JP4262826B2 - Aluminum alloy laminate coating material for can body and manufacturing method thereof - Google Patents

Aluminum alloy laminate coating material for can body and manufacturing method thereof Download PDF

Info

Publication number
JP4262826B2
JP4262826B2 JP11322299A JP11322299A JP4262826B2 JP 4262826 B2 JP4262826 B2 JP 4262826B2 JP 11322299 A JP11322299 A JP 11322299A JP 11322299 A JP11322299 A JP 11322299A JP 4262826 B2 JP4262826 B2 JP 4262826B2
Authority
JP
Japan
Prior art keywords
aluminum alloy
film
laminate
less
coating material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11322299A
Other languages
Japanese (ja)
Other versions
JP2000026995A (en
Inventor
覚 鈴木
時彦 小林
了 東海林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Sky Aluminum Corp
Original Assignee
Furukawa Sky Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Sky Aluminum Corp filed Critical Furukawa Sky Aluminum Corp
Priority to JP11322299A priority Critical patent/JP4262826B2/en
Publication of JP2000026995A publication Critical patent/JP2000026995A/en
Application granted granted Critical
Publication of JP4262826B2 publication Critical patent/JP4262826B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、熱可塑性樹脂フィルムの密着性が優れたキャンボディ用アルミニウム合金ラミネート被覆材およびその製造方法に関する。
【0002】
【従来の技術】
飲料用缶には缶胴、缶蓋、底蓋からなる3ピース缶と缶胴と底蓋が一体となった缶体と缶蓋の2つからなる2ピース缶がある。このうち2ピース缶の缶体には絞りしごき缶(DI缶)と絞り再絞り缶(DRD缶)が多く用いられ、最近は絞り後ストレッチ加工を施す薄肉化再絞り缶も開発されている。 ところで、DI缶の製造では、従来、缶体成型後に、潤滑剤の洗浄、乾燥、塗装などの諸工程を行っていたが、近年、生産性向上および作業環境改善を目的に、熱可塑性樹脂フィルムを被覆したラミネート被覆材を缶体に成形して前記諸工程を省略する方法がとられるようになった。
【0003】
【発明が解決しようとする課題】
しかし、前記ラミネート被覆材は、アルミニウム合金素材上に熱可塑性樹脂フィルムを被覆する際に、前記素材と熱可塑性樹脂フィルムとの間にミクロ気泡が生成するなどして熱可塑性樹脂フィルムの密着性が低下するという問題がある。このミクロ気泡発生の原因には、ラミネートを接着剤を介して被覆する場合は接着剤の濡れ性不足、接着剤の量不足、接着剤からの発泡などが考えられ、また圧着被覆する場合は圧着力の不足が考えられる。しかし、これら原因に対し各々対策を講じても気泡が発生する場合がある。
このため、本発明者等は、ミクロ気泡の生成防止について研究を行い、ミクロ気泡は前記素材の酸化皮膜厚さおよび表面粗さを規定することにより低減し得ることを見いだし、さらに種々研究を進めて本発明を完成させるに至った。
本発明は熱可塑性樹脂フィルムの密着性が優れたキャンボディ用アルミニウム合金ラミネート被覆材およびその製造方法の提供を目的とする。
【0004】
【課題を解決するための手段】
請求項1記載の発明は、アルミニウム合金素材上に化成処理または陽極酸化処理のいずれかの処理による前処理皮膜が形成され、その上にラミネートフィルムが被覆されたキャンボディ用アルミニウム合金ラミネート被覆材において、前記アルミニウム合金素材の酸化皮膜厚さが200Å以下、前処理皮膜の表面粗さが0.8mmの基準長さにおいてRa0.30μm以下、Rmax 2.0μm以下であることを特徴とするキャンボディ用アルミニウム合金ラミネート被覆材である。
【0005】
請求項2記載の発明は、アルミニウム合金素材がMgを0.8〜1.5wt%、Mnを0.2〜1.5wt%、Cuを0.1〜0.5wt%含有し、残部がAlおよび不可避不純物からなるAl合金素材であることを特徴とする請求項1記載のキャンボディ用アルミニウム合金ラミネート被覆材である。
【0006】
請求項3記載の発明は、アルミニウム合金素材がMgを0.9〜1.2wt%、Mnを0.2〜1.2wt%、Cuを0.2〜0.3wt%含有し、残部がAlおよび不可避不純物からなるAl合金素材であることを特徴とする請求項1記載のキャンボディ用アルミニウム合金ラミネート被覆材である。
【0007】
請求項4記載の発明は、アルミニウム合金素材の厚さが200〜360μmであることを特徴とする請求項1、2、3のいずれかに記載のキャンボディ用アルミニウム合金ラミネート被覆材である。
【0009】
請求項記載の発明は、ラミネートフィルムの厚さが10〜30μmであることを特徴とする請求項1、2、3又は4のいずれかに記載のキャンボディ用アルミニウム合金ラミネート被覆材である。
【0010】
請求項記載の発明は、ラミネートフィルムが、線圧力5kgf/cm以上、200〜300℃の温度範囲の条件で熱圧着により被覆されていることを特徴とする請求項1、2、3、4又は5のいずれかに記載のキャンボディ用アルミニウム合金ラミネート被覆材である。
【0011】
請求項記載の発明は、アルミニウム合金鋳塊に均質化処理、熱間圧延、冷間圧延、必要に応じて熱間圧延後または冷間圧延中に焼鈍処理を施してアルミニウム合金素材を作製し、前記素材に化成処理または陽極酸化処理のいずれかの前処理を施し、次いで熱可塑性樹脂フィルムを被覆するキャンボディ用アルミニウム合金ラミネート被覆材の製造方法であって、前記冷間圧延の仕上げパスロールの表面粗さを0.8mmの基準長さにおいてRa0.30μm以下、Rmax 2.0μm以下とし、前処理前の素材の酸化皮膜厚さが200Åを超える場合は、前処理前までに前記素材にアルカリまたは酸による洗浄処理を施して前記酸化皮膜厚さを200Å以下にすることを特徴とする請求項1、2、3、4、5又は6のいずれかに記載のキャンボディ用アルミニウム合金ラミネート被覆材の製造方法である。
【0012】
【発明の実施の形態】
請求項1記載の発明は、アルミニウム合金素材に化成皮膜などの前処理皮膜が形成され、その上に熱可塑性樹脂フィルム(以下ラミネートフィルムと記す)を被覆したラミネート被覆材の前記アルミニウム合金素材の酸化皮膜厚さを200Å以下、前処理皮膜の表面粗さをRa0.30μm以下、Rmax 2.0μm以下に規定したキャンボディ用アルミニウム合金ラミネート被覆材である。
【0013】
この発明において、前記アルミニウム合金素材の酸化皮膜厚さを200Å以下に規定する理由は、前記酸化皮膜厚さが200Åを超えると酸化皮膜が脆くなり、前処理後またはラミネートフィルム形成後に破壊してラミネートフィルムの密着性が悪化するためである。前記酸化皮膜は前処理前にアルカリまたは酸で洗浄することにより薄くすることができる。
前記酸化皮膜厚さは、オージェ電子分光法(AES)により素材の酸素濃度を厚さ方向に線分析し、分析線のピーク値の半価幅で表わされる。
【0014】
この発明において、前処理皮膜の表面粗さを基準長さ0.8mmでRa0.30μm以下、Rmax 2.0μm以下にそれぞれ規定する理由は、前記表面粗さが前記規定値を超えるとラミネートフィルム下にミクロ気泡が発生してラミネートフィルムの密着性が低下するためである。前記表面粗さは、冷間圧延の仕上げパスロールの表面粗さを小さくすることにより実現される。
【0015】
本発明において、アルミニウム合金素材には、ある程度の引張強さと耐食性を有する任意の合金素材が適用されるが、特にMgを0.5〜5.0wt%、Mnを0.2〜1.5wt%、Cuを0.1〜0.5wt%含有し、残部がAlおよび不可避不純物からなるAl合金素材はキャンボディに要求される強度や耐食性などを十分満足し望ましい。
【0016】
以下に、前記アルミニウム合金素材の合金元素について説明する。
Mg、Mn、Cuはいずれも素材の強度向上に寄与し、缶体の耐圧強度などを高める。前記Mg、Mn、Cuの含有量をそれぞれ0.8〜1.5wt%、0.2〜1.5wt%、0.1〜0.5wt%に規定する理由は、前記元素の含有量が下限未満では、いずれも十分な強度が得られず、上限を超えると、MgとMnはいずれも強度が高くなりすぎて、しごき成形性およびストレッチ加工性が低下して缶体に成形し難くなり、Cuは耐食性が低下するためである。
Mg、Mn、Cuの特に望ましい含有量は、それぞれ0.9〜1.2wt%、0.2〜1.2wt%、0.2〜0.3wt%である。
【0017】
前記Al−Mg−Mn−Cu合金素材は、Ti、B、またはCの合金元素を含有させることにより鋳造組織が微細化して加工性が改善される。
前記合金元素の望ましい含有量は、Ti0.001〜0.05wt%、B0.0001〜0.05wt%、C0.0001〜0.05wt%であり、前記各合金元素の含有量が下限未満ではいずれの元素も十分な微細化効果が得られず、上限を超えると、いずれも微細化効果が飽和してコスト的に不利なためである。さらにTiは粗大な晶出物が増加して缶体の成形性が低下する。
【0018】
前記Al−Mg−Mn−Cu合金素材に含まれる不純物元素の許容限は、Si0.4wt%、Fe0.5wt%、Zn0.5wt%、Cr0.1wt%、Zr0.1wt%、V0.1wt%である。その他の不純物元素も0.1wt%以下なら含まれていても差し支えない。
【0019】
本発明において、アルミニウム合金素材の厚さは200μm未満では十分な耐圧強度が得にくく、360μmを超えるとコスト高になる。このためアルミニウム合金素材の厚さは200〜360μmが望ましい。
【0020】
本発明において、前処理皮膜としては、化成皮膜または陽極酸化皮膜がラミネートフィルムとの密着性に優れ望ましい。
特に化成皮膜は、簡略な設備で形成でき、コスト的にも有利なため、工業上特に望ましいと言える。
化成皮膜は、リン酸亜鉛法、ベーマイト法、MBV法、またはEW法(アルカリ−クロム酸塩系)、アロヂン法(クロム酸塩系、リン酸−クロム酸塩系)などの化成処理により形成される。陽極酸化皮膜は、硫酸、しゅう酸、クロム酸、有機酸などの電解液を用いた陽極酸化処理により形成される。
【0021】
本発明において、ラミネートフィルムの厚さは、10μm未満ではフィルムが薄すぎて成形加工時に破れる恐れがあり、30μmを超えるとコスト高になる。このためラミネートフィルムの厚さは10〜30μmが望ましい。
ラミネートフィルムが、線圧力5kgf/cm未満で熱圧着されていると圧力不足から気泡が入ったり密着性が低下したりすることがある。また熱圧着温度が200℃未満では十分良好な密着性が得られず、300℃を超えるとフィルムが変質することがある。従って、ラミネートフィルムは、線圧力5kgf/cm以上、200〜300℃の温度範囲の条件で熱圧着され被覆されていることが望ましい。
【0022】
本発明において、ラミネートフィルムには、ポリエチレンテレフタレートなどのポリエステル系フィルム、ポリプロピレンやポリエチレンなどのポリオレフィン系フィルム、ナイロンなどのポリアミド系フィルムなどの通常使用されるフィルムが用いられる。これらフィルムは熱圧着またはプライマーを介した接着などにより被覆される。
【0023】
本発明のラミネート被覆材は、例えば、Al−0.5〜5.0wt%Mg−0.2〜1.5wt%Mn−0.1〜0.5wt%Cu合金鋳塊に、均質化処理、熱間圧延、冷間圧延、必要に応じて熱間圧延後または冷間圧延中に焼鈍処理を施し、その後、前処理を施し、次いでラミネートフィルムを被覆して製造される。
【0024】
請求項記載の発明において、冷間圧延の仕上げパスロールの表面粗さを0.8mmの基準長さにおいてRa0.30μm以下、Rmax 2.0μm以下に規定する理由は、前記規定値を超えるとラミネートフィルム被覆前の素材の表面粗さが本発明規定値以下にならないためである。なお、冷間圧延後の素材の表面粗さは、洗浄処理後も、前処理後も、洗浄処理と前処理の両方を行ったあとも、ほぼ同じ粗さになるものである。
【0025】
請求項記載の発明において、前記焼鈍処理は、CAL(連続焼鈍炉による焼鈍)、バッチ焼鈍などの任意の方法で施される。前記焼鈍処理により、素材の結晶方位が調整され、或いは加工歪みが除去される。大気中でバッチ焼鈍する場合は素材の酸化皮膜が厚く形成される。焼鈍処理は行わない場合もある。
【0026】
請求項記載の発明では、前処理前の素材の酸化皮膜の厚さが200Åを超えて厚い場合はアルカリまたは酸による洗浄処理を施して酸化被膜を薄くする。洗浄処理は酸化皮膜厚さが200Å以下のときに行って、酸化皮膜をさらに薄くしても良い。この洗浄処理は前処理前までに行えば良く、焼鈍処理を施さない場合は熱間圧延後から前処理前までの間に、焼鈍処理を施す場合は最終焼鈍処理後から前処理前までの間に行う。なお、洗浄処理は、通常、前処理と一貫して行うことが多いが、酸化被膜が厚い場合(200Åを超える場合)は前処理前に別工程で行うのが酸化皮膜厚さを十分薄くできて望ましい。
【0027】
【実施例】
以下に本発明を実施例により詳細に説明する。
(実施例1)
表1に示す本発明規定内組成のAl合金をDC鋳造法により鋳造し、得られた鋳塊を520℃で12hr均質化処理後、熱間圧延して厚さ2.5mmの板材とした。この熱間圧延終了時の板材温度は300℃であった。次に前記板材を連続焼鈍炉(CAL)により、昇温速度60℃/sec、保持条件450℃×0/sec、冷却速度30℃/secの条件で焼鈍処理したのち、冷間圧延して厚さ0.30mmの板状素材に仕上げ、この素材にリン酸クロメート処理(前処理)を施してCrを15mg/dm2 の厚さに形成し、この上にポリエチレンテレフタレート系フィルムを250℃で熱圧着してラミネート被覆材を製造した。冷間圧延の仕上げパスロールの表面粗さをRa0.30μm以下、Rmax 2.0μm以下とした。前記焼鈍処理はCALにより短時間で行ったため前処理前の酸化皮膜はいずれも40〜70Åと薄く、従って洗浄処理は行わなかった。
【0028】
(比較例1)
表1に示す本発明規定外組成のAl合金を用いた他は、実施例1と同じ方法によりラミネート被覆材を製造した。
【0029】
(比較例2)
冷間圧延の仕上げパスロールの表面粗さをRa0.45μm、Rmax 3.0μmとした他は、実施例1と同じ方法によりラミネート被覆材を製造した。
【0030】
前記ラミネート被覆材を、200℃で20分加熱後、DI(Drawing&Ironing) 成形により内径66mm、側壁厚さ100μm、側壁先端部厚さ150μmの缶体に成形し、次の▲1▼〜▲8▼の特性を調べた。▲1▼前処理前の酸化皮膜厚さ、▲2▼フィルム被覆前の表面粗さ、▲3▼ベーク相当条件で加熱(200℃で20分) 後の機械的性質、▲4▼DI成形時の破胴発生数(n=1000) 、▲5▼缶体の耐圧強度、▲6▼缶体のフランジ成形性、▲7▼缶体の耐食性、▲8▼フィルムの密着性(ミクロ気泡の有無など)。
前記▲1▼▲2▼▲5▼〜▲8▼の試験方法の概略を以下に記す。
▲1▼酸化皮膜厚さはオージェ電子分光法により測定した。▲2▼表面粗さはJIS−B−0601に準じて測定した。▲5▼耐圧強度は窒素ガスにより加圧して調べた。▲6▼フランジ成形性は缶体上端をトリミングし洗浄したのち4段のネッキング加工により開口部の内径dを57mmに縮小し、この開口部に角度90°の円錐状治具を押し込み、開口部に割れが発生したときの開口部の内径Dを測定し、口径限界増加率Pを、P={(D−d)/d}×100%の式により求めて評価した。▲7▼耐食性は缶体をCu2+を10ppm含む水道水中に4週間浸漬後発生した孔食の深さを測定して評価した。孔食深さが50μm未満を良好(○)、50μm以上125μm未満をほぼ良好(△)、125μm以上を不良(×)と評価した。▲8▼フィルムの密着性は上端をトリミングした缶体を120℃の熱水に30分間浸漬し、フィルムの剥がれが全く生じなかったものを良好(○)、剥がれが生じたものを不良(×)と評価した。結果を表2に示す。
【0031】
【表1】

Figure 0004262826
【0032】
【表2】
Figure 0004262826
(注)酸膜厚:酸化皮膜厚さμm、表面粗さ:μm、
TS:引張強さ MPa、YS:0.2%耐力 MPa、Elo:伸び%、
耐圧強度:kgf/cm2、フランジ成形性:口径限界増加率%。
【0033】
表2より明らかなように、本発明例のNo.1〜6 は、いずれも、素材の酸化皮膜が薄く、前処理皮膜の表面粗さが小さいためラミネートフィルムの密着性が優れた。またキャンボディに必要な他の特性も満足した。中でも、Ti、B、Cなどを添加したもの (No.4〜6)は圧延加工性が良好で表面品質が特に優れた。
これに対し、比較例のNo.7〜9 は、合金元素が多いためいずれも加工性に劣りDI成形時に多数の破胴があった。さらにNo.7はCuが多いため耐食性にも劣った。No.10 は表面粗さが粗いため密着性が劣った。
【0034】
(実施例2)
表1の合金NoFのアルミニウム合金鋳塊に、熱間圧延、焼鈍処理、冷間圧延を施して厚さ0.30mmの板状素材を作製した。冷間圧延の仕上げパスロールの表面粗さをRa0.30μm以下、Rmax 2.0μm以下とした。前記焼鈍処理はCALにより短時間で行ったため前処理前の酸化皮膜はいずれも50〜70Åと薄く、従って洗浄処理は行わなかった。
次いで、前記素材にリン酸クロメート処理を施してCrを15mg/dm2 の厚さに形成し、この上にポリエチレンテレフタレート系フィルムを熱圧着(250℃で0秒)してしてラミネート被覆材を製造した。
【0035】
(実施例3)
焼鈍処理を大気中でバッチ焼鈍で行い、バッチ焼鈍後の酸化皮膜が220Åと厚かったので前処理前に洗浄処理を行い、その後フィルムを240℃0秒の条件で熱圧着した。その他は、実施例2と同じ方法によりラミネート被覆材を製造した。前記洗浄処理は、液温70℃のアルカリ液(PH11)に30秒間浸漬して施した。
【0036】
(実施例4)
焼鈍処理および洗浄処理を行わなかった他は、実施例3と同じ方法によりラミネート被覆材を製造した。
【0037】
(比較例3)
洗浄処理を行わなかった他は、実施例3と同じ方法によりラミネート被覆材を製造した。
【0038】
実施例2〜4および比較例3で得られた各々のラミネート被覆材について実施例1と同じ方法でキャンボディに必要な諸特性を調べた。結果を表4に示す。
【0039】
【表3】
Figure 0004262826
(注)製法 No.1、2は実施例2、 No.3は実施例3、 No.4は実施例4、 No.5は比較例3。※比較例。
【0040】
【表4】
Figure 0004262826
(注)酸膜厚:酸化皮膜厚さμm(No.14は洗浄処理後の厚さ) 、
表面粗さ:μm、TS:引張強さ MPa、YS:0.2%耐力 MPa、Elo:伸び%、
耐圧強度:kgf/cm2、フランジ成形性:口径限界増加率%。※比較例。
【0041】
表4より明らかなように、本発明例の No.11〜14は、いずれも、酸化皮膜が薄く、表面粗さが小さいためミクロ気泡が存在しないでラミネートフィルムの密着性が優れ、またキャンボディに必要な他の特性も満足した。
比較例のNo.15 は洗浄処理を施さなかったため、前処理前の酸化被膜が厚くなりラミネートフィルムの密着性が低下した。
【0042】
【発明の効果】
以上に述べたように、本発明のキャンボディ用アルミニウム合金ラミネート被覆材は、素材の酸化皮膜が薄く、また前処理皮膜の表面粗さが小さいため、ラミネートフィルムの密着性が優れ、剥がれなどの問題が生じない。前記素材の酸化皮膜はアルカリまたは酸で洗浄処理することで容易に薄くでき、前記前処理皮膜の表面粗さは冷間圧延の仕上げパスロールの表面粗さを小さくすることで容易に小さくできる。依って、工業上顕著な効果を奏する。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an aluminum alloy laminate coating material for a can body having excellent adhesion of a thermoplastic resin film and a method for producing the same.
[0002]
[Prior art]
The beverage cans include a three-piece can composed of a can body, a can lid and a bottom cover, and a two-piece can composed of a can body and a can lid formed by integrating the can body and the bottom cover. Of these, squeezed and ironed cans (DI cans) and squeezed and redrawn cans (DRD cans) are often used for the two-piece cans. Recently, thin-walled redrawn cans that are stretched after squeezing have been developed. By the way, in the manufacture of DI cans, various processes such as washing, drying, and painting of lubricants have been performed after molding of cans. In recent years, thermoplastic resin films have been used to improve productivity and work environment. A method has been adopted in which the laminate coating material coated with is formed into a can body and the above steps are omitted.
[0003]
[Problems to be solved by the invention]
However, when the laminate coating material coats the thermoplastic resin film on the aluminum alloy material, the adhesiveness of the thermoplastic resin film is improved by generating micro bubbles between the material and the thermoplastic resin film. There is a problem of lowering. The cause of this microbubble generation may be insufficient wettability of the adhesive, insufficient amount of adhesive, foaming from the adhesive, etc. when the laminate is coated with an adhesive. There may be a lack of power. However, even if measures are taken for each of these causes, bubbles may be generated.
For this reason, the present inventors conducted research on the prevention of the formation of microbubbles, found that microbubbles can be reduced by defining the oxide film thickness and surface roughness of the material, and further advanced various studies. The present invention has been completed.
An object of the present invention is to provide an aluminum alloy laminate coating material for a can body having excellent adhesion of a thermoplastic resin film and a method for producing the same.
[0004]
[Means for Solving the Problems]
The invention according to claim 1 is an aluminum alloy laminate covering material for a can body in which a pretreatment film is formed on an aluminum alloy material by either chemical conversion treatment or anodizing treatment, and a laminate film is coated thereon. The aluminum alloy material has an oxide film thickness of 200 mm or less, and the surface roughness of the pretreatment film is Ra 0.30 μm or less and Rmax 2.0 μm or less at a reference length of 0.8 mm. It is an aluminum alloy laminate coating material.
[0005]
In the invention of claim 2, the aluminum alloy material contains 0.8 to 1.5 wt% Mg, 0.2 to 1.5 wt% Mn, 0.1 to 0.5 wt% Cu, and the balance is Al. The aluminum alloy laminate coating material for can bodies according to claim 1, wherein the aluminum alloy laminate coating material is an Al alloy material made of inevitable impurities.
[0006]
In the invention of claim 3, the aluminum alloy material contains 0.9 to 1.2 wt% Mg, 0.2 to 1.2 wt% Mn, 0.2 to 0.3 wt% Cu, and the balance is Al. The aluminum alloy laminate coating material for can bodies according to claim 1, wherein the aluminum alloy laminate coating material is an Al alloy material made of inevitable impurities.
[0007]
The invention according to claim 4 is the aluminum alloy laminate covering material for can bodies according to any one of claims 1, 2, and 3, wherein the aluminum alloy material has a thickness of 200 to 360 μm.
[0009]
The invention according to claim 5 is the aluminum alloy laminate coating material for a can body according to any one of claims 1, 2, 3 or 4, wherein the thickness of the laminate film is 10 to 30 μm.
[0010]
The invention described in claim 6 is characterized in that the laminate film is coated by thermocompression bonding under conditions of a linear pressure of 5 kgf / cm or more and a temperature range of 200 to 300 ° C. Or an aluminum alloy laminate coating material for a can body according to any one of 5 ;
[0011]
The invention according to claim 7 is to produce an aluminum alloy material by subjecting an aluminum alloy ingot to homogenization treatment, hot rolling, cold rolling, and if necessary, annealing treatment after hot rolling or during cold rolling. , A method for producing an aluminum alloy laminate coating material for a can body, wherein the material is subjected to a pretreatment of either chemical conversion treatment or anodizing treatment, and then coated with a thermoplastic resin film, comprising: If the surface roughness is Ra 0.30 μm or less and Rmax 2.0 μm or less at a standard length of 0.8 mm, and the oxide film thickness of the material before pretreatment exceeds 200 mm, the material is alkalinized before pretreatment. or claim 1, 2, 3, 4, characterized in that the cleaning treatment alms the oxide film thickness in the 200Å or less with an acid, Kyanbo according to any one of 5 or 6 It is a manufacturing method of I aluminum alloy laminate dressing.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The invention according to claim 1 is an oxidation of the aluminum alloy material of a laminate coating material in which a pretreatment film such as a chemical conversion film is formed on an aluminum alloy material and a thermoplastic resin film (hereinafter referred to as a laminate film) is coated thereon. An aluminum alloy laminate coating material for a can body, in which the film thickness is 200 mm or less, and the surface roughness of the pretreatment film is Ra 0.30 μm or less and Rmax 2.0 μm or less.
[0013]
In this invention, the reason why the thickness of the oxide film of the aluminum alloy material is specified to be 200 mm or less is that when the thickness of the oxide film exceeds 200 mm, the oxide film becomes brittle and is destroyed after pretreatment or after the lamination film is formed. This is because the adhesion of the film is deteriorated. The oxide film can be thinned by washing with alkali or acid before pretreatment.
The thickness of the oxide film is represented by the half-value width of the peak value of the analytical line obtained by performing a line analysis of the oxygen concentration of the material in the thickness direction by Auger electron spectroscopy (AES).
[0014]
In the present invention, the surface roughness of the pretreatment film is specified to be Ra 0.30 μm or less and Rmax 2.0 μm or less at a reference length of 0.8 mm, respectively. This is because microbubbles are generated and the adhesion of the laminate film is lowered. The surface roughness is realized by reducing the surface roughness of a finish pass roll for cold rolling.
[0015]
In the present invention, any alloy material having a certain degree of tensile strength and corrosion resistance is applied to the aluminum alloy material, and in particular, Mg is 0.5 to 5.0 wt%, and Mn is 0.2 to 1.5 wt%. An Al alloy material containing 0.1 to 0.5 wt% of Cu and the balance of Al and inevitable impurities is desirable because it sufficiently satisfies the strength and corrosion resistance required for the can body.
[0016]
The alloy elements of the aluminum alloy material will be described below.
Mg, Mn, and Cu all contribute to improving the strength of the material and increase the pressure resistance of the can body. The reason why the contents of Mg, Mn, and Cu are regulated to 0.8 to 1.5 wt%, 0.2 to 1.5 wt%, and 0.1 to 0.5 wt%, respectively, is that the content of the element is the lower limit. If less than, sufficient strength is not obtained, and if the upper limit is exceeded, both Mg and Mn are too strong, and the ironing formability and stretch processability are reduced, making it difficult to form a can body. This is because Cu decreases the corrosion resistance.
Particularly desirable contents of Mg, Mn, and Cu are 0.9 to 1.2 wt%, 0.2 to 1.2 wt%, and 0.2 to 0.3 wt%, respectively.
[0017]
When the Al—Mg—Mn—Cu alloy material contains Ti, B, or C alloy elements, the cast structure is refined and the workability is improved.
Desirable contents of the alloy elements are Ti 0.001 to 0.05 wt%, B 0.0001 to 0.05 wt%, and C 0.0001 to 0.05 wt%. If the contents of the alloy elements are less than the lower limit, This is because the above element cannot obtain a sufficient refining effect, and if it exceeds the upper limit, the refining effect is saturated, which is disadvantageous in cost. Further, Ti increases the coarse crystallized product and lowers the moldability of the can.
[0018]
The allowable limits of impurity elements contained in the Al—Mg—Mn—Cu alloy material are Si 0.4 wt%, Fe 0.5 wt%, Zn 0.5 wt%, Cr 0.1 wt%, Zr 0.1 wt%, V 0.1 wt%. is there. Other impurity elements may be included if they are 0.1 wt% or less.
[0019]
In the present invention, if the thickness of the aluminum alloy material is less than 200 μm, it is difficult to obtain sufficient pressure resistance, and if it exceeds 360 μm, the cost increases. For this reason, the thickness of the aluminum alloy material is desirably 200 to 360 μm.
[0020]
In the present invention, as the pretreatment film, a chemical conversion film or an anodized film is preferable because of its excellent adhesion to the laminate film.
In particular, the chemical conversion film can be formed with simple equipment and is advantageous in terms of cost.
The chemical conversion film is formed by chemical conversion treatment such as zinc phosphate method, boehmite method, MBV method, EW method (alkali-chromate system), allodyne method (chromate system, phosphate-chromate system), etc. The The anodized film is formed by an anodizing process using an electrolytic solution such as sulfuric acid, oxalic acid, chromic acid, or organic acid.
[0021]
In the present invention, if the thickness of the laminate film is less than 10 μm, the film is too thin and may be broken during molding, and if it exceeds 30 μm, the cost increases. For this reason, the thickness of the laminate film is desirably 10 to 30 μm.
If the laminate film is thermocompression bonded at a linear pressure of less than 5 kgf / cm, bubbles may enter due to insufficient pressure or adhesion may be reduced. Further, when the thermocompression bonding temperature is less than 200 ° C., sufficiently good adhesion cannot be obtained, and when it exceeds 300 ° C., the film may be deteriorated. Therefore, it is desirable that the laminate film be coated by thermocompression bonding under conditions of a linear pressure of 5 kgf / cm or more and a temperature range of 200 to 300 ° C.
[0022]
In the present invention, as the laminate film, a commonly used film such as a polyester film such as polyethylene terephthalate, a polyolefin film such as polypropylene or polyethylene, or a polyamide film such as nylon is used. These films are coated by thermocompression bonding or adhesion via a primer.
[0023]
The laminate coating material of the present invention is, for example, an Al-0.5 to 5.0 wt% Mg-0.2 to 1.5 wt% Mn-0.1 to 0.5 wt% Cu alloy ingot, homogenized, It is manufactured by performing hot rolling, cold rolling, and if necessary, annealing treatment after hot rolling or during cold rolling, followed by pretreatment and then coating with a laminate film.
[0024]
In the invention of claim 7, the reason why the surface roughness of the finish pass roll for cold rolling is specified to be Ra 0.30 μm or less and Rmax 2.0 μm or less at a reference length of 0.8 mm is that the laminate exceeds the specified value. This is because the surface roughness of the material before film coating does not fall below the specified value of the present invention. In addition, the surface roughness of the raw material after the cold rolling is substantially the same after the cleaning process, after the pre-processing, and after both the cleaning process and the pre-processing.
[0025]
In the invention according to claim 7 , the annealing treatment is performed by an arbitrary method such as CAL (annealing by a continuous annealing furnace) or batch annealing. By the annealing treatment, the crystal orientation of the material is adjusted or the processing strain is removed. When batch annealing is performed in the atmosphere, a thick oxide film is formed. An annealing process may not be performed.
[0026]
In the invention according to claim 7, when the thickness of the oxide film of the material before the pretreatment is more than 200 mm, the oxide film is thinned by performing a cleaning treatment with an alkali or an acid. The cleaning treatment may be performed when the oxide film thickness is 200 mm or less to further reduce the oxide film. This cleaning treatment may be performed before the pretreatment. If no annealing treatment is performed, it is performed after the hot rolling until before the pretreatment, and if an annealing treatment is performed, after the final annealing treatment and before the pretreatment. To do. The cleaning treatment is usually performed consistently with the pretreatment, but when the oxide film is thick (in excess of 200 mm), it is possible to reduce the oxide film thickness sufficiently by performing it in a separate process before the pretreatment. Is desirable.
[0027]
【Example】
Hereinafter, the present invention will be described in detail with reference to examples.
(Example 1)
An Al alloy having the composition defined in the present invention shown in Table 1 was cast by a DC casting method, and the obtained ingot was homogenized at 520 ° C. for 12 hours and then hot-rolled to obtain a plate material having a thickness of 2.5 mm. The plate material temperature at the end of the hot rolling was 300 ° C. Next, the plate material was annealed in a continuous annealing furnace (CAL) under the conditions of a heating rate of 60 ° C./sec, a holding condition of 450 ° C. × 0 / sec, and a cooling rate of 30 ° C./sec, and then cold-rolled and thickened. A 0.30 mm thick plate-like material is finished, and this material is subjected to phosphoric acid chromate treatment (pretreatment) to form Cr with a thickness of 15 mg / dm 2 , and a polyethylene terephthalate film is heated at 250 ° C. The laminate coating material was manufactured by pressure bonding. The surface roughness of the finish pass roll for cold rolling was set to Ra 0.30 μm or less and Rmax 2.0 μm or less. Since the annealing treatment was performed in a short time by CAL, all the oxide films before the pretreatment were as thin as 40 to 70 mm, and therefore no washing treatment was performed.
[0028]
(Comparative Example 1)
A laminate coating material was produced in the same manner as in Example 1 except that an Al alloy having a composition outside the scope of the present invention shown in Table 1 was used.
[0029]
(Comparative Example 2)
A laminate coating material was produced in the same manner as in Example 1 except that the surface roughness of the finish pass roll of cold rolling was Ra 0.45 μm and Rmax 3.0 μm.
[0030]
The laminate coating material is heated at 200 ° C. for 20 minutes, and then formed into a can body having an inner diameter of 66 mm, a side wall thickness of 100 μm, and a side wall tip portion thickness of 150 μm by DI (Drawing & Ironing) molding, and the following (1) to (8) The characteristics of were investigated. (1) Thickness of oxide film before pretreatment, (2) Surface roughness before film coating, (3) Mechanical properties after heating under conditions equivalent to baking (20 minutes at 200 ° C), (4) During DI molding Number of broken shells (n = 1000), (5) pressure resistance of can body, (6) flange formability of can body, (7) corrosion resistance of can body, (8) adhesion of film (presence of microbubbles) Such).
The outline of the test methods (1), (2), (5) to (8) will be described below.
(1) The oxide film thickness was measured by Auger electron spectroscopy. (2) The surface roughness was measured according to JIS-B-0601. (5) The pressure strength was examined by pressurizing with nitrogen gas. (6) Flange formability is achieved by trimming the upper end of the can body and washing it, then reducing the inner diameter d of the opening to 57 mm by four steps of necking, and pressing a conical jig with an angle of 90 ° into this opening. The inner diameter D of the opening when cracking occurred was measured, and the aperture limit increase rate P was determined and evaluated by the formula P = {(D−d) / d} × 100%. (7) Corrosion resistance was evaluated by measuring the depth of pitting corrosion that occurred after the can body was immersed in tap water containing 10 ppm of Cu 2+ for 4 weeks. The pitting corrosion depth was evaluated as good (◯) when the pitting depth was less than 50 μm, almost good (Δ) when 50 μm or more and less than 125 μm, and bad (×) when 125 μm or more. (8) The adhesion of the film was obtained by immersing a can body trimmed at the upper end in hot water at 120 ° C. for 30 minutes, where the film did not peel off at all (good), and when the film peeled off was poor (× ). The results are shown in Table 2.
[0031]
[Table 1]
Figure 0004262826
[0032]
[Table 2]
Figure 0004262826
(Note) Acid film thickness: oxide film thickness μm, surface roughness: μm,
TS: Tensile strength MPa, YS: 0.2% proof stress MPa, Elo: Elongation%
Pressure resistance: kgf / cm 2 , Flange formability: Diameter limit increase rate%.
[0033]
As is clear from Table 2, all of Nos. 1 to 6 of the examples of the present invention were excellent in the adhesiveness of the laminate film because the raw oxide film was thin and the surface roughness of the pretreatment film was small. It also satisfied other characteristics required for the can body. Among them, those added with Ti, B, C, etc. (Nos. 4 to 6) had good rolling processability and particularly excellent surface quality.
On the other hand, Nos. 7 to 9 of the comparative examples were inferior in workability because of many alloying elements, and had many broken bodies during DI molding. Furthermore, No. 7 was inferior in corrosion resistance due to a large amount of Cu. No. 10 had poor adhesion due to its rough surface.
[0034]
(Example 2)
The aluminum alloy ingot of alloy NoF in Table 1 was subjected to hot rolling, annealing treatment, and cold rolling to produce a plate-like material having a thickness of 0.30 mm. The surface roughness of the finish pass roll for cold rolling was set to Ra 0.30 μm or less and Rmax 2.0 μm or less. Since the annealing treatment was performed by CAL in a short time, the oxide film before the pretreatment was as thin as 50 to 70 mm, and therefore no washing treatment was performed.
Next, phosphoric acid chromate treatment is applied to the material to form Cr with a thickness of 15 mg / dm 2 , and a polyethylene terephthalate film is thermocompression-bonded (250 ° C. for 0 second) to form a laminate coating material. Manufactured.
[0035]
(Example 3)
Annealing treatment was performed by batch annealing in the air, and the oxide film after batch annealing was as thick as 220 mm. Therefore, cleaning treatment was performed before pretreatment, and then the film was thermocompression bonded at 240 ° C. for 0 second. Otherwise, a laminate coating material was produced by the same method as in Example 2. The washing treatment was performed by immersing in an alkaline solution (PH11) having a liquid temperature of 70 ° C. for 30 seconds.
[0036]
(Example 4)
A laminate coating material was produced in the same manner as in Example 3 except that the annealing treatment and the cleaning treatment were not performed.
[0037]
(Comparative Example 3)
A laminate coating material was produced in the same manner as in Example 3 except that no washing treatment was performed.
[0038]
Various properties required for the can body were examined in the same manner as in Example 1 for each of the laminate coating materials obtained in Examples 2 to 4 and Comparative Example 3. The results are shown in Table 4.
[0039]
[Table 3]
Figure 0004262826
(Note) Production method Nos. 1 and 2 are Example 2, No. 3 is Example 3, No. 4 is Example 4, and No. 5 is Comparative Example 3. * Comparison example.
[0040]
[Table 4]
Figure 0004262826
(Note) Acid film thickness: Oxide film thickness μm (No.14 is the thickness after cleaning),
Surface roughness: μm, TS: Tensile strength MPa, YS: 0.2% proof stress MPa, Elo: Elongation%
Pressure resistance: kgf / cm 2 , Flange formability: Diameter limit increase rate%. * Comparison example.
[0041]
As is apparent from Table 4, all of Nos. 11 to 14 of the present invention examples have a thin oxide film and a small surface roughness, so that microbubbles are not present and the adhesiveness of the laminate film is excellent. Satisfies other properties required for
Since No. 15 of the comparative example was not subjected to the cleaning treatment, the oxide film before the pretreatment became thick and the adhesiveness of the laminate film was lowered.
[0042]
【The invention's effect】
As described above, the aluminum alloy laminate coating material for can bodies of the present invention has a thin oxide film and a small surface roughness of the pretreatment film, so that the adhesiveness of the laminate film is excellent, and peeling There is no problem. The oxide film of the material can be easily thinned by washing with alkali or acid, and the surface roughness of the pretreatment film can be easily reduced by reducing the surface roughness of the finish pass roll of cold rolling. Therefore, there is an industrially significant effect.

Claims (7)

アルミニウム合金素材上に化成処理または陽極酸化処理のいずれかの処理による前処理皮膜が形成され、その上にラミネートフィルムが被覆されたキャンボディ用アルミニウム合金ラミネート被覆材において、前記アルミニウム合金素材の酸化皮膜厚さが200Å以下、前処理皮膜の表面粗さが0.8mmの基準長さにおいてRa0.30μm以下、Rmax 2.0μm以下であることを特徴とするキャンボディ用アルミニウム合金ラミネート被覆材。An aluminum alloy laminate covering material for a can body, in which a pretreatment film is formed on an aluminum alloy material by either a chemical conversion treatment or an anodizing treatment, and a laminate film is coated thereon, an oxide film of the aluminum alloy material An aluminum alloy laminate covering material for a can body, wherein the thickness is 200 mm or less, and the surface roughness of the pretreatment film is Ra 0.30 μm or less and Rmax 2.0 μm or less at a reference length of 0.8 mm. アルミニウム合金素材がMgを0.8〜1.5wt%、Mnを0.2〜1.5wt%、Cuを0.1〜0.5wt%含有し、残部がAlおよび不可避不純物からなるAl合金素材であることを特徴とする請求項1記載のキャンボディ用アルミニウム合金ラミネート被覆材。  An aluminum alloy material containing 0.8 to 1.5 wt% Mg, 0.2 to 1.5 wt% Mn, 0.1 to 0.5 wt% Cu, the balance being Al and inevitable impurities The aluminum alloy laminate coating material for can bodies according to claim 1, wherein アルミニウム合金素材がMgを0.9〜1.2wt%、Mnを0.2〜1.2wt%、Cuを0.2〜0.3wt%含有し、残部がAlおよび不可避不純物からなるAl合金素材であることを特徴とする請求項1記載のキャンボディ用アルミニウム合金ラミネート被覆材。  Aluminum alloy material containing 0.9 to 1.2 wt% Mg, 0.2 to 1.2 wt% Mn, 0.2 to 0.3 wt% Cu, the balance being Al and inevitable impurities The aluminum alloy laminate coating material for can bodies according to claim 1, wherein アルミニウム合金素材の厚さが200〜360μmであることを特徴とする請求項1、2又は3のいずれかに記載のキャンボディ用アルミニウム合金ラミネート被覆材。Aluminum alloy laminate covering material the can body according to any one of claims 1, 2 or 3 the thickness of the aluminum alloy material characterized in that it is a 200~360Myuemu. ラミネートフィルムの厚さが10〜30μmであることを特徴とする請求項1、2、3又は4のいずれかに記載のキャンボディ用アルミニウム合金ラミネート被覆材。The aluminum alloy laminate coating material for a can body according to any one of claims 1, 2, 3 and 4, wherein the laminate film has a thickness of 10 to 30 µm. ラミネートフィルムが、線圧力5kgf/cm以上、200〜300℃の温度範囲の条件で熱圧着により被覆されていることを特徴とする請求項1、2、3、4又は5のいずれかに記載のキャンボディ用アルミニウム合金ラミネート被覆材。Laminate film, linear pressure 5 kgf / cm or more, according to any of claims 1, 2, 3, 4 or 5, characterized in that it is covered by thermocompression bonding under conditions of a temperature range of 200 to 300 [° C. Aluminum alloy laminate coating material for can bodies. アルミニウム合金鋳塊に均質化処理、熱間圧延、冷間圧延、必要に応じて熱間圧延後または冷間圧延中に焼鈍処理を施してアルミニウム合金素材を作製し、前記素材に化成処理または陽極酸化処理のいずれかの前処理を施し、次いで熱可塑性樹脂フィルムを被覆するキャンボディ用アルミニウム合金ラミネート被覆材の製造方法であって、前記冷間圧延の仕上げパスロールの表面粗さを0.8mmの基準長さにおいてRa0.30μm以下、Rmax 2.0μm以下とし、前処理前の素材の酸化皮膜厚さが200Åを超える場合は、前処理前までに前記素材にアルカリまたは酸による洗浄処理を施して前記酸化皮膜厚さを200Å以下にすることを特徴とする請求項1、2、3、4、5又は6のいずれかに記載のキャンボディ用アルミニウム合金ラミネート被覆材の製造方法。An aluminum alloy ingot is homogenized, hot-rolled, cold-rolled, and optionally subjected to an annealing treatment after hot-rolling or during cold-rolling to produce an aluminum alloy material. A method for producing an aluminum alloy laminate coating material for a can body, which is subjected to any pretreatment of an oxidation treatment and then coats a thermoplastic resin film, wherein the surface roughness of the finish pass roll of the cold rolling is 0.8 mm. If the reference length is Ra 0.30 μm or less and Rmax 2.0 μm or less, and the thickness of the oxide film before the pretreatment exceeds 200 mm, the material should be washed with alkali or acid before the pretreatment. claim 1, 2, 3, 4, the aluminum alloy for the can body according to any one of the 5 or 6, characterized in that the oxide film thickness 200Å or less Method for producing a laminate-coating material.
JP11322299A 1998-04-28 1999-04-21 Aluminum alloy laminate coating material for can body and manufacturing method thereof Expired - Fee Related JP4262826B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11322299A JP4262826B2 (en) 1998-04-28 1999-04-21 Aluminum alloy laminate coating material for can body and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11850898 1998-04-28
JP10-118508 1998-04-28
JP11322299A JP4262826B2 (en) 1998-04-28 1999-04-21 Aluminum alloy laminate coating material for can body and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2000026995A JP2000026995A (en) 2000-01-25
JP4262826B2 true JP4262826B2 (en) 2009-05-13

Family

ID=26452219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11322299A Expired - Fee Related JP4262826B2 (en) 1998-04-28 1999-04-21 Aluminum alloy laminate coating material for can body and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4262826B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW446572B (en) * 1999-09-10 2001-07-21 Min Shr Device and method for treating organic exhaust by combining ultraviolet oxidation method with bio-decomposition method
WO2004113181A1 (en) * 2003-06-23 2004-12-29 Toyo Seikan Kaisha, Ltd. Resin-coated aluminum seamless can body having excellent body burst resistance and flange crack resistance in distribution
CN103827967B (en) * 2011-12-27 2016-08-17 三菱电机株式会社 Voice signal restoring means and voice signal restored method
WO2016152790A1 (en) * 2015-03-23 2016-09-29 株式会社神戸製鋼所 Aluminum alloy sheet for resin-coated drawn and wall-ironed cans having excellent post-manufacture gloss and resin-coated aluminum alloy sheet for drawn and wall-ironed cans

Also Published As

Publication number Publication date
JP2000026995A (en) 2000-01-25

Similar Documents

Publication Publication Date Title
JP4019082B2 (en) Aluminum alloy plate for bottle cans with excellent high temperature characteristics
JP4019083B2 (en) Aluminum alloy cold rolled sheet for bottle cans with excellent high temperature characteristics
JP5568031B2 (en) Aluminum alloy cold rolled sheet for bottle cans
JP5961839B2 (en) Aluminum alloy plate for can body and manufacturing method thereof
JP4262826B2 (en) Aluminum alloy laminate coating material for can body and manufacturing method thereof
RU2690253C2 (en) Aluminum alloy sheet for car body construction
JP2010189730A (en) Method of producing aluminum alloy sheet for beverage can barrel
JP4667722B2 (en) Aluminum alloy can body design method
JP2534589B2 (en) Polyester resin coated steel plate and original plate for thinned deep drawn can
JP4019084B2 (en) Aluminum alloy cold rolled sheet for bottle cans with excellent high temperature characteristics
WO1995004166A1 (en) Steel sheet of high stress-corrosion-cracking resistance for cans and method of manufacturing the same
JPS63111197A (en) Surface treatment of aluminum alloy material for automobile wheel
JP2004238653A (en) Resin coated aluminum alloy sheet for packaging container, and its manufacturing method
JP3287764B2 (en) Resin-coated aluminum alloy plate for drawing and ironing cans
JP5421067B2 (en) Resin-coated aluminum alloy plate for beverage can body and method for producing the same
JP3270682B2 (en) Method for producing resin-coated aluminum alloy sheet for drawn ironing can
JP2001032032A (en) Aluminum alloy material to be coated with resin, and its manufacture
US6270589B1 (en) Method of manufacturing resin coated aluminum alloy plates for drawn and ironed cans
JP2006097076A (en) Aluminum-alloy sheet for bottle can, and its manufacturing method
JP3270709B2 (en) Method for producing resin-coated aluminum alloy sheet for drawn ironing can
JP3270681B2 (en) Method for producing resin-coated aluminum alloy sheet for drawn ironing can
JP2003277886A (en) Resin-coated steel sheet for shear spun can, method of producing resin-coated steel sheet for shear spun can and shear spun can produced by using the same
JP2000309838A (en) Aluminum alloy for resin-coated can barrel and resin- coated aluminum alloy sheet for can barrel
JP3350057B2 (en) Method for producing resin-coated aluminum alloy plate for drawing and ironing can
JP4060952B2 (en) Method of manufacturing aluminum alloy sheet for forming process excellent in chemical conversion processability and transportation equipment member obtained by the manufacturing method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040202

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090106

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090210

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4262826

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150220

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees