JP2004238653A - Resin coated aluminum alloy sheet for packaging container, and its manufacturing method - Google Patents

Resin coated aluminum alloy sheet for packaging container, and its manufacturing method Download PDF

Info

Publication number
JP2004238653A
JP2004238653A JP2003027020A JP2003027020A JP2004238653A JP 2004238653 A JP2004238653 A JP 2004238653A JP 2003027020 A JP2003027020 A JP 2003027020A JP 2003027020 A JP2003027020 A JP 2003027020A JP 2004238653 A JP2004238653 A JP 2004238653A
Authority
JP
Japan
Prior art keywords
aluminum alloy
mass
present
alloy plate
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003027020A
Other languages
Japanese (ja)
Other versions
JP3719673B2 (en
Inventor
Kenji Kuroda
健司 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2003027020A priority Critical patent/JP3719673B2/en
Publication of JP2004238653A publication Critical patent/JP2004238653A/en
Application granted granted Critical
Publication of JP3719673B2 publication Critical patent/JP3719673B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Containers Having Bodies Formed In One Piece (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a resin coated aluminum alloy sheet for packaging container which is constituted of a 3004H19 alloy and in which reduction in strength at annealing is minimized and also to provide its manufacturing method. <P>SOLUTION: The aluminum alloy sheet has a composition which consists of, by mass, 0.1 to 0.5% Cu, 0.8 to 2.0% Mg, 0.5 to 1.5% Mn, 0.25 to 0.50% Fe, 0.1 to 0.5% Si and the balance Al with inevitable impurities and in which the contents of Cu and Mg satisfy 2.15≤ä3.0×Cu(mass%)+Mg(mass%)}≤2.50, and further, tensile strength after the completion of final cold rolling is made to 310 to 350 N/mm<SP>2</SP>. The method for manufacturing the aluminum alloy sheet comprises steps of: applying hot rolling treatment while setting temperature at the completion of hot rolling at 300 to 350°C; carrying out cooling while setting cooling rate at ≥5°C/h, after the completion of the hot rolling; and successively applying annealing and then performing cold working while setting rolling ratio to 80 to 95%. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は樹脂被覆包装容器用アルミニウム合金板及びその製造方法に係り、特に、耐熱性、成形性に優れ、DI缶やボトル缶(以下「アルミ缶」という)、またはラミネート材に適用可能な樹脂被覆包装容器用アルミニウム合金板及びその製造方法に関する。
【0002】
【従来の技術】
従来のアルミ缶は、通常、アルミニウム合金板で構成され、以下のような工程を経て製造されている。すなわち、アルミニウム合金板から構成される従来のアルミ缶の製造方法は、まず、アルミニウム合金板の両面に熱可塑性樹脂被膜の層を形成して潤滑剤を塗布したものを打ち抜いてブランク材を得る工程と、このブランク材に絞り加工を行ってカップ状の成形品を得る工程と、次いでこのカップ状の成形品に対して再絞り加工とストレッチ加工又はしごき加工(DI加工)を行って胴部が小径化されて薄肉化された有底円筒状の缶を得る工程と、次いで、この有底円筒状の缶の底部側に絞り加工を複数回行うことにより肩部と未開口部とからなる口部を有する缶を得る工程と、続いて洗浄及びトリミング等を行い、その後、この缶の胴部に印刷及び塗装を施す工程と、引き続いて前記口部を開口してカール部及びネジ部を形成し(以下、「ネジ・カール成形」という)、更に前記ネジ部の反対側の部分にネックイン加工とフランジ加工とを施した後、シーマによって別途成形した底蓋を巻き締めする工程を含むものであった(例えば、特許文献1参照)。
【0003】
【特許文献1】
特開2001−162344号公報(全頁)
【0004】
【発明が解決しようとする課題】
前記従来のアルミ缶で、ベーキング後の強度を特に高める必要がある仕様については、一般に、H191(JIS H 0001)の調質が施された3004(JIS H 4000)合金が用いられている。このH191は、アルミニウム合金板に熱間圧延、冷間圧延、焼鈍及び最終冷間圧延の各工程を順次施すものである。しかし、このH191によって製造された3004合金においては、工程数が比較的多いことによる高コストの問題に加えて、材料特性のバラツキ及び表面品質の面で限界があった。
【0005】
また、近年、ラミネート材のニーズの多様化により適用されるラミネートフィルムの種類が増大し、それにともなってラミネート材の製造工程で施されるラミネートフィルムのリメルトの温度範囲が拡大して、より高い耐熱性を備えたアルミニウム合金が要求されている。
【0006】
そこで、前記H191(JIS H 0001)に代えて、熱間圧延及び冷間圧延の工程を施すH19の調質が施された3004合金をアルミ缶に適用して、かつ、ベーキング後の強度の確保及び成形性を向上させたアルミニウム合金板を具現するための検討が行われている。
【0007】
前記従来のアルミ缶の製造工程において、3004合金にH191の調質を施す工程では、連続焼鈍工程による溶体化効果と合わせて、冷間圧延工程における冷間加工率が比較的低いため、焼鈍(ベーキング)時の強度の低下を最小限に抑えることが可能である。しかし、前記3004合金にH19の調質を施す工程では、熱間圧延工程の後に連続焼鈍工程を経ることなく冷間圧延されるため、前記H191で得られる効果が小さくなって焼鈍時の強度低下が大きくなるという問題があった。
【0008】
本発明は前記問題点を解決するためになされたものであって、その目的は、ベーキング後の強度(耐力等)の低下を最小限に抑えた3004H19合金から構成される樹脂被覆包装容器用アルミニウム合金板、及びその製造方法を提供することにある。
【0009】
【課題を解決するための手段】
前記問題点を解決するために、本発明者らは、前記3004H19合金の場合にベーキング後の強度低下を最大限に防止することができる合金成分について種々の検討を行った。その結果、Mg、Cuの含有量を適度に調整し、また熱間圧延及び冷間圧延の条件をコントロールすることで、前記問題点を解決できることを見い出し本発明を創作するに到った。
【0010】
(1)すなわち、前記目的を達成するための本発明に係る樹脂被覆包装容器用アルミニウム合金板は、Cuを0.1〜0.5質量%、Mgを0.8〜2.0質量%、Mnを0.5〜1.5質量%、Feを0.25〜0.50質量%、Siを0.1〜0.5質量%それぞれ含有し、残部がAl及び不可避的不純物から構成されるアルミニウム合金板であって、前記Cu及び前記Mgの含有量が、2.15≦{3.0×Cu(質量%)+Mg(質量%)}≦2.50…(1)の関係を満足し、かつ最終冷間圧延工程の終了時の引張強さが310〜350N/mmとなるように構成される。
【0011】
このように構成すれば、Mg及びCuの含有量を前記のように規制することにより、H19工程でも焼鈍時の引張強さの低下が最大限に抑えられ、焼鈍後の引張強さが充分に維持される樹脂被覆包装容器用アルミニウム合金板が具現される。
【0012】
(2)また、本発明は、前記樹脂被覆包装容器用アルミニウム合金板で、前記最終冷間圧延工程の終了後に、200〜280℃で、20秒間、熱処理を施したときの引張強さが250〜290N/mmとなるように構成することが好ましい。
【0013】
このように構成すれば、所望とするアルミ缶の形状に容易に成形でき、かつそのアルミ缶の形状へ成形した後でも缶強度が適切に保持される樹脂被覆包装容器用アルミニウム合金板が具現される。
【0014】
(3)そして、本発明は、前記樹脂被覆包装容器用アルミニウム合金板で、絞り比(ブランク径/ポンチ径)を1.5〜1.8としてカッピング成形を行ったときの45°耳の耳率が−3〜+3%であるように構成することが好ましい。
【0015】
なお、前記耳は、アルミニウム合金板でカッピング成形を行ったときに、得られた円筒容器の側面に形成された山と谷をいう。そして、前記耳率は、次の式を用いて算出される。
耳率=(円筒容器の底面を基準とした45°方向4箇所の高さの平均値−円筒容器の底面を基準とした0、90°方向4箇所の高さの平均値)/(円筒容器の底面を基準とした0、45、90°方向8箇所の高さの平均値)×100
ここで、前記「45°耳」とは、圧延方向に対して45°の方向に形成された山をいう。
【0016】
このように構成すれば、所望とするアルミ缶の形状に容易に成形でき、かつそのアルミ缶の形状へ成形した後でも引張強さが適切に保持され、なおかつアルミ缶の歩留まりをより一層向上させることが可能な樹脂被覆包装容器用アルミニウム合金板が具現される。
【0017】
なお、本発明にあっては、前記H19工程に代えてH19M工程(熱延、焼鈍及び冷延の工程)が行われる前記樹脂被覆包装容器用アルミニウム合金板に対しても前記した効果を得ることが可能である。
【0018】
(4)前記目的を達成するための本発明に係る前記樹脂被覆包装容器用アルミニウム合金板の製造方法は、熱間圧延工程の終了時の温度を300〜350℃に設定して熱間圧延処理を施す熱延工程と、前記熱間圧延工程が終了した後に、冷却速度を5℃/h以上に設定して冷却を行う冷却工程と、続いて焼鈍を施した後、更に、冷間加工の圧延率を80〜95%に設定して冷間圧延を行う冷延工程とを含んで構成される。
【0019】
なお、本発明にあっては、前記冷却工程と冷延工程との間に、必要に応じて焼鈍を施す焼鈍工程を加えてもよい。
【0020】
このように構成すれば、所望とするアルミ缶の形状に容易に成形できる樹脂被覆包装容器用アルミニウム合金板の製造方法が具現される。
【0021】
【発明の実施の形態】
以下、本発明の実施の形態について詳細に説明する。
本発明に係る樹脂被覆包装容器用アルミニウム合金板は本発明で合金組成を規制したAl―Mn系の3004合金(JISH4000)を用いて製造される。そして、本発明で合金組成を規制したアルミニウム合金を用いて、まずDC鋳造処理(Direct−chill casting:直接チル鋳造処理)により鋳塊を製造して均質化熱処理を施した後、この鋳塊に熱間圧延処理を施してアルミニウム合金板を製造し、続いてこのアルミニウム合金板に冷間圧延処理を施すとともに、焼鈍を適宜回数施し、引き続き最終冷間圧延処理を施すことにより、所望の板厚に製造される。
つぎに、本発明に係る樹脂被覆包装容器用アルミニウム合金板に含まれる各合金成分を数値限定した理由について説明する。
【0022】
(Cuの含有量:0.1〜0.5質量%)
本発明に係る樹脂被覆包装容器用アルミニウム合金板に含まれるCuは材料強度に寄与する元素である。すなわち、このCuの含有量が0.1質量%より少ないと充分な材料強度が得られず、また、Cuの含有量が0.5質量%を超えると材料強度が高くなり過ぎて成形性が低下する。従って、本発明ではCuの含有量を0.1〜0.5質量%とする。
【0023】
(Mgの含有量:0.8〜2.0質量%)
本発明に係る樹脂被覆包装容器用アルミニウム合金板に含まれるMgは前記したCuの場合と同じく材料強度に寄与する元素である。すなわち、このMgの含有量が0.8質量%未満では所要の材料強度が得られ難く、また、Mgの含有量が2.0質量%を超えると加工硬化が大きくなって成形性が低下する。従って、本発明ではMgの含有量を0.8〜2.0質量%とする。
【0024】
(Mnの含有量:0.5〜1.5質量%)
本発明に係る樹脂被覆包装容器用アルミニウム合金板に含まれるMnは材料強度に寄与するとともに、Al−Mn−Fe―Si系金属間化合物を形成して、しごき加工でアルミニウム合金板がダイスへ凝着するのを防止する元素である。すなわち、このMnの含有量が0.5質量%より少ないと金属間化合物の形成が充分ではなく材料強度も不足する。また、このMnの含有量が1.5質量%を超えると材料強度が過度に高まるとともに、金属間化合物が粗大化するため、しごき加工時にアルミ缶の内表面に深いスジ状の欠陥が生じ易くなる。従って、本発明ではMnの含有量を0.5〜1.5質量%とする。
【0025】
(Feの含有量:0.25〜0.50質量%)
本発明に係る樹脂被覆包装容器用アルミニウム合金板に含まれるFeは前記したMnの場合と同じくAl−Mn−Fe−Si系金属間化合物を形成する役割を果たす。すなわち、このFeの含有量が0.25質量%未満ではダイスへの凝着を防止するのに必要な最大長が2μm以上の金属間化合物が形成されず、また、Feの含有量が0.50質量%を超えると最大長が20μmを超えるような巨大な金属間化合物が生成して胴切れ(しごき加工時の破断)に繋がる。更に、金属間化合物が粗大化されてしごき加工時にアルミ缶の内表面に深いスジ状の欠陥を生じ易くなる。従って、本発明ではFeの含有量を0.25〜0.50質量%とする。
【0026】
(Siの含有量:0.1〜0.5質量%)
本発明に係る樹脂被覆包装容器用アルミニウム合金板に含まれるSiは、均質化熱処理においてAl−Mn−Fe系の金属間化合物と結び付いて、高硬度なAl―Mn―Fe―Si系金属間化合物を形成する役割を果たす。このSiの含有量が0.1質量%未満では金属間化合物の形成が充分ではなく、また、Siの含有量が0.5質量%を超えると材料強度や再結晶挙動が阻害される。従って、本発明ではSiの含有量を0.1〜0.5質量%とする。
【0027】
なお、本発明にあっては、不可避的不純物として、Crが0.1質量%以下、Znが0.5質量%以下、Tiが0.1質量%以下、Zrが0.1質量%以下、Bが0.1質量%以下含有されても、本発明の効果が妨げられるものではなく、このような不可避的不純物の含有量は許容される。
【0028】
(2.15≦{3.0×Cu(質量%)+Mg(質量%)}≦2.50…(1))
本発明では、ラミネートが行われた後に適正な材料強度を有する樹脂被覆包装容器用アルミニウム合金板が得られるように、材料強度に寄与する元素であるCu及びMgをコントロールする。本発明者らが本発明に係る樹脂被覆包装容器用アルミニウム合金板にラミネートが行われた後の材料強度に対するCuとMgの寄与度について調査した結果、Cuの寄与度がMgの寄与度より高いことが明らかとなった。更に、本発明者らが詳細に調査したところ、このCuとMgの含有量が、2.15≦{3.0×Cu(質量%)+Mg(質量%)}≦2.50…(1)の関係を満足するときに、ラミネートが行われた後に適正な材料強度を有する樹脂被覆包装容器用アルミニウム合金板が具現されることが判明した。
【0029】
すなわち、前記関係式(1)中の{3.0×Cu(質量%)+Mg(質量%)}が2.15未満であると充分な材料強度が得られず、成形したアルミ缶の耐圧強度及び座屈強度が不足する。また、前記関係式(1)で{3.0×Cu(質量%)+Mg(質量%)}が2.50を超えると、圧延性が低下してエッジ割れや板破断などの不具合が発生するばかりでなく、アルミ缶の成形性も低下する。従って、本発明では、2.15≦{3.0×Cu(質量%)+Mg(質量%)}≦2.50…(1)を満足するように、CuとMgの含有量を調整する。
【0030】
(最終冷間圧延終了後の引張強さ:310〜350N/mm
前記アルミニウム合金板に熱処理を施してラミネートを行う際にこのアルミニウム合金板の軟化が生じるため、本発明では、このラミネートが行われた後のアルミニウム合金板の材料強度を充分に確保すべく最終冷間圧延終了後の引張強さを規制することが好ましい。
【0031】
すなわち、前記アルミニウム合金板の最終冷間圧延終了後の引張強さが310N/mm未満では、ラミネート後の材料強度が低くなり過ぎてアルミ缶で所要とされる材料強度が不足する。また、この引張強さが350N/mmを超えると前記アルミニウム合金板の圧延性が低下するとともに、ラミネート後の材料強度が高過ぎてアルミ缶の成形性が低下する。従って、本発明では、前記アルミニウム合金の最終冷間圧延終了時の引張強さを310〜350N/mmとすることが好ましい。なお、本発明では、前記引張強さが315〜335N/mmであることが更に好ましい。
【0032】
(200〜280℃、20秒間熱処理した後の引張強さ:250〜290N/mm
前記アルミニウム合金板に熱処理を施した後、絞り、しごき加工を施す際の成形性に対しては、前記アルミニウム合金板に対してラミネート処理を施す際の熱処理に相当する、200〜280℃、20秒間の条件にて熱処理を施した後の引張強さが重要な指標となる。
【0033】
すなわち、前記アルミニウム合金(最終冷間圧延工程を経たもの)に前記熱処理を施したときの引張強さが250N/mm未満では、アルミ缶としての材料強度が不足する。また、前記引張強さが290N/mmを超えると、アルミ缶の成形性、特にしごき成形性が低下し、破断の発生により生産性が阻害される。従って、本発明に係る樹脂被覆包装容器用アルミニウム合金板では、最終冷間圧延工程の後に、200〜280℃で、20秒間、熱処理を施したときの引張強さを250〜290N/mmとすることが好ましい。
なお、本発明では、前記熱処理後の引張強さが260〜280N/mmであることが更に好ましい。
【0034】
(45°耳の耳率:−3〜+3%)
一般に、アルミニウム合金板のラミネート材を、従来の通常のDI成形のように上端部の先端部までしごいた場合、この上端部の先端部ではフィルムが剥離したり、ダイスにビルドアップしたりするなど、加工上の不具合が生じ易くなる。このため、本発明では、前記アルミニウム合金板から製造されたラミネート材を従来の通常のDI成形のように上端部の先端部までしごかずに、フランジ部を適宜残して成形することが好ましい。
【0035】
このとき、45°耳の耳率が−3〜+3%の範囲を外れると、90°方向で前記フランジ部が不足してトリミング代が不足したり、成形時に破断が発生したりするおそれがある。また、本発明に係る樹脂被覆包装容器用アルミニウム合金板でアルミ缶を製缶した後、前記フランジ部を下にした状態でこのアルミ缶をコンベア等の搬送手段で搬送する場合に前記搬送手段におけるアルミ缶の保持の安定性が低下してアルミ缶が転倒したりし、アルミ缶の搬送過程で問題を生じ易くなる。このため、本発明に係る45°耳の耳率を−3〜+3%とすることが好ましい。
【0036】
なお、本発明における45°耳の耳率は、前記アルミニウム合金板を用いて絞り比(ブランク径/ポンチ直径)を1.5〜1.8としてカッピング成形して得られたカップの耳の高さから算出される。例えば、前記アルミニウム合金板で直径がφ66.7mmのブランクを作製し、このブランクを直径がφ40mmのポンチで絞ってカップを作製し、得られたカップの耳の高さから算出することができる。
【0037】
(熱間圧延工程の終了温度:300〜350℃)
本発明に係る樹脂被覆包装容器用アルミニウム合金板の製造方法で、前記アルミニウム合金板に施す熱間圧延工程の終了温度は、ホットコイルの再結晶状態を左右し、なおかつ材料強度にも影響を与える重要な指標である。
【0038】
すなわち、この熱間圧延処理の終了温度が300℃より低いと前記アルミニウム合金板における再結晶が充分に生じなくなり、その結果、耳率が高くなって成形性が低下するのみならず、Cuの固溶量が不足して熱処理後の材料強度が充分に得られなくなる。また、この熱間圧延処理の終了温度が350℃を超えると結晶粒が粗大化され、その結果、成形性が低下する。従って、本発明に係る樹脂被覆包装容器用アルミニウム合金板の製造方法における熱間圧延の終了時の温度は300〜350℃とすることが必要である。
【0039】
(冷却速度:5℃/h以上)
本発明に係る樹脂被覆包装容器用アルミニウム合金板の製造方法では、熱間圧延工程が終了したホットコイルでアルミニウム合金に固溶しているCuは、冷却速度に依存して固溶量が変化する。また、本発明で、この熱間圧延工程の終了後に前記アルミニウム合金に対して連続焼鈍等の熱処理が施されない場合、前記アルミニウム合金に固溶しているCuの量が少ないと熱処理後の材料強度が充分に得られなくなる。
【0040】
一方、前記冷却速度が5℃/hより遅いと、前記アルミニウム合金中に固溶しているCuの析出が進行して固溶しているCuの量が低下するので前記熱処理後の引張強さが不足することとなる。従って、本発明に係る樹脂被覆包装容器用アルミニウム合金板の製造方法では、熱間圧延終了後の冷却速度が5℃/h以上であることを必要とする。
【0041】
(冷間加工の圧延率:80〜95%)
本発明に係る樹脂被覆包装容器用アルミニウム合金板の製造方法に含まれる冷間加工の圧延率は、材料強度及び耳率に寄与する因子である。すなわち、この冷間加工の圧延率が80%より低いと充分な材料強度が得られず、また、この冷間加工の圧延率が95%を超えると耳率が過度に高くなる。従って、本発明では、冷間加工の圧延率が80〜95%であることが必要である。
【0042】
以上説明した本発明に係る樹脂被覆包装容器用アルミニウム合金板は、図1に示すような従来の1例のボトル缶や、図2に示すような従来の1例のDI缶等に好適であるとともに、従来の種々のアルミニウム合金のラミネート材にも好適な素材である。
【0043】
本発明に係る樹脂被覆包装容器用アルミニウム合金板を従来の一般的なボトル缶に適用する場合には、本発明に係る樹脂被覆包装容器用アルミニウム板に対してカッピング加工やDI成形等の缶体成形を施して胴体部2(図1参照)を形成し、続いてこの胴体部2にネッキング加工を施してネック部3を形成し、胴体部2とネック部3と底部とをDI成形により一体に成形加工して、図1に示すような従来の1例の2ピースボトル缶1を製造することができる。
【0044】
なお、図1に示す2ピースボトル缶1には、胴体部2とこの胴体部2の所定部分にネック部3が形成され、このネック部3のエンド部には開口部4が形成されている。また、この開口部4の近傍の外周には蓋取り付け用のネジ切り加工が施されてネジ部が設けられている。そして、この開口部4と対向する部分の底部が胴体部2と連続して構成されている。
【0045】
また、本発明に係る樹脂被覆包装容器用アルミニウム合金板を従来の一般的なDI缶に適用する場合には、本発明に係る樹脂被覆包装容器用アルミニウム板に対してカッピング加工やDI成形等の缶体成形を施して胴体部12(図2参照)を形成し、続いてこの胴体部12にネッキング加工を施してネック部13を形成し、引き続いてこのネック部13のエンド部に開口部14を形成するとともにこの開口部14の口径が胴体部12の径に比べて小さくなるように加工して、図2に示すような従来の1例のDI缶11を製造することができる。
【0046】
また、本発明に係る樹脂被覆包装容器用アルミニウム合金板を従来の一般的なラミネート材に適用する場合には、従来公知のラミネート材に適用されている各種のフィルムを、接着剤等を介して貼り合わせた後、230〜270℃程度の温度でそのフィルムのリメルト(フィルムを融点以上にしてアモルファス化させる)処理が施される工程等を経て、ラミネート材が作製される。
【0047】
なお、本発明に係る樹脂被覆包装容器用アルミニウム合金板に、融点の比較的高いフィルム(例えば、ポリエチレンテレフタレート(PET)系のフィルム)を貼り付けてラミネート材を製造する際に、比較的高温(例えば、270℃以上の温度)で前記リメルト処理が行われても、本発明に係る樹脂被覆包装容器用アルミニウム合金板の引張強さは充分に維持される。
【0048】
【実施例】
以下、本発明に係る実施例について、本発明で規制した条件を満足しない比較例と対比させながら具体的に説明する。
まず、表1に示すような合金組成を備えたアルミニウム合金を溶解鋳造し、つぎに、600℃、4時間の均熱処理を施し、続いて熱間粗圧延、仕上げ圧延を順次行ってアルミニウム合金板を製造した後、表1に示すような熱間圧延工程の終了温度でこのアルミニウム合金板を巻取って、ホットコイルを製造した。
【0049】
【表1】

Figure 2004238653
【0050】
そして、このホットコイルは冷却速度をコントロールしながら冷却され、その後冷間圧延が施されて厚さ0.32mmのアルミニウム合金板のホットコイルとした。
なお、実施例6については、ホットコイルを連続焼鈍し、冷間圧延を施した。また、比較例24については、冷間圧延後に、中間焼鈍として連続焼鈍を行い、再び冷間圧延を施した。
【0051】
その後、このようにして製造された実施例及び比較例のアルミニウム合金板に、アルカリ洗浄及びリン酸クロメート処理を施し、更に、厚さ16μmのポリエチレンテレフタレート樹脂を両面に被覆し、続いて、280℃で、20秒間のリメルト処理を施して本発明に係る樹脂被覆包装用アルミニウム合金板(実施例No.1〜6)と本発明で規制した条件を満足しないアルミニウム合金板(比較例No.7〜24)とを製造した。
【0052】
すなわち、実施例No.1〜6は、いずれも合金組成、前記関係式(1)、熱延工程終了時の温度、熱延工程終了後の冷却速度、及び冷間圧延工程における冷間加工の圧延率が本発明で規制した条件を満足するものである。このうち、実施例No.1〜6は、熱間圧延後の冷間圧延工程で焼鈍を行わなかったものであり、実施例No.6は熱間圧延後に焼鈍を行ったものである。
【0053】
一方、比較例No.7はSiの含有量が本発明で数値限定した範囲の下限値未満のものであり、比較例No.8はSiの含有量が本発明で数値限定した範囲の上限限値を超えたものであり、比較例No.9はFeの含有量が本発明で数値限定した範囲の下限値未満のものであり、比較例No.10はFeの含有量が本発明で数値限定した範囲の上限値超のものであり、比較例No.11はMnの含有量が本発明で数値限定した範囲の下限値未満のものであり、比較例No.12はMnの含有量が本発明で数値限定した範囲の上限値超のものである。
【0054】
また、比較例No.13はMgの含有量が本発明で数値限定した範囲の下限値未満のものであり、比較例No.14はMgの含有量が本発明で数値限定した範囲の上限値超のものであり、比較例No.15はCuの含有量が本発明で数値限定した範囲の下限値未満のものであり、比較例No.16はCuの含有量が本発明で数値限定した範囲の上限値超のものである。
【0055】
更に、比較例No.17は、前記関係式(1)における{3.0×Cu(質量%)+Mg(質量%)}の値が本発明で規制した数値限定範囲の下限値未満のものであり、比較例No.18は、前記関係式(1)における{3.0×Cu(質量%)+Mg(質量%)}の値が本発明で規制した数値限定範囲の上限値超のものであり、比較例No.19は前記熱間圧延の終了時の温度が本発明で数値限定した範囲の下限値未満のものであり、比較例No.20は前記熱間圧延の終了時の温度が本発明で数値限定した範囲の上限値超のものである。
【0056】
そして、比較例No.21は前記熱間圧延が終了した後の冷却速度が本発明で数値限定した範囲の下限値未満のものである、比較例No.22は熱間圧延工程が終了した後の冷間圧延工程で焼鈍を行わず、更にその冷間圧延工程における冷間加工の圧延率が本発明で規制した範囲の下限値未満のものであり、比較例No.23は、熱間圧延後の冷間圧延工程で焼鈍を行わず、更にその冷間加工の圧延率が本発明で規制した範囲の上限値超のものであり、比較例No.24は熱間圧延工程が終了した後の冷間圧延工程で焼鈍を行い、更にその冷間加工の圧延率が本発明で規制した範囲の下限値未満のものである。
【0057】
このようにして製造された本発明に係る実施例及び本発明の条件を満足しない比較例について行った評価方法について説明する。
(引張り強さ)
厚さが0.32mmとなるまで冷間圧延を施した前記アルミニウム合金板、及び硝石炉(ソルトバス)を用いてリメルトとほぼ同じ熱履歴である280℃、20秒間の熱処理を施した前記アルミニウム合金板について、JIS H 4000に準じて引張強さを測定して得られたそれぞれの測定結果を、最終冷間圧延工程終了時の引張強さ、焼鈍後の引張強さとした。
【0058】
(45°耳の耳率)
また、耳率は、冷間圧延を行ったアルミニウム合金板について、φ66.7mmのフランクを、φ40mmのポンチで絞ってカップを作製し、得られたカップの耳の高さから45°耳を求めた。更に、得られた樹脂被覆包装容器用アルミニウム合金板に白色のワセリンを塗布して絞り成形、しごき成形を施し、得られたDI缶の缶底部にネック加工及びネジ加工を施してボトル缶を作製した。DI成形では被覆した樹脂の剥離を抑えるべくフランジ部を残した成形を行った。
【0059】
(しごき成形性)
しごき成形性は、連続成形で10000缶製缶したときに破断が発生した回数が、0〜1回のものを「○(良好)」とし、2〜4回のものを「△(やや劣るが製造工程に適用が可能)」とし、5回以上のものを「×(不良)」とした。
【0060】
(フランジ成形性)
フランジ成形性は、しごき成形時に上端部に残しているフランジの形が真円に近いものを「○(良好)」とし、四角形やフランジが欠けているものを「×(不良)」とした。
【0061】
(ネジ座屈強度)
ネジ座屈強度は、成形したボトル缶に軸方向の圧縮荷重を負荷し、ネジ部が座屈したときの荷重をn(サンプル数)=5で測定して平均値とした。
なお、このネジ座屈強度は、1500N以上であれば実用上問題がない。
【0062】
(コスト)
コストは、焼鈍工程を省略したものを「◎(コストが充分に削減されたもの)」とし、ホットコイルに連続焼鈍を施したものを「○(従来品に比べてコストがやや削減されたもの)」とし、冷間圧延工程の間で連続焼鈍を施したものを「×(コストが従来品と同等のもの)」とした。以上の評価結果を表2に示す。
【0063】
【表2】
Figure 2004238653
【0064】
表2に示すように、本発明で規制した条件の範囲外である比較例(No.7〜24)では、前記評価項目の全てを良好に満足するものは得られなかった。
【0065】
すなわち、比較例No.7はフランジ形状が「×(不良)」であり、比較例No.8は45°耳の耳率が本発明で規制した範囲の上限値を超えているとともに、しごき成形性が「△(やや劣る)」、更にフランジ形状が「×(不良)」であり、比較例No.9及び比較例No.10はしごき成形性が「△(やや劣る)」であり、比較例No.11は最終冷間圧延終了時の引張強さ、及び焼鈍後の引張強さがいずれも本発明で規制した範囲の下限値未満であるとともに、ネジ座屈強度が実用上問題のない水準に達していないものであった。
【0066】
また、比較例No.12はしごき成形性が「△(やや劣る)」であり、比較例No.13は最終冷間圧延終了時の引張強さ、及び焼鈍後の引張強さがいずれも本発明で規制した範囲の下限値未満であるとともに、ネジ座屈強度が実用上問題のない水準に達しておらず、比較例No14は最終冷間圧延終了時の引張強さ、及び焼鈍後の引張強さが、いずれも本発明で規制した範囲の上限値を超えているとともに、しごき成形性が「×(不良)」であった。
【0067】
更に、比較例No.15は最終冷間圧延終了時の引張強さ、及び焼鈍後の引張強さがいずれも本発明で規制した範囲の下限値未満であるとともに、ネジ座屈強度が実用上問題のない水準に達しておらず、比較例No.16は最終冷間圧延終了時の引張強さ、及び焼鈍後の引張強さが、いずれも本発明で規制した範囲の上限値を超えているとともに、しごき成形性が「×(不良)」であり、比較例No.17は最終冷間圧延終了時の引張強さ、及び焼鈍後の引張強さがいずれも本発明で規制した範囲の下限値未満であるとともに、ネジ座屈強度が実用上問題のない水準に達しておらず、比較例No.18は最終冷間圧延終了時の引張強さ、及び焼鈍後の引張強さが、いずれも本発明で規制した範囲の上限値を超えているとともに、しごき成形性が「×(不良)」であった。
【0068】
そして、比較例No.19は45°耳の耳率が本発明で規制した範囲の上限値超であるとともに、フランジ形状が「×(不良)」であり、比較例No.20はしごき成形性が「△(やや劣るが製造工程に適用が可能)」であり、比較例No.21は最終冷間圧延終了時の引張強さ、及び焼鈍後の引張強さがいずれも本発明で規制した範囲の下限値未満であるとともに、ネジ座屈強度が実用上問題のない水準に達しておらず、比較例No.22はフランジ形状が「×(不良)」であるとともに、ネジ座屈強度が実用上問題のない水準に達しておらず、比較例No.23は45°耳の耳率が本発明で規制した範囲の上限値超であるとともに、フランジ形状が「×(不良)」であり、比較例No.24は45°耳の耳率が本発明で規制した範囲の上限値超であるとともに、フランジ形状が「×(不良)」であり、更にコストが「×(従来品と同等)」であった。
【0069】
一方、本発明に係る実施例(No.1〜6)は、45°耳の耳率、しごき成形性、フランジ成形性、ネジ座屈強度及びコストのいずれの評価項目においてもなんら問題のないものであった。
【0070】
【発明の効果】
以上説明したとおりに構成される本発明によれば以下の効果を奏する。
すなわち、本発明に係る請求項1によれば、アルミニウム合金の合金組成を最適化するとともに、このアルミニウム合金中のCu前記Mgの含有量が、2.15≦{3.0×Cu(質量%)+Mg(質量%)}≦2.50…(1)の関係を満足し、かつ最終冷間圧延終了後の引張強さが、310〜350N/mmであるように構成したので、H19工程でも焼鈍後の材料強度(引張強さ等)が充分に維持される樹脂被覆包装容器用アルミニウム合金板を提供することができる。
【0071】
そして、請求項2の発明によれば、前記アルミニウム合金板に、200〜280℃、20秒間の熱処理を施して、250〜290N/mmの引張強さが得られたアルミニウム合金板として構成したので、所望のアルミ缶の形状に容易に成形でき、かつそのアルミ缶の形状へ成形した後でも材料強度が適切に保持される樹脂被覆包装容器用アルミニウム合金板を提供することができる。
【0072】
更に、請求項3の発明によれば、前記アルミニウム合金板に、絞り比を1.5〜1.8としてカッピング成形を行ったときの45°耳の耳率が−3〜+3%であるアルミニウム合金板として構成したので、所望のアルミ缶の形状に容易に成形でき、かつそのアルミ缶の形状へ成形した後でも材料強度が適切に保持され、なおかつアルミ缶の歩留まりをより一層向上させることが可能な樹脂被覆包装容器用アルミニウム合金板を提供することができる。
【0073】
請求項4の発明によれば、熱間圧延工程の終了時の温度を規制して熱間圧延を施し、前記熱間圧延工程が終了した後に冷却速度を規制して冷却を行い、続いて適宜焼鈍を施した後、更に圧延率を規制して冷間圧延を行う工程を含む方法で前記樹脂被覆包装容器用アルミニウム合金板を製造するので、焼鈍時の材料強度の低下が最小限に抑えられて成形性に優れるとともに耐熱性に優れた樹脂被覆包装容器用アルミニウム合金板を、従来に比べ簡略化された工程で製造できてその製造コストを抑えることが可能な樹脂被覆包装容器用アルミニウム合金板の製造方法を提供することができる。
【図面の簡単な説明】
【図1】従来の1例の2ピースボトル缶を模式的に示す斜視図である。
【図2】従来の1例のDI缶を模式的に示す斜視図である。
【符号の説明】
1 2ピースボトル缶
2 胴体部
3 ネック部
4 開口部
11 DI缶
12 胴体部
13 ネック部
14 開口部[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an aluminum alloy plate for a resin-coated packaging container and a method for producing the same, and in particular, a resin having excellent heat resistance and moldability and applicable to DI cans and bottle cans (hereinafter, referred to as “aluminum cans”) or laminated materials. The present invention relates to an aluminum alloy plate for a coated packaging container and a method for producing the same.
[0002]
[Prior art]
A conventional aluminum can is usually made of an aluminum alloy plate and manufactured through the following steps. In other words, the conventional method for manufacturing an aluminum can composed of an aluminum alloy plate involves first forming a layer of a thermoplastic resin film on both surfaces of the aluminum alloy plate and punching a blank coated with a lubricant to obtain a blank material. And a step of drawing the blank material to obtain a cup-shaped molded product, and then performing a re-drawing process, a stretching process, or an ironing process (DI process) on the cup-shaped molded product to form a body. A step of obtaining a small-diameter, thin-walled, bottomed cylindrical can, and then a port formed by a shoulder and an unopened portion by performing drawing on the bottom side of the bottomed cylindrical can a plurality of times; Step of obtaining a can having a portion, followed by washing and trimming, etc., then printing and painting the body of the can, and subsequently opening the mouth to form a curled portion and a screw portion (Hereinafter, " The method further includes a step of performing neck-in processing and flange processing on a portion on the opposite side of the screw portion, and then winding a separately formed bottom lid by a seamer (for example, And Patent Document 1).
[0003]
[Patent Document 1]
JP 2001-162344 A (all pages)
[0004]
[Problems to be solved by the invention]
For the conventional aluminum cans that require a particularly high strength after baking, generally, a 3004 (JIS H 4000) alloy tempered to H191 (JIS H 0001) is used. In H191, each of the steps of hot rolling, cold rolling, annealing and final cold rolling is sequentially performed on an aluminum alloy sheet. However, in the 3004 alloy manufactured by H191, in addition to the problem of high cost due to the relatively large number of steps, there are limitations in terms of variations in material properties and surface quality.
[0005]
Also, in recent years, the type of laminated film applied has increased due to the diversification of needs for the laminate material, and accordingly, the temperature range of the remelt of the laminated film applied in the manufacturing process of the laminate material has been expanded, resulting in higher heat resistance. An aluminum alloy having properties is required.
[0006]
Therefore, instead of H191 (JIS H 0001), H19 tempered 3004 alloy subjected to hot rolling and cold rolling steps is applied to an aluminum can, and the strength after baking is ensured. Investigations have been conducted to realize an aluminum alloy plate with improved formability.
[0007]
In the conventional aluminum can manufacturing process, in the process of tempering 3001 alloy to H191, the cold working ratio in the cold rolling process is relatively low together with the solution heat treatment effect of the continuous annealing process. It is possible to minimize the decrease in strength during baking). However, in the step of tempering the H19 to the 3004 alloy, cold rolling is performed without going through a continuous annealing step after the hot rolling step, so that the effect obtained in the H191 is reduced and the strength at the time of annealing decreases. There was a problem that becomes large.
[0008]
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and an object of the present invention is to provide an aluminum for a resin-coated packaging container made of a 3004H19 alloy which minimizes a decrease in strength (proof stress, etc.) after baking. An object of the present invention is to provide an alloy plate and a method for manufacturing the same.
[0009]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present inventors have conducted various studies on alloy components capable of maximally preventing a decrease in strength after baking in the case of the 3004H19 alloy. As a result, the present inventors have found that the above problems can be solved by appropriately adjusting the contents of Mg and Cu and controlling the conditions of hot rolling and cold rolling, and have arrived at the present invention.
[0010]
(1) That is, the aluminum alloy plate for a resin-coated packaging container according to the present invention for achieving the above object contains 0.1 to 0.5% by mass of Cu, 0.8 to 2.0% by mass of Mg, Mn is contained in an amount of 0.5 to 1.5% by mass, Fe is contained in an amount of 0.25 to 0.50% by mass, and Si is contained in an amount of 0.1 to 0.5% by mass, with the balance being Al and unavoidable impurities. An aluminum alloy plate, wherein the contents of Cu and Mg satisfy a relationship of 2.15 ≦ {3.0 × Cu (mass%) + Mg (mass%)} ≦ 2.50 (1) And the tensile strength at the end of the final cold rolling step is 310 to 350 N / mm 2 It is configured to be.
[0011]
According to this structure, by limiting the contents of Mg and Cu as described above, the decrease in the tensile strength during annealing is suppressed to the maximum even in the H19 step, and the tensile strength after annealing is sufficiently increased. An aluminum alloy plate for a resin-coated packaging container to be maintained is realized.
[0012]
(2) Further, the present invention provides the aluminum alloy plate for a resin-coated packaging container, wherein after the end of the final cold rolling step, a tensile strength when subjected to a heat treatment at 200 to 280 ° C. for 20 seconds is 250. ~ 290N / mm 2 It is preferable to configure so that
[0013]
With this configuration, an aluminum alloy plate for a resin-coated packaging container that can be easily formed into a desired aluminum can shape and that can maintain the strength of the can properly even after being formed into the aluminum can shape is realized. You.
[0014]
(3) The present invention relates to an aluminum alloy plate for a resin-coated packaging container, wherein 45 ° ears are formed when cupping is performed with a drawing ratio (blank diameter / punch diameter) of 1.5 to 1.8. It is preferable that the ratio be in the range of −3 to + 3%.
[0015]
In addition, the said lug means the peak and the valley formed in the side surface of the obtained cylindrical container, when cupping molding is performed with an aluminum alloy plate. The ear ratio is calculated using the following equation.
Ear ratio = (average value of heights at four locations in the 45 ° direction based on the bottom surface of the cylindrical container − average value of heights at four locations in the 0 and 90 ° directions based on the bottom surface of the cylindrical container) / (cylindrical container) Average value of heights at eight locations in the 0, 45, and 90 ° directions based on the bottom surface of the
Here, the “45 ° ear” refers to a peak formed in a direction at 45 ° to the rolling direction.
[0016]
With this configuration, the aluminum can can be easily formed into a desired aluminum can shape, and even after being formed into the aluminum can shape, the tensile strength is appropriately maintained, and the yield of the aluminum can is further improved. Thus, an aluminum alloy plate for a resin-coated packaging container is realized.
[0017]
In the present invention, the above-described effects can be obtained also for the aluminum alloy sheet for a resin-coated packaging container in which the H19M step (the steps of hot rolling, annealing and cold rolling) is performed instead of the H19 step. Is possible.
[0018]
(4) In the method for producing an aluminum alloy sheet for a resin-coated packaging container according to the present invention for achieving the above object, the hot rolling process is performed by setting the temperature at the end of the hot rolling step to 300 to 350 ° C. And a cooling step of setting the cooling rate to 5 ° C./h or more to perform cooling after the hot rolling step is completed, and subsequently performing annealing, and further performing cold working. A cold rolling step of performing cold rolling while setting the rolling ratio to 80 to 95%.
[0019]
In the present invention, an annealing step of performing annealing may be added between the cooling step and the cold rolling step as needed.
[0020]
According to this structure, a method for manufacturing an aluminum alloy plate for a resin-coated packaging container that can be easily formed into a desired aluminum can shape is realized.
[0021]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail.
The aluminum alloy plate for a resin-coated packaging container according to the present invention is manufactured using an Al-Mn-based 3004 alloy (JISH4000) whose alloy composition is regulated in the present invention. Then, using an aluminum alloy whose alloy composition is regulated in the present invention, first, an ingot is manufactured by DC casting (Direct-chill casting), and a homogenizing heat treatment is performed. A hot rolling process is performed to produce an aluminum alloy plate. Subsequently, the aluminum alloy plate is subjected to a cold rolling process, annealing is performed an appropriate number of times, and then a final cold rolling process is performed. To be manufactured.
Next, the reason why each alloy component contained in the aluminum alloy plate for a resin-coated packaging container according to the present invention is numerically limited will be described.
[0022]
(Cu content: 0.1 to 0.5% by mass)
Cu contained in the aluminum alloy plate for a resin-coated packaging container according to the present invention is an element that contributes to the material strength. That is, if the content of Cu is less than 0.1% by mass, sufficient material strength cannot be obtained, and if the content of Cu exceeds 0.5% by mass, the material strength becomes too high, resulting in poor moldability. descend. Therefore, in the present invention, the content of Cu is set to 0.1 to 0.5% by mass.
[0023]
(Mg content: 0.8 to 2.0% by mass)
Mg contained in the aluminum alloy plate for a resin-coated packaging container according to the present invention is an element that contributes to the material strength similarly to the case of Cu described above. That is, if the content of Mg is less than 0.8% by mass, it is difficult to obtain the required material strength, and if the content of Mg exceeds 2.0% by mass, work hardening is increased and formability is reduced. . Therefore, in the present invention, the content of Mg is set to 0.8 to 2.0% by mass.
[0024]
(Mn content: 0.5 to 1.5% by mass)
Mn contained in the aluminum alloy plate for a resin-coated packaging container according to the present invention contributes to the material strength and forms an Al-Mn-Fe-Si-based intermetallic compound, and the aluminum alloy plate is set on a die by ironing. It is an element that prevents wearing. That is, when the content of Mn is less than 0.5% by mass, formation of an intermetallic compound is not sufficient and the material strength is insufficient. On the other hand, if the content of Mn exceeds 1.5% by mass, the material strength is excessively increased and the intermetallic compound is coarsened, so that deep streak-like defects are easily generated on the inner surface of the aluminum can at the time of ironing. Become. Therefore, in the present invention, the content of Mn is set to 0.5 to 1.5% by mass.
[0025]
(Fe content: 0.25 to 0.50% by mass)
Fe contained in the aluminum alloy plate for a resin-coated packaging container according to the present invention plays a role of forming an Al-Mn-Fe-Si-based intermetallic compound as in the case of Mn described above. That is, if the content of Fe is less than 0.25% by mass, an intermetallic compound having a maximum length of 2 μm or more required for preventing adhesion to a die is not formed, and the content of Fe is 0.1% or less. If it exceeds 50% by mass, a huge intermetallic compound having a maximum length of more than 20 μm is formed, which leads to breakage of the body (breakage during ironing). Further, the intermetallic compound is coarsened and deep streak-like defects easily occur on the inner surface of the aluminum can at the time of ironing. Therefore, in the present invention, the content of Fe is set to 0.25 to 0.50% by mass.
[0026]
(Si content: 0.1-0.5% by mass)
The Si contained in the aluminum alloy plate for the resin-coated packaging container according to the present invention is combined with the Al-Mn-Fe-based intermetallic compound in the homogenization heat treatment to form a high-hardness Al-Mn-Fe-Si-based intermetallic compound. Play a role in forming When the content of Si is less than 0.1% by mass, formation of an intermetallic compound is not sufficient, and when the content of Si exceeds 0.5% by mass, material strength and recrystallization behavior are hindered. Therefore, in the present invention, the content of Si is set to 0.1 to 0.5% by mass.
[0027]
In the present invention, as inevitable impurities, Cr is 0.1% by mass or less, Zn is 0.5% by mass or less, Ti is 0.1% by mass or less, Zr is 0.1% by mass or less, Even if B is contained in an amount of 0.1% by mass or less, the effect of the present invention is not hindered, and the content of such inevitable impurities is allowed.
[0028]
(2.15 ≦ {3.0 × Cu (mass%) + Mg (mass%)} ≦ 2.50 (1))
In the present invention, elements Cu and Mg that contribute to the material strength are controlled so that an aluminum alloy plate for a resin-coated packaging container having appropriate material strength after lamination is obtained. The present inventors have investigated the contribution of Cu and Mg to the material strength after lamination was performed on the aluminum alloy plate for the resin-coated packaging container according to the present invention, and the contribution of Cu was higher than the contribution of Mg. It became clear. Further, the present inventors have conducted a detailed investigation and found that the content of Cu and Mg is 2.15 ≦ {3.0 × Cu (% by mass) + Mg (% by mass)} ≦ 2.50 (1) It was found that when the above relationship was satisfied, an aluminum alloy plate for a resin-coated packaging container having appropriate material strength after lamination was realized.
[0029]
That is, if {3.0 × Cu (% by mass) + Mg (% by mass)} in the above relational expression (1) is less than 2.15, sufficient material strength cannot be obtained, and the pressure resistance of the molded aluminum can is reduced. And the buckling strength is insufficient. When {3.0 × Cu (% by mass) + Mg (% by mass)} exceeds 2.50 in the relational expression (1), the rollability is reduced, and defects such as edge cracks and plate breakage occur. Not only that, the moldability of the aluminum can also decreases. Therefore, in the present invention, the contents of Cu and Mg are adjusted so as to satisfy 2.15 ≦ {3.0 × Cu (mass%) + Mg (mass%)} ≦ 2.50 (1).
[0030]
(Tensile strength after final cold rolling: 310 to 350 N / mm 2 )
When the heat treatment is performed on the aluminum alloy plate to perform lamination, the aluminum alloy plate is softened. Therefore, in the present invention, the final cooling is performed to sufficiently secure the material strength of the aluminum alloy plate after the lamination is performed. It is preferable to control the tensile strength after the completion of the inter-rolling.
[0031]
That is, the tensile strength after the final cold rolling of the aluminum alloy sheet is 310 N / mm. 2 If it is less than 1, the material strength after lamination becomes too low, and the material strength required for the aluminum can is insufficient. Also, this tensile strength is 350 N / mm 2 If it exceeds 300, the rollability of the aluminum alloy sheet is reduced, and the material strength after lamination is too high, and the formability of the aluminum can is reduced. Therefore, in the present invention, the tensile strength at the end of the final cold rolling of the aluminum alloy is set to 310 to 350 N / mm. 2 It is preferable that In the present invention, the tensile strength is 315 to 335 N / mm. 2 Is more preferable.
[0032]
(Tensile strength after heat treatment at 200 to 280 ° C for 20 seconds: 250 to 290 N / mm 2 )
After the heat treatment of the aluminum alloy plate, the drawability and the formability at the time of performing ironing are equivalent to the heat treatment at the time of performing the lamination treatment at the aluminum alloy plate. The tensile strength after heat treatment under the condition of seconds is an important index.
[0033]
That is, the aluminum alloy (after the final cold rolling step) has a tensile strength of 250 N / mm when subjected to the heat treatment. 2 If less, the material strength of the aluminum can is insufficient. Further, the tensile strength is 290 N / mm 2 If it exceeds 300, the moldability of the aluminum can, particularly the ironing moldability, is reduced, and the productivity is impaired due to the occurrence of breakage. Therefore, in the aluminum alloy sheet for a resin-coated packaging container according to the present invention, the tensile strength when subjected to a heat treatment at 200 to 280 ° C. for 20 seconds after the final cold rolling step is 250 to 290 N / mm. 2 It is preferable that
In the present invention, the tensile strength after the heat treatment is 260 to 280 N / mm. 2 Is more preferable.
[0034]
(Ear ear ratio of 45 ° ear: -3 to + 3%)
Generally, when a laminated material of an aluminum alloy plate is squeezed to the tip of the upper end as in conventional ordinary DI molding, the film is peeled off at the tip of the upper end or the die builds up. For example, processing defects are likely to occur. For this reason, in the present invention, it is preferable to form the laminated material manufactured from the aluminum alloy plate without leaving the flange portion as appropriate, without squeezing to the top end portion as in the conventional ordinary DI molding.
[0035]
At this time, if the ear ratio of the 45 ° ears is out of the range of −3 to + 3%, the flange portion may be insufficient in the 90 ° direction, and the trimming margin may be insufficient, or breakage may occur during molding. . Further, after an aluminum can is made from the aluminum alloy plate for a resin-coated packaging container according to the present invention, when the aluminum can is transported by a transporting means such as a conveyor with the flange portion down, the transporting means may be used. The stability of the holding of the aluminum can is reduced, and the aluminum can is overturned, which easily causes a problem in the process of transporting the aluminum can. For this reason, it is preferable to set the ear ratio of the 45 ° ear according to the present invention to -3 to + 3%.
[0036]
The ear ratio of the 45 ° ear in the present invention is determined by the height of the ear of a cup obtained by cupping the aluminum alloy plate at a drawing ratio (blank diameter / punch diameter) of 1.5 to 1.8. It is calculated from this. For example, a blank having a diameter of 66.7 mm is prepared from the aluminum alloy plate, the blank is squeezed with a punch having a diameter of 40 mm to form a cup, and the blank can be calculated from the height of the obtained cup.
[0037]
(End temperature of hot rolling process: 300 to 350 ° C)
In the method for producing an aluminum alloy plate for a resin-coated packaging container according to the present invention, the end temperature of the hot rolling step performed on the aluminum alloy plate affects the recrystallization state of the hot coil and also affects the material strength. It is an important indicator.
[0038]
That is, if the end temperature of the hot rolling is lower than 300 ° C., recrystallization in the aluminum alloy sheet does not sufficiently occur, and as a result, not only the ear ratio is increased and the formability is reduced, but also the solidification of Cu is reduced. Insufficient amount of solution results in sufficient material strength after heat treatment. On the other hand, if the end temperature of the hot rolling treatment exceeds 350 ° C., the crystal grains become coarse, and as a result, the formability decreases. Therefore, the temperature at the end of hot rolling in the method for producing an aluminum alloy sheet for a resin-coated packaging container according to the present invention needs to be 300 to 350 ° C.
[0039]
(Cooling rate: 5 ° C / h or more)
In the method for producing an aluminum alloy sheet for a resin-coated packaging container according to the present invention, the amount of Cu solid-dissolved in the aluminum alloy in the hot coil after the hot rolling step changes depending on the cooling rate. . Further, in the present invention, when heat treatment such as continuous annealing is not performed on the aluminum alloy after the completion of the hot rolling step, if the amount of Cu dissolved in the aluminum alloy is small, the material strength after the heat treatment is reduced. Cannot be obtained sufficiently.
[0040]
On the other hand, if the cooling rate is lower than 5 ° C./h, the precipitation of Cu dissolved in the aluminum alloy proceeds and the amount of Cu dissolved in the aluminum alloy decreases, so that the tensile strength after the heat treatment is reduced. Will be insufficient. Therefore, in the method for producing an aluminum alloy sheet for a resin-coated packaging container according to the present invention, the cooling rate after hot rolling is required to be 5 ° C./h or more.
[0041]
(Rolling ratio of cold working: 80-95%)
The rolling ratio of the cold working included in the method for producing an aluminum alloy plate for a resin-coated packaging container according to the present invention is a factor that contributes to the material strength and ear ratio. That is, if the rolling reduction of the cold working is lower than 80%, sufficient material strength cannot be obtained, and if the rolling reduction of the cold working exceeds 95%, the ear ratio becomes excessively high. Therefore, in the present invention, the rolling reduction of the cold working needs to be 80 to 95%.
[0042]
The aluminum alloy plate for a resin-coated packaging container according to the present invention described above is suitable for a conventional bottle can as shown in FIG. 1 or a conventional DI can as shown in FIG. In addition, it is a material suitable for conventional aluminum alloy laminates.
[0043]
When the aluminum alloy plate for a resin-coated packaging container according to the present invention is applied to a conventional general bottle can, the aluminum plate for a resin-coated packaging container according to the present invention can be subjected to cupping or DI molding on the aluminum plate. The body 2 (see FIG. 1) is formed by molding, and then the neck 2 is formed by necking the body 2, and the body 2, the neck 3, and the bottom are integrally formed by DI molding. In this way, a conventional two-piece bottle can 1 as shown in FIG. 1 can be manufactured.
[0044]
In the two-piece bottle can 1 shown in FIG. 1, a body portion 2 and a neck portion 3 are formed at a predetermined portion of the body portion 2, and an opening portion 4 is formed at an end portion of the neck portion 3. . The outer periphery near the opening 4 is provided with a threaded portion for threading a lid attachment. The bottom of the portion facing the opening 4 is configured to be continuous with the body 2.
[0045]
Further, when the aluminum alloy plate for a resin-coated packaging container according to the present invention is applied to a conventional general DI can, cupping or DI molding of the aluminum plate for a resin-coated packaging container according to the present invention is performed. The body portion 12 (see FIG. 2) is formed by forming a can body, and then the neck portion 13 is formed by necking the body portion 12. Subsequently, an opening 14 is formed at the end of the neck portion 13. Is formed, and the diameter of the opening 14 is processed so as to be smaller than the diameter of the body 12, so that the conventional DI can 11 as shown in FIG. 2 can be manufactured.
[0046]
In addition, when the aluminum alloy plate for a resin-coated packaging container according to the present invention is applied to a conventional general laminated material, various films applied to a conventionally known laminated material are applied via an adhesive or the like. After the lamination, a laminate material is produced through a process of performing a remelt process (to make the film amorphous at the melting point or higher) at a temperature of about 230 to 270 ° C.
[0047]
In addition, when a film having a relatively high melting point (for example, a polyethylene terephthalate (PET) -based film) is attached to the aluminum alloy plate for a resin-coated packaging container according to the present invention to produce a laminate, a relatively high temperature ( Even if the remelt treatment is performed at a temperature of, for example, 270 ° C. or more), the tensile strength of the aluminum alloy plate for a resin-coated packaging container according to the present invention is sufficiently maintained.
[0048]
【Example】
Hereinafter, examples according to the present invention will be specifically described in comparison with comparative examples that do not satisfy the conditions regulated by the present invention.
First, an aluminum alloy having an alloy composition as shown in Table 1 was melted and cast, then subjected to a soaking heat treatment at 600 ° C. for 4 hours, and subsequently subjected to hot rough rolling and finish rolling in this order to obtain an aluminum alloy sheet. Was manufactured, and the aluminum alloy sheet was wound at the end temperature of the hot rolling step as shown in Table 1 to manufacture a hot coil.
[0049]
[Table 1]
Figure 2004238653
[0050]
The hot coil was cooled while controlling the cooling rate, and then cold-rolled to obtain a hot coil of an aluminum alloy plate having a thickness of 0.32 mm.
In Example 6, the hot coil was subjected to continuous annealing and cold rolling. In Comparative Example 24, after cold rolling, continuous annealing was performed as intermediate annealing, and cold rolling was performed again.
[0051]
Thereafter, the aluminum alloy plates of Examples and Comparative Examples thus manufactured were subjected to alkali washing and phosphoric acid chromate treatment, and further coated on both sides with a polyethylene terephthalate resin having a thickness of 16 μm. The aluminum alloy sheet for resin-coated packaging according to the present invention (Examples Nos. 1 to 6) and an aluminum alloy sheet not satisfying the conditions regulated by the present invention (Comparative Examples Nos. 7 to 6) 24).
[0052]
That is, the embodiment No. 1 to 6, the alloy composition, the relational expression (1), the temperature at the end of the hot rolling step, the cooling rate after the end of the hot rolling step, and the reduction ratio of the cold working in the cold rolling step are all defined in the present invention. It satisfies the regulated conditions. Among them, Example No. Examples Nos. 1 to 6 are those in which no annealing was performed in the cold rolling step after the hot rolling. 6 is annealed after hot rolling.
[0053]
On the other hand, in Comparative Example No. Comparative Example No. 7 has a Si content of less than the lower limit of the numerical range defined in the present invention. Comparative Example No. 8 shows that the content of Si exceeded the upper limit of the numerically limited range in the present invention. Comparative Example No. 9 has a Fe content of less than the lower limit of the numerically limited range in the present invention. Comparative Example No. 10 has an Fe content exceeding the upper limit of the numerically limited range in the present invention. Comparative Example No. 11 has a Mn content less than the lower limit of the numerically limited range in the present invention. 12 has an Mn content exceeding the upper limit of the numerically limited range in the present invention.
[0054]
In Comparative Example No. Comparative Example No. 13 had a Mg content of less than the lower limit of the numerically limited range in the present invention. Comparative Example No. 14 has a Mg content exceeding the upper limit of the numerically limited range in the present invention. Comparative Example No. 15 has a Cu content less than the lower limit of the numerically limited range in the present invention. No. 16 has a Cu content exceeding the upper limit of the numerically limited range in the present invention.
[0055]
Further, Comparative Example No. Comparative Example No. 17 has a value of {3.0 × Cu (% by mass) + Mg (% by mass)} in the relational expression (1) below the lower limit of the numerical limitation range regulated by the present invention. In the case of Comparative Example No. 18, the value of {3.0 × Cu (% by mass) + Mg (% by mass)} in the relational expression (1) exceeds the upper limit of the numerical limitation range regulated by the present invention. No. 19, the temperature at the end of the hot rolling was lower than the lower limit of the numerically limited range in the present invention. Numeral 20 indicates that the temperature at the end of the hot rolling exceeds the upper limit of the numerically limited range in the present invention.
[0056]
Then, in Comparative Example No. Comparative Example No. 21 has a cooling rate after the completion of the hot rolling that is less than the lower limit of the numerically limited range in the present invention. 22 does not perform annealing in the cold rolling step after the hot rolling step is completed, and the rolling rate of the cold working in the cold rolling step is less than the lower limit of the range regulated by the present invention, Comparative Example No. No. 23 does not perform annealing in the cold rolling step after hot rolling, and has a cold working reduction ratio exceeding the upper limit of the range regulated by the present invention. Reference numeral 24 denotes a steel sheet which is annealed in the cold rolling step after the hot rolling step and has a cold working reduction ratio less than the lower limit of the range regulated by the present invention.
[0057]
Evaluation methods performed on the examples according to the present invention thus manufactured and comparative examples that do not satisfy the conditions of the present invention will be described.
(Tensile strength)
The aluminum alloy sheet cold-rolled to a thickness of 0.32 mm, and the aluminum heat-treated at 280 ° C. for 20 seconds, which has almost the same heat history as a remelt, using a nitrite furnace (salt bath). With respect to the alloy plate, the respective tensile strengths obtained by measuring the tensile strength according to JIS H 4000 were defined as the tensile strength at the end of the final cold rolling step and the tensile strength after annealing.
[0058]
(45% ear ratio)
The ear ratio was determined from a cold-rolled aluminum alloy plate by squeezing a 6666.7 mm flank with a 4040 mm punch to form a cup, and obtaining a 45 ° ear from the height of the obtained cup ear. Was. Furthermore, white vaseline is applied to the obtained aluminum alloy plate for a resin-coated packaging container, drawn and ironed, and the bottom of the obtained DI can is subjected to neck processing and screw processing to produce a bottle can. did. In the DI molding, molding was performed with the flange portion left in order to suppress the peeling of the coated resin.
[0059]
(Ironing formability)
The ironing formability was evaluated as “○ (good)” when the number of times the break occurred when the can was manufactured in the continuous can was 10,000, and “2〜 (good)” when the number was 2 to 4 times. It can be applied to the manufacturing process) ", and five or more times are" x (defective) ".
[0060]
(Flange formability)
Flange formability was evaluated as “○ (good)” when the shape of the flange left at the upper end during ironing was close to a perfect circle, and “× (defective)” when the square or the flange was missing.
[0061]
(Screw buckling strength)
The screw buckling strength was obtained by applying an axial compressive load to the molded bottle can and measuring the load when the screw portion buckled at n (the number of samples) = 5 to obtain an average value.
The screw buckling strength has no practical problem as long as it is 1500 N or more.
[0062]
(cost)
As for the cost, if the annealing step was omitted, "◎ (the cost was sufficiently reduced)", and if the hot coil was continuously annealed, "○ (the cost was slightly reduced compared to the conventional product) ) ", And those subjected to continuous annealing during the cold rolling process were designated as" x (equivalent in cost to conventional products) ". Table 2 shows the above evaluation results.
[0063]
[Table 2]
Figure 2004238653
[0064]
As shown in Table 2, in Comparative Examples (Nos. 7 to 24) which were out of the range of the conditions regulated by the present invention, none of the evaluation items satisfying all of the evaluation items were obtained.
[0065]
That is, in Comparative Example No. In Comparative Example No. 7, the flange shape was “× (defective)”. 8 shows that the ear ratio of the 45 ° ear exceeds the upper limit of the range regulated by the present invention, the ironing formability is “△ (somewhat inferior)”, and the flange shape is “× (poor)”. Example No. 9 and Comparative Example No. 9 The ironing formability of Comparative Example No. 10 was “△ (somewhat inferior)”. 11 shows that the tensile strength at the end of the final cold rolling and the tensile strength after annealing are both less than the lower limit of the range regulated by the present invention, and that the screw buckling strength reaches a level at which there is no practical problem. Was not.
[0066]
In Comparative Example No. In Comparative Example No. 12, ironing formability was “△ (somewhat inferior)”. No. 13 shows that the tensile strength at the end of the final cold rolling and the tensile strength after annealing are both less than the lower limit of the range regulated by the present invention, and the screw buckling strength reaches a level at which there is no practical problem. In Comparative Example No. 14, the tensile strength at the end of the final cold rolling and the tensile strength after annealing both exceeded the upper limit of the range regulated by the present invention, and the ironing formability was " X (poor) ".
[0067]
Further, Comparative Example No. No. 15 shows that the tensile strength at the end of the final cold rolling and the tensile strength after annealing are both less than the lower limit of the range regulated by the present invention, and the screw buckling strength reaches a level at which there is no practical problem. Comparative Example No. No. 16 shows that the tensile strength at the end of the final cold rolling and the tensile strength after annealing both exceed the upper limit of the range regulated by the present invention, and the ironing formability is “× (poor)”. Yes, Comparative Example No. No. 17 shows that the tensile strength at the end of final cold rolling and the tensile strength after annealing are both less than the lower limit of the range regulated by the present invention, and the screw buckling strength reaches a level at which there is no practical problem. Comparative Example No. No. 18 shows that the tensile strength at the end of final cold rolling and the tensile strength after annealing both exceed the upper limit of the range regulated by the present invention, and the ironing formability is “× (poor)”. there were.
[0068]
Then, in Comparative Example No. In Comparative Example No. 19, the ear ratio of the 45 ° ear was more than the upper limit of the range regulated by the present invention, and the flange shape was “× (bad)”. The ironing formability of Comparative Example No. 20 was “△ (slightly inferior but applicable to the manufacturing process)”. 21 is such that the tensile strength at the end of the final cold rolling and the tensile strength after annealing are both less than the lower limit of the range regulated by the present invention, and the screw buckling strength reaches a level at which there is no practical problem. Comparative Example No. In Comparative Example No. 22, the flange shape was “× (defective)” and the screw buckling strength did not reach a level at which there was no practical problem. In Comparative Example No. 23, the ear ratio of the 45 ° ear was more than the upper limit of the range regulated by the present invention, and the flange shape was “× (defective)”. No. 24 had a 45 ° ear ratio exceeding the upper limit of the range regulated by the present invention, a flange shape of “× (defective)”, and a cost of “× (equivalent to the conventional product)”. .
[0069]
On the other hand, Examples (Nos. 1 to 6) according to the present invention have no problem in any of the evaluation items of the ear ratio of 45 ° ear, ironing formability, flange formability, screw buckling strength, and cost. Met.
[0070]
【The invention's effect】
According to the present invention configured as described above, the following effects can be obtained.
That is, according to claim 1 of the present invention, the alloy composition of the aluminum alloy is optimized, and the content of Cu in the aluminum alloy is 2.15 ≦ {3.0 × Cu (mass% ) + Mg (mass%)} ≦ 2.50 (1) and the tensile strength after final cold rolling is 310 to 350 N / mm 2 Therefore, it is possible to provide an aluminum alloy plate for a resin-coated packaging container in which the material strength (tensile strength and the like) after annealing is sufficiently maintained even in the H19 process.
[0071]
According to the invention of claim 2, the aluminum alloy plate is subjected to a heat treatment at 200 to 280 ° C. for 20 seconds, and the heat treatment is performed at 250 to 290 N / mm. 2 Resin-coated packaging that can be easily formed into the desired aluminum can shape because it is configured as an aluminum alloy plate with a tensile strength of An aluminum alloy plate for a container can be provided.
[0072]
According to the third aspect of the present invention, the aluminum alloy plate has a 45 ° ear ratio of −3 to + 3% when cupping is performed at a drawing ratio of 1.5 to 1.8. Since it is configured as an alloy plate, it can be easily formed into a desired aluminum can shape, and even after being formed into the aluminum can shape, the material strength is appropriately maintained, and the yield of the aluminum can can be further improved. A possible aluminum alloy plate for a resin-coated packaging container can be provided.
[0073]
According to the invention of claim 4, hot rolling is performed by regulating the temperature at the end of the hot rolling step, and cooling is performed by regulating the cooling rate after the hot rolling step is completed. After the annealing, since the aluminum alloy plate for the resin-coated packaging container is manufactured by a method including a step of performing a cold rolling while further controlling a rolling rate, a decrease in material strength during annealing is minimized. Aluminum alloy plate for resin-coated packaging containers, which is excellent in moldability and heat resistance, can be manufactured in a simplified process compared to conventional ones, and the manufacturing cost can be reduced. Can be provided.
[Brief description of the drawings]
FIG. 1 is a perspective view schematically showing a conventional two-piece bottle can.
FIG. 2 is a perspective view schematically showing one example of a conventional DI can.
[Explanation of symbols]
1 2 piece bottle can
2 body
3 Neck
4 opening
11 DI cans
12 Body
13 Neck
14 Opening

Claims (4)

Cuを0.1〜0.5質量%、Mgを0.8〜2.0質量%、Mnを0.5〜1.5質量%、Feを0.25〜0.50質量%、Siを0.1〜0.5質量%それぞれ含有し、残部がAl及び不可避的不純物から構成されるアルミニウム合金板であって、
前記Cu及び前記Mgの含有量が、
2.15≦{3.0×Cu(質量%)+Mg(質量%)}≦2.50…(1)
の関係を満足し、かつ
最終冷間圧延工程の終了時の引張強さが、310〜350N/mmであることを特徴とする樹脂被覆包装容器用アルミニウム合金板。
0.1 to 0.5% by mass of Cu, 0.8 to 2.0% by mass of Mg, 0.5 to 1.5% by mass of Mn, 0.25 to 0.50% by mass of Fe, Si An aluminum alloy plate containing 0.1 to 0.5% by mass, the balance being Al and unavoidable impurities,
The content of the Cu and the Mg,
2.15 ≦ {3.0 × Cu (mass%) + Mg (mass%)} ≦ 2.50 (1)
Wherein the tensile strength at the end of the final cold rolling step is 310 to 350 N / mm 2 .
前記最終冷間圧延工程の後に、200〜280℃で、20秒間、熱処理を施したときの引張強さが250〜290N/mmであることを特徴とする請求項1に記載の樹脂被覆包装容器用アルミニウム合金板。 2. The resin-coated package according to claim 1, wherein after the final cold rolling step, a tensile strength when subjected to a heat treatment at 200 to 280 ° C. for 20 seconds is 250 to 290 N / mm 2. Aluminum alloy plate for containers. 絞り比(ブランク径/ポンチ径)を1.5〜1.8としてカッピング成形を行ったときの45°耳の耳率が、−3〜+3%であること特徴とする請求項1または請求項2に記載の樹脂被覆包装容器用アルミニウム合金板。The ear ratio of a 45 degree ear when performing cupping molding with a drawing ratio (blank diameter / punch diameter) of 1.5 to 1.8 is -3 to + 3%. 3. The aluminum alloy plate for a resin-coated packaging container according to 2. 請求項1に記載の樹脂被覆包装容器用アルミニウム合金板の製造方法であって、
熱間圧延工程の終了時の温度を、300〜350℃に設定して熱間圧延処理を施す熱延工程と、
前記熱間圧延工程が終了した後に、冷却速度を5℃/h以上に設定して冷却を行う冷却工程と、
冷間加工の圧延率を80〜95%に設定して冷間圧延を行う冷延工程と、
を含むことを特徴とする樹脂被覆包装容器用アルミニウム合金板の製造方法。
It is a manufacturing method of the aluminum alloy plate for resin-coated packaging containers of Claim 1,
A hot rolling step of setting the temperature at the end of the hot rolling step to 300 to 350 ° C. and performing a hot rolling process;
A cooling step of setting the cooling rate to 5 ° C./h or more to perform cooling after the hot rolling step is completed;
A cold rolling step of performing cold rolling by setting the rolling ratio of the cold working to 80 to 95%;
A method for producing an aluminum alloy plate for a resin-coated packaging container, comprising:
JP2003027020A 2003-02-04 2003-02-04 Aluminum alloy plate for resin-coated packaging container and method for producing the same Expired - Fee Related JP3719673B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003027020A JP3719673B2 (en) 2003-02-04 2003-02-04 Aluminum alloy plate for resin-coated packaging container and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003027020A JP3719673B2 (en) 2003-02-04 2003-02-04 Aluminum alloy plate for resin-coated packaging container and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004238653A true JP2004238653A (en) 2004-08-26
JP3719673B2 JP3719673B2 (en) 2005-11-24

Family

ID=32954874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003027020A Expired - Fee Related JP3719673B2 (en) 2003-02-04 2003-02-04 Aluminum alloy plate for resin-coated packaging container and method for producing the same

Country Status (1)

Country Link
JP (1) JP3719673B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006265715A (en) * 2005-03-25 2006-10-05 Kobe Steel Ltd Aluminum alloy sheet for resin coated packaging container and method for manufacturing the same
JP2007277588A (en) * 2006-04-03 2007-10-25 Furukawa Sky Kk Aluminum alloy rolled sheet for battery case having excellent multistage workability, and its production method
JP2007277587A (en) * 2006-04-03 2007-10-25 Furukawa Sky Kk Aluminum alloy rolled sheet for battery case having excellent multistage workability, and its production method
JP2011208258A (en) * 2010-03-30 2011-10-20 Kobe Steel Ltd Aluminum alloy sheet for resin-covered can barrel and method for producing the same
JP2012188703A (en) * 2011-03-10 2012-10-04 Kobe Steel Ltd Aluminum-alloy sheet for resin coated can body, and method for producing the same
CN103119184A (en) * 2010-09-08 2013-05-22 美铝公司 Improved 6xxx aluminum alloys, and methods for producing the same
US9546411B2 (en) 2011-03-10 2017-01-17 Kobe Steel, Ltd. Aluminum-alloy sheet and method for producing the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006265715A (en) * 2005-03-25 2006-10-05 Kobe Steel Ltd Aluminum alloy sheet for resin coated packaging container and method for manufacturing the same
JP2007277588A (en) * 2006-04-03 2007-10-25 Furukawa Sky Kk Aluminum alloy rolled sheet for battery case having excellent multistage workability, and its production method
JP2007277587A (en) * 2006-04-03 2007-10-25 Furukawa Sky Kk Aluminum alloy rolled sheet for battery case having excellent multistage workability, and its production method
JP2011208258A (en) * 2010-03-30 2011-10-20 Kobe Steel Ltd Aluminum alloy sheet for resin-covered can barrel and method for producing the same
CN103119184A (en) * 2010-09-08 2013-05-22 美铝公司 Improved 6xxx aluminum alloys, and methods for producing the same
JP2012188703A (en) * 2011-03-10 2012-10-04 Kobe Steel Ltd Aluminum-alloy sheet for resin coated can body, and method for producing the same
US9546411B2 (en) 2011-03-10 2017-01-17 Kobe Steel, Ltd. Aluminum-alloy sheet and method for producing the same
US9574258B2 (en) 2011-03-10 2017-02-21 Kobe Steel, Ltd. Aluminum-alloy sheet and method for producing the same
DE102012004375B4 (en) * 2011-03-10 2018-07-05 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Method for producing an aluminum alloy sheet

Also Published As

Publication number Publication date
JP3719673B2 (en) 2005-11-24

Similar Documents

Publication Publication Date Title
JP4019082B2 (en) Aluminum alloy plate for bottle cans with excellent high temperature characteristics
US9574258B2 (en) Aluminum-alloy sheet and method for producing the same
EP2085318B1 (en) Method of producing a two-piece can body made of laminated steel sheet
JP4019083B2 (en) Aluminum alloy cold rolled sheet for bottle cans with excellent high temperature characteristics
US9546411B2 (en) Aluminum-alloy sheet and method for producing the same
JP5568031B2 (en) Aluminum alloy cold rolled sheet for bottle cans
JP5961839B2 (en) Aluminum alloy plate for can body and manufacturing method thereof
JP5670215B2 (en) Aluminum alloy plate for can body and manufacturing method thereof
JP2002256366A (en) Aluminum sheet for bottle
JP3719673B2 (en) Aluminum alloy plate for resin-coated packaging container and method for producing the same
JP5113411B2 (en) Aluminum alloy plate for packaging container and method for producing the same
JP2016041852A (en) Aluminum alloy sheet for can barrel
JP3981505B2 (en) Manufacturing method of aluminum alloy soft plate for deep drawing
JP4019084B2 (en) Aluminum alloy cold rolled sheet for bottle cans with excellent high temperature characteristics
JP2006097076A (en) Aluminum-alloy sheet for bottle can, and its manufacturing method
JP4088257B2 (en) Aluminum alloy plate for bottle cans
JP5976023B2 (en) Aluminum alloy plate for resin-coated can body
JP5491933B2 (en) Method for producing aluminum alloy sheet for resin-coated can body
JP2006070344A (en) Aluminum alloy sheet for resin-coated packing container and its production method
JPH0931584A (en) Aluminum alloy sheet for can lid, excellent in corrosion resistance and age softening resistance, and its production
JP2005048288A (en) Aluminum alloy sheet for bottle can excellent in shape stability and strength of bottom part
JP2003277865A (en) Aluminum alloy sheet for di can
JP2006265715A (en) Aluminum alloy sheet for resin coated packaging container and method for manufacturing the same
JPH06116674A (en) Aluminum alloy sheet for thinned redrawn can excellent in strength and formability
JPS62250143A (en) Aluminum-alloy foil for package

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050831

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050902

R150 Certificate of patent or registration of utility model

Ref document number: 3719673

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080916

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090916

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090916

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100916

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100916

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110916

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110916

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120916

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120916

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130916

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees