupation rate of intermetallic compounds with a size range of 0.5 μm or more as seen from the rolled plate surface to 3.5% or less. A method for manufacturing an Al alloy plate for packaging with excellent drawability.
(3)Mg:1〜6重量%、Mn:0.1〜2重量%、
Ti:0.02〜0.2重量%、B:0.0001〜0
.03重量%を必須成分として含むと共に、Fe及びC
rのいずれか一方若しくは両方を、総和として0.4重
量%以下含み、残部がAl及び不純物であるAl合金を
溶解・鋳造し、480℃以上の温度で均熱処理した後熱
間圧延を行ない、次いで冷間圧延を行ない又は行なうこ
となく300〜600℃の中間焼鈍に付し、更に加工率
30〜80%で仕上げ冷間圧延を行ない、圧延板表面か
らみた寸法範囲0.5μm以上の金属間化合物の面積占
有率を3.5%以下とすることを特徴とする、深絞り性
及び再絞り性の優れた包装用Al合金板の製造方法。
(3) Mg: 1 to 6% by weight, Mn: 0.1 to 2% by weight,
Ti: 0.02-0.2% by weight, B: 0.0001-0
.. Contains 03% by weight as an essential component, and also contains Fe and C.
Melting and casting an Al alloy containing either or both of r in a total of 0.4% by weight or less, the remainder being Al and impurities, soaking at a temperature of 480 ° C. or higher, and then hot rolling, Then, it is subjected to intermediate annealing at 300 to 600°C with or without cold rolling, and is further subjected to finish cold rolling at a processing rate of 30 to 80% to form an intermetallic material with a dimension range of 0.5 μm or more as seen from the surface of the rolled plate. A method for producing an Al alloy plate for packaging with excellent deep drawability and redrawability, characterized by controlling the area occupation rate of the compound to 3.5% or less.
(4)Mg:1〜6重量%、Mn:0.1〜2重量%、
Ti:0.02〜0.2重量%、B:0.0001〜0
.03重量%を必須成分として含むと共に、Fe及びC
rのいずれか一方若しくは両方を、総和として0.4重
量%以下含み、さらにSi:0.2〜1重量%Cu:0
.2〜2.5重量%のうちから選択される1種または2
種を合金元素として含み、残部がAl及び不純物あるA
l合金を溶解・鋳造し、480℃以上の温度で均熱処理
した後熱間圧延を行ない、次いで冷間圧延を行ない又は
行なうことなく300〜600℃の中間焼鈍に付し、更
に加工率30〜80%で仕上げ冷間圧延を行ない、圧延
仮表面からみた寸法範囲0.5μm以上の金属間化合物
の面積占有率を3.5%以下とすることを特徴とする、
深絞り性及び再絞り性の優れた包装用Al合金板の製造
方法。
(4) Mg: 1 to 6% by weight, Mn: 0.1 to 2% by weight,
Ti: 0.02-0.2% by weight, B: 0.0001-0
.. Contains 03% by weight as an essential component, and also contains Fe and C.
Contains either one or both of r as a total of 0.4% by weight or less, and further includes Si: 0.2 to 1% by weight Cu: 0
.. One or two selected from 2 to 2.5% by weight
A containing seeds as alloying elements and the remainder being Al and impurities
The l alloy is melted and cast, soaked at a temperature of 480°C or higher, then hot rolled, then subjected to intermediate annealing at 300 to 600°C with or without cold rolling, and further processed at a working rate of 30 to 600°C. Finish cold rolling is performed at 80%, and the area occupation rate of intermetallic compounds having a dimension range of 0.5 μm or more as seen from the temporary rolling surface is 3.5% or less,
A method for manufacturing an Al alloy plate for packaging with excellent deep drawability and redrawability.
JP28179887A 1987-11-07 1987-11-07 Production of al alloy sheet for packaging Pending JPS63145758A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28179887A JPS63145758A (en) 1987-11-07 1987-11-07 Production of al alloy sheet for packaging

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28179887A JPS63145758A (en) 1987-11-07 1987-11-07 Production of al alloy sheet for packaging

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP23164484A Division JPS61110744A (en) 1984-11-02 1984-11-02 Al alloy plate for packing and its manufacture

Publications (1)

Publication Number Publication Date
JPS63145758A true JPS63145758A (en) 1988-06-17

Family

ID=17644129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28179887A Pending JPS63145758A (en) 1987-11-07 1987-11-07 Production of al alloy sheet for packaging

Country Status (1)

Country Link
JP (1) JPS63145758A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004300457A (en) * 2003-03-28 2004-10-28 Sumitomo Light Metal Ind Ltd Aluminum alloy sheet for can body
JP2007224380A (en) * 2006-02-24 2007-09-06 Sumitomo Light Metal Ind Ltd High-strength aluminum alloy sheet for cap of wide-mouthed bottle can

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5282615A (en) * 1975-12-16 1977-07-11 Sumitomo Light Metal Ind Method of making hard aluminium sheet for deep drawing
JPS5511110A (en) * 1978-07-06 1980-01-25 Sumitomo Light Metal Ind Ltd Manufacture of aluminum alloy hard plate low in deep drawing edge rate
JPS56102568A (en) * 1980-01-21 1981-08-17 Sumitomo Light Metal Ind Ltd Manufacture of aluminum alloy hard plate with superior strength and anisotropy
JPS56102565A (en) * 1980-01-16 1981-08-17 Kobe Steel Ltd Manufacture of al alloy plate for packing
JPS58224142A (en) * 1982-06-22 1983-12-26 Sumitomo Light Metal Ind Ltd Aluminum alloy plate with superior formability and its manufacture
JPS58224145A (en) * 1982-06-22 1983-12-26 Sumitomo Light Metal Ind Ltd Aluminum alloy plate forming small edge by deep drawing and its manufacture
JPS60258454A (en) * 1984-06-05 1985-12-20 Furukawa Alum Co Ltd Manufacture of aluminum alloy rigid plate for molding

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5282615A (en) * 1975-12-16 1977-07-11 Sumitomo Light Metal Ind Method of making hard aluminium sheet for deep drawing
JPS5511110A (en) * 1978-07-06 1980-01-25 Sumitomo Light Metal Ind Ltd Manufacture of aluminum alloy hard plate low in deep drawing edge rate
JPS56102565A (en) * 1980-01-16 1981-08-17 Kobe Steel Ltd Manufacture of al alloy plate for packing
JPS56102568A (en) * 1980-01-21 1981-08-17 Sumitomo Light Metal Ind Ltd Manufacture of aluminum alloy hard plate with superior strength and anisotropy
JPS58224142A (en) * 1982-06-22 1983-12-26 Sumitomo Light Metal Ind Ltd Aluminum alloy plate with superior formability and its manufacture
JPS58224145A (en) * 1982-06-22 1983-12-26 Sumitomo Light Metal Ind Ltd Aluminum alloy plate forming small edge by deep drawing and its manufacture
JPS60258454A (en) * 1984-06-05 1985-12-20 Furukawa Alum Co Ltd Manufacture of aluminum alloy rigid plate for molding

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004300457A (en) * 2003-03-28 2004-10-28 Sumitomo Light Metal Ind Ltd Aluminum alloy sheet for can body
JP2007224380A (en) * 2006-02-24 2007-09-06 Sumitomo Light Metal Ind Ltd High-strength aluminum alloy sheet for cap of wide-mouthed bottle can

Similar Documents

Publication Publication Date Title
US4067754A (en) Cold rolled, ductile, high strength steel strip and sheet and method therefor
US4753685A (en) Aluminum alloy sheet with good forming workability and method for manufacturing same
JPH0127146B2 (en)
JP2004332106A (en) Aluminum alloy sheet with excellent press formability and continuous resistance spot weldability, and its manufacturing method
JPS61110744A (en) Al alloy plate for packing and its manufacture
JP3600022B2 (en) Manufacturing method of aluminum base alloy sheet for deep drawing
JPS626740B2 (en)
CN110983117A (en) Aluminum alloy for capacitor shell and preparation method of aluminum alloy plate strip of aluminum alloy
JPS62207850A (en) Rolled aluminum alloy sheet for forming and its production
EP3827109B1 (en) Method of manufacturing an al-mg-mn alloy plate product
JPS63145758A (en) Production of al alloy sheet for packaging
JP2003129203A (en) Production method for aluminum alloy plate excellent in rivet formability, score workability, and blowup resistance and used for lid of positive-pressure can
JP3737744B2 (en) Method for manufacturing aluminum foil
JP2005076041A (en) Method for manufacturing hard aluminum alloy sheet for can body
JPH05331588A (en) Aluminum alloy sheet for forming excellent in flange formability and its production
JP3871473B2 (en) Method for producing aluminum alloy plate for can body
JPS6254183B2 (en)
JPH04224651A (en) Aluminum two-piece can body and its manufacture
JPH04214834A (en) Aluminum alloy sheet excellent in corrosion resistance and press formability and its manufacture
JPH1161365A (en) Production of aluminum alloy sheet for deep drawing
JPH06228696A (en) Aluminum alloy sheet for di can body
JPH0860283A (en) Aluminum alloy sheet for di can body and its production
JP3587993B2 (en) Manufacturing method of aluminum alloy sheet for deep drawing
JP2891620B2 (en) High strength aluminum alloy hard plate excellent in stress corrosion cracking resistance and method of manufacturing the same
JPH02254143A (en) Production of hard aluminum alloy sheet for forming