JPS6254183B2 - - Google Patents

Info

Publication number
JPS6254183B2
JPS6254183B2 JP55062547A JP6254780A JPS6254183B2 JP S6254183 B2 JPS6254183 B2 JP S6254183B2 JP 55062547 A JP55062547 A JP 55062547A JP 6254780 A JP6254780 A JP 6254780A JP S6254183 B2 JPS6254183 B2 JP S6254183B2
Authority
JP
Japan
Prior art keywords
temperature
rolled sheet
hot
cold
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55062547A
Other languages
Japanese (ja)
Other versions
JPS56158854A (en
Inventor
Hisao Tanigawa
Yasuo Kobayashi
Hiroshi Ooba
Isao Takeuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MA Aluminum Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP6254780A priority Critical patent/JPS56158854A/en
Publication of JPS56158854A publication Critical patent/JPS56158854A/en
Publication of JPS6254183B2 publication Critical patent/JPS6254183B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、高強度および高延性を有し、特に
深絞り成形に際して耳率の著しく小さいAl合金
板の製造法に関するものである。 近年、ビールや炭酸飲料などの缶容器には底付
缶胴と缶フタとからなるオールアルミニウム製2
ピース缶が大量に使用されるようになつてきてい
る。このオールアルミニウム製缶の胴体には
JISA3004のようなAl−Mn−Mg合金の硬質材が
使われている。この材料に要求される特性として
強度が高いこと、および深絞り成形時の耳率発生
が低いことがあげられるが、この2つの特性は互
いに相反するものであつて、強度を高めるために
冷間圧延率を上げると、深絞り成形時に前記Al
合金の硬質材における45゜方位の耳率が大きくな
るという関係があるものであつた。 また、一方JISA3004やAA3105などの軟質材も
器物やキヤツプなどに使われているが、この軟質
材においても、その深絞り成形時に45゜方位に耳
発生が見られ、いわゆるNone Ear材とはなつて
いない。 そこで、同一出願人は、先に特願昭51−22215
号(特開昭52−105509号公報)として、Mn:0.3
〜1.5%、Si:0.1〜0.5%、Mg:0.3〜3.0%を含有
し、さらに必要に応じてFe:0.3〜0.8%、Cu:
0.01〜0.3%、およびTi:0.005〜0.15%のうちの
1種または2種以上を含有し、残りがAlと不可
避不純物からなる組成(以上重量%、以下%はす
べて重量%を意味する)を有するAl合金の冷延
板に、100℃/min以上の昇温速度で500〜600℃
の温度範囲内の温度に急速加熱し、加熱後、保持
することなく直ちに100℃以下の温度に冷却する
ことからなる急速加熱処理を施すことによつて、
立方体集合組織を発達させ、もつて高強度を保持
した状態で、深絞り成形時における45゜方位の耳
率をできるだけ小さくする方法(以下先行発明方
法という)を提案した。確かに、この先行発明方
法によつて従来のバツチ式焼鈍炉で焼鈍した材料
に比して深絞り成形時に耳率の低い材料を得るこ
とができたが、この改良材料によつても最近のよ
り耳率の著しく低い缶胴用材料の要求を十分に満
足するものではない。 発明者等は、上述のような観点から、高強度を
有し、かつ深絞り成形に際して耳発生のほとんど
ないAl合金板を得べく、特に上記の先行発明方
法に着目し研究を行なつた結果、 (a) 均質化処理および熱間圧延を通じて素地中に
微細なAl6Mnなどの金属間化合物が析出するこ
と。 (b) 上記金属間化合物は、急速加熱処理に際し
て、0−90゜方位耳を発達させ、全体としての
耳率を下げる立方体集合組織の発達を阻害する
ように作用するので好ましくないこと。 (c) したがつて、Mnを素地中に固溶させておけ
ば、急速加熱処理に際して、立方体集合組織の
発達をはかることができ、もつて深絞り成形に
際して耳発生のほとんどないAl合金板が得ら
れること。 以上(a)〜(c)に示される知見を得たものである。 したがつて、この発明は、上記知見にもとづい
てなされたもので、Mn:0.3〜1.5%、Mg:0.3〜
3.0%を含有し、さらに必要に応じてFe:0.1〜
0.8%、Si:0.1〜0.5%、Cu:0.01〜0.3%、およ
びTi:0.005〜0.15%のうちの1種または2種以
上を含有し、残りがAlと不可避不純物からなる
組成を有するAl合金を、通常の条件にて、鋳造
し、均質化処理し、熱間圧延して成形した熱延板
に対して、550〜650℃の温度範囲内の温度に1時
間以上保持の溶体化処理を施してMnを固溶さ
せ、ついで加工度:40%以上の冷間圧延を施して
冷延板とした後、この冷延板に、500℃/min以
上の昇温速度で500〜600℃の温度範囲内の温度に
急速加熱し、直ちに冷却の急速加熱処理を施して
立方体集合組織を十分に発達せしめることによつ
て深絞り成形に際して耳率のほとんどない軟質材
とし、さらに必要に応じて前記軟質材に加工度:
40〜80%の冷間圧延を施すことによつて所定の高
強度を有する硬質材とすることに特徴を有するも
のである。 つぎに、この発明のAl合金板の製造法におい
て、成分組成、溶体化処理条件、加工度、および
急速加熱処理条件を上記の通りに限定した理由を
説明する。 A 成分組成 (a) Mn成分には固溶体強化作用があるが、そ
の含有量が0.3%未満では前記作用に所望の
効果が得られず、一方1.5%を越えて含有さ
せると、加工性が低下するようになることか
ら、その含有量を0.3〜1.5%と定めた。 (b) Mg Mg成分には、Mnと同様に固溶体を強化す
る作用があるが、その含有量が0.3%未満で
は前記作用に所望の効果が得られず、一方
3.0%を越えて含有させると、所望の固溶体
強化をはかることができなくなることから、
その含有量を0.3〜3.0%と定めた。 (c) Si Si成分には、Mgと結合してMg2Siを形成
し、合金を析出硬化する作用があるが、その
含有量が0.1%未満では前記作用に所望の効
果が得られず、一方0.5%を越えて合有させ
ると加工性が劣化するようになることから、
その含有量を0・1〜0.5%と定めた。 (d) Cu Cu成分には、Mnと同様固溶体強化作用が
あるが、その含有量が0.01%未満では前記作
用に所望の効果が得られず、一方0.3%を越
えて含有させると、加工性が劣化するように
なることから、その含有量を0.01〜0.3%と
定めた。 (e) Fe Fe成分には、結晶粒を微細化し、かつ深
絞り成形時にダイスに対する焼付きを防止す
る作用があるが、その含有量が0.1%未満で
は前記作用に所望の効果が得られず、一方
0.8%を越えて含有させると加工性が劣化す
るようになることから、その含有量を0.1〜
0.8%と定めた。 (f) Ti Ti成分には、結晶粒を微細化して加工性
を向上させる作用があるが、その含有量が
0.005%未満では前記作用に所望の効果が得
られず、一方0.15%を越えて含有させると、
粗大な化合物を形成して加工性を害するよう
になることから、その含有量を0.005〜0.15
%と定めた。 B 溶体化処理条件 溶体化処理温度が550℃未満にして、その保
持時間が1時間未満ではMnを完全に固溶させ
ることができず、一方650℃を越えた高温での
溶体化処理は、高温加熱による弊害を伴い望ま
しくないことから、溶体化処理温度を550〜650
℃、同保持時間を1時間以上と定めた。 C 加工度:40%以上の冷間圧延 溶体化処理後の冷間圧延における加工度が40
%未満では、その後工程での急速加熱処理にお
いて満足する立方体集合組織を得ることができ
ず、加工度:40%以上の場合に立方体集合組織
を容易に確保することができることから、その
加工度を40%以上と定めた。 D 急速加熱処理条件 昇温速度が速ければ速いほど立方体集合組織
の発達に好影響を及ぼすようになり、その好影
響が顕著に現われるのが昇温速度:500℃/
minからであることから、昇温速度を500℃/
min以上と定めた。また、加熱温度が高ければ
高いほど容易に、かつ確実に立方体集合組織を
得ることができるようになるが、600℃を越え
た加熱温度にするとランニングコストが上り、
かつ焼鈍炉の性能上生産性も損なわれるように
なつて好ましくなく、一方500℃未満の加熱温
度では満足する立方体集合組織を得ることがで
きないことから、その加熱温度を500〜600℃と
定めた。なお、この急速加熱処理は連続焼鈍炉
を用いて行なうのが好ましい。 E 加工度:40〜80%の冷間圧延 その加工度が40%未満では、所望の強度を有
する硬質材を得ることができず、一方80%を越
えた加工度になると、45゜方位耳の発生が大き
くなるばかりでなく、伸びも小さくなつて深絞
り成形性が劣化するようになることから、軟質
材を硬質材とするために施される冷間圧延の加
工度を40〜80%と定めた。 つぎに、この発明の方法を実施例により説明す
る。 実施例 1 Mn:1.04%、Mg:1.69%を含有し、残りがAl
と不可避不純物からなる組成を有する厚さ:457
mmのAl合金DC鋳塊に、温度:550℃に12時間保持
の均質化処理を施した後、通常の条件にて熱間圧
延を施して厚さ:6.0mmの熱延板とした。つい
で、前記熱延板の一部に、温度:600℃に2.4時間
保持後水冷の溶体化処理を施し、このように溶体
化処理を施した熱延板と、これを施さない熱延板
の両方に対して、加工度:83%の冷間圧延を施し
て厚さ:1.0mmを有する冷延板を成形した。つぎ
に、これらの冷延板に対して、それぞれ約1000
℃/min(連続焼鈍炉使用)および約1℃/min
の昇温速度で、それぞれ350℃、450℃、および
550℃の温度に加熱後、加熱保持することなく直
ちに急冷の急速加熱処理を施
The present invention relates to a method for producing an Al alloy plate that has high strength and high ductility, and particularly has a significantly small selvage ratio during deep drawing. In recent years, can containers for beer, carbonated drinks, etc. are made entirely of aluminum, consisting of a can body with a bottom and a can lid.
Peace cans are being used in large quantities. The body of this all-aluminum can has
A hard Al-Mn-Mg alloy material such as JISA3004 is used. The properties required for this material include high strength and low selvage during deep drawing, but these two properties are contradictory to each other, and in order to increase the strength, cold drawing is required. When the rolling rate is increased, the Al
There was a relationship in which the selvage ratio in the 45° direction in the hard alloy material increased. On the other hand, soft materials such as JISA3004 and AA3105 are also used for utensils and caps, but even in these soft materials, ear formation is observed in the 45° direction during deep drawing, making them different from so-called None Ear materials. Not yet. Therefore, the same applicant had previously filed the patent application No. 51-22215.
No. (Japanese Unexamined Patent Publication No. 52-105509), Mn: 0.3
Contains ~1.5%, Si: 0.1~0.5%, Mg: 0.3~3.0%, and further Fe: 0.3~0.8%, Cu:
0.01 to 0.3%, and one or more of Ti: 0.005 to 0.15%, with the remainder consisting of Al and unavoidable impurities (the above weight % and the below % all mean weight %). 500 to 600℃ at a heating rate of 100℃/min or more to cold-rolled Al alloy sheets with
By performing a rapid heating treatment consisting of rapid heating to a temperature within the temperature range of
We proposed a method (hereinafter referred to as the "prior invention method") that develops a cubic texture and minimizes the 45° radius during deep drawing while maintaining high strength. It is true that this prior invention method made it possible to obtain a material with a lower selvage rate during deep drawing compared to the material annealed in a conventional batch-type annealing furnace, but this improved material also This does not fully satisfy the requirement for a material for can bodies having a significantly lower selvage ratio. From the above-mentioned viewpoints, the inventors have conducted research focusing on the above-mentioned prior invention method in order to obtain an Al alloy plate that has high strength and has almost no ear formation during deep drawing. (a) Fine intermetallic compounds such as Al 6 Mn are precipitated in the base material through homogenization treatment and hot rolling. (b) The above-mentioned intermetallic compounds are undesirable because they act to inhibit the development of cubic textures that develop 0-90° azimuth ears and lower the overall ear ratio during rapid heat treatment. (c) Therefore, if Mn is dissolved as a solid solution in the base material, it is possible to develop a cubic texture during rapid heating treatment, and an Al alloy sheet with almost no selvage during deep drawing can be obtained. What you get. The findings shown in (a) to (c) above have been obtained. Therefore, this invention was made based on the above knowledge, and Mn: 0.3 to 1.5%, Mg: 0.3 to 1.5%.
Contains 3.0%, and if necessary Fe: 0.1~
Al alloy containing one or more of the following: 0.8%, Si: 0.1-0.5%, Cu: 0.01-0.3%, and Ti: 0.005-0.15%, with the remainder consisting of Al and inevitable impurities. A hot-rolled sheet that is cast, homogenized, hot-rolled and formed under normal conditions is subjected to solution treatment at a temperature within the temperature range of 550 to 650°C for more than 1 hour. After applying cold rolling to a working degree of 40% or more to form a cold-rolled sheet, this cold-rolled sheet is heated at 500 to 600°C at a heating rate of 500°C/min or more. By rapidly heating to a temperature within the temperature range and immediately performing a rapid heat treatment of cooling to sufficiently develop a cubic texture, a soft material with almost no selvage can be obtained during deep drawing, and if necessary, the above-mentioned Processing degree for soft materials:
It is characterized in that it is made into a hard material having a predetermined high strength by cold rolling by 40 to 80%. Next, in the method for producing an Al alloy plate of the present invention, the reason why the component composition, solution treatment conditions, working degree, and rapid heat treatment conditions are limited as described above will be explained. A Component composition (a) The Mn component has a solid solution strengthening effect, but if its content is less than 0.3%, the desired effect cannot be obtained in this effect, while if it is contained in excess of 1.5%, processability decreases. Therefore, its content was set at 0.3 to 1.5%. (b) Mg The Mg component has the effect of strengthening the solid solution like Mn, but if its content is less than 0.3%, the desired effect cannot be obtained;
If the content exceeds 3.0%, it will not be possible to achieve the desired solid solution strengthening.
Its content was set at 0.3-3.0%. (c) Si The Si component has the effect of combining with Mg to form Mg 2 Si and precipitation hardening the alloy, but if its content is less than 0.1%, the desired effect cannot be obtained, On the other hand, if the amount exceeds 0.5%, the processability will deteriorate.
Its content was set at 0.1 to 0.5%. (d) Cu The Cu component has a solid solution strengthening effect similar to Mn, but if the content is less than 0.01%, the desired effect cannot be obtained, while if the content exceeds 0.3%, the processability The content was set at 0.01% to 0.3%, as the amount of carbon dioxide deteriorates. (e) Fe The Fe component has the effect of refining crystal grains and preventing seizure of the die during deep drawing, but if its content is less than 0.1%, the desired effect cannot be obtained. ,on the other hand
If the content exceeds 0.8%, processability will deteriorate, so the content should be reduced from 0.1 to 0.8%.
It was set at 0.8%. (f) Ti The Ti component has the effect of refining crystal grains and improving workability, but its content is
If the content is less than 0.005%, the desired effect cannot be obtained, while if the content exceeds 0.15%,
Since it forms coarse compounds and impairs processability, the content should be reduced to 0.005 to 0.15.
%. B. Solution treatment conditions If the solution treatment temperature is less than 550℃ and the holding time is less than 1 hour, Mn cannot be completely dissolved in solid solution.On the other hand, solution treatment at a high temperature exceeding 650℃ Since high-temperature heating causes harmful effects and is undesirable, the solution treatment temperature is set at 550 to 650.
℃ and the holding time was set at 1 hour or more. C Working degree: Cold rolling of 40% or more Working degree in cold rolling after solution treatment is 40%
If the working degree is less than 40%, it will not be possible to obtain a satisfactory cubic texture in the rapid heat treatment in the subsequent process, and if the working degree is 40% or more, a cubic texture can be easily obtained. It is set at 40% or more. D. Rapid heating treatment conditions The faster the heating rate, the more it has a positive effect on the development of the cubic texture, and the positive effect is most noticeable when the heating rate is 500℃/
Since it is from min, the temperature increase rate should be set to 500℃/
It was set as min or more. Additionally, the higher the heating temperature, the easier and more reliable it is to obtain a cubic texture, but heating temperatures exceeding 600°C increase running costs.
In addition, the performance of the annealing furnace is unfavorable as it impairs productivity. On the other hand, it is not possible to obtain a satisfactory cubic texture at a heating temperature of less than 500°C, so the heating temperature was set at 500 to 600°C. . Note that this rapid heating treatment is preferably performed using a continuous annealing furnace. E Working degree: 40 to 80% cold rolling If the working degree is less than 40%, it is not possible to obtain a hard material with the desired strength, while if the working degree exceeds 80%, the 45° azimuth This not only increases the occurrence of cold rolling but also reduces elongation and deteriorates deep drawability. Therefore, the degree of cold rolling used to convert soft materials into hard materials should be reduced by 40 to 80%. It was determined that Next, the method of the present invention will be explained using examples. Example 1 Contains Mn: 1.04%, Mg: 1.69%, and the rest is Al.
Thickness: 457 with a composition consisting of and unavoidable impurities
An Al alloy DC ingot with a thickness of 6.0 mm was subjected to homogenization treatment at a temperature of 550°C for 12 hours, and then hot-rolled under normal conditions to form a hot-rolled plate with a thickness of 6.0 mm. Next, a part of the hot-rolled sheet was subjected to solution treatment by holding it at a temperature of 600°C for 2.4 hours and cooling with water, and the hot-rolled sheet subjected to such solution treatment and the hot-rolled sheet not subjected to this solution treatment were compared. Both were subjected to cold rolling with a working degree of 83% to form cold rolled sheets having a thickness of 1.0 mm. Next, approximately 1000
°C/min (using continuous annealing furnace) and approximately 1 °C/min
with heating rates of 350℃, 450℃, and
After heating to a temperature of 550℃, a rapid cooling process is immediately performed without holding the temperature.

【表】 し、さらにそれぞれの一部には加工度:60%の冷
間圧延を施して厚さ:0.4mmの硬質材とした。 つぎに、この結果得られたAl合金板のそれぞ
れから、ポンチ径:33mmφ、絞り比:1.67の条件
でカツプを深絞り成形し、その45゜方位の耳率を
測定した。この測定結果を第1表に示した。な
お、第1表において、この発明の範囲から外れた
条件のものには※印を付してある。 第1表に示されるように、厚さ:1.0mmの軟質
材および同0.4mmの硬質材とも、急速加熱処理に
おける昇温速度が速いほど、また加熱温度が高い
ほど耳率が小さくなることが示されており、しか
も、この傾向は溶体化処理を施した場合の方が、
これを施さない場合に比して顕著に現われ、特に
この発明の範囲内の条件で製造された本発明材は
きわめてわずかの耳率発生を示すにすぎないこと
が明らかである。 実施例 2 Al合金DC鋳塊の成分組成を、Mn:0.59%、
Mg:0.52%、Si:0.16%、Alおよび不可避不
[Table] Furthermore, a part of each was cold-rolled to a working degree of 60% to make a hard material with a thickness of 0.4 mm. Next, a cup was deep drawn from each of the resulting Al alloy plates under the conditions of a punch diameter of 33 mmφ and a drawing ratio of 1.67, and the selvage ratio in the 45° direction was measured. The measurement results are shown in Table 1. In Table 1, conditions outside the scope of the present invention are marked with *. As shown in Table 1, for both the soft material with a thickness of 1.0 mm and the hard material with a thickness of 0.4 mm, the faster the temperature increase rate in rapid heating treatment and the higher the heating temperature, the smaller the selvage ratio becomes. Moreover, this tendency is more pronounced when solution treatment is applied.
This is more noticeable than in the case where this is not applied, and it is clear that the material of the present invention produced under the conditions within the scope of the present invention exhibits only a very slight occurrence of selvage. Example 2 The composition of the Al alloy DC ingot was Mn: 0.59%,
Mg: 0.52%, Si: 0.16%, Al and unavoidable

【表】【table】

【表】 純物:残りとする以外は、上記実施例1における
と同一の条件にて、厚さ:1.0mmの軟質材と同0.4
mmの硬質材とをそれぞれ製造した。 この結果得られた軟質材および硬質材につい
て、実施例1におけると同一の条件で耳率を測定
した。この測定結果を第2表に示したが、第2表
には製造条件も合せて示した。 第2表に示されるように、実施例2においても
実施例1におけると同様の結果を示し、本発明材
はきわめて小さい耳率を示すにすぎないものであ
つた。 実施例 3 Al合金DC鋳塊の成分組成を、Mn:1.03%、
Mg:1.09%、Fe:0.49%、Si:0.17%、Cu:
0.12%、Ti:0.04%、Alおよび不可避不純物:残
りとする以外は、上記実施例1におけると同一の
条件で、厚さ:1.0mmの軟質材と同0.4mmの硬質材
とをそれぞれ製造し、ついで実施例1におけると
同一の条件にて耳率を測定した。 この測定結果を製造条件と共に第3表に示した
[Table] Pure material: under the same conditions as in Example 1 above, except for the remainder, and a soft material with a thickness of 1.0 mm and the same 0.4
mm hard material and were manufactured respectively. For the soft material and hard material obtained as a result, the selvage ratio was measured under the same conditions as in Example 1. The measurement results are shown in Table 2, which also shows the manufacturing conditions. As shown in Table 2, Example 2 showed the same results as Example 1, and the material of the present invention showed only a very small selvage ratio. Example 3 The composition of the Al alloy DC ingot was Mn: 1.03%,
Mg: 1.09%, Fe: 0.49%, Si: 0.17%, Cu:
A soft material with a thickness of 1.0 mm and a hard material with a thickness of 0.4 mm were manufactured under the same conditions as in Example 1 above, except that 0.12%, Ti: 0.04%, Al and unavoidable impurities remained. Then, the ear percentage was measured under the same conditions as in Example 1. The measurement results are shown in Table 3 along with the manufacturing conditions.

【表】【table】

【表】 が、実施例3においても、上記実施例1、2にお
けると同様の結果を示し、本発明材の耳率発生が
きわめて少ないことを示している。 上述のように、この発明によれば、深絞り成形
に際して耳率のきわめて小さいAl合金板の軟質
材および硬質材を製造することができ、しかも前
記軟質材は器物やキヤツプなどの成形加工に、ま
た前記硬質材は、例えばオールアルミニウム製2
ピース缶の底付缶胴の深絞り成形に、それぞれ適
するなど工業上有用な効果がもたらされるのであ
る。
[Table] shows the same results in Example 3 as in Examples 1 and 2, indicating that the occurrence of selvage in the material of the present invention is extremely small. As described above, according to the present invention, it is possible to produce soft materials and hard materials of Al alloy plates with extremely small selvage ratios during deep drawing, and the soft materials can be used to form objects such as utensils and caps. Further, the hard material is, for example, an all-aluminum 2
Industrially useful effects are brought about, such as suitability for deep drawing of bottomed can bodies of piece cans.

Claims (1)

【特許請求の範囲】 1 Mn:0.3〜1.5%、Mg:0.3〜3.0%を含有
し、残りがAlと不可避不純物からなる組成(以
上重量%)を有するAl合金を、通常の条件にて
鋳造し、均質化処理し、熱間圧延を施して熱延板
とした後、前記熱延板に550〜650℃の温度範囲内
の温度に1時間以上保持の溶体化処理を施し、つ
いで加工度:40%以上の冷間圧延を施して冷延板
とした後、500℃/min以上の昇温速度で500〜
600℃の温度範囲内の温度に急速加熱し、直ちに
室温まで冷却することを特徴とする耳率の低い深
絞り成形用アルミニウム合金板の製造法。 2 Mn:0.3〜1.5%、Mg:0.3〜3.0%を含有
し、さらにFe:0.1〜0.8%、Si:0.1〜0.5%、
Cu:0.01〜0.3%、およびTi:0.005〜0.15%のう
ちの1種または2種以上を含有し、残りがAlと
不可避不純物からなる組成(以上重量%)を有す
るAl合金を、通常の条件にて鋳造し、均質化処
理し、熱間圧延を施して熱延板とした後、前記熱
延板に550〜650℃の温度範囲内の温度に1時間以
上保持の溶体化処理を施し、ついで加工度:40%
以上の冷間圧延を施して冷延板とした後、500
℃/min以上の昇温速度で500〜600℃の温度範囲
内の温度に急速加熱し、直ちに室温まで冷却する
ことを特徴とする耳率の低い深絞り成形用アルミ
ニウム合金板の製造法。 3 Mn:0.3〜1.5%、Mg:0.3〜3.0%を含有
し、残りがAlと不可避不純物からなる組成(以
上重量%)を有するAl合金を、通常の条件にて
鋳造し、均質化処理し、熱間圧延を施して熱延板
とした後、前記熱延板に550〜650℃の温度範囲内
の温度に1時間以上保持の溶体化処理を施し、つ
いで加工度:40%以上の冷間圧延を施して冷延板
とした後、500℃/min以上の昇温速度で500〜
600℃の温度範囲内の温度に急速加熱し、直ちに
室温まで冷却し、引続いて加工度:40〜80%の冷
間圧延を施して硬質材とすることを特徴とする耳
率の低い深絞り成形用アルミニウム合金板の製造
法。 4 Mn:0.3〜1.5%、Mg:0.3〜3.0%を含有
し、さらにFe:0.1〜0.8%、Si:0.1〜0.5%、
Cu:0.01〜0.3%、およびTi:0.005〜0.15%のう
ちの1種または2種以上を含有し、残りがAlと
不可避不純物からなる組成(以上重量%)を有す
るAl合金を、通常の条件にて鋳造し、均質化処
理し、熱間圧延を施して熱延板とした後、前記熱
延板に550〜650℃の温度範囲内の温度に1時間以
上保持の溶体化処理を施し、ついで加工度:40%
以上の冷間圧延を施して冷延板とした後、500
℃/min以上の昇温速度で500〜600℃の温度範囲
内の温度に急速加熱し、直ちに室温まで冷却し、
引続いて加工度:40〜80%の冷間圧延を施して硬
質材とすることを特徴とする耳率の低い深絞り成
形用アルミニウム合金板の製造法。
[Claims] 1. An Al alloy containing 0.3 to 1.5% Mn, 0.3 to 3.0% Mg, and the remainder consisting of Al and unavoidable impurities (weight percent) is cast under normal conditions. After homogenizing and hot rolling to obtain a hot-rolled sheet, the hot-rolled sheet is subjected to solution treatment at a temperature within the temperature range of 550 to 650°C for 1 hour or more, and then processed : After cold-rolling 40% or more to make a cold-rolled sheet, it is heated to 500℃ or more at a heating rate of 500℃/min or more.
A method for producing an aluminum alloy plate for deep drawing with a low selvage rate, which is characterized by rapidly heating to a temperature within a temperature range of 600°C and immediately cooling to room temperature. 2 Contains Mn: 0.3 to 1.5%, Mg: 0.3 to 3.0%, further Fe: 0.1 to 0.8%, Si: 0.1 to 0.5%,
An Al alloy containing one or more of Cu: 0.01 to 0.3% and Ti: 0.005 to 0.15%, with the remainder consisting of Al and unavoidable impurities (weight %), was prepared under normal conditions. After casting, homogenizing, and hot rolling to obtain a hot-rolled sheet, the hot-rolled sheet is subjected to solution treatment of holding at a temperature within a temperature range of 550 to 650 ° C. for 1 hour or more, Then processing degree: 40%
After applying the above cold rolling to make a cold rolled sheet, 500
A method for producing an aluminum alloy plate for deep drawing with a low selvage rate, characterized by rapidly heating to a temperature within a temperature range of 500 to 600°C at a heating rate of ℃/min or more, and immediately cooling to room temperature. 3. An Al alloy containing Mn: 0.3 to 1.5%, Mg: 0.3 to 3.0%, and the remainder consisting of Al and unavoidable impurities (weight percent) is cast under normal conditions and homogenized. After hot rolling to obtain a hot-rolled sheet, the hot-rolled sheet is subjected to solution treatment at a temperature within the temperature range of 550 to 650°C for 1 hour or more, and then cooled to a working degree of 40% or more. After being subjected to inter-rolling to form a cold-rolled sheet, it is heated to
A deep material with a low selvage rate characterized by rapid heating to a temperature within the temperature range of 600℃, immediate cooling to room temperature, and subsequent cold rolling with a working degree of 40 to 80% to produce a hard material. Manufacturing method of aluminum alloy plate for drawing. 4 Contains Mn: 0.3 to 1.5%, Mg: 0.3 to 3.0%, further Fe: 0.1 to 0.8%, Si: 0.1 to 0.5%,
An Al alloy containing one or more of Cu: 0.01 to 0.3% and Ti: 0.005 to 0.15%, with the remainder consisting of Al and unavoidable impurities (weight %), was prepared under normal conditions. After casting, homogenizing, and hot rolling to obtain a hot-rolled sheet, the hot-rolled sheet is subjected to solution treatment of holding at a temperature within a temperature range of 550 to 650 ° C. for 1 hour or more, Then processing degree: 40%
After applying the above cold rolling to make a cold rolled sheet, 500
Rapidly heat to a temperature within the temperature range of 500 to 600°C at a heating rate of ℃/min or more, immediately cool to room temperature,
A method for producing an aluminum alloy plate for deep drawing with a low selvage ratio, which is characterized in that it is subsequently cold rolled to a working degree of 40 to 80% to form a hard material.
JP6254780A 1980-05-12 1980-05-12 Manufacture of aluminum alloy sheet for deep drawing with low earing ratio Granted JPS56158854A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6254780A JPS56158854A (en) 1980-05-12 1980-05-12 Manufacture of aluminum alloy sheet for deep drawing with low earing ratio

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6254780A JPS56158854A (en) 1980-05-12 1980-05-12 Manufacture of aluminum alloy sheet for deep drawing with low earing ratio

Publications (2)

Publication Number Publication Date
JPS56158854A JPS56158854A (en) 1981-12-07
JPS6254183B2 true JPS6254183B2 (en) 1987-11-13

Family

ID=13203365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6254780A Granted JPS56158854A (en) 1980-05-12 1980-05-12 Manufacture of aluminum alloy sheet for deep drawing with low earing ratio

Country Status (1)

Country Link
JP (1) JPS56158854A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5993636A (en) * 1982-11-22 1984-05-30 東洋製罐株式会社 Can body having excellent coating adhesive property
JPS6227544A (en) * 1985-07-26 1987-02-05 Sky Alum Co Ltd Heat-treated-type aluminum alloy rolled sheet for forming working and its production
JPS6425957A (en) * 1988-05-20 1989-01-27 Sky Aluminium Production of rolled aluminum alloy sheet for photosensitive drum
JPH02274833A (en) * 1989-04-14 1990-11-09 Kobe Steel Ltd Aluminum alloy-soft material for supporting substrate and its manufacture
WO1992004476A1 (en) * 1990-09-05 1992-03-19 Golden Aluminum Company Aluminum alloy sheet stock
CN103630565B (en) * 2013-11-22 2015-09-16 武汉钢铁(集团)公司 A kind of ear tendency M value processed differentiates the method for Automobile Plate deep drawability

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5521600A (en) * 1978-08-04 1980-02-15 Alusuisse Casting continuous aluminum alloy belt plate for use as container unit from aluminum scrap

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5521600A (en) * 1978-08-04 1980-02-15 Alusuisse Casting continuous aluminum alloy belt plate for use as container unit from aluminum scrap

Also Published As

Publication number Publication date
JPS56158854A (en) 1981-12-07

Similar Documents

Publication Publication Date Title
US4645544A (en) Process for producing cold rolled aluminum alloy sheet
JPH05195171A (en) Production of aluminum hard plate excellent in formability and low in earing rate
JPS6254183B2 (en)
JP2004027253A (en) Aluminum alloy sheet for molding, and method of producing the same
JP3161141B2 (en) Manufacturing method of aluminum alloy sheet
JPS6022054B2 (en) High-strength Al alloy thin plate with excellent formability and corrosion resistance, and method for producing the same
JPS6365745B2 (en)
JPH07233456A (en) Production of aluminum alloy sheet excellent in formability
JP3587993B2 (en) Manufacturing method of aluminum alloy sheet for deep drawing
JPH10330897A (en) Production of aluminum base alloy sheet for deep drawing
JPS60145348A (en) High-strength thin al alloy plate having superior formability and corrosion resistance and its manufacture
JPH0346541B2 (en)
JPH0585630B2 (en)
JPH0694586B2 (en) Manufacturing method of Al alloy thin plate for manufacturing aluminum cans
JP2000001730A (en) Aluminum alloy sheet for can body, and its production
JPH08134610A (en) Production of aluminum alloy sheet for forming
JPS6160141B2 (en)
JPS6123853B2 (en)
JP4060460B2 (en) Method for producing aluminum alloy plate for can body
JPH03260040A (en) Manufacture of high strength al-mn series alloy sheet
JP2942172B2 (en) Method of manufacturing aluminum alloy plate for PP cap
JPH08302440A (en) Aluminum alloy sheet with high strength
JPH07197175A (en) Aluminum alloy sheet for cap having excellent compressive strength and its production
JPH10330898A (en) Production of aluminum base alloy sheet for deep drawing
JPH03191042A (en) Manufacture of aluminum alloy foil excellent in formability