JP2005048288A - Aluminum alloy sheet for bottle can excellent in shape stability and strength of bottom part - Google Patents

Aluminum alloy sheet for bottle can excellent in shape stability and strength of bottom part Download PDF

Info

Publication number
JP2005048288A
JP2005048288A JP2004200396A JP2004200396A JP2005048288A JP 2005048288 A JP2005048288 A JP 2005048288A JP 2004200396 A JP2004200396 A JP 2004200396A JP 2004200396 A JP2004200396 A JP 2004200396A JP 2005048288 A JP2005048288 A JP 2005048288A
Authority
JP
Japan
Prior art keywords
bottle
strength
aluminum alloy
bottom part
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004200396A
Other languages
Japanese (ja)
Inventor
Hiroshi Saito
洋 齊藤
Akinori Yuda
晃典 湯田
Akinao Takeda
明直 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MA Aluminum Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP2004200396A priority Critical patent/JP2005048288A/en
Publication of JP2005048288A publication Critical patent/JP2005048288A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a bottle can material excellent in the shape stability and strength of the bottom part. <P>SOLUTION: An aluminum alloy sheet having a composition containing, by mass, 0.2 to 0.4% Si, 0.25 to 0.55% Fe, 0.15 to 0.35% Cu, 0.7 to 1.2% Mn, 0.8 to 1.4% Mg, 0.10 to 0.3% Zn and 0.01 to 0.15% Ti, and the balance Al with inevitable impurities, and in which proof stress after baking is 245 to 270 MPa, also, the ratio of crystallized products with the maximum length of ≥1 μm is 2 to 5% by area ratio based on the surface of the rolled sheet, and the number thereof is 4,000 to 10,000 pieces per mm<SP>2</SP>is used. The bottle can material excellent in the shape stability and strength of the bottom part can be obtained. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、胴部、肩部、口部が一体成形されたボトル型飲料缶用のアルミニウム合金板に係り、特にボトム部の形状の安定性及び強度に優れるボトル型飲料缶用のアルミニウム合金板に係るものである。   The present invention relates to an aluminum alloy plate for a bottle-type beverage can in which a body portion, a shoulder portion, and a mouth portion are integrally formed, and in particular, an aluminum alloy plate for a bottle-type beverage can excellent in shape stability and strength of a bottom portion. It is related to.

従来、飲料用アルミニウム缶は、アルミニウム合金板に絞り、しごき加工を行うことによって製造され缶胴部と缶底部が一体の2ピース缶が一般的であり、さらにイージーオープンエンドと呼ばれる缶蓋の簡易開口部をタブ操作により開口する方式が主流であった。
これに対し最近は、缶入り飲料などの需要増加に伴って、キャップにより再密封可能なアルミニウム合金製のボトル型の飲料缶の需要が急速に高まってきている。
従来の技術として、ボトル缶用アルミニウム板が開示されている。(例えば、特許文献1参照。)
特開2002−256366号公報
Conventionally, aluminum cans for beverages are generally produced by drawing and ironing an aluminum alloy plate, and a two-piece can in which the can body and the bottom of the can are integrated, and a simple can lid called an easy open end. The method of opening the opening by tab operation was the mainstream.
On the other hand, recently, with the increase in demand for canned beverages and the like, the demand for bottle-shaped beverage cans made of aluminum alloy that can be resealed by caps has increased rapidly.
As a conventional technique, an aluminum plate for a bottle can is disclosed. (For example, see Patent Document 1.)
JP 2002-256366 A

ボトル缶の場合、DI加工時に胴部に成形される部分よりネック部、ネジ部等に成形される部分の板厚を厚くしてネッキング加工時等の強度を確保する。このように胴部とネック部等との板厚差が大きいと、DI加工後パンチから缶体が抜けにくくなる。従ってパンチが缶体から抜け易いように、より優れたストリップ性が要求される。ストリップ性が悪いと、ボトム形状が不安定となる。例えば、ボトム部とその近傍の一部にへこみ、膨らみを生ずる。このようにへこみ、膨らみを生ずると、その凹凸の分だけボトル缶の寸法に誤差を生じ、形状異常となる。そのように寸法誤差を生じたままネック加工、ネジ加工等を施すと、ボトル高さ、ネック形状、ネジ形状に誤差を生じ、すなわち形状異常を発生させる。その結果キャッピング性が不十分であるとか、キャップが閉りにくいとかのキャッピング不良を発生させることになる。   In the case of a bottle can, the thickness of the portion formed in the neck portion, screw portion, etc. is thicker than the portion formed in the body portion during DI processing to ensure the strength during necking. Thus, if the plate | board thickness difference with a trunk | drum and a neck part etc. is large, it will become difficult to remove | remove a can body from a punch after DI process. Therefore, more excellent stripping properties are required so that the punch can be easily removed from the can body. If the strip property is poor, the bottom shape becomes unstable. For example, the bottom portion and a part of the vicinity thereof are dented and bulged. When the dents and bulges are generated in this way, an error occurs in the dimensions of the bottle can by the amount of the irregularities, resulting in an abnormal shape. If neck processing, screw processing, or the like is performed with such a dimensional error, an error occurs in the bottle height, neck shape, and screw shape, that is, an abnormal shape is generated. As a result, capping defects such as insufficient capping properties and difficult cap closure occur.

また、ボトル缶に内容物を充填した後のキャッピング時には、上方からの強い抑え力でボトル缶を固定し、キャップ部にボトルネジ部に沿った形状のローラーを押し当て、ローラーを回転させてキャップにネジを形成してキャッピングをする。このキャッピング時の上方からの強い抑え力によってボトムが変形して、ボトルの高さが低くなったり形状異常を生ずると正常なキャッピングができなくなるので、ボトム部にある程度の強度が必要となる。
また、ネック加工、ネジ加工等の成形加工においてはボトム部を固定して成形加工を行うので、ボトム部の形状の安定性はボトル缶の成形加工、キャッピングに大変重要な要素となる。
以上の問題点に鑑み、本発明の課題はボトル缶の成形加工においてボトム部の変形が発生しにくくボトム部の形状の安定性を優れたものにすることができるアルミニウム合金板を提供することにある。
Also, when capping after filling the contents into the bottle can, fix the bottle can with a strong restraining force from above, press the roller with the shape along the bottle screw part against the cap part, rotate the roller to the cap Form a screw and capping. If the bottom is deformed by the strong restraining force from above during capping and the bottle is lowered in height or has a shape abnormality, normal capping cannot be performed, so that a certain degree of strength is required for the bottom portion.
Further, in the molding process such as neck process and screw process, since the bottom part is fixed and the molding process is performed, the stability of the shape of the bottom part is a very important factor for the molding process and capping of the bottle can.
In view of the above problems, an object of the present invention is to provide an aluminum alloy plate that is less likely to be deformed in the bottom part in the bottle can molding process and can have excellent stability of the shape of the bottom part. is there.

前記の課題を解決するために本発明者らは、Si、Fe、Mn、Mgなどの含有量と晶出物の面積率と個数とを適正範囲に規制してDI加工時の良好なストリップ性を確保し、その結果ボトム部の良好な形状の安定性を得ることができることを見出した。かつ前記の元素の含有量とベーキング後の耐力とを適正範囲に規制してボトム部の強度を確保し、各成形加工時におけるボトム部の良好な形状の安定性も得ることができるアルミニウム合金板を実現化できることを見い出し、本発明に至った。   In order to solve the above-mentioned problems, the present inventors controlled the content of Si, Fe, Mn, Mg, etc., the area ratio and the number of crystallized substances within an appropriate range, and good stripping properties during DI processing. As a result, it was found that the stability of the good shape of the bottom portion can be obtained. In addition, the aluminum alloy plate that can secure the strength of the bottom portion by regulating the content of the above elements and the proof stress after baking within an appropriate range, and can also obtain the stability of the good shape of the bottom portion during each forming process. It has been found that can be realized, and the present invention has been achieved.

すなわち、DI加工時の良好なストリップ性を得るためには、合金組成を質量%でSi:0.2〜0.4%、Fe:0.25〜0.55%、Cu:0.15〜0.35%、Mn:0.7〜1.2%、Mg:0.8〜1.4%、Zn:0.10〜0.3%、Ti:0.01〜0.15%を含有し、残部が不可避的不純物を含むAlからなる組成を有し、且つ最大長が1μm以上の晶出物が、圧延板表面からみた面積率で2〜5%で、1mm当りの個数で4000〜10000個であるアルミニウム合金板を、ボトル缶用の板材とした。 That is, in order to obtain good stripping properties during DI processing, the alloy composition in terms of mass% is Si: 0.2 to 0.4%, Fe: 0.25 to 0.55%, Cu: 0.15 to Contains 0.35%, Mn: 0.7-1.2%, Mg: 0.8-1.4%, Zn: 0.10-0.3%, Ti: 0.01-0.15% In addition, a crystallized product having a composition composed of Al containing the inevitable impurities in the balance and having a maximum length of 1 μm or more is 2 to 5% in terms of the area ratio as viewed from the surface of the rolled sheet, and 4000 per 1 mm 2. The aluminum alloy plate which is 10000 pieces was used as the plate material for the bottle can.

また、各成形加工時におけるボトム部の良好な形状の安定性を確保できるようにボトム部の強度を確保するためには、上記と同じ合金組成とし、且つベーキング後の耐力が245〜270MPaであるアルミニウム合金板を、ボトル缶用の板材とした。   Moreover, in order to ensure the strength of the bottom part so as to ensure the stability of the good shape of the bottom part during each molding process, the alloy composition is the same as above, and the yield strength after baking is 245 to 270 MPa. An aluminum alloy plate was used as a plate material for a bottle can.

また、耳率を6%以下とすることでネック加工工程以降のトリミング工程を少なくすることができる。   Moreover, the trimming process after a neck process can be decreased by making an ear rate into 6% or less.

すなわち、本発明のアルミニウム合金板によれば、合金組成を質量%でSi:0.2〜0.4%、Fe:0.25〜0.55%、Cu:0.15〜0.35%、Mn:0.7〜1.2%、Mg:0.8〜1.4%、Zn:0.10〜0.3%、Ti:0.01〜0.15%を含有し、残部が不可避的不純物を含むAlからなる組成を有し、且つ最大長が1μm以上の晶出物が、圧延板表面からみた面積率で2〜5%、1mm当りの個数で4000〜10000個であるので、合金組成、ベーキング後の耐力および晶出物の分布を適正範囲に規制して組み合せることによって耳率を低くしたままで、ボトム部の形状の安定性及び強度に優れるボトル缶材を得ることができる。 That is, according to the aluminum alloy plate of the present invention, the alloy composition is Si: 0.2 to 0.4%, Fe: 0.25 to 0.55%, Cu: 0.15 to 0.35% in mass%. , Mn: 0.7 to 1.2%, Mg: 0.8 to 1.4%, Zn: 0.10 to 0.3%, Ti: 0.01 to 0.15%, the balance being The crystallized product having a composition composed of Al containing inevitable impurities and having a maximum length of 1 μm or more is 2 to 5% in terms of the area ratio viewed from the surface of the rolled plate, and is 4000 to 10,000 per 1 mm 2. Therefore, by controlling and combining the alloy composition, yield strength after baking and distribution of crystallized materials within an appropriate range, a bottle can material having excellent bottom shape stability and strength can be obtained while keeping the ear ratio low. be able to.

まず本発明のアルミニウム合金の組成限定理由から説明する。
Si:0.2〜0.4%
Siは同時に含有されるMgとともに化合物を形成し硬化作用を及ぼすほか、Al、Mn、Feなどとも晶出物を形成して、DI加工時にダイスに対する焼き付きを防止する効果を発揮する。Si含有量が0.2%未満では、所望の潤滑性能を発揮できず、ダイスへの焼き付きを防止するのに不十分である。一方、Si含有量が0.4%を超えると脆くなりネック加工、ネジ加工等の加工性が劣化する。従ってSiの適正含有量は0.2〜0.4%と設定する。
First, the reason for limiting the composition of the aluminum alloy of the present invention will be described.
Si: 0.2 to 0.4%
Si forms a compound together with Mg contained at the same time and exerts a hardening action, and also forms a crystallized substance with Al, Mn, Fe, etc., and exhibits an effect of preventing seizure to the die during DI processing. If the Si content is less than 0.2%, the desired lubrication performance cannot be exhibited, which is insufficient to prevent seizure on the die. On the other hand, if the Si content exceeds 0.4%, the material becomes brittle and the workability such as neck processing and screw processing deteriorates. Therefore, the appropriate content of Si is set to 0.2 to 0.4%.

Fe:0.25〜0.55%
Feは結晶粒の微細化と、DI加工時にダイスに対する焼き付きを防止する効果を発揮する。0.25%未満では晶出物の面積率、個数が低下し所望の効果が得られず、0.55%を超えると晶出物の面積率、個数が増加して脆くなりネック加工、ネジ加工等の加工性が劣化する。したがってFeの適正含有量は0.25〜0.55%である。なお、同様の理由で下限を0.35%、上限を0.50%とするのが望ましい。
Fe: 0.25 to 0.55%
Fe exhibits the effect of miniaturizing crystal grains and preventing seizure on the die during DI processing. If it is less than 0.25%, the area ratio and the number of crystallized substances are lowered and the desired effect cannot be obtained, and if it exceeds 0.55%, the area ratio and the number of crystallized substances increase and become brittle and neck processing, screws Processability such as processing deteriorates. Therefore, the proper content of Fe is 0.25 to 0.55%. For the same reason, it is desirable that the lower limit is 0.35% and the upper limit is 0.50%.

Cu:0.15〜0.35%
CuはMgと金属間化合物を形成し易く、硬化作用に寄与する。0.15%未満ではこれらの効果が乏しく、0.35%を超えるとネック加工、ネジ加工等の加工性が劣化する。したがってCu含有量0.15〜0.35%に限定する。なお、同様の理由で下限を0.2%、上限を0.3%とするのが望ましい。
Cu: 0.15-0.35%
Cu easily forms an intermetallic compound with Mg and contributes to the hardening action. If it is less than 0.15%, these effects are poor, and if it exceeds 0.35%, workability such as neck machining and screw machining deteriorates. Therefore, the Cu content is limited to 0.15 to 0.35%. For the same reason, it is desirable to set the lower limit to 0.2% and the upper limit to 0.3%.

Mn:0.7〜1.2%
MnはFe、Si、Al等とともに晶出物を形成し易く、DI加工時にダイスに対する焼き付きを防止する効果を発揮する。0.7%未満では所望の硬化特性が得られず、1.2%を超えると脆くなりネック加工、ネジ加工等の加工性が劣化する。したがってMn含有量を0.7〜1.2%に限定する。なお、同様の理由で下限を0.8%、上限を1.1%とするのが望ましい。
Mn: 0.7 to 1.2%
Mn easily forms a crystallized substance together with Fe, Si, Al, etc., and exhibits the effect of preventing seizure on the die during DI processing. If it is less than 0.7%, desired curing characteristics cannot be obtained, and if it exceeds 1.2%, it becomes brittle and the workability such as neck processing and screw processing deteriorates. Therefore, the Mn content is limited to 0.7 to 1.2%. For the same reason, it is desirable to set the lower limit to 0.8% and the upper limit to 1.1%.

Mg:0.8〜1.4%
Mgは固溶体強化作用を有し、圧延加工時に加工硬化性を高めるとともに、前記SiやCuと共存することで分散析出硬化作用を発揮する。0.8%未満ではこれらの作用効果が十分発揮されず、1.4%を超えるとベーキング後の耐力が高くなりすぎてネック加工、ネジ加工等の加工性が劣化する。したがってMg含有量を0.8〜1.4%に限定する。なお、同様の理由で下限を0.9%、上限を1.3%とするのが望ましい。
Mg: 0.8 to 1.4%
Mg has a solid solution strengthening action, enhances work hardening at the time of rolling, and exhibits a dispersion precipitation hardening action by coexisting with the Si and Cu. If it is less than 0.8%, these functions and effects are not sufficiently exhibited. If it exceeds 1.4%, the yield strength after baking becomes too high, and workability such as necking and screwing deteriorates. Therefore, the Mg content is limited to 0.8 to 1.4%. For the same reason, it is desirable that the lower limit is 0.9% and the upper limit is 1.3%.

Zn:0.10〜0.3%
Znは析出するMg、Si、Cuの金属間化合物を微細化する作用を有する。
0.10%未満では上記作用が不十分で、0.3%を超えるとネック加工、ネジ加工等の加工性と耐食性が劣化する。したがってZn含有量を0.10〜0.3%に限定する。なお、同様の理由で下限を0.15%、上限を0.25%とするのが望ましい。
Zn: 0.10 to 0.3%
Zn has the effect of refining the precipitated intermetallic compounds of Mg, Si, and Cu.
If it is less than 0.10%, the above action is insufficient, and if it exceeds 0.3%, workability such as neck machining and screw machining and corrosion resistance deteriorate. Therefore, the Zn content is limited to 0.10 to 0.3%. For the same reason, it is desirable to set the lower limit to 0.15% and the upper limit to 0.25%.

Ti:0.01〜0.15%
Tiは結晶粒を微細化し、加工性を改善する効果を発揮する。0.01%未満ではこれらの効果が発揮されず、0.15%を超えると粗大な化合物ができてネック加工、ネジ加工等の加工性が劣化する。したがってTi含有量を0.01〜0.15%に限定する。なお、同様の理由で下限を0.01%、上限を0.10%とするのが望ましい。
Ti: 0.01 to 0.15%
Ti exhibits the effect of refining crystal grains and improving workability. If the content is less than 0.01%, these effects cannot be exhibited. If the content exceeds 0.15%, a coarse compound is formed, and workability such as neck processing and screw processing deteriorates. Therefore, the Ti content is limited to 0.01 to 0.15%. For the same reason, it is desirable to set the lower limit to 0.01% and the upper limit to 0.10%.

前記した必須成分のほかに、不純物として質量%でZr:0.1%以下、Cr:0.1%以下を含んでもよい。   In addition to the essential components described above, impurities may contain Zr: 0.1% or less and Cr: 0.1% or less in terms of mass%.

ベーキング後の耐力:245〜270MPa
本発明のベーキング後の耐力の範囲に規定することにより、ネック加工、ネジ加工、キャッピング時等にボトム部の良好な形状の安定性が得られる。
ベーキング後の耐力が245MPa未満ではボトム強度が不足してネック加工、ネジ加工、キャッピング時等にボトム部の良好な形状の安定性が得られず、270MPaを超えるとネック加工、ネジ加工などの成形性が劣化する。好ましくは251〜265MPaである。ベーキング後の耐力は素材製造時に溶体化処理(500℃以上で連続焼鈍で行われる中間焼鈍)行っていればベーキングによって素材に含まれる元素が金属間化合物の析出硬化により胴部の強度を確保する。また、素材製造時に溶体化処理を行わなければ析出硬化は生じないが、本発明ではベーキング後の耐力が245〜270MPaとなっていればよい。上記連続焼鈍では、加熱速度10〜200℃/秒、保持温度500〜560℃、保持時間1〜30秒、冷却速度10〜200℃/秒を例示することができる。
このようにベーキング後の耐力を適正範囲に規制することによって、ボトム部に必要な強度が得られ、成形加工におけるボトムの形状の安定性が確保できる。
Yield strength after baking: 245 to 270 MPa
By defining the range of the yield strength after baking according to the present invention, the stability of the good shape of the bottom portion can be obtained during neck processing, screw processing, capping and the like.
If the proof stress after baking is less than 245 MPa, the bottom strength is insufficient and stability of the shape of the bottom part cannot be obtained during necking, screwing, capping, etc. If it exceeds 270 MPa, molding such as necking and screwing is performed. Deteriorates. Preferably it is 251-265 MPa. Yield strength after baking is to ensure the strength of the body part by the precipitation hardening of intermetallic compounds by the elements contained in the material if solution treatment (intermediate annealing performed by continuous annealing at 500 ° C. or higher) is performed at the time of manufacturing the material. . In addition, precipitation hardening does not occur unless a solution treatment is performed at the time of manufacturing the raw material, but in the present invention, the yield strength after baking may be 245 to 270 MPa. In the above-mentioned continuous annealing, a heating rate of 10 to 200 ° C./second, a holding temperature of 500 to 560 ° C., a holding time of 1 to 30 seconds, and a cooling rate of 10 to 200 ° C./second can be exemplified.
Thus, by restricting the proof stress after baking to an appropriate range, a necessary strength is obtained for the bottom portion, and the stability of the shape of the bottom in the molding process can be ensured.

板表面の晶出物(最大長1μm以上):面積率2〜5%、1mm当りの個数4000〜10000個
最大長が1μm以上の晶出物について、面積率2%未満、または1mmあたりの個数4000個未満ではDI加工性が低下し、ストリップ性が劣化する。一方、面積率5%超、または1mmあたりの個数10000個超ではネック加工、ネジ加工などの成形性が劣化する。
このように板表面の晶出物を適正範囲に規制することによって、DI加工時の良好なストリップ性を確保し、その結果ボトム部の良好な形状の安定性を得ることができる。
Crystallized material on the surface of the plate (maximum length of 1 μm or more): area ratio of 2 to 5%, number of 4000 to 10,000 per 1 mm 2 for crystallized substances having a maximum length of 1 μm or more, less than 2% of area ratio, or 1 mm 2 If the number is less than 4000, the DI processability is lowered and the stripping property is deteriorated. On the other hand, if the area ratio exceeds 5% or more than 10,000 per 1 mm 2 , the formability such as neck processing and screw processing deteriorates.
Thus, by regulating the crystallized material on the surface of the plate to an appropriate range, it is possible to ensure a good strip property during DI processing, and as a result, to obtain a good shape stability of the bottom portion.

耳率:6%以下
耳率が6%を超えるとネック加工工程以降のトリミング回数が増えるので好ましくない。耳率の好ましい範囲は3%以下である。耳率6%以下にするには最終冷延率を88%以下とするのが望ましいが、製法は限定されない。
Ear ratio: 6% or less When the ear ratio exceeds 6%, the number of trimmings after the neck processing step increases, which is not preferable. A preferable range of the ear ratio is 3% or less. In order to make the ear rate 6% or less, the final cold rolling rate is desirably 88% or less, but the manufacturing method is not limited.

以下実施例を用いて本発明を具体的に説明する。
素材として表1に示す組成(残Al+不可避不純物)のアルミニウム合金を使用した。それぞれの合金の溶湯を常法により半連続鋳造によりスラブに鋳造した。ついで600℃に加熱して均質化処理を行った後、板厚6.5mmまで熱間圧延し、引き続き板厚0.4mmまで冷間圧延をした。冷間圧延途中で1.2mm厚で360℃、1.0mm厚で550℃にて連続焼鈍炉で中間焼鈍を施した。なお、比較材1では熱間圧延を4.0mmまで行い上記中間焼鈍を行わなかった。このようにして得られたアルミニウム合金板のブランク材を使用して、ボトル型飲料缶に加工した。
耳率は直径62mmのブランクを33.8mmのポンチで絞って形成した絞りカップの耳高さから算出した。
ベーキング条件は、210℃、10分である。
また、ベーキング後の試験材について、素材表面を0.1μmAl研磨剤を用いて鏡面になるまで研磨し、EPMA(日本電子製JXA−8800型電子プローブマイクロアナライザー)を用い、加速電圧15kV、照射電流5×10−9Aで組成像を撮影した。そして組成像をコントラストにより2値化し、アルミニウム母地より明るく見える晶出物を抽出し、その面積および最大長(最大弦長)を求めた。そして最大長が1μm以上の晶出物について、圧延板表面からみた面積率と、1mm当りの個数とを測定した。
ボトム形状の安定性は100缶作製し、最終的に全てキャッピングが正常に行われたものを○、1〜4缶不良品があったものを△、5缶以上不良品があったものを×として評価した。
ネジ加工性はネジ加工を行って割れが発生しなかったものを○、割れが発生したものを×として評価した。
トリミング性はネック加工後に耳の山と谷との差が0.7mm以下を○、0.7mmを超えたものを×として評価した。
The present invention will be specifically described below with reference to examples.
An aluminum alloy having a composition (residual Al + inevitable impurities) shown in Table 1 was used as a material. The molten metal of each alloy was cast into a slab by semi-continuous casting by a conventional method. Then, after heating to 600 ° C. and homogenizing, it was hot-rolled to a thickness of 6.5 mm and subsequently cold-rolled to a thickness of 0.4 mm. During the cold rolling, intermediate annealing was performed in a continuous annealing furnace at a thickness of 360 mm at a thickness of 1.2 mm and 550 ° C. at a thickness of 1.0 mm. In Comparative Material 1, hot rolling was performed up to 4.0 mm, and the intermediate annealing was not performed. Using the aluminum alloy plate blank thus obtained, it was processed into a bottle-type beverage can.
The ear rate was calculated from the ear height of a squeezed cup formed by squeezing a blank having a diameter of 62 mm with a 33.8 mm punch.
Baking conditions are 210 ° C. and 10 minutes.
Further, the test material after baking, was polished to a mirror with 0.1μmAl 2 O 3 abrasive material surface, using EPMA (JEOL JXA-8800 type electron probe microanalyzer), an accelerating voltage 15kV A composition image was taken at an irradiation current of 5 × 10 −9 A. Then, the composition image was binarized by contrast, and a crystallized material that appeared brighter than the aluminum matrix was extracted, and its area and maximum length (maximum chord length) were obtained. And about the crystallized substance whose maximum length is 1 micrometer or more, the area ratio seen from the rolled-sheet surface and the number per 1 mm < 2 > were measured.
The stability of the bottom shape was 100 cans, and finally, all the capping was performed normally ○, there were 1-4 defective cans, Δ, 5 or more defective products × As evaluated.
The screw workability was evaluated as “◯” when no screw cracking occurred and no cracking, and “X” when cracking occurred.
The trimming property was evaluated as ○ when the difference between the peak and valley of the ear was 0.7 mm or less after neck processing, and x when the difference exceeded 0.7 mm.

Figure 2005048288
Figure 2005048288

Claims (2)

質量%でSi:0.2〜0.4%、Fe:0.25〜0.55%、Cu:0.15〜0.35%、Mn:0.7〜1.2%、Mg:0.8〜1.4%、Zn:0.10〜0.3%、Ti:0.01〜0.15%を含有し、残部が不可避的不純物を含むAlからなる組成を有し、且つベーキング後の耐力が245〜270MPa、且つ最大長が1μm以上の晶出物が、圧延板表面からみた面積率で2〜5%、1mm当りの個数で4000〜10000個であることを特徴とするボトム部の形状の安定性及び強度に優れるボトル缶用アルミニウム合金板。 In mass%, Si: 0.2 to 0.4%, Fe: 0.25 to 0.55%, Cu: 0.15 to 0.35%, Mn: 0.7 to 1.2%, Mg: 0 0.8 to 1.4%, Zn: 0.10 to 0.3%, Ti: 0.01 to 0.15%, the balance being made of Al containing inevitable impurities, and baking The crystallization product having a proof stress of 245 to 270 MPa and a maximum length of 1 μm or more is 2 to 5% in terms of the area ratio viewed from the surface of the rolled plate, and 4000 to 10,000 in number per 1 mm 2. Aluminum alloy plate for bottle cans with excellent bottom shape stability and strength. 耳率が6%以下であることを特徴とする請求項1に記載のボトム部の形状の安定性及び強度に優れるボトル缶用アルミニウム合金板。 The aluminum alloy plate for a bottle can excellent in stability and strength of the shape of the bottom portion according to claim 1, wherein the ear rate is 6% or less.
JP2004200396A 2003-07-11 2004-07-07 Aluminum alloy sheet for bottle can excellent in shape stability and strength of bottom part Pending JP2005048288A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004200396A JP2005048288A (en) 2003-07-11 2004-07-07 Aluminum alloy sheet for bottle can excellent in shape stability and strength of bottom part

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003195841 2003-07-11
JP2004200396A JP2005048288A (en) 2003-07-11 2004-07-07 Aluminum alloy sheet for bottle can excellent in shape stability and strength of bottom part

Publications (1)

Publication Number Publication Date
JP2005048288A true JP2005048288A (en) 2005-02-24

Family

ID=34277271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004200396A Pending JP2005048288A (en) 2003-07-11 2004-07-07 Aluminum alloy sheet for bottle can excellent in shape stability and strength of bottom part

Country Status (1)

Country Link
JP (1) JP2005048288A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006299330A (en) * 2005-04-19 2006-11-02 Sumitomo Light Metal Ind Ltd Aluminum alloy sheet for bottle can body
JP2007061905A (en) * 2005-08-04 2007-03-15 Universal Seikan Kk Manufacturing method of di can
WO2007052416A1 (en) * 2005-11-02 2007-05-10 Kabushiki Kaisha Kobe Seiko Sho Cold-rolled aluminum alloy sheet for bottle can with excellent neck part formability and process for producing the cold-rolled aluminum alloy sheet
JP2007162056A (en) * 2005-12-13 2007-06-28 Mitsubishi Alum Co Ltd Aluminum alloy sheet for bottle-type beverage can
JP2008057019A (en) * 2006-09-01 2008-03-13 Universal Seikan Kk Aluminum alloy sheet for drink can and container using the same
JP2009242831A (en) * 2008-03-28 2009-10-22 Kobe Steel Ltd Aluminum alloy sheet for bottle can and method for producing the same
CN109266888A (en) * 2018-12-03 2019-01-25 东北轻合金有限责任公司 A kind of 308 alloy cast ingot and its preparation method and application

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006299330A (en) * 2005-04-19 2006-11-02 Sumitomo Light Metal Ind Ltd Aluminum alloy sheet for bottle can body
JP2007061905A (en) * 2005-08-04 2007-03-15 Universal Seikan Kk Manufacturing method of di can
WO2007052416A1 (en) * 2005-11-02 2007-05-10 Kabushiki Kaisha Kobe Seiko Sho Cold-rolled aluminum alloy sheet for bottle can with excellent neck part formability and process for producing the cold-rolled aluminum alloy sheet
JP2007126706A (en) * 2005-11-02 2007-05-24 Kobe Steel Ltd Cold rolled aluminum alloy sheet for bottle can having excellent formability of neck part
JP2007162056A (en) * 2005-12-13 2007-06-28 Mitsubishi Alum Co Ltd Aluminum alloy sheet for bottle-type beverage can
JP2008057019A (en) * 2006-09-01 2008-03-13 Universal Seikan Kk Aluminum alloy sheet for drink can and container using the same
JP2009242831A (en) * 2008-03-28 2009-10-22 Kobe Steel Ltd Aluminum alloy sheet for bottle can and method for producing the same
CN109266888A (en) * 2018-12-03 2019-01-25 东北轻合金有限责任公司 A kind of 308 alloy cast ingot and its preparation method and application

Similar Documents

Publication Publication Date Title
JP2012188703A (en) Aluminum-alloy sheet for resin coated can body, and method for producing the same
JP5675447B2 (en) Aluminum alloy plate for resin-coated can body and manufacturing method thereof
JP4950495B2 (en) Manufacturing method of aluminum alloy plate for PP cap
JP4791072B2 (en) Aluminum alloy plate for beverage can body and manufacturing method thereof
JP2002256366A (en) Aluminum sheet for bottle
JP2005048288A (en) Aluminum alloy sheet for bottle can excellent in shape stability and strength of bottom part
JP5391234B2 (en) Aluminum alloy plate for PP cap
JP2007270281A (en) Aluminum alloy sheet for bottle type beverage can and its production method
JP2006283113A (en) Aluminum alloy sheet for drink can barrel, and method for producing the same
JP3550259B2 (en) Aluminum alloy plate for DI can body excellent in high-speed ironing formability and method for producing the same
JP5113411B2 (en) Aluminum alloy plate for packaging container and method for producing the same
JP5480688B2 (en) Aluminum alloy plate for PP cap and method for producing the same
WO2016002226A1 (en) Aluminum alloy plate for beverage can body and method for manufacturing same
JP2003082429A (en) Aluminum alloy sheet for bottle can
JP2003293105A (en) Method for producing aluminum alloy sheet for bottle type drink can
JP4771726B2 (en) Aluminum alloy plate for beverage can body and manufacturing method thereof
JP2004010941A (en) Aluminum alloy sheet for bottle-type beverage can
JP4393843B2 (en) Aluminum alloy plate for cap and method for producing the same
JP4995494B2 (en) High-strength aluminum alloy plate for wide-mouth bottle can cap and method for producing the same
JP5976023B2 (en) Aluminum alloy plate for resin-coated can body
JP4750392B2 (en) Aluminum alloy plate for bottle-shaped cans
JP7426243B2 (en) Aluminum alloy plate for bottle body
JP5491933B2 (en) Method for producing aluminum alloy sheet for resin-coated can body
JP2005042195A (en) Aluminum alloy sheet with excellent barrel cutting resistance for bottle can
JP2004122178A (en) Metal bottle can and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070702

A977 Report on retrieval

Effective date: 20090310

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090324

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090721