JP7426243B2 - Aluminum alloy plate for bottle body - Google Patents

Aluminum alloy plate for bottle body Download PDF

Info

Publication number
JP7426243B2
JP7426243B2 JP2020003782A JP2020003782A JP7426243B2 JP 7426243 B2 JP7426243 B2 JP 7426243B2 JP 2020003782 A JP2020003782 A JP 2020003782A JP 2020003782 A JP2020003782 A JP 2020003782A JP 7426243 B2 JP7426243 B2 JP 7426243B2
Authority
JP
Japan
Prior art keywords
mass
less
aluminum alloy
content
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020003782A
Other languages
Japanese (ja)
Other versions
JP2021110018A (en
Inventor
亜耶 河野
智子 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2020003782A priority Critical patent/JP7426243B2/en
Publication of JP2021110018A publication Critical patent/JP2021110018A/en
Application granted granted Critical
Publication of JP7426243B2 publication Critical patent/JP7426243B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、ボトル缶胴用アルミニウム合金板に関する。 The present invention relates to an aluminum alloy plate for bottle bodies.

飲料用の包装容器として、有底円筒状の胴部と蓋部からなる2ピース缶が広く使用されてきた。近年では、リシールが可能なボトル缶が開発されている。ボトル缶胴材の材料としては、AAもしくはJIS3000系(Al-Mn系)などのアルミニウム合金が汎用されている。ボトル缶の缶胴は、一般に、次のような工程で製造される。まず、素材となるアルミニウム合金板を円板形状にブランキングし、得られたブランク材をカップ成形する。そして、成形されたカップを再絞り、しごき加工することで缶胴形状に成形する。このしごき加工後のサンプルをDI缶と呼称する。その後、DI缶の開口部をネッキング加工により小径化し口部を成形し、この口部にネジ加工をした後、カール加工を施すことで、ボトル缶が製造される。 Two-piece cans consisting of a bottomed cylindrical body and a lid have been widely used as packaging containers for beverages. In recent years, resealable bottle cans have been developed. Aluminum alloys such as AA or JIS 3000 series (Al--Mn series) are commonly used as materials for bottle body materials. The can bodies of bottle cans are generally manufactured through the following process. First, an aluminum alloy plate as a raw material is blanked into a disk shape, and the resulting blank material is cup-formed. The molded cup is then redrawn and ironed to form a can body shape. The sample after this ironing process is called a DI can. Thereafter, the diameter of the opening of the DI can is reduced by necking to form a mouth, and the mouth is threaded and then curled to produce a bottle can.

ボトル缶では、ネッキング加工、その後のネジ加工及びカール加工といった2ピース缶よりも厳しい加工においても、シワ及び割れを抑制する必要があり、これらのネック成形性(ネッキング加工、ネジ加工及びカール加工)向上に着目した技術が開発されている。例えば、特許文献1には、強度、加工硬化指数が規定されたボトル缶胴用アルミニウム合金板が記載され、ネック成形時のシワ及び割れを防止することができるとされている。一方、コストダウン、環境負荷軽減等の観点からボトル缶胴用アルミニウム合金板の薄肉化が進んでおり、ネック成形性向上技術に加え、素材の高強度化が求められている。加えて、素材の高強度化に伴う変形抵抗の増加に起因して、しごき加工時において側壁厚が不均一になり変動することによる偏肉の発生が新たな課題となっている。例えば、特許文献2には、素材の結晶粒径とr値の面内異方性が規定されたボトル缶胴用アルミニウム合金板が記載され、強度、しごき加工性、ネッキング加工性等に優れるとされている。 For bottle cans, it is necessary to suppress wrinkles and cracks even when processing is more severe than for two-piece cans, such as necking, subsequent screw processing, and curling. Technologies focused on improvement are being developed. For example, Patent Document 1 describes an aluminum alloy plate for bottle can bodies with specified strength and work hardening index, and is said to be able to prevent wrinkles and cracks during neck forming. On the other hand, aluminum alloy plates for bottle bodies are becoming thinner in order to reduce costs and reduce environmental impact, and in addition to technology to improve neck formability, there is a need for materials with higher strength. In addition, due to the increase in deformation resistance associated with higher strength materials, a new issue is the occurrence of uneven thickness due to uneven side wall thickness and fluctuations during ironing. For example, Patent Document 2 describes an aluminum alloy plate for bottle can bodies in which the crystal grain size and in-plane anisotropy of the r value of the material are specified, and it is said to have excellent strength, ironing workability, necking workability, etc. has been done.

特開2003-82429号公報JP2003-82429A 特開2006-89828号公報JP2006-89828A

特許文献2に記載された技術では、対象としている板厚が0.4mmと厚く、今後に要求される板厚0.30mm以上0.38mm以下の薄肉化に対応することが困難である。そのため、更なる高強度化としごき加工性の向上を可能とする技術が求められている。高強度化のためには、固溶強化元素であるMg含有量の増加が有効であるが、Mg含有量の増加に伴い、しごき加工時の加工硬化量が増加するため、しごき加工時の変形抵抗が増加して、DI缶の偏肉量が大きくなってしまう場合がある。一方、Mgの代わりに同じく固溶強化元素であるCu含有量を増加することで高強度化を図ると、熱間圧延後のコイル冷却時に固溶強化元素を含む金属間化合物が析出し、強度低下が発生してしまう場合がある。 In the technique described in Patent Document 2, the target plate thickness is as thick as 0.4 mm, and it is difficult to cope with the thinning of the plate thickness from 0.30 mm to 0.38 mm, which will be required in the future. Therefore, there is a need for a technology that can further increase strength and improve ironing workability. In order to increase the strength, it is effective to increase the content of Mg, which is a solid solution strengthening element, but as the Mg content increases, the amount of work hardening during ironing increases, resulting in deformation during ironing. The resistance may increase and the uneven thickness of the DI can may become large. On the other hand, if higher strength is achieved by increasing the content of Cu, which is also a solid solution strengthening element, instead of Mg, intermetallic compounds containing solid solution strengthening elements will precipitate when the coil is cooled after hot rolling, resulting in increased strength. A decrease may occur.

上記に鑑み、本発明は、高強度かつしごき加工時の偏肉の発生が抑制されるボトル缶胴用アルミニウム合金板を提供することを目的とする。 In view of the above, an object of the present invention is to provide an aluminum alloy plate for bottle can bodies that has high strength and suppresses the occurrence of uneven thickness during ironing.

本発明に係るボトル缶胴用アルミニウム合金板は、Si:0.1質量%以上0.5質量%以下、Fe:0.3質量%以上0.6質量%以下、Cu:0.1質量%以上0.35質量%以下、Mn:0.5質量%以上1.2質量%以下、Mg:1.0質量%以上2.5質量%以下を含有し、残部がAl及び不可避的不純物からなる。ボトル缶胴用アルミニウム合金板は、Cu含有量に対するMg含有量の比(Mg質量%/Cu質量%)が4.2以下であり、缶胴成形後にDI缶の缶壁引張試験で得られる缶壁強度から缶胴成形前に板の引張試験で得られる板強度を差し引いた値(缶壁強度-板強度)が97MPa以下である。 The aluminum alloy plate for bottle can bodies according to the present invention includes Si: 0.1% by mass or more and 0.5% by mass or less, Fe: 0.3% by mass or more and 0.6% by mass or less, Cu: 0.1% by mass. 0.35% by mass or less, Mn: 0.5% by mass or more and 1.2% by mass or less, Mg: 1.0% by mass or more and 2.5% by mass or less, and the remainder consists of Al and inevitable impurities. . The aluminum alloy plate for bottle can bodies has a ratio of Mg content to Cu content (Mg mass %/Cu mass %) of 4.2 or less, and cans obtained by a can wall tensile test of DI cans after can body forming. The value obtained by subtracting the plate strength obtained in a tensile test of the plate before forming the can body from the wall strength (can wall strength - plate strength) is 97 MPa or less.

本発明によれば、高強度かつしごき加工時の偏肉の発生が抑制されるボトル缶胴用アルミニウム合金板を提供することができる。 According to the present invention, it is possible to provide an aluminum alloy plate for bottle can bodies that has high strength and suppresses the occurrence of uneven thickness during ironing.

缶胴成形後の偏肉量変化の一例を示すグラフである。FIG. 2 is a graph showing an example of a change in thickness unevenness after forming a can body. FIG.

以下、本発明の一実施形態に係るボトル缶胴用アルミニウム合金板について説明する。但し、以下に示す実施形態は、本発明の技術思想を具現化するための一例を例示するものであって、本発明は、以下の実施形態に限定されるものではない。また、本明細書において「工程」との語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の目的が達成されれば、本用語に含まれる。 Hereinafter, an aluminum alloy plate for a bottle can body according to an embodiment of the present invention will be described. However, the embodiment shown below is an example for embodying the technical idea of the present invention, and the present invention is not limited to the following embodiment. In addition, in this specification, the term "process" does not only refer to an independent process, but also refers to a process that cannot be clearly distinguished from other processes, as long as the intended purpose of the process is achieved. included.

本発明の一実施形態に係るボトル缶胴用アルミニウム合金板は、例えば、Al-Mn-Mg系合金、Al-Mg-Mn系合金等からなる。Al-Mn-Mg系合金、Al-Mg-Mn系合金等としては、例えば、一般的なJIS合金、例えば3004、3104等が挙げられる。 The aluminum alloy plate for a bottle body according to an embodiment of the present invention is made of, for example, an Al-Mn-Mg alloy, an Al-Mg-Mn alloy, or the like. Examples of the Al-Mn-Mg alloy, Al-Mg-Mn alloy, etc. include general JIS alloys such as 3004 and 3104.

具体的には、ボトル缶胴用アルミニウム合金板は、Si:0.1質量%以上0.5質量%以下、Fe:0.3質量%以上0.6質量%以下、Cu:0.1質量%以上0.35質量%以下、Mn:0.5質量%以上1.2質量%以下、Mg:1.0質量%以上2.5質量%以下を含有し、残部がAl及び不可避的不純物からなる。ボトル缶胴用アルミニウム合金板は、Cu含有量に対するMg含有量の比(Mg質量%/Cu質量%)が4.2以下であり、缶胴成形後にDI缶の缶壁引張試験で得られる缶壁強度から、缶胴成形前に板の引張試験で得られる板強度を差し引いた値(缶壁強度-板強度)が97MPa以下である。 Specifically, the aluminum alloy plate for bottle can body contains Si: 0.1% by mass or more and 0.5% by mass or less, Fe: 0.3% by mass or more and 0.6% by mass or less, Cu: 0.1% by mass. % or more and 0.35% by mass or less, Mn: 0.5% by mass or more and 1.2% by mass or less, Mg: 1.0% by mass or more and 2.5% by mass or less, with the remainder being Al and unavoidable impurities. Become. The aluminum alloy plate for bottle can bodies has a ratio of Mg content to Cu content (Mg mass %/Cu mass %) of 4.2 or less, and cans obtained by a can wall tensile test of DI cans after can body forming. The value obtained by subtracting the plate strength obtained in a tensile test of the plate before forming the can body from the wall strength (can wall strength - plate strength) is 97 MPa or less.

ボトル缶胴用アルミニウム合金板は、Si、Fe、Cu、Mn及びMgを所定範囲で含有しており、また、引張試験により求められる(缶壁強度-板強度)の値が所定の範囲内となっている。これにより、しごき加工時の変形抵抗が低減され、DI缶の偏肉の発生が抑制される。これは例えば、Mg含有量の代わりにCu含有量を増加させ、熱間圧延後の巻き取ったコイルの冷却速度を制御することで、金属間化合物の析出を抑制することができるためと考えることができる。 The aluminum alloy plate for bottle can bodies contains Si, Fe, Cu, Mn, and Mg within a predetermined range, and the value of (can wall strength - plate strength) determined by a tensile test is within a predetermined range. It has become. This reduces the deformation resistance during ironing and suppresses the occurrence of uneven thickness of the DI can. This is thought to be because, for example, by increasing the Cu content instead of the Mg content and controlling the cooling rate of the wound coil after hot rolling, precipitation of intermetallic compounds can be suppressed. I can do it.

以下、ボトル缶胴用アルミニウム合金板に含まれる各成分の含有量と、含有量の限定の理由について説明する。 Hereinafter, the content of each component contained in the aluminum alloy plate for bottle can body and the reason for limiting the content will be explained.

(Si:0.1質量%以上0.5質量%以下)
Si含有量が0.1質量%未満では、原料となる地金の必要純度が上がるため、コストアップとなる場合がある。一方、Si含有量が0.5質量%を超えると、ホットコイルでの未再結晶残存で成形性が低下する。Si含有量は、好ましくは0.2質量%以上であり、より好ましくは0.25質量%以上であり、さらに好ましくは0.28質量%超であってよい。また、Si含有量は、好ましくは0.45質量%以下であり、より好ましくは0.4質量%以下であってよい。
(Si: 0.1% by mass or more and 0.5% by mass or less)
If the Si content is less than 0.1% by mass, the required purity of the base metal used as a raw material increases, which may result in an increase in cost. On the other hand, when the Si content exceeds 0.5% by mass, formability deteriorates due to unrecrystallized remains in the hot coil. The Si content is preferably 0.2% by mass or more, more preferably 0.25% by mass or more, and even more preferably more than 0.28% by mass. Further, the Si content is preferably 0.45% by mass or less, and more preferably 0.4% by mass or less.

(Fe:0.3質量%以上0.6質量%以下)
Fe含有量が0.3質量%未満では、ホットコイルに未再結晶が残存するため、DI成形時において45°耳が高くなり、しごき加工時に耳切れ及びこれに起因するティアオフが生じやすい。一方、Fe含有量が0.6質量%を超えると、Al-Fe-Mn系金属間化合物が多くなり、しごき加工時に成形不良が生じやすい。Fe含有量は、好ましくは0.35質量%以上であり、より好ましくは0.40質量%以上であり、さらに好ましくは0.42質量%超であってよい。また、Fe含有量は、好ましくは0.55質量%以下であり、より好ましくは0.5質量%以下であってよい。
(Fe: 0.3% by mass or more and 0.6% by mass or less)
If the Fe content is less than 0.3% by mass, unrecrystallized remains in the hot coil, resulting in a 45° edge becoming high during DI molding, which tends to cause edge breakage and tear-off due to this during ironing. On the other hand, when the Fe content exceeds 0.6% by mass, the amount of Al-Fe-Mn intermetallic compounds increases, which tends to cause molding defects during ironing. The Fe content is preferably 0.35% by mass or more, more preferably 0.40% by mass or more, and even more preferably more than 0.42% by mass. Further, the Fe content is preferably 0.55% by mass or less, more preferably 0.5% by mass or less.

(Cu:0.1質量%以上0.35質量%以下)
Cu含有量が0.1質量%未満では強度が不足し、缶の耐圧強度が不足する。一方、Cu含有量が0.35質量%を超えると強度が過大となり、しごき加工時に成形不良が生じやすい。Cu含有量は、好ましくは0.15質量%以上であり、より好ましくは0.18質量%以上であり、さらに好ましくは0.24質量%超であってよい。また、Cu含有量は、好ましくは0.33質量%以下であり、より好ましくは0.30質量%以下であってよい。
(Cu: 0.1% by mass or more and 0.35% by mass or less)
If the Cu content is less than 0.1% by mass, the strength will be insufficient and the pressure resistance of the can will be insufficient. On the other hand, if the Cu content exceeds 0.35% by mass, the strength will be too high and molding defects will likely occur during ironing. The Cu content is preferably 0.15% by mass or more, more preferably 0.18% by mass or more, and even more preferably more than 0.24% by mass. Further, the Cu content is preferably 0.33% by mass or less, and more preferably 0.30% by mass or less.

(Mn:0.5質量%以上1.2質量%以下)
Mn含有量が0.5質量%未満では強度が不足し、缶の耐圧強度が不足する。一方、Mn含有量が1.2質量%を超えると、Al-Fe-Mn系金属間化合物が多くなり、缶の側壁にピンホール(穴あき)が生じやすくなる。また、しごき加工時に成形不良が生じやすい。Mn含有量は、好ましくは0.6質量%以上であり、より好ましくは0.8質量%以上であり、さらに好ましくは0.85質量%以上であってよい。また、Mn含有量は、好ましくは1.15質量%以下であり、より好ましくは1.10質量%以下であり、さらに好ましくは1.0質量%以下であり、特に好ましくは0.87質量%以下であってよい。
(Mn: 0.5% by mass or more and 1.2% by mass or less)
If the Mn content is less than 0.5% by mass, the strength will be insufficient and the pressure resistance of the can will be insufficient. On the other hand, when the Mn content exceeds 1.2% by mass, the amount of Al-Fe-Mn based intermetallic compounds increases and pinholes are likely to occur on the side wall of the can. In addition, molding defects are likely to occur during ironing. The Mn content is preferably 0.6% by mass or more, more preferably 0.8% by mass or more, and even more preferably 0.85% by mass or more. Further, the Mn content is preferably 1.15% by mass or less, more preferably 1.10% by mass or less, even more preferably 1.0% by mass or less, particularly preferably 0.87% by mass. It may be the following.

(Mg:1.0質量%以上2.5質量%以下)
Mg含有量が1.0質量%未満では強度が不足し、缶の耐圧強度が不足する。一方、Mg含有量が2.5質量%を超えると強度が過大となり、成形性が低下し、しごき加工時に成形不良が生じやすい。Mg含有量は、好ましくは1.05質量%以上であり、より好ましくは1.08質量%以上であり、さらに好ましくは1.1質量%以上であってよい。また、Mg含有量は、好ましくは2.0質量%以下であり、より好ましくは1.7質量%以下であり、さらに好ましくは1.6質量%以下であってよい。
(Mg: 1.0 mass% or more and 2.5 mass% or less)
If the Mg content is less than 1.0% by mass, the strength will be insufficient and the pressure resistance of the can will be insufficient. On the other hand, when the Mg content exceeds 2.5% by mass, the strength becomes excessive, the formability decreases, and forming defects are likely to occur during ironing. The Mg content is preferably 1.05% by mass or more, more preferably 1.08% by mass or more, and even more preferably 1.1% by mass or more. Further, the Mg content is preferably 2.0% by mass or less, more preferably 1.7% by mass or less, and even more preferably 1.6% by mass or less.

(Zn:0.4質量%以下)
一般的に知られているように、アルミニウム合金板はZnを含んでいてよい。Znは0.4質量%以下の含有量であれば、アルミニウム合金板の材料特性、しごき加工後の缶特性に大きな影響を及ぼさない。Znは不可避不純物であるが、上記範囲内でZnを積極添加することもできる。Zn含有量は、好ましくは0.3質量%以下であり、より好ましくは0.27質量%以下であり、より好ましくは0.25質量%以下であり、さらに好ましくは0.2質量%以下であってよい。また、Zn含有量の下限は、例えば、0.1質量%以上であってよい。
(Zn: 0.4% by mass or less)
As is generally known, the aluminum alloy plate may contain Zn. If the content of Zn is 0.4% by mass or less, it will not have a large effect on the material properties of the aluminum alloy plate and the can properties after ironing. Although Zn is an unavoidable impurity, Zn can also be actively added within the above range. The Zn content is preferably 0.3% by mass or less, more preferably 0.27% by mass or less, more preferably 0.25% by mass or less, still more preferably 0.2% by mass or less. It's good. Further, the lower limit of the Zn content may be, for example, 0.1% by mass or more.

(Ti:0.1質量%以下)
一般的に知られているように、アルミニウム合金板はTiを含んでいてよい。Tiは鋳塊結晶粒の微細化を目的に、必要に応じて添加される。鋳造時に鋳塊組織を微細化すると、鋳造性が向上して高速鋳造が可能となる。その効果は0.01質量%以上の添加により得られる。一方、Ti含有量が0.1質量%以下であると、フィルターの目詰まりを抑制でき、鋳造中に次第に溶湯がフィルターを通過しにくくなることが抑制され、フィルターの目詰まりに起因する鋳造の中止が回避できる。従って、アルミニウム合金中のTi含有量は上記範囲内に制限されてよい。なお、Tiを添加する場合には、例えばTiとBの質量比を5:1とした鋳塊微細化剤(Al-Ti-B)を添加する。ワッフルあるいはロッドの形態で鋳造前の溶湯に添加するため、含有割合に応じたBも必然的に添加される。Ti含有量は、好ましくは0.08質量%以下であり、より好ましくは0.06質量%以下であってよい。
(Ti: 0.1% by mass or less)
As is generally known, the aluminum alloy plate may contain Ti. Ti is added as necessary for the purpose of refining the ingot crystal grains. Refinement of the ingot structure during casting improves castability and enables high-speed casting. This effect can be obtained by adding 0.01% by mass or more. On the other hand, when the Ti content is 0.1% by mass or less, clogging of the filter can be suppressed, and it is suppressed that the molten metal gradually becomes difficult to pass through the filter during casting. Cancellation can be avoided. Therefore, the Ti content in the aluminum alloy may be limited within the above range. In addition, when adding Ti, for example, an ingot refining agent (Al-Ti-B) with a mass ratio of Ti and B of 5:1 is added. Since B is added to the molten metal before casting in the form of a waffle or rod, B is also necessarily added in proportion to the content. The Ti content is preferably 0.08% by mass or less, and more preferably 0.06% by mass or less.

(Cr:0.1質量%以下)
一般的に知られているように、アルミニウム合金板はCrを含んでいてよい。Crは0.1質量%以下の含有量であれば、アルミニウム合金板の材料特性、しごき加工後の缶特性に影響を及ぼさない。Crは不可避不純物であるが、コストダウンを図るため、例えば原料中へのスクラップ(Crを多く含有するスクラップ等)配合率を高くするなど、上記範囲内でCrを積極添加することもできる。Cr含有量が0.1質量%以下であると、ホットコイルに未再結晶が残存することが抑制され、しごき加工時に成形不良が生じることが抑制される。Cr含有量は、好ましくは0.05質量%以下であってよい。
(Cr: 0.1% by mass or less)
As is generally known, the aluminum alloy plate may contain Cr. If the content of Cr is 0.1% by mass or less, it does not affect the material properties of the aluminum alloy plate and the can properties after ironing. Although Cr is an unavoidable impurity, in order to reduce costs, Cr can be actively added within the above range, for example by increasing the proportion of scrap (such as scrap containing a large amount of Cr) in the raw material. When the Cr content is 0.1% by mass or less, unrecrystallized remains in the hot coil are suppressed, and formation defects during ironing are suppressed. The Cr content may preferably be 0.05% by mass or less.

前記したZn、Ti及びCrは、前記した上限値を超えなければ、アルミニウム合金に1種以上、つまり1種のみが含まれる場合だけでなく、2種以上が含まれていても、当然に本発明の効果を妨げることが抑制される。 The above-mentioned Zn, Ti, and Cr are of course true even if the aluminum alloy contains one or more types, that is, not only one type, but also two or more types, as long as the above-mentioned upper limit is not exceeded. This prevents interference with the effects of the invention.

(残部:Al及び不可避不純物)
ボトル缶胴用アルミニウム合金板は、Al及び上記合金成分の他に、不可避不純物を含有していてよい。不可避不純物としては、例えば、Zr、B、V、Na、Ca、Ni、In、Sn、Gaなどが挙げられる。不可避不純物について許容される含有量は、Zrについては、例えば、0.3質量%以下、好ましくは0.1質量%以下、より好ましくは0.05質量%以下であってよい。Zr以外の他の元素については、例えば、各0.05質量%以下かつ合計0.15質量%以下であってよい。前記範囲内であれば、不可避不純物として含有した場合に限らず、前記元素を添加する場合であっても、本発明の効果を妨げることが抑制される。
(Remainder: Al and inevitable impurities)
The aluminum alloy plate for bottle bodies may contain inevitable impurities in addition to Al and the above alloy components. Examples of unavoidable impurities include Zr, B, V, Na, Ca, Ni, In, Sn, and Ga. The allowable content of unavoidable impurities may be, for example, 0.3% by mass or less, preferably 0.1% by mass or less, and more preferably 0.05% by mass or less for Zr. Regarding other elements other than Zr, the content of each element may be 0.05% by mass or less and the total content may be 0.15% by mass or less, for example. As long as the element is within the above range, the effect of the present invention will not be hindered not only when the element is contained as an unavoidable impurity but also when the element is added.

(Mg質量%/Cu質量%≦4.2)
Cu含有量に対するMg含有量の比(Mg質量%/Cu質量%)は、加工硬化特性を決定し、適正に制御することでしごき加工時における偏肉量を小さくする効果がある。固溶するMg量が多いと加工硬化しやすく、Mg質量%/Cu質量%が4.2を超えると、しごき加工時の変形抵抗の増大に繋がり、しごき加工時の偏肉量が大きくなる。以上の理由からMg質量%/Cu質量%≦4.2とする。Mg質量%/Cu質量%は、好ましくは4.15以下であり、より好ましくは4.1以下であってよい。また、Mg質量%/Cu質量%は、好ましくは3.6以上であり、より好ましくは3.8以上であってよい。
(Mg mass%/Cu mass%≦4.2)
The ratio of the Mg content to the Cu content (Mg mass %/Cu mass %) determines the work hardening characteristics, and by appropriately controlling it, it has the effect of reducing the amount of uneven thickness during ironing. When the amount of Mg in solid solution is large, work hardening is likely to occur, and when Mg mass %/Cu mass % exceeds 4.2, the deformation resistance during ironing increases, and the thickness deviation during ironing increases. For the above reasons, Mg mass %/Cu mass %≦4.2. Mg mass %/Cu mass % may be preferably 4.15 or less, more preferably 4.1 or less. Moreover, Mg mass %/Cu mass % becomes like this. Preferably it is 3.6 or more, More preferably, it may be 3.8 or more.

(板強度)
缶胴成形前におけるボトル缶胴用アルミニウム合金板の板強度は、例えば以下のようにして評価することができる。冷間圧延後のボトル缶胴用アルミニウム合金板を用いて、圧延方向と試験時の引張方向とが平行になるように引張試験片を採取する。採取した引張試験片に対して圧延方向と平行な方向に引張試験を実施して、0.2%耐力を測定し、板強度とした。板強度は、DI缶の缶体強度を確保するため、好ましくは260MPa以上、より好ましくは270MPa以上であってよい。また、板強度は、好ましくは290MPa以下であり、より好ましくは280MPa以下であってよい。
(Plate strength)
The plate strength of an aluminum alloy plate for a bottle body before forming the can body can be evaluated, for example, as follows. Using a cold-rolled aluminum alloy plate for a bottle can body, a tensile test piece is taken so that the rolling direction and the tensile direction during the test are parallel. A tensile test was conducted on the sampled tensile test piece in a direction parallel to the rolling direction, and the 0.2% proof stress was measured, which was taken as the plate strength. The plate strength may be preferably 260 MPa or more, more preferably 270 MPa or more, in order to ensure the body strength of the DI can. Further, the plate strength is preferably 290 MPa or less, more preferably 280 MPa or less.

(缶壁強度)
缶胴成形後におけるボトル缶胴用アルミニウム合金板の缶壁強度は、例えば以下のようにして評価することができる。DI缶の缶壁において、板の圧延方向とDI缶の缶軸方向が平行となる位置から缶軸方向に引張試験片を採取する。採取した引張試験片に対して引張試験を実施して、0.2%耐力を測定し、缶壁強度とした。缶壁強度は、缶体強度確保の観点から、好ましくは350MPa以上であり、より好ましくは360MPa以上である。また、缶壁強度は、好ましくは380MPa以下であり、より好ましくは370MPa以下である。
(Can wall strength)
The can wall strength of the aluminum alloy plate for bottle can bodies after forming the can body can be evaluated, for example, as follows. A tensile test piece is taken in the axial direction of the can wall of the DI can from a position where the rolling direction of the plate is parallel to the can axial direction of the DI can. A tensile test was conducted on the sampled tensile test piece, and the 0.2% proof stress was measured, which was taken as the can wall strength. From the viewpoint of ensuring can body strength, the can wall strength is preferably 350 MPa or more, more preferably 360 MPa or more. Further, the can wall strength is preferably 380 MPa or less, more preferably 370 MPa or less.

(缶壁強度-板強度)
缶胴成形後の缶壁強度から、缶胴成形前の板強度を差し引いた値(缶壁強度-板強度)は、小さいほど加工硬化しにくいことを示す。(缶壁強度-板強度)の値は97MPa以下であり、好ましくは95MPa以下であってよい。(缶壁強度-板強度)の値を所定値以下にすることで、しごき加工時の変形抵抗を低減させ、DI缶の偏肉の発生を抑制することができる。また、(缶壁強度-板強度)の値は、好ましくは85MPa以上であり、より好ましくは90MPa以上であってよい。
(Can wall strength - plate strength)
The smaller the value obtained by subtracting the plate strength before can body formation from the can wall strength after can body formation (can wall strength - plate strength), the harder it is to work harden. The value of (can wall strength - plate strength) may be 97 MPa or less, preferably 95 MPa or less. By keeping the value of (can wall strength - plate strength) below a predetermined value, the deformation resistance during ironing can be reduced and the occurrence of uneven thickness of the DI can can be suppressed. Further, the value of (can wall strength - plate strength) is preferably 85 MPa or more, and more preferably 90 MPa or more.

(製造方法)
ボトル缶胴用アルミニウム合金板の製造方法の一例について説明する。ボトル缶胴用アルミニウム合金板の製造方法は、第1工程である鋳造工程と、第2工程である均質化熱処理工程と、第3工程である熱間圧延工程と、第4工程である冷間圧延工程と、を含み、これらの工程をこの順に行うものである。
(Production method)
An example of a method for manufacturing an aluminum alloy plate for a bottle body will be described. The method for manufacturing aluminum alloy plates for bottle bodies includes a first step of casting, a second step of homogenization heat treatment, a third step of hot rolling, and a fourth step of cold rolling. and a rolling step, and these steps are performed in this order.

(第1工程から第2工程:鋳造工程、均質化熱処理工程)
第1工程は、目的の組成を有する鋳塊を半連続鋳造法にて作製する工程である。第2工程は、第1工程で作製されたアルミニウム合金の鋳塊に均質化熱処理を施す工程である。
(1st process to 2nd process: casting process, homogenization heat treatment process)
The first step is a step of producing an ingot having a desired composition by a semi-continuous casting method. The second step is a step of subjecting the aluminum alloy ingot produced in the first step to homogenization heat treatment.

第1工程では、半連続鋳造法(DC(direct chill)鋳造)によりアルミニウム合金を鋳造して鋳塊を得る。次に、鋳塊表層の不均一な組織となる領域を面削にて除去する工程を実施した後、均質化熱処理を施す第2工程を行う。第2工程では2段均質化熱処理又は2回均質化熱処理を採用してもよい。ここでいう2段均質化熱処理とは、鋳塊を所定の均質化処理温度に所定時間保持して1段目の均質化熱処理を実施した後、室温まで冷却せず、200℃を超える温度までで冷却を止め、その温度に所定時間保持して2段目の均質化熱処理を実施することを意味する。また、2回均質化熱処理とは、鋳塊を所定の均質化処理温度に所定時間保持して1回目の均質化熱処理を実施した後、室温を含む200℃以下の温度までいったん冷却した後、再加熱して所定の均質化処理温度に所定時間保持して2回目の均質化熱処理を実施することを意味する。また、2回均質化熱処理の場合、面削工程は1回目の均質化熱処理の前、もしくは1回目と2回目の均質化熱処理の間で実施することが出来る。2段均質化熱処理の場合は、均質化熱処理実施前に面削を実施する。 In the first step, an aluminum alloy is cast by a semi-continuous casting method (DC (direct chill) casting) to obtain an ingot. Next, after performing a step of removing by face milling a region of the ingot surface layer that has a non-uniform structure, a second step of performing homogenization heat treatment is performed. In the second step, a two-stage homogenization heat treatment or a two-time homogenization heat treatment may be employed. The two-stage homogenization heat treatment referred to here means that after the ingot is held at a predetermined homogenization temperature for a predetermined period of time and the first stage homogenization heat treatment is performed, the ingot is not cooled to room temperature, but heated to a temperature exceeding 200℃. This means that cooling is stopped at that temperature, and the temperature is maintained for a predetermined period of time to perform the second homogenization heat treatment. In addition, double homogenization heat treatment means that the ingot is held at a predetermined homogenization temperature for a predetermined period of time to carry out the first homogenization heat treatment, and then once cooled to a temperature of 200°C or less including room temperature. This means performing a second homogenization heat treatment by reheating and holding at a predetermined homogenization temperature for a predetermined time. Furthermore, in the case of double homogenization heat treatment, the facing step can be performed before the first homogenization heat treatment or between the first and second homogenization heat treatments. In the case of two-stage homogenization heat treatment, surface cutting is performed before homogenization heat treatment.

(第3工程:熱間圧延工程)
第3工程は、第2工程で均質化熱処理を施されたアルミニウム合金の鋳塊を熱間圧延する工程である。熱間圧延により得る熱間圧延板の板厚は、通常、冷間圧延して得られる製品板の板厚から冷間圧延による総圧延率を逆算して設定する。
(Third process: hot rolling process)
The third step is a step of hot rolling the aluminum alloy ingot that has been subjected to the homogenization heat treatment in the second step. The thickness of a hot rolled sheet obtained by hot rolling is usually set by back calculating the total rolling reduction by cold rolling from the thickness of the product sheet obtained by cold rolling.

熱間圧延の終了温度である巻き取り温度は、例えば300℃以上370℃以下であり、330℃以上370℃以下が好ましく、340℃以上360℃以下がより好ましい。巻き取り温度が330℃以上であると、加工組織の残留がより抑制され、冷間圧延後のアルミニウム合金板を円筒カップ状に成形した時の45°耳が低くなりティアオフ又は耳切れの発生が抑制される。一方、巻き取り温度が370℃以下であると、熱間圧延板の表面において焼付きと呼ばれる表面欠陥が発生することが抑制され、板表面の性状が良化する。 The winding temperature, which is the end temperature of hot rolling, is, for example, 300°C or more and 370°C or less, preferably 330°C or more and 370°C or less, and more preferably 340°C or more and 360°C or less. When the winding temperature is 330°C or higher, the residual processed structure is further suppressed, and when the cold-rolled aluminum alloy plate is formed into a cylindrical cup shape, the 45° edge becomes low and tear-off or edge breakage occurs. suppressed. On the other hand, when the winding temperature is 370° C. or lower, the occurrence of surface defects called seizure on the surface of the hot rolled sheet is suppressed, and the properties of the sheet surface are improved.

本発明では、アルミニウム合金中に比較的多くCu、Mgを含有させているため、熱間圧延後のコイル冷却時に、固溶強化元素を含む金属間化合物の析出ピークである250℃付近で長時間保持すると、金属間化合物が多く析出してしまい、ボトル缶胴用アルミニウム合金板の板強度の低下を招くことになる。従って、熱間圧延終了直後から約250℃に到達するまでの冷却速度を28℃/hr以上とすることが好ましい。 In the present invention, since relatively large amounts of Cu and Mg are contained in the aluminum alloy, when the coil is cooled after hot rolling, it remains at around 250°C, which is the precipitation peak of intermetallic compounds containing solid solution strengthening elements, for a long time. If held, a large amount of intermetallic compounds will precipitate, resulting in a decrease in the strength of the aluminum alloy plate for bottle can bodies. Therefore, it is preferable that the cooling rate from immediately after hot rolling until reaching about 250°C is 28°C/hr or more.

(第4工程:冷間圧延工程)
第4工程は、第3工程で熱間圧延された熱間圧延板を冷間圧延する工程である。第4工程では、熱間圧延板を、焼鈍することなく冷間圧延して、所定の板厚のアルミニウム合金板に仕上げる。冷間圧延は、熱間圧延板が適切な荷重の範囲で製品板の板厚まで圧延されるように、所定の総圧延率となる複数回のパスを設定して行う。なお、パスとは、一対のワークロール間を板が1回通板して圧延されることをいう。
(4th process: cold rolling process)
The fourth step is a step of cold rolling the hot rolled plate hot rolled in the third step. In the fourth step, the hot rolled plate is cold rolled without annealing to finish it into an aluminum alloy plate with a predetermined thickness. Cold rolling is performed by setting a plurality of passes at a predetermined total rolling rate so that the hot rolled plate is rolled to the thickness of the product plate within an appropriate load range. Note that a pass means that the plate is rolled by passing it once between a pair of work rolls.

冷間圧延の総圧延率は、例えば、80%以上95%以下としてよい。冷間圧延の総圧延率が80%以上であると、ボトル缶胴用アルミニウム合金板の強度が充分に得られ、DI成形及びベーキング後の缶胴の耐圧強度が充分に得られる。冷間圧延の総圧延率は、好ましくは82%以上であってよい。一方、総圧延率が95%以下であると、アルミニウム合金板の強度が過大となることが抑制され、成形性の低下が抑制される。 The total rolling ratio of cold rolling may be, for example, 80% or more and 95% or less. When the total rolling reduction of cold rolling is 80% or more, sufficient strength of the aluminum alloy plate for bottle can bodies can be obtained, and sufficient pressure resistance strength of the can bodies after DI forming and baking can be obtained. The total rolling reduction of cold rolling may preferably be 82% or more. On the other hand, when the total rolling reduction is 95% or less, the strength of the aluminum alloy plate is prevented from becoming excessive, and the deterioration of formability is suppressed.

ボトル缶胴用アルミニウム合金板の製造方法においては、冷間圧延後、必要に応じて仕上げ焼鈍を施してもよいが、仕上げ焼鈍を施さないほうが好ましい。なお、以上のボトル缶胴用アルミニウム合金板の製造方法においては、第3工程より後、かつ、第4工程が終了するより前には、DI缶の塗装焼付け処理の到達温度を超える中間焼鈍を行わないものとする。 In the method for manufacturing an aluminum alloy plate for a bottle can body, after cold rolling, finish annealing may be performed if necessary, but it is preferable not to perform finish annealing. In addition, in the above method for manufacturing an aluminum alloy plate for bottle can bodies, after the third step and before the end of the fourth step, intermediate annealing exceeding the temperature reached by the paint baking treatment of DI cans is performed. shall not be carried out.

以上、本発明の実施形態について述べてきたが、以下に、本発明の効果を確認した実施例を本発明の要件を満たさない比較例と対比して具体的に説明する。なお、本発明はこれらの実施例に限定されるものではない。 The embodiments of the present invention have been described above, and below, examples in which the effects of the present invention were confirmed will be specifically described in comparison with comparative examples that do not meet the requirements of the present invention. Note that the present invention is not limited to these examples.

(ボトル缶胴用アルミニウム合金板の作製)
表1に示す組成からなるアルミニウム合金(No.1からNo.3)を半連続鋳造法にて鋳造し、第1工程及び第2工程として示した方法で面削、均質化熱処理を行い、冷却すること無く、熱間圧延を行った。熱間圧延の終了温度を巻取り温度として330℃以上とした。No.1及びNo.2については熱間圧延終了後から約250℃となるまでの冷却速度を表1に示す条件とした。そして、得られた熱間圧延板を、中間焼鈍を施すこと無く、冷間圧延して0.37mmの冷間圧延板を得た。なお、No.1が実施例に相当し、No.2及びNo.3は比較例に相当する。
(Production of aluminum alloy plate for bottle body)
Aluminum alloys (No. 1 to No. 3) having the compositions shown in Table 1 are cast using a semi-continuous casting method, subjected to surface milling and homogenization heat treatment using the methods shown as the first and second steps, and then cooled. Hot rolling was carried out without any process. The end temperature of hot rolling was set to 330° C. or higher as the coiling temperature. No. 1 and no. For No. 2, the cooling rate from the end of hot rolling to about 250° C. was set as shown in Table 1. The obtained hot-rolled plate was then cold-rolled to obtain a 0.37 mm cold-rolled plate without performing intermediate annealing. In addition, No. 1 corresponds to the example, and No. 1 corresponds to the example. 2 and no. 3 corresponds to a comparative example.

(板強度)
冷間圧延板より、圧延方向と平行な方向にJIS5号試験片を採取して、引張試験を行い、0.2%耐力を測定した結果を板強度とした。
(Plate strength)
A JIS No. 5 test piece was taken from the cold-rolled plate in a direction parallel to the rolling direction, a tensile test was conducted, and the 0.2% proof stress was measured, and the plate strength was determined.

(DI缶の作製)
冷間圧延板を用いて、DI缶を作製した。作製方法として、まず冷間圧延板から直径140mmのブランクを打ち抜き、このブランクを絞り成形して、直径90mmのカップを作製した。得られたカップに対し、汎用のアルミ缶胴成形機にて再絞り加工を施し、更にしごき加工として前記各缶体にしごきを3回施し、最終しごき率を39.9%として、最薄肉部の厚さが140μm、胴径がφ66mmのDI缶を作製した。
(Preparation of DI can)
A DI can was produced using a cold rolled plate. As a manufacturing method, first, a blank with a diameter of 140 mm was punched out from a cold-rolled plate, and this blank was drawn to form a cup with a diameter of 90 mm. The obtained cup was re-drawn using a general-purpose aluminum can body forming machine, and each can body was further ironed three times to give a final ironing rate of 39.9%, and the thinnest part A DI can with a thickness of 140 μm and a body diameter of 66 mm was produced.

(缶壁強度)
作製したDI缶の缶壁の最薄肉部より、冷間圧延板の圧延方向と缶軸方向とが平行となる位置からJIS13号B試験片形状をベースに標点距離を25mmに短くした引張試験片を採取した。採取した引張試験片に対して引張試験を実施して、0.2%耐力を測定し、缶壁強度とした。この缶壁強度と上記板強度の差(缶壁強度-板強度)の値を算出し、(缶壁強度-板強度)の値が97MPa以下のものを合格とした。
(Can wall strength)
Tensile test with the gauge distance shortened to 25 mm based on the JIS No. 13 B test piece shape from the thinnest part of the can wall of the prepared DI can, from the position where the rolling direction of the cold rolled plate and the can axis direction are parallel. A piece was taken. A tensile test was conducted on the sampled tensile test piece, and the 0.2% proof stress was measured, which was taken as the can wall strength. The value of the difference between this can wall strength and the above-mentioned plate strength (can wall strength - plate strength) was calculated, and those with a value of (can wall strength - plate strength) of 97 MPa or less were accepted.

<しごき加工時の偏肉量の評価>
作製したDI缶の側壁厚分布を缶底から14mmとなる高さ位置から開口端となる高さ位置(今回は125mm)にかけて1mmピッチで缶周方向に45°間隔で測定し、偏肉量((180°対称位置の側壁厚の差の最大値)/2)を算出した。測定結果を図1に示す。各高さ位置で算出した偏肉量を全高さ位置で平均した値(偏肉量平均値)が1.5μm以下のものをA、2.5μm以下のものをB、2.5μmを超えたものをCとした。結果を表1に示す。
<Evaluation of uneven thickness during ironing process>
The side wall thickness distribution of the prepared DI can was measured at 1 mm pitch at 45° intervals in the circumferential direction of the can from the height of 14 mm from the bottom of the can to the height of the open end (125 mm in this case), and the amount of wall thickness deviation ( (maximum difference in side wall thickness at 180° symmetrical positions)/2) was calculated. The measurement results are shown in Figure 1. The average value of the thickness deviation amount calculated at each height position over all height positions (average thickness deviation amount) is 1.5 μm or less, A is 2.5 μm or less, B is over 2.5 μm. The item was designated as C. The results are shown in Table 1.

Figure 0007426243000001
Figure 0007426243000001

表1に示すように、板厚が0.30mm以上0.38mm以下であっても、組成及び(缶壁強度-板強度)が本発明の範囲であるNo.1が、偏肉量が小さく優れていた。 As shown in Table 1, even if the plate thickness is 0.30 mm or more and 0.38 mm or less, the composition and (can wall strength - plate strength) are within the range of the present invention. No. 1 was excellent in that the amount of uneven thickness was small.

Claims (4)

Si:0.1質量%以上0.5質量%以下、
Fe:0.3質量%以上0.6質量%以下、
Cu:0.1質量%以上0.35質量%以下、
Mn:0.5質量%以上1.2質量%以下、
Mg:1.0質量%以上2.5質量%以下を含有し、
残部がAl及び不可避的不純物からなり、
Cu含有量に対するMg含有量の比(Mg質量%/Cu質量%)が3.6以上4.2以下であり、
缶胴成形後の缶壁強度から缶胴成形前の板強度を差し引いた値が97MPa以下であり、
成形後の缶胴は、厚さが0.37mmで直径140mmのブランクを絞り成形して作製される直径90mmのカップを、再絞り加工して得られる缶体にしごき加工を3回施して成形され、最終しごき率が39.9%、最薄肉部の厚さが140μm、胴径がφ66mmの缶胴であるボトル缶胴用アルミニウム合金板。
Si: 0.1% by mass or more and 0.5% by mass or less,
Fe: 0.3% by mass or more and 0.6% by mass or less,
Cu: 0.1% by mass or more and 0.35% by mass or less,
Mn: 0.5% by mass or more and 1.2% by mass or less,
Mg: Contains 1.0% by mass or more and 2.5% by mass or less,
The remainder consists of Al and inevitable impurities,
The ratio of Mg content to Cu content (Mg mass%/Cu mass%) is 3.6 or more and 4.2 or less,
The value obtained by subtracting the plate strength before forming the can body from the can wall strength after forming the can body is 97 MPa or less,
After forming, the can body is made by drawing a 0.37 mm thick, 140 mm diameter blank into a 90 mm diameter cup, then redrawing the resulting can body, which is then ironed three times. An aluminum alloy plate for a bottle body , which has a final ironing rate of 39.9%, a thickness at the thinnest part of 140 μm, and a body diameter of φ66 mm .
Zn含有量が0.4質量%以下である請求項1に記載の缶胴用アルミニウム合金板。 The aluminum alloy plate for can bodies according to claim 1, wherein the Zn content is 0.4% by mass or less. Ti含有量が0.1質量%以下である請求項1又は請求項2に記載の缶胴用アルミニウム合金板。 The aluminum alloy plate for can bodies according to claim 1 or 2, wherein the Ti content is 0.1% by mass or less. Cr含有量が0.1質量%以下である請求項1から請求項3のいずれか1項に記載の缶胴用アルミニウム合金板。 The aluminum alloy plate for a can body according to any one of claims 1 to 3, wherein the Cr content is 0.1% by mass or less.
JP2020003782A 2020-01-14 2020-01-14 Aluminum alloy plate for bottle body Active JP7426243B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020003782A JP7426243B2 (en) 2020-01-14 2020-01-14 Aluminum alloy plate for bottle body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020003782A JP7426243B2 (en) 2020-01-14 2020-01-14 Aluminum alloy plate for bottle body

Publications (2)

Publication Number Publication Date
JP2021110018A JP2021110018A (en) 2021-08-02
JP7426243B2 true JP7426243B2 (en) 2024-02-01

Family

ID=77059233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020003782A Active JP7426243B2 (en) 2020-01-14 2020-01-14 Aluminum alloy plate for bottle body

Country Status (1)

Country Link
JP (1) JP7426243B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006241517A (en) 2005-03-03 2006-09-14 Furukawa Sky Kk Aluminum alloy sheet for can shell having excellent can roundness after di forming
JP2009242831A (en) 2008-03-28 2009-10-22 Kobe Steel Ltd Aluminum alloy sheet for bottle can and method for producing the same
JP2014015643A (en) 2012-07-06 2014-01-30 Uacj Corp Aluminum alloy sheet for can body and method for producing the same
JP2014198879A (en) 2013-03-29 2014-10-23 株式会社神戸製鋼所 Aluminum alloy sheet for packaging container and manufacturing method therefor
WO2016002226A1 (en) 2014-07-04 2016-01-07 株式会社Uacj Aluminum alloy plate for beverage can body and method for manufacturing same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006241517A (en) 2005-03-03 2006-09-14 Furukawa Sky Kk Aluminum alloy sheet for can shell having excellent can roundness after di forming
JP2009242831A (en) 2008-03-28 2009-10-22 Kobe Steel Ltd Aluminum alloy sheet for bottle can and method for producing the same
JP2014015643A (en) 2012-07-06 2014-01-30 Uacj Corp Aluminum alloy sheet for can body and method for producing the same
JP2014198879A (en) 2013-03-29 2014-10-23 株式会社神戸製鋼所 Aluminum alloy sheet for packaging container and manufacturing method therefor
WO2016002226A1 (en) 2014-07-04 2016-01-07 株式会社Uacj Aluminum alloy plate for beverage can body and method for manufacturing same

Also Published As

Publication number Publication date
JP2021110018A (en) 2021-08-02

Similar Documents

Publication Publication Date Title
US9574258B2 (en) Aluminum-alloy sheet and method for producing the same
JP4019082B2 (en) Aluminum alloy plate for bottle cans with excellent high temperature characteristics
JP3913260B1 (en) Aluminum alloy cold rolled sheet for bottle cans with excellent neck formability
JP5675447B2 (en) Aluminum alloy plate for resin-coated can body and manufacturing method thereof
JP4019083B2 (en) Aluminum alloy cold rolled sheet for bottle cans with excellent high temperature characteristics
JP2012092431A (en) Aluminum alloy cold-rolled sheet for bottle can
JP5568031B2 (en) Aluminum alloy cold rolled sheet for bottle cans
JP4791072B2 (en) Aluminum alloy plate for beverage can body and manufacturing method thereof
CN111108223B (en) Aluminum alloy plate for bottle and can and method for producing same
JP6912886B2 (en) Aluminum alloy plate for beverage can body and its manufacturing method
JP5113411B2 (en) Aluminum alloy plate for packaging container and method for producing the same
JP7426243B2 (en) Aluminum alloy plate for bottle body
JP4019084B2 (en) Aluminum alloy cold rolled sheet for bottle cans with excellent high temperature characteristics
JP5480688B2 (en) Aluminum alloy plate for PP cap and method for producing the same
WO2018143376A1 (en) Aluminum alloy sheet and production method therefor
JP4771726B2 (en) Aluminum alloy plate for beverage can body and manufacturing method thereof
JP2005048288A (en) Aluminum alloy sheet for bottle can excellent in shape stability and strength of bottom part
JP7235634B2 (en) Aluminum alloy plate for can body
JP4750392B2 (en) Aluminum alloy plate for bottle-shaped cans
JPH0346541B2 (en)
JP2023061678A (en) Can body aluminum alloy plate
JP2022114208A (en) Aluminum alloy coated sheet for can lid
JP5091415B2 (en) Manufacturing method of aluminum alloy plate for bottle can
JP2022174952A (en) Aluminum alloy sheet for ring pull caps and method for producing the same
JP5250078B2 (en) Aluminum alloy plate for bottle cans

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240122

R151 Written notification of patent or utility model registration

Ref document number: 7426243

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151