JP2011208258A - Aluminum alloy sheet for resin-covered can barrel and method for producing the same - Google Patents

Aluminum alloy sheet for resin-covered can barrel and method for producing the same Download PDF

Info

Publication number
JP2011208258A
JP2011208258A JP2010079169A JP2010079169A JP2011208258A JP 2011208258 A JP2011208258 A JP 2011208258A JP 2010079169 A JP2010079169 A JP 2010079169A JP 2010079169 A JP2010079169 A JP 2010079169A JP 2011208258 A JP2011208258 A JP 2011208258A
Authority
JP
Japan
Prior art keywords
aluminum alloy
mass
resin
heat treatment
alloy plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010079169A
Other languages
Japanese (ja)
Other versions
JP5491933B2 (en
Inventor
Yushi Inoue
祐志 井上
Atsuto Tsuruta
淳人 鶴田
Ryoji Shoda
良治 正田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2010079169A priority Critical patent/JP5491933B2/en
Publication of JP2011208258A publication Critical patent/JP2011208258A/en
Application granted granted Critical
Publication of JP5491933B2 publication Critical patent/JP5491933B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Containers Having Bodies Formed In One Piece (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an aluminum alloy sheet for a resin-covered can barrel in which moldability is secured while suppressing the reduction of its strength after resin covering to the minimum, and which can improve surface quality of an aluminum can after can barrel molding, and a method for producing the same.SOLUTION: The aluminum alloy sheet for a resin-covered can barrel has a composition comprising, by mass, 0.10 to 0.35% Cu, 0.80 to 1.60% Mg, 0.80 to 1.30% Mn, 0.35 to 0.70% Fe and 0.10 to 0.35% Si, respectively, and the balance Al with inevitable impurities, further, its proof stress after heat treatment at 270°C for 20 s is 225 to 255N/mm, and also, its earing ratio is ≤5%, and regarding the oxygen concentration in the aluminum alloy sheet after cold rolling, the region having ≥10.0 mass% of oxygen lies within 0.08 μm in the sheet thickness direction from the sheet surface.

Description

本発明は、樹脂被覆缶胴用アルミニウム合金板及びその製造方法に係り、特に、DI缶やボトル缶(以下、DI缶やボトル缶を総称する場合は「アルミ缶」という)に適用可能な樹脂被覆缶胴用アルミニウム合金板及びその製造方法に関する。   The present invention relates to an aluminum alloy plate for a resin-coated can body and a manufacturing method thereof, and in particular, a resin applicable to DI cans and bottle cans (hereinafter referred to as “aluminum cans” when DI cans and bottle cans are collectively referred to). The present invention relates to an aluminum alloy plate for a coated can body and a manufacturing method thereof.

樹脂被覆缶胴用アルミニウム合金板より製造されるアルミ缶、たとえば3ピースボトル缶は、通常、アルミニウム合金板に様々な成形加工が施されることにより製造される。詳細には、まず、アルミニウム合金板の両面に熱可塑性樹脂被膜の層を形成して潤滑剤を塗布したものを打ち抜いてブランクを得る工程と、このブランクに絞り加工を行ってカップ状の成形品を得る工程とを行う。次いでこのカップ状の成形品に対して再絞り加工とストレッチ加工又はしごき成形(DI成形)を行って胴体部が小径化及び薄肉化された有底円筒状の缶を得る工程と、次いで、この有底円筒状の缶の底部側に絞り加工を複数回行うことにより肩部と未開口部とからなる口部を有する缶を得る工程とを行う。続いて洗浄及びトリミング等を行い、その後、この缶の胴体部に印刷及び塗装を施す工程と、引き続いて前記口部を開口してカール部及びネジ部を形成し、更に前記ネジ部の反対側の部分にネック加工とフランジ加工とを施した後、シーマによって別途成形した底蓋を巻き締めする工程を行うというものである(例えば、特許文献1参照)。   An aluminum can manufactured from an aluminum alloy plate for a resin-coated can body, for example, a three-piece bottle can is usually manufactured by subjecting an aluminum alloy plate to various forming processes. Specifically, first, a step of forming a thermoplastic resin coating layer on both sides of an aluminum alloy plate and punching out a lubricant coated and obtaining a blank, and then drawing the blank into a cup-shaped molded product And obtaining the step. Next, a step of redrawing and stretching or ironing (DI molding) is performed on the cup-shaped molded product to obtain a bottomed cylindrical can whose body portion is reduced in diameter and thinned. A step of obtaining a can having a mouth part composed of a shoulder part and an unopened part by performing drawing processing a plurality of times on the bottom side of the bottomed cylindrical can. Subsequently, cleaning, trimming, and the like are performed, and then printing and coating are performed on the body portion of the can. Subsequently, the mouth portion is opened to form a curled portion and a screw portion, and the opposite side of the screw portion. After the neck processing and the flange processing are performed on this portion, a step of tightening a bottom lid separately formed by a seamer is performed (for example, see Patent Document 1).

近年、この樹脂被覆に用いられるラミネートフィルムは、その種類が増大している。それに伴い、樹脂被覆工程でのラミネートフィルムをリメルトする温度範囲が拡大しており、一般的には200〜280℃の範囲で熱処理が行われている(例えば、特許文献2参照)。この温度範囲拡大に対応するため、高い耐熱性を備えることで、樹脂被覆後の強度が低下しないアルミニウム合金板が要求されている。   In recent years, the types of laminated films used for this resin coating are increasing. Along with this, the temperature range for remelting the laminate film in the resin coating step has been expanded, and heat treatment is generally performed in the range of 200 to 280 ° C. (for example, see Patent Document 2). In order to cope with the expansion of the temperature range, there is a demand for an aluminum alloy plate having high heat resistance so that the strength after resin coating does not decrease.

そこで、樹脂被覆後の強度低下を最小限に抑え、かつ、成形性の向上を目的として、H19の調質が施された3004合金(3004−H19、JIS H4000に規定)の使用が提案されている。このH19の調質は、アルミニウム合金板に熱間圧延、冷間圧延の各工程を順次施すものである。具体的には、アルミニウム合金を、溶解・鋳造して鋳塊とし、当該鋳塊を面削した後、570℃〜620℃の均質化熱処理を行い、その後、300℃以上の巻き取り温度の熱間圧延、および、80〜90%の圧延率の冷間圧延を行うという樹脂被覆缶胴用アルミニウム合金板の製造方法が開示されている(例えば、特許文献3参照)。   Therefore, the use of 3004 alloy (3004-H19, stipulated in JIS H4000) subjected to H19 tempering has been proposed for the purpose of minimizing strength reduction after resin coating and improving moldability. Yes. This tempering of H19 is performed by sequentially performing each step of hot rolling and cold rolling on an aluminum alloy sheet. Specifically, an aluminum alloy is melted and cast into an ingot, the surface of the ingot is chamfered, homogenized heat treatment at 570 ° C. to 620 ° C., and then heat at a coiling temperature of 300 ° C. or higher. A method for producing an aluminum alloy plate for a resin-coated can body, in which cold rolling and cold rolling at a rolling rate of 80 to 90% are performed is disclosed (for example, see Patent Document 3).

特開2001−162344号公報(段落番号0027〜0028、図2)JP 2001-162344 A (paragraph numbers 0027 to 0028, FIG. 2) 特開2004−238653号公報(段落番号0032)JP 2004-238653 A (paragraph number 0032) 特開2006−070344号公報(段落番号0011〜0015)JP 2006-070344 A (paragraph numbers 0011 to 0015)

しかしながら、前記アルミニウム合金板の製造方法では、高温で均質化熱処理を行うため、アルミニウム合金板の表面に酸化皮膜が厚く形成される。樹脂被覆を施さないでDI成形するタイプのアルミ缶の場合は、しごき成形時に缶胴部に新生面が出てくるので、酸化皮膜は缶胴表面の品質にさほど影響しない。しかし、樹脂被覆を施した後にDI成形するタイプのアルミ缶の場合は、元板表面としごきダイス表面が直接接触しないため、元板表面の酸化皮膜による影響が缶胴成形後も残り、フローマーク状の表面不具合が目立つ傾向があった。   However, in the method for producing an aluminum alloy plate, since a homogenization heat treatment is performed at a high temperature, a thick oxide film is formed on the surface of the aluminum alloy plate. In the case of aluminum cans that are DI molded without resin coating, a new surface appears on the can body during ironing, so the oxide film does not significantly affect the quality of the can body surface. However, in the case of aluminum cans that are DI molded after resin coating, the surface of the base plate and the ironing die surface are not in direct contact, so the effect of the oxide film on the surface of the base plate remains after the can body molding, and the flow mark There was a tendency for surface defects to be noticeable.

また、アルミ缶の表面品質については、要求されるレベルが下がることはなく、常に市場のニーズに合わせて上昇し続けている。よって、従来では問題とされていなかったような軽微な表面不良であっても、現在は、問題視されるようになっており、そのような軽微な表面不良を有するアルミ缶は製造工程の中でリジェクトの対象となる。したがって、アルミ缶の表面品質の向上は、生産性という面においても重要な要素となっている。   In addition, the required level of aluminum can surface quality does not drop, and it continues to rise in line with market needs. Therefore, even minor surface defects that have not been considered a problem in the past are now regarded as problems, and aluminum cans having such minor surface defects are in the manufacturing process. Is subject to rejection. Therefore, improvement of the surface quality of aluminum cans is an important factor in terms of productivity.

本発明は、前記問題点を解決するためになされたものであって、その課題は、樹脂被覆後の強度低下を最小限に抑えつつ、成形性を確保するとともに、缶胴成形後のアルミ缶の表面品質を向上させることができる樹脂被覆缶胴用アルミニウム合金板及びその製造方法を提供することにある。   The present invention has been made to solve the above-mentioned problems, and the problem is that the aluminum can after molding a can body while ensuring moldability while minimizing strength reduction after resin coating. Another object of the present invention is to provide an aluminum alloy plate for a resin-coated can body and a method for producing the same.

前記問題点を解決するために、本発明者らは、アルミニウム合金板の板表面の酸化皮膜の成長を抑制することができる条件について種々の検討を行った。その結果、Cu、Mg、Mn、Fe及びSiの含有量を適切なものとしたうえで、均質化熱処理温度及び時間を調整し、また熱間圧延及び冷間圧延の条件をコントロールすることで、前記問題点を解決できることを見出し、本発明を完成するに到った。   In order to solve the above-mentioned problems, the present inventors have conducted various studies on conditions that can suppress the growth of an oxide film on the surface of an aluminum alloy plate. As a result, after making the contents of Cu, Mg, Mn, Fe and Si appropriate, adjusting the homogenization heat treatment temperature and time, and controlling the conditions of hot rolling and cold rolling, The present inventors have found that the above problems can be solved and have completed the present invention.

すなわち、前記目的を達成するための本発明に係る樹脂被覆缶胴用アルミニウム合金板は、Cuを0.10〜0.35質量%、Mgを0.80〜1.60質量%、Mnを0.80〜1.30質量%、Feを0.35〜0.70質量%、Siを0.10〜0.35質量%それぞれ含有し、残部がAl及び不可避的不純物から構成されるとともに、270℃で20秒間の熱処理を施した後の耐力が225〜255N/mmであり、かつ、耳率が5%以下であるアルミニウム合金板であって、冷間圧延後の当該アルミニウム合金板の酸素濃度について、10.0質量%以上である領域が板表面から板厚方向に0.08μm以内であることを特徴とする。 That is, the aluminum alloy plate for a resin-coated can body according to the present invention for achieving the above-described object has Cu of 0.10 to 0.35 mass%, Mg of 0.80 to 1.60 mass%, and Mn of 0. .80 to 1.30% by mass, Fe 0.35 to 0.70% by mass, Si 0.10 to 0.35% by mass, the balance being composed of Al and inevitable impurities, 270 An aluminum alloy plate having a yield strength of 225 to 255 N / mm 2 after a heat treatment at 20 ° C. for 20 seconds and an ear rate of 5% or less, and the oxygen of the aluminum alloy plate after cold rolling Regarding the concentration, the region of 10.0% by mass or more is characterized by being within 0.08 μm in the plate thickness direction from the plate surface.

このように、本発明に係る樹脂被覆缶胴用アルミニウム合金板は、アルミニウム合金の成分を特定の範囲に限定することにより、樹脂被覆後の熱処理による強度低下を最低限に抑えることができる。また、耐力・耳率を特定の範囲に限定することにより、容易に所望するアルミ缶の形状に成形でき、かつ、そのアルミ缶の形状へ成形した後でも缶強度が適切に維持されるものとなる。さらに、所定以上の酸素濃度となる領域について特定の範囲に限定することにより、アルミニウム合金板の板表面から厚み方向内における表面不良に影響する酸化被膜の成長を抑制することができる。   As described above, the aluminum alloy plate for a resin-coated can body according to the present invention can suppress a decrease in strength due to heat treatment after resin coating to a minimum by limiting the components of the aluminum alloy to a specific range. In addition, by limiting the yield strength and ear ratio to a specific range, it can be easily formed into the desired aluminum can shape, and the can strength can be properly maintained even after forming into the aluminum can shape. Become. Furthermore, by limiting the region having an oxygen concentration of a predetermined value or more to a specific range, it is possible to suppress the growth of an oxide film that affects surface defects in the thickness direction from the plate surface of the aluminum alloy plate.

また、本発明に係る前記樹脂被覆缶胴用アルミニウム合金板の製造方法は、Cuを0.10〜0.35質量%、Mgを0.80〜1.60質量%、Mnを0.80〜1.30質量%、Feを0.35〜0.70質量%、Siを0.10〜0.35質量%それぞれ含有し、残部がAl及び不可避的不純物から構成されるアルミニウム合金を溶解・鋳造して鋳塊を作製する溶解・鋳造工程と、前記溶解・鋳造工程において作製されたアルミニウム合金の前記鋳塊に480〜540℃で10時間以上、均質化熱処理を施す均質化熱処理工程と、前記均質化熱処理工程において均質化熱処理が施されたアルミニウム合金の前記鋳塊を熱間圧延し、巻き取り温度を320℃以上にして巻き取る熱間圧延工程と、前記熱間圧延工程において熱間圧延が施されたアルミニウム合金板に、冷間加工の圧延率を80〜90%に設定して冷間圧延する冷間圧延工程と、を含むことを特徴とする。   Moreover, the manufacturing method of the said aluminum alloy plate for resin-coated can bodies which concerns on this invention is Cu 0.10-0.35 mass%, Mg 0.80-1.60 mass%, Mn 0.80. 1. Melting and casting an aluminum alloy containing 1.30% by mass, Fe 0.35 to 0.70% by mass, Si 0.10 to 0.35% by mass, the balance consisting of Al and inevitable impurities A melting / casting step for producing an ingot, a homogenization heat treatment step for subjecting the ingot of the aluminum alloy produced in the melting / casting step to a homogenization heat treatment at 480-540 ° C. for 10 hours or more, and Hot rolling the ingot of the aluminum alloy that has been subjected to the homogenization heat treatment in the homogenization heat treatment step, and winding it at a coiling temperature of 320 ° C. or higher, and hot rolling in the hot rolling step Is given And the aluminum alloy sheet, characterized in that it comprises a cold rolling step of cold rolling to set the rolling ratio in the cold-working 80 to 90% a.

このように、本発明に係る樹脂被覆缶胴用アルミニウム合金板の製造方法は、均質化熱処理の温度が特定の範囲に限定されるとともに、所定時間以上とすることにより、アルミニウム合金板の板表面における酸化被膜の成長を抑制することができる。
また、熱間圧延・冷間圧延を特定の条件とすることにより、缶胴成形後のアルミ缶の表面品質が十分に維持され、且つ、缶特性も良好な樹脂被覆缶胴用アルミニウム合金板を製造することができる。
Thus, the method for producing an aluminum alloy plate for a resin-coated can body according to the present invention is such that the temperature of the homogenization heat treatment is limited to a specific range and the plate surface of the aluminum alloy plate is set to be a predetermined time or longer. The growth of the oxide film can be suppressed.
In addition, by making hot rolling / cold rolling a specific condition, an aluminum alloy plate for a resin-coated can body that can maintain the surface quality of the aluminum can after the can body molding sufficiently and has good can characteristics Can be manufactured.

本発明に係る樹脂被覆缶胴用アルミニウム合金板及びその製造方法によれば、樹脂被覆後の強度低下を最小限に抑えつつ、成形性を確保することができる。また、均質化熱処理の際の酸化皮膜の成長を最小限に抑えることができるため、缶胴成形後のアルミ缶の表面品質に優れた樹脂被覆缶胴用アルミニウム合金板を提供することができる。   According to the aluminum alloy plate for resin-coated can bodies and the method for producing the same according to the present invention, it is possible to ensure moldability while minimizing the decrease in strength after resin coating. Moreover, since the growth of the oxide film during the homogenization heat treatment can be minimized, it is possible to provide an aluminum alloy plate for a resin-coated can body excellent in the surface quality of the aluminum can after the can body molding.

従来の一例の3ピースボトル缶を模式的に示す斜視図である。It is a perspective view which shows typically a 3 piece bottle can of a prior art. 従来の一例のDI缶を模式的に示す斜視図である。It is a perspective view which shows typically a conventional DI can. 本発明に係る樹脂被覆缶胴用アルミニウム合金板について評価を行う際の、当該樹脂被覆缶胴用アルミニウム合金板に樹脂フィルムを被覆したラミネート材からの3ピースボトル缶の作製方法を模式的に示す模式図である。A method for producing a three-piece bottle can from a laminate material in which a resin film is coated on the aluminum alloy plate for a resin-coated can barrel, when the aluminum alloy plate for a resin-coated can barrel according to the present invention is evaluated is schematically shown. It is a schematic diagram. (a)は、本発明に係る樹脂被覆缶胴用アルミニウム合金板の酸素濃度と板表面からの深さの関係を示すグラフである。(b)は、本発明に係る樹脂被覆缶胴用アルミニウム合金板の断面図である。(A) is a graph which shows the relationship between the oxygen concentration of the aluminum alloy plate for resin-coated can bodies which concerns on this invention, and the depth from the plate surface. (B) is sectional drawing of the aluminum alloy plate for resin-coated can bodies which concerns on this invention.

次に、本発明に係る樹脂被覆缶胴用アルミニウム合金板及びその製造方法の実施するための形態について、適宜図面を参照しながら詳細に説明する。   Next, the form for implementing the aluminum alloy plate for resin-coated can bodies and the manufacturing method thereof according to the present invention will be described in detail with reference to the drawings as appropriate.

[樹脂被覆缶胴用アルミニウム合金板]
本発明に係る樹脂被覆缶胴用アルミニウム合金板は、Cuを0.10〜0.35質量%、Mgを0.80〜1.60質量%、Mnを0.80〜1.30質量%、Feを0.35〜0.70質量%、Siを0.10〜0.35質量%それぞれ含有し、残部がAl及び不可避的不純物から構成されるとともに、270℃で、20秒間の熱処理を施した後の耐力が225〜255N/mmであり、かつ、耳率が5%以下である。加えて、本発明に係る樹脂被覆缶胴用アルミニウム合金板は、冷間圧延後の前記アルミニウム合金板の酸素濃度について、10.0質量%以上である領域が前記アルミニウム合金板の板厚方向に板表面から0.08μm以内というものである。
次に、本発明に係る樹脂被覆缶胴用アルミニウム合金板に含まれる各合金成分、熱処理後の耐力及び耳率、さらに、冷間圧延後の酸素濃度について数値限定した理由を説明する。
[Aluminum alloy plate for resin-coated can body]
The resin-coated can body aluminum alloy plate according to the present invention has Cu of 0.10 to 0.35 mass%, Mg of 0.80 to 1.60 mass%, Mn of 0.80 to 1.30 mass%, Fe is contained in an amount of 0.35 to 0.70 mass%, Si is contained in an amount of 0.10 to 0.35 mass%, the balance is composed of Al and inevitable impurities, and heat treatment is performed at 270 ° C. for 20 seconds. The yield strength is 225 to 255 N / mm 2 and the ear rate is 5% or less. In addition, in the aluminum alloy plate for a resin-coated can body according to the present invention, the oxygen concentration of the aluminum alloy plate after cold rolling is 10.0% by mass or more in the thickness direction of the aluminum alloy plate. It is within 0.08 μm from the plate surface.
Next, the reasons why the respective alloy components contained in the aluminum alloy plate for resin-coated can bodies according to the present invention, the proof stress after heat treatment and the ear rate, and the oxygen concentration after cold rolling are limited numerically will be described.

(Cuの含有量:0.10〜0.35質量%)
本発明に係る樹脂被覆缶胴用アルミニウム合金板に含まれるCuは、材料強度に寄与する元素である。このCuの含有量が0.10質量%未満では充分な材料強度が得られず、熱処理後の耐力と成形したボトル缶のネジ座屈強度が不足する。一方、Cuの含有量が0.35質量%を超えると材料強度が高くなり過ぎて、熱処理後の耐力が高くなり、しごき成形性が低下する。従って、本発明ではCuの含有量を0.10〜0.35質量%とする。
(Cu content: 0.10 to 0.35 mass%)
Cu contained in the aluminum alloy plate for a resin-coated can body according to the present invention is an element contributing to material strength. If the Cu content is less than 0.10% by mass, sufficient material strength cannot be obtained, and the yield strength after heat treatment and the screw buckling strength of the molded bottle can are insufficient. On the other hand, if the Cu content exceeds 0.35% by mass, the material strength becomes too high, the proof stress after heat treatment is increased, and the ironing formability is lowered. Therefore, in this invention, content of Cu shall be 0.10-0.35 mass%.

(Mgの含有量:0.80〜1.60質量%)
本発明に係る樹脂被覆缶胴用アルミニウム合金板に含まれるMgは、前記したCuと同じく材料強度に寄与するとともに、缶胴成形後の表面品質に影響を及ぼす元素である。このMgの含有量が0.80質量%未満では所要の材料強度が得られず、熱処理後の耐力と成形したボトル缶のネジ座屈強度が不足する。一方、Mgの含有量が1.60質量%を超えると加工硬化が大きくなって、熱処理後の耐力が高くなり、しごき成形性が低下する。加えて、均質化熱処理時に酸化皮膜が成長しやすくなり、缶胴成形後のアルミ缶の表面品質が悪化する。従って、本発明ではMgの含有量を0.80〜1.60質量%とする。
(Mg content: 0.80 to 1.60 mass%)
Mg contained in the aluminum alloy plate for resin-coated can barrels according to the present invention is an element that contributes to material strength as well as Cu described above, and affects the surface quality after can barrel molding. If the Mg content is less than 0.80 mass%, the required material strength cannot be obtained, and the yield strength after heat treatment and the screw buckling strength of the molded bottle can are insufficient. On the other hand, when the Mg content exceeds 1.60% by mass, work hardening increases, the yield strength after heat treatment increases, and ironing moldability decreases. In addition, the oxide film tends to grow during the homogenization heat treatment, and the surface quality of the aluminum can after the can body molding is deteriorated. Therefore, in this invention, content of Mg shall be 0.80-1.60 mass%.

(Mnの含有量:0.80〜1.30質量%)
本発明に係る樹脂被覆缶胴用アルミニウム合金板に含まれるMnは、前記したMgと同じく材料強度に寄与する元素である。このMnの含有量が0.80質量%未満では、充分な材料強度が得られず、熱処理後の耐力と成形したボトル缶のネジ座屈強度が不足する。一方、このMnの含有量が1.30質量%を超えると、材料強度が過度に高まり、胴切れ(しごき成形時の破断)に繋がる。従って、本発明ではMnの含有量を0.80〜1.30質量%とする。
(Mn content: 0.80 to 1.30% by mass)
Mn contained in the aluminum alloy plate for a resin-coated can body according to the present invention is an element that contributes to the material strength like the above-described Mg. When the Mn content is less than 0.80% by mass, sufficient material strength cannot be obtained, and the yield strength after heat treatment and the screw buckling strength of the molded bottle can are insufficient. On the other hand, when the content of Mn exceeds 1.30% by mass, the material strength is excessively increased, which leads to a cylinder cut (breakage during ironing). Therefore, in the present invention, the Mn content is set to 0.80 to 1.30% by mass.

(Feの含有量:0.35〜0.70質量%)
本発明に係る樹脂被覆缶胴用アルミニウム合金板に含まれるFeは、熱間圧延時の再結晶挙動に影響を及ぼす。このFeの含有量が0.35質量%未満では、熱間圧延工程における再結晶が充分に生じなくなり、粗大な結晶粒の混在、材料強度の上昇が生じて、しごき成形性が低下する。一方、Feの含有量が0.70質量%を超えると、0°−180°耳が高くなり、フランジ部の寸法不良(フランジ部の欠けなど)を生じやすくなる。従って、本発明ではFeの含有量を0.35〜0.70質量%とする。
(Fe content: 0.35 to 0.70 mass%)
Fe contained in the aluminum alloy plate for a resin-coated can body according to the present invention affects the recrystallization behavior during hot rolling. When the Fe content is less than 0.35% by mass, recrystallization in the hot rolling process is not sufficiently generated, and coarse crystal grains are mixed and the material strength is increased, and the iron moldability is lowered. On the other hand, if the Fe content exceeds 0.70% by mass, the 0 ° -180 ° ear becomes high, and the dimensional defect of the flange portion (flange portion chipping, etc.) tends to occur. Therefore, in this invention, content of Fe shall be 0.35-0.70 mass%.

ここで、耳は、アルミニウム合金板でカッピング成形を行って得られた円筒容器の側面に形成された山と谷である。そして、耳率は、次の式を用いて算出される。
耳率(%)={(円筒容器の底面(圧延方向)を基準とした、45°方向4箇所の高さの平均値−円筒容器の底面を基準とした、0°、90°方向4箇所の高さの平均値)/(円筒容器の底面を基準とした0°、45°、90°方向8箇所の高さの平均値)}×100
なお、前記「0°耳」とは、圧延方向に対して0°の方向に形成された山をいう。
Here, the ears are peaks and valleys formed on the side surface of the cylindrical container obtained by cupping with an aluminum alloy plate. The ear rate is calculated using the following equation.
Ear ratio (%) = {(average value of heights at four locations in 45 ° direction based on bottom surface (rolling direction) of cylindrical container−four locations at 0 ° and 90 ° directions based on bottom surface of cylindrical container) Average value of height) / (average value of height of 8 positions in the 0 °, 45 °, and 90 ° directions with respect to the bottom surface of the cylindrical container)} × 100
The “0 ° ear” refers to a mountain formed in a direction of 0 ° with respect to the rolling direction.

(Siの含有量:0.10〜0.35質量%)
本発明に係る樹脂被覆缶胴用アルミニウム合金板に含まれるSiは、前記したFeと同じく熱間圧延時の再結晶挙動に影響を及ぼす。このSiの含有量が0.10質量%未満では、0°−180°耳が高くなりフランジ部の寸法不良を生じやすくなる。一方、Siの含有量が0.35質量%を超えると、熱間圧延工程における再結晶が充分に生じなくなり、粗大な結晶粒の混在、材料強度の上昇が生じて、しごき成形性が低下する。従って、本発明ではSiの含有量を0.10〜0.35質量%とする。
(Si content: 0.10 to 0.35 mass%)
Si contained in the aluminum alloy plate for a resin-coated can body according to the present invention affects the recrystallization behavior during hot rolling in the same manner as Fe described above. If the Si content is less than 0.10% by mass, the 0 ° -180 ° ear becomes high, and the dimensional defect of the flange portion is likely to occur. On the other hand, if the Si content exceeds 0.35 mass%, recrystallization in the hot rolling process does not occur sufficiently, and coarse crystal grains are mixed and the material strength is increased, and the ironing formability is lowered. . Therefore, in this invention, content of Si shall be 0.10-0.35 mass%.

(不可避的不純物)
なお、本発明の樹脂被覆缶胴用アルミニウム合金板は、不可避的不純物として、Crが0.1質量%以下、Znが0.5質量%以下、Tiが0.3質量%以下、Zrが0.5質量%以下、Bが0.3質量%以下含有されても、本発明の効果が妨げられるものではなく、このような不可避的不純物の含有量は許容される。
(Inevitable impurities)
The aluminum alloy plate for a resin-coated can body of the present invention has, as unavoidable impurities, Cr of 0.1% by mass or less, Zn of 0.5% by mass or less, Ti of 0.3% by mass or less, and Zr of 0. Even if contained in an amount of not more than 0.5% by mass and not more than 0.3% by mass of B, the effect of the present invention is not hindered, and the content of such inevitable impurities is allowed.

(Ti:0.3質量%以下)
前記不可避的不純物において、TiおよびBは、鋳塊組織を微細化する作用を有する。通常、Tiを添加する場合には、Ti:B=5:1の割合とした鋳塊微細化剤(TiB)を、ワッフル状あるいはロッド状の形態で溶湯(溶解炉、介在物フィルター、脱ガス装置、溶湯流量制御装置のいずれかに投入された、スラブ凝固前の溶湯)に添加するため、含有割合に応じたBも必然的に添加されることとなる。Tiの添加量で0.005質量%以上の添加により、鋳塊の結晶粒が微細化され、アルミニウム合金板の成形性が向上する。このため、Tiの含有量を0.005質量%以上、好ましくは0.01質量%以上、さらに好ましくは0.015質量%以上とするのが好ましい。一方、Tiの含有量で0.3質量%を超えた含有量となると、粗大な晶出物が形成され、DI成形時に亀裂が発生するので、アルミニウム合金板の成形性が低下する。このため、Tiの含有量は0.3質量%以下、好ましくは0.2質量%以下、より好ましくは0.1質量%以下、さらに好ましくは0.05質量%以下とする。
(Ti: 0.3% by mass or less)
In the inevitable impurities, Ti and B have an effect of refining the ingot structure. Usually, when adding Ti, the ingot refining agent (TiB) in a ratio of Ti: B = 5: 1 is melted in a waffle-like or rod-like form (melting furnace, inclusion filter, degassing). B added according to the content ratio is inevitably added because it is added to either the apparatus or the molten metal flow rate control apparatus. By adding 0.005 mass% or more as the addition amount of Ti, the crystal grains of the ingot are refined, and the formability of the aluminum alloy plate is improved. For this reason, the Ti content is preferably 0.005% by mass or more, preferably 0.01% by mass or more, and more preferably 0.015% by mass or more. On the other hand, when the content of Ti exceeds 0.3% by mass, a coarse crystallized product is formed and cracks are generated during DI molding, so that the formability of the aluminum alloy plate is lowered. Therefore, the Ti content is 0.3% by mass or less, preferably 0.2% by mass or less, more preferably 0.1% by mass or less, and still more preferably 0.05% by mass or less.

(Zn:0.5質量%以下)
本発明の樹脂被覆缶胴用アルミニウム合金板の特性に影響のない範囲内であれば、ブレージングシート用アルミニウム材の屑を配合(添加)しても良い。この場合は、前記Siの規定範囲の上限、或いは、前記不可避不純物として記載したZnの含有が許容される範囲の上限(0.5質量%)のいずれかを目安に添加しても良い。
(Zn: 0.5% by mass or less)
As long as the characteristics of the aluminum alloy plate for resin-coated can bodies of the present invention are not affected, scraps of the aluminum material for brazing sheets may be added (added). In this case, either the upper limit of the prescribed range of Si or the upper limit (0.5% by mass) of the allowable range of Zn described as the inevitable impurities may be added as a guide.

(270℃、20秒間の熱処理を施した後の耐力:225〜255N/mm
前記アルミニウム合金板に樹脂被覆を施した後に、絞り、しごき成形を施す際の成形性については、前記アルミニウム合金板に対して樹脂被覆を施す際の熱処理に相当する270℃で、20秒間の条件の熱処理を施した後の耐力が重要な指標となる。
(Yield strength after heat treatment at 270 ° C. for 20 seconds: 225 to 255 N / mm 2 )
About formability when performing drawing and ironing after applying resin coating to the aluminum alloy plate, the condition is 270 ° C. for 20 seconds corresponding to heat treatment when resin coating is applied to the aluminum alloy plate. The yield strength after the heat treatment is an important index.

前記アルミニウム合金板に270℃で20秒間の熱処理を施した後の耐力が225N/mm未満では、充分な材料強度が得られず、成形したボトル缶のネジ座屈強度が不足する。一方、前記耐力が255N/mmを超えると、アルミ缶の成形性、特にしごき成形性が低下し、破断の発生により生産性が阻害される。従って、本発明に係る樹脂被覆缶胴用アルミニウム合金板では、270℃で、20秒間の熱処理を施した後の耐力を225〜255N/mmとすることが好ましい。 If the proof stress after the aluminum alloy plate is heat-treated at 270 ° C. for 20 seconds is less than 225 N / mm 2 , sufficient material strength cannot be obtained, and the screw buckling strength of the molded bottle can is insufficient. On the other hand, when the proof stress exceeds 255 N / mm 2 , the moldability of the aluminum can, particularly the iron moldability, is lowered, and the productivity is hindered by the occurrence of breakage. Accordingly, in the aluminum alloy plate for a resin-coated can body according to the present invention, it is preferable that the proof stress after heat treatment at 270 ° C. for 20 seconds is 225 to 255 N / mm 2 .

(耳率:5%以下)
本発明に係る樹脂被覆缶胴用アルミニウム合金板の耳率は、フランジ部の寸法に影響を与える。耳率が5%以上であると、フランジ部の寸法不良が著しく生じやすくなる。従って、本発明に係る樹脂被覆缶胴用アルミニウム合金板では、耳率を5%以下とすることが好ましい。
(Ear rate: 5% or less)
The ear ratio of the aluminum alloy plate for a resin-coated can body according to the present invention affects the dimensions of the flange portion. When the ear rate is 5% or more, a dimensional defect of the flange portion is likely to occur remarkably. Therefore, in the aluminum alloy plate for resin-coated can bodies according to the present invention, the ear rate is preferably 5% or less.

(酸素濃度が10.0質量%以上の領域:板表面から0.08μm以内)
本発明に係る樹脂被覆缶胴用アルミニウム合金板の表面の酸素濃度は、缶胴成形後のアルミ缶の表面品質に影響を与える。この酸素濃度は、冷間圧延後のアルミニウム合金板について、例えば、高周波グロー放電発光表面分析装置により測定する。
この酸素濃度について図4(a)(b)を参照して説明すると、アルミニウム合金板の酸素濃度について、10.0質量%以上である領域が板厚方向に板表面から0.08μm以内の場合は(例えば、(a)太線の場合)、缶胴成形後のアルミ缶の表面に目立った不具合は存在しない。一方、酸素濃度が10.0質量%以上となる領域が板表面から0.08μmを超える場合は(例えば、(a)細線の場合)、缶胴成形後にフローマーク状の表面不具合が目立つようになる。従って、本発明では酸素濃度について、10.0質量%以上の領域が板表面から0.08μm以内であることとする。
(A region where the oxygen concentration is 10.0% by mass or more: within 0.08 μm from the plate surface)
The oxygen concentration on the surface of the aluminum alloy plate for a resin-coated can body according to the present invention affects the surface quality of the aluminum can after the can body molding. This oxygen concentration is measured, for example, by a high-frequency glow discharge luminescent surface analyzer for the aluminum alloy sheet after cold rolling.
The oxygen concentration will be described with reference to FIGS. 4A and 4B. When the oxygen concentration of the aluminum alloy plate is 10.0% by mass or more, the region is within 0.08 μm from the plate surface in the plate thickness direction. (For example, in the case of (a) thick line), there is no noticeable defect on the surface of the aluminum can after the can body molding. On the other hand, when the region where the oxygen concentration is 10.0% by mass or more exceeds 0.08 μm from the plate surface (for example, in the case of (a) fine line), a flow mark-like surface defect is conspicuous after the can body molding. Become. Therefore, in the present invention, the region of 10.0% by mass or more in oxygen concentration is within 0.08 μm from the plate surface.

次に、本発明に係る樹脂被覆缶胴用アルミニウム合金板の製造方法について説明する。
[樹脂被覆缶胴用アルミニウム合金板の製造方法]
本発明に係る樹脂被覆缶胴用アルミニウム合金板は、本発明で合金組成を規制したAl−Mn系合金を用いて製造される。つまり、Cuを0.10〜0.35質量%、Mgを0.80〜1.60質量%、Mnを0.80〜1.30質量%、Feを0.35〜0.70質量%、Siを0.10〜0.35質量%それぞれ含有し、残部がAl及び不可避的不純物から構成されたアルミニウム合金を用いて、DC鋳造処理(Direct−chill casting)により鋳塊を製造する(溶解・鋳造工程)。そして、このアルミニウム合金の鋳塊を480〜540℃で10時間以上均質化熱処理し(均質化熱処理工程)、その後、この鋳塊を熱間圧延して巻き取り温度320℃以上で巻き取り、アルミニウム合金板を製造する(熱間圧延工程)。続いて、このアルミニウム合金板を圧延率80〜90%で冷間圧延して所望の板厚とする(冷間圧延工程)。このような製造方法とすることにより、本発明に係る樹脂被覆缶胴用アルミニウム合金板を製造することができる。
Next, the manufacturing method of the aluminum alloy plate for resin-coated can bodies according to the present invention will be described.
[Method for producing aluminum alloy sheet for resin-coated can body]
The resin-coated can body aluminum alloy plate according to the present invention is manufactured using an Al-Mn alloy whose alloy composition is regulated in the present invention. That is, Cu is 0.10 to 0.35 mass%, Mg is 0.80 to 1.60 mass%, Mn is 0.80 to 1.30 mass%, Fe is 0.35 to 0.70 mass%, An ingot is produced by DC-casting using an aluminum alloy containing 0.10 to 0.35% by mass of Si and the balance being composed of Al and unavoidable impurities (dissolution / casting). Casting process). The aluminum alloy ingot is subjected to a homogenization heat treatment at 480 to 540 ° C. for 10 hours or more (homogenization heat treatment step), and then the ingot is hot rolled and wound at a winding temperature of 320 ° C. or more. An alloy plate is manufactured (hot rolling process). Subsequently, the aluminum alloy sheet is cold-rolled at a rolling rate of 80 to 90% to obtain a desired sheet thickness (cold rolling process). By setting it as such a manufacturing method, the aluminum alloy plate for resin-coated can bodies which concerns on this invention can be manufactured.

次に、当該製造方法において規制した各条件について説明する。なお、アルミニウム合金の成分の数値限定の理由については、前記した樹脂被覆缶胴用アルミニウム合金板の合金成分と同一であるので省略する。   Next, each condition regulated in the manufacturing method will be described. The reason for limiting the numerical values of the components of the aluminum alloy is omitted because it is the same as the alloy components of the aluminum alloy plate for a resin-coated can body described above.

(均質化熱処理温度:480〜540℃)
本発明に係る樹脂被覆缶胴用アルミニウム合金板の製造方法では、前記アルミニウム合金板に施す均質化熱処理の温度は、480℃未満であると、後の熱間圧延工程で再結晶が充分に生じなくなり、粗大な結晶粒の混在、材料強度の上昇が生じて、しごき成形性が低下する。また、耳率が高くなり、フランジ部の寸法不良を生じやすくなる。一方、540℃を超えると、均質化熱処理時に酸化皮膜が厚く形成され、缶胴成形後のアルミ缶の表面品質が低下する。従って、本発明では、均質化熱処理の温度を480〜540℃とする。
なお、前記アルミニウム合金板の均質化熱処理は、通常600℃前後で行われる。600℃近い高温で均質化熱処理を行うことによって、Al−Fe−Mn−Si系の金属間化合物が適度に形成される。樹脂被覆を施さずにDI成形するタイプのアルミ缶の場合、前記金属間化合物は、DI成形の際にしごきダイスと素材との間に堆積(ビルドアップ)したアルミを除去する役割を担う。その結果、堆積したアルミが原因で発生する缶胴表面の疵(焼付き)や缶胴割れを抑制し、しごき成形性が向上する。
均質化熱処理温度が本発明で規制するような低い温度(480〜540℃)だと、前記金属間化合物は十分に形成されないが、樹脂被覆を施した後にDI成形するタイプのアルミ缶については、しごきダイスと素材が直接接触しないため、前記金属間化合物の形成は必須ではない。よって、本発明に係る樹脂被覆缶胴用アルミニウム合金板では、前記の通り缶胴成形後の表面品質を向上させるため、均質化熱処理の温度を前記のような温度範囲(480〜540℃)とした。
(Homogenization heat treatment temperature: 480-540 ° C.)
In the method for producing an aluminum alloy plate for a resin-coated can body according to the present invention, if the temperature of the homogenization heat treatment applied to the aluminum alloy plate is less than 480 ° C., recrystallization sufficiently occurs in the subsequent hot rolling step. As a result, coarse crystal grains are mixed and the strength of the material is increased, and the iron moldability is lowered. In addition, the ear rate is increased, and the dimensional defect of the flange portion is likely to occur. On the other hand, if it exceeds 540 ° C., a thick oxide film is formed during the homogenization heat treatment, and the surface quality of the aluminum can after the can body molding is lowered. Accordingly, in the present invention, the temperature of the homogenization heat treatment is set to 480 to 540 ° C.
The homogenization heat treatment of the aluminum alloy plate is usually performed at around 600 ° C. By performing the homogenization heat treatment at a high temperature close to 600 ° C., an Al—Fe—Mn—Si intermetallic compound is appropriately formed. In the case of an aluminum can that is DI-molded without applying a resin coating, the intermetallic compound plays a role of removing aluminum (build-up) deposited between the ironing die and the material during DI molding. As a result, it is possible to suppress wrinkles (seizure) and cracks on the can body surface caused by the accumulated aluminum and to improve iron formability.
When the homogenization heat treatment temperature is a low temperature (480 to 540 ° C.) regulated by the present invention, the intermetallic compound is not sufficiently formed, but for the aluminum can of the DI molding after applying the resin coating, Since the ironing die and the material are not in direct contact, the formation of the intermetallic compound is not essential. Therefore, in the aluminum alloy plate for a resin-coated can body according to the present invention, the temperature of the homogenization heat treatment is set to the above temperature range (480 to 540 ° C.) in order to improve the surface quality after the can body molding as described above. did.

(均質化熱処理時間:10時間以上)
本発明に係る樹脂被覆缶胴用アルミニウム合金板の製造方法では、前記アルミニウム合金板に施す均質化熱処理の時間は、10時間未満であると、再結晶を阻害する微細析出物が多く分布し、熱間圧延時に再結晶が充分に生じなくなる。その結果、粗大な結晶粒の混在、材料強度の上昇が生じて、しごき成形性が低下する。また、耳率が高くなり、フランジ部の寸法不良を生じやすくなる。従って、本発明では、均質化熱処理の時間を10時間以上とする。
(Homogenization heat treatment time: 10 hours or more)
In the method for producing an aluminum alloy plate for a resin-coated can body according to the present invention, if the time of the homogenization heat treatment applied to the aluminum alloy plate is less than 10 hours, a lot of fine precipitates that inhibit recrystallization are distributed, Sufficient recrystallization does not occur during hot rolling. As a result, coexistence of coarse crystal grains and an increase in material strength occur, resulting in a decrease in iron moldability. In addition, the ear rate is increased, and the dimensional defect of the flange portion is likely to occur. Therefore, in the present invention, the time for the homogenization heat treatment is set to 10 hours or more.

(熱間圧延工程の巻き取り温度:320℃以上)
本発明に係る樹脂被覆缶胴用アルミニウム合金板の製造方法では、前記アルミニウム合金板に施す熱間圧延工程の巻き取り温度は、ホットコイルの再結晶状態を左右し、なおかつ材料強度にも影響を与える重要な要素である。
(Taking-up temperature in the hot rolling process: 320 ° C. or more)
In the method for producing an aluminum alloy plate for a resin-coated can body according to the present invention, the coiling temperature in the hot rolling step applied to the aluminum alloy plate affects the recrystallization state of the hot coil and also affects the material strength. It is an important factor to give.

すなわち、この熱間圧延処理の巻き取り温度が320℃未満であると前記アルミニウム合金板における再結晶が充分に生じなくなり、その結果、粗大な結晶粒の混在、材料強度の上昇を招き、しごき成形性が低下する。また、耳率が高くなってフランジ部の寸法不良を生じやすくなる。従って、本発明に係る樹脂被覆缶胴用アルミニウム合金板の製造方法における熱間圧延の巻き取り温度は320℃以上とすることが必要である。   That is, if the coiling temperature of the hot rolling process is less than 320 ° C., recrystallization in the aluminum alloy plate does not occur sufficiently, resulting in the mixing of coarse crystal grains and an increase in material strength, and ironing forming. Sex is reduced. In addition, the ear rate is increased, and the dimensional defect of the flange portion is likely to occur. Therefore, the coiling temperature of hot rolling in the method for producing an aluminum alloy plate for a resin-coated can body according to the present invention needs to be 320 ° C. or higher.

(冷間加工の圧延率:80〜90%)
本発明に係る樹脂被覆缶胴用アルミニウム合金板の製造方法に含まれる冷間加工の圧延率は、材料強度及び成形性に寄与する因子である。すなわち、この冷間加工の圧延率が80%より低いと充分な材料強度が得られず、熱処理後の耐力と成形したボトル缶のネジ座屈強度が不足する。更に、0°−180°耳が高くなり、フランジ部の寸法不良を生じやすくなる。また、この冷間加工の圧延率が90%を超えると、耐力が高くなるとともに耳率が過度に高くなり、フランジ部の寸法不良を生じやすくなる。従って、本発明では、冷間加工の圧延率が80〜90%であることが必要である。
(Rolling ratio of cold working: 80-90%)
The rolling rate of cold working included in the method for producing an aluminum alloy plate for a resin-coated can body according to the present invention is a factor contributing to material strength and formability. That is, if the rolling ratio of this cold working is lower than 80%, sufficient material strength cannot be obtained, and the yield strength after heat treatment and the screw buckling strength of the molded bottle can are insufficient. Further, the 0 ° -180 ° ear becomes high, and the dimensional defect of the flange portion is likely to occur. Moreover, when the rolling rate of this cold working exceeds 90%, the yield strength becomes high and the ear rate becomes excessively high, which tends to cause a dimensional defect of the flange portion. Therefore, in this invention, it is required that the rolling rate of cold work is 80 to 90%.

以上説明した本発明に係る樹脂被覆缶胴用アルミニウム合金板は、図1に示すような従来の一例の3ピースボトル缶や、図2に示すような従来の一例のDI缶等に好適であるとともに、従来の種々のアルミニウム合金のラミネート材にも好適な素材である。   The above-described aluminum alloy plate for a resin-coated can body according to the present invention is suitable for a conventional one-piece three-piece bottle can as shown in FIG. 1, a conventional example DI can as shown in FIG. At the same time, it is also a suitable material for various conventional aluminum alloy laminates.

本発明に係る樹脂被覆缶胴用アルミニウム合金板を、図1に示すような従来の一般的な3ピースボトル缶1に適用する場合には、本発明に係る樹脂被覆缶胴用アルミニウム合金板に対してカップ成形やDI成形等の缶体成形を施して有底円筒状の缶(胴体部2)を形成する。続いて、この有底円筒状の缶の底部にネッキング加工を施してネック部3を形成する。   When the resin-coated can body aluminum alloy plate according to the present invention is applied to a conventional three-piece bottle can 1 as shown in FIG. 1, the resin-coated can body aluminum alloy plate according to the present invention is used. On the other hand, can body molding such as cup molding and DI molding is performed to form a bottomed cylindrical can (body portion 2). Subsequently, the neck portion 3 is formed by necking the bottom portion of the bottomed cylindrical can.

なお、図1に示す3ピースボトル缶1のネック部3には、口部4が開口されたのちキャップ取り付け用のネジ切り加工が施されてネジ部が設けられる。またこれに対向する開口部(図示せず)には、ネック加工とフランジ加工を施した後、シーマによって別途成形した底蓋5が巻き締められ、3ピースボトル缶1を製造することができる。   The neck portion 3 of the three-piece bottle can 1 shown in FIG. 1 is provided with a threaded portion by being threaded for attaching a cap after the mouth portion 4 is opened. In addition, the opening (not shown) facing this is subjected to neck processing and flange processing, and then a bottom lid 5 separately formed by a seamer is wound up, whereby the three-piece bottle can 1 can be manufactured.

また、本発明に係る樹脂被覆缶胴用アルミニウム合金板を、図2に示すような従来の一般的なDI缶11に適用する場合には、本発明に係る樹脂被覆缶胴用アルミニウム合金板に対してカップ成形やDI成形等の缶体成形を施して胴体部12を形成する。続いて、この胴体部12にネッキング加工を施してネック部13を形成し、引き続いてこのネック部13のエンド部に開口部14を形成するとともにこの開口部14の口径が胴体部12の径に比べて小さくなるように加工することで、DI缶11を製造することができる。   When the aluminum alloy plate for a resin-coated can body according to the present invention is applied to a conventional general DI can 11 as shown in FIG. 2, the aluminum alloy plate for a resin-coated can body according to the present invention is used. On the other hand, the body 12 is formed by subjecting the can body such as cup molding or DI molding. Subsequently, necking 13 is performed on the body portion 12 to form a neck portion 13. Subsequently, an opening portion 14 is formed at the end portion of the neck portion 13, and the diameter of the opening portion 14 is set to the diameter of the body portion 12. The DI can 11 can be manufactured by processing so as to be smaller.

また、本発明に係る樹脂被覆缶胴用アルミニウム合金板を、従来の一般的なラミネート材に適用する場合には、従来公知のラミネート材に適用されている各種の樹脂フィルムを、接着剤等を介して貼り合わせた後、その樹脂フィルムの融点以上で熱処理が施される工程等を経て、ラミネート材が作製される。   In addition, when the aluminum alloy plate for resin-coated can bodies according to the present invention is applied to a conventional general laminate material, various resin films applied to a conventionally known laminate material are bonded with an adhesive or the like. Then, a laminate material is manufactured through a process in which heat treatment is performed at a temperature equal to or higher than the melting point of the resin film.

次に、本発明に係る樹脂被覆缶胴用アルミニウム合金板及びその製造方法について、本発明の要件を満たす実施例と本発明の要件を満たさない比較例とを比較して具体的に説明する。   Next, the resin-coated can body aluminum alloy plate according to the present invention and the manufacturing method thereof will be described in detail by comparing an example satisfying the requirements of the present invention with a comparative example not satisfying the requirements of the present invention.

まず、表1に示すような合金組成を備えたアルミニウム合金を溶解・鋳造し、この鋳塊に、表1に示す均質化熱処理温度及び時間で均質化熱処理を施した。続いて、熱間粗圧延、熱間仕上げ圧延を順次行って熱間圧延板を作製した後、表1に示すような巻き取り温度でこの熱間圧延板を巻き取って、ホットコイルとした。そして、このホットコイルに、表1に示す加工率の冷間圧延を施して、厚さ0.32mmの樹脂被覆缶胴用アルミニウム合金板とした。   First, an aluminum alloy having an alloy composition as shown in Table 1 was melted and cast, and this ingot was subjected to homogenization heat treatment at the homogenization heat treatment temperature and time shown in Table 1. Subsequently, hot rough rolling and hot finish rolling were sequentially performed to produce a hot rolled plate, and then the hot rolled plate was wound at a winding temperature as shown in Table 1 to obtain a hot coil. And this hot coil was cold-rolled with the processing rate shown in Table 1, and it was set as the 0.32 mm-thick aluminum alloy plate for resin-coated can bodies.

Figure 2011208258
Figure 2011208258

また、前記樹脂被覆缶胴用アルミニウム合金板に対し、高周波グロー放電発光表面分析装置(堀場製作所製 JY5000RF)を用いて、板表面の酸素濃度の測定を行い、得られた測定結果から、酸素濃度が10.0質量%となる深さを求めた。   Moreover, the oxygen concentration of the plate surface was measured with respect to the aluminum alloy plate for the resin-coated can body using a high-frequency glow discharge light emitting surface analyzer (JY5000RF, manufactured by Horiba, Ltd.). Was determined to be 10.0 mass%.

さらに、前記樹脂被覆缶胴用アルミニウム合金板に、硝石炉(ソルトバス)を用いて、樹脂被覆の際の熱処理とほぼ同じ熱履歴である270℃、20秒間の熱処理を施した後に、JIS Z 2241に準じて耐力(0.2%耐力)を測定して得られた測定結果を、熱処理後の耐力とした。   Further, the aluminum alloy plate for the resin-coated can barrel was subjected to a heat treatment at 270 ° C. for 20 seconds, which is almost the same as the heat treatment at the time of resin coating, using a nitrite furnace (a salt bath), and then JIS Z The measurement result obtained by measuring the yield strength (0.2% yield strength) according to 2241 was taken as the yield strength after heat treatment.

そして、前記樹脂被覆缶胴用アルミニウム合金板を用いて、φ66.7mmのブランクを作製し、このブランクをφ40mmのポンチで絞ってカップを作製した。このカップを用いて、後記耳率の測定方法に準じて測定を行い、得られた測定結果を、耳率とした。
耳率(%)={(円筒容器の底面(圧延方向)を基準とした、45°方向4箇所の高さの平均値−円筒容器の底面を基準とした、0°、90°方向4箇所の高さの平均値)/(円筒容器の底面を基準とした0°、45°、90°方向8箇所の高さの平均値)}×100
Then, using the resin-coated can body aluminum alloy plate, a φ66.7 mm blank was prepared, and this blank was squeezed with a φ40 mm punch to prepare a cup. Using this cup, measurement was performed in accordance with a method for measuring ear rate described later, and the obtained measurement result was defined as ear rate.
Ear ratio (%) = {(average value of heights at four locations in 45 ° direction based on bottom surface (rolling direction) of cylindrical container−four locations at 0 ° and 90 ° directions based on bottom surface of cylindrical container) Average value of height) / (average value of height of 8 positions in the 0 °, 45 °, and 90 ° directions with respect to the bottom surface of the cylindrical container)} × 100

実施例1〜6は、いずれも本発明で規制した条件を満足するものである。   Examples 1 to 6 all satisfy the conditions regulated by the present invention.

比較例1はCuの含有量が本発明で数値限定した範囲の下限値未満であるとともに、熱処理後の耐力が数値限定した範囲の下限値未満のものである。比較例2はCuの含有量が本発明で数値限定した範囲の上限値を超えるとともに、熱処理後の耐力が数値限定した範囲の上限値を超えたものである。   In Comparative Example 1, the Cu content is less than the lower limit of the range numerically limited in the present invention, and the proof stress after heat treatment is less than the lower limit of the numerically limited range. In Comparative Example 2, the Cu content exceeds the upper limit of the range numerically limited in the present invention, and the proof stress after the heat treatment exceeds the upper limit of the numerically limited range.

比較例3はMgの含有量が本発明で数値限定した範囲の下限値未満であるとともに、熱処理後の耐力が数値限定した範囲の下限値未満のものである。比較例4はMgの含有量が本発明で数値限定した範囲の上限値を超えるとともに、熱処理後の耐力が数値限定した範囲の上限値を超えたものであり、さらに、冷間圧延後の酸素濃度が数値限定した範囲の上限値を超えたものである。   In Comparative Example 3, the Mg content is less than the lower limit of the range numerically limited in the present invention, and the proof stress after heat treatment is less than the lower limit of the numerically limited range. In Comparative Example 4, the Mg content exceeded the upper limit of the range numerically limited in the present invention, the proof stress after the heat treatment exceeded the upper limit of the numerically limited range, and oxygen after cold rolling The density exceeds the upper limit of the range limited in numerical values.

比較例5はMnの含有量が本発明で数値限定した範囲の下限値未満であるとともに、熱処理後の耐力が数値限定した範囲の下限値未満のものである。比較例6はMnの含有量が本発明で数値限定した範囲の上限値を超えるとともに、熱処理後の耐力が数値限定した範囲の上限値を超えたものである。 In Comparative Example 5, the content of Mn is less than the lower limit value of the range numerically limited in the present invention, and the proof stress after the heat treatment is less than the lower limit value of the numerically limited range. In Comparative Example 6, the Mn content exceeds the upper limit of the range numerically limited in the present invention, and the proof stress after the heat treatment exceeds the upper limit of the numerically limited range.

比較例7はFeの含有量が本発明で数値限定した範囲の下限値未満であるとともに、熱処理後の耐力が数値限定した範囲の上限値を超えたものであり、さらに、耳率が数値限定した範囲の上限値を超えたものである。比較例8はFeの含有量が本発明で数値限定した範囲の上限値を超えたものである。 In Comparative Example 7, the Fe content is less than the lower limit value of the range numerically limited in the present invention, the proof stress after the heat treatment exceeds the upper limit value of the numerically limited range, and the ear rate is numerically limited. The upper limit of the specified range is exceeded. In Comparative Example 8, the Fe content exceeded the upper limit of the range numerically limited in the present invention.

比較例9はSiの含有量が本発明で数値限定した範囲の下限値未満のものである。比較例10はSiの含有量が本発明で数値限定した範囲の上限値を超えたものであるとともに、熱処理後の耐力が数値限定した範囲の上限値を超えたものであり、さらに、耳率が数値限定した範囲の上限値を超えたものである。 In Comparative Example 9, the Si content is less than the lower limit value of the range numerically limited in the present invention. In Comparative Example 10, the Si content exceeded the upper limit value of the range numerically limited in the present invention, and the proof stress after the heat treatment exceeded the upper limit value of the numerically limited range. Exceeds the upper limit of the numerically limited range.

比較例11は均質化熱処理の温度が本発明で数値限定した範囲の下限値未満であるとともに、熱処理後の耐力が数値限定した範囲の上限値を超えたものであり、更に、耳率が数値限定した範囲の上限値を超えたものである。比較例12は、均質化熱処理の温度が本発明で数値限定した範囲の上限値を超えるとともに、冷間圧延後の酸素濃度が数値限定した範囲の上限値を超えたものである。 In Comparative Example 11, the temperature of the homogenization heat treatment is less than the lower limit of the range numerically limited in the present invention, the proof stress after the heat treatment exceeds the upper limit of the numerically limited range, and the ear ratio is a numerical value. The upper limit of the limited range is exceeded. In Comparative Example 12, the temperature of the homogenizing heat treatment exceeds the upper limit value of the range limited by the present invention, and the oxygen concentration after cold rolling exceeds the upper limit value of the numerically limited range.

比較例13は均質化熱処理の時間が本発明で数値限定した範囲の下限値未満であるとともに、熱処理後の耐力が数値限定した範囲の上限値を超えたものであり、さらに、耳率が数値限定した範囲の上限値を超えたものである。 In Comparative Example 13, the homogenization heat treatment time is less than the lower limit value of the range numerically limited in the present invention, the proof stress after the heat treatment exceeds the upper limit value of the numerically limited range, and the ear ratio is a numerical value. The upper limit of the limited range is exceeded.

比較例14は前記熱間圧延における巻き取り温度が本発明で数値限定した範囲の下限値未満であるとともに、熱処理後の耐力が数値限定した範囲の上限値を超えたものであり、さらに、耳率が数値限定した範囲の上限値を超えたものである。   In Comparative Example 14, the coiling temperature in the hot rolling is less than the lower limit value of the range numerically limited in the present invention, and the proof stress after the heat treatment exceeds the upper limit value of the numerically limited range. The rate exceeds the upper limit of the numerically limited range.

比較例15は、冷間圧延工程における冷間圧延率が本発明で数値限定した範囲の下限値未満であるとともに、熱処理後の耐力が数値限定した範囲の下限値未満のものである。比較例16は、冷間圧延率が本発明で数値限定した範囲の上限値を超えるとともに、熱処理後の耐力が数値限定した範囲の上限値を超えたものであり、さらに、耳率が数値限定した範囲の上限値を超えたものである。   In Comparative Example 15, the cold rolling rate in the cold rolling step is less than the lower limit value of the range numerically limited in the present invention, and the proof stress after the heat treatment is less than the lower limit value of the numerically limited range. In Comparative Example 16, the cold rolling rate exceeds the upper limit value of the range numerically limited in the present invention, the proof stress after the heat treatment exceeds the upper limit value of the numerically limited range, and the ear rate is numerically limited. The upper limit of the specified range is exceeded.

このようにして製造された本発明に係る実施例1〜6及び本発明で規制した条件を満足しない比較例1〜16の樹脂被覆缶胴用アルミニウム合金板に、アルカリ洗浄及びリン酸クロメート処理を施し、その後厚さ16μmの樹脂フィルムを両面に被覆し、さらに、270℃で20秒間の熱処理を施して、ラミネート材とした。以下、図3を参照して、前記ラミネート材について行った評価方法について説明する。図3は、本発明に係る樹脂被覆缶胴用アルミニウム合金板について評価を行う際の、当該樹脂被覆缶胴用アルミニウム合金板に樹脂フィルムを被覆したラミネート材からの3ピースボトル缶の作製方法を模式的に示す模式図である。   The aluminum alloy plates for resin-coated can bodies of Examples 1 to 6 according to the present invention and Comparative Examples 1 to 16 that do not satisfy the conditions regulated by the present invention were subjected to alkali cleaning and phosphoric acid chromate treatment. After that, a resin film having a thickness of 16 μm was coated on both surfaces, and further heat-treated at 270 ° C. for 20 seconds to obtain a laminate material. Hereinafter, with reference to FIG. 3, the evaluation method performed about the said laminate material is demonstrated. FIG. 3 shows a method for producing a three-piece bottle can from a laminate material in which a resin film is coated on the aluminum alloy plate for a resin-coated can barrel when evaluating the aluminum alloy plate for a resin-coated can barrel according to the present invention. It is a schematic diagram shown typically.

ラミネート材21を用いてカップ成形を行い、カップ22を作製した。一般に、アルミニウム合金板のラミネート材を、従来の通常のDI成形のように開口部までしごいた場合、この上端部の先端部では樹脂フィルムが剥離したり、ダイスにビルドアップしたりするなど、加工上の不具合が生じ易くなる。このため、本発明では、前記アルミニウム合金板から製造されたラミネート材21を従来の通常のDI成形のように上端部の先端部までしごかずに、フランジ部22aを適宜残して成形する。   Cup molding was performed using the laminate material 21 to produce a cup 22. In general, when the laminate material of an aluminum alloy plate is squeezed up to the opening as in conventional normal DI molding, the resin film peels off at the tip of this upper end or builds up on a die, etc. Processing defects are likely to occur. For this reason, in the present invention, the laminate material 21 manufactured from the aluminum alloy plate is formed without leaving the flange portion 22a as appropriate, without squeezing the tip of the upper end portion as in the conventional normal DI molding.

ラミネート材の成形評価では、カップ成形ののち白色のワセリンを塗布して絞り成形及びしごき成形(DI成形)を施し、得られたアルミ缶の底部にネッキング加工及びネジ切り加工を施した。DI成形では被覆した樹脂フィルムの剥離を抑えるべくフランジ部22aを残した成形を行った。そして、得られたアルミ缶にネック加工とフランジ加工とを施した後、別途成形した底蓋5を巻き締めし、3ピースボトル缶1を作製した。   In the molding evaluation of the laminate material, white petrolatum was applied after cup molding, drawing molding and ironing molding (DI molding), and necking and threading were performed on the bottom of the obtained aluminum can. In DI molding, molding was performed with the flange portion 22a remaining in order to suppress peeling of the coated resin film. And after giving neck processing and flange processing to the obtained aluminum can, the separately formed bottom cover 5 was wound and the 3 piece bottle can 1 was produced.

(しごき成形性)
しごき成形性は、連続成形で10000缶製缶したときに破断(胴切れ)が発生した回数が、0〜3回のものを「○(良好)」とし、4回以上のものを「×(不良)」とした。
(Silent formability)
As for ironing moldability, when 10000 cans can be made by continuous molding, the number of breaks (out of body) is 0 to 3 times “good (good)”, 4 times or more “× ( Bad) ”.

(フランジ部寸法)
フランジ部寸法は、しごき成形時に上端部に残しているフランジ部22aの形が真円に近いものを「○(良好)」とし、四角形やフランジ部22aが欠けているものを「×(不良)」とした。
(Flange dimensions)
For the flange dimensions, “○ (good)” indicates that the shape of the flange 22a remaining at the upper end during ironing is close to a perfect circle, and “× (defective) indicates that the square or flange 22a is missing. "

(表面品質)
トリミング後の缶において、板の圧延方向に対し90°方向の上端部を目視観察し、上端部から20mmの範囲におけるフローマーク状の黒い筋が3本以下のものを「○(良好)」とし、4本以上のものを「×(不良)」とした。
(Surface quality)
In the can after trimming, visually observe the upper end in the 90 ° direction with respect to the rolling direction of the plate, and mark “◯ (good)” if there are 3 or less flow-marked black streaks in the range of 20 mm from the upper end. Four or more were designated as “x (defect)”.

(ネジ座屈強度)
成形した3ピースボトル缶1に軸方向の圧縮荷重を負荷し、ネジ部が座屈したときの荷重を5サンプルについて測定して、平均値をネジ座屈強度とした。なお、このネジ座屈強度は、1500N以上であれば実用上問題がないことから、1500N以上のものを「○良好」とし、1500N未満のものを「×(不良)」とした。
以上の評価結果を表2に示す。
(Screw buckling strength)
A compression load in the axial direction was applied to the molded three-piece bottle can 1, and the load when the screw portion buckled was measured for five samples, and the average value was defined as the screw buckling strength. In addition, since there is no practical problem if the screw buckling strength is 1500 N or more, those having 1500 N or more were rated “good” and those having less than 1500 N were “x (defect)”.
The above evaluation results are shown in Table 2.

Figure 2011208258
Figure 2011208258

表2に示すように、本発明で規制した条件を全て満たす実施例(実施例1〜6)では、前記評価項目の全て(しごき成形性、フランジ部寸法、表面品質、ネジ座屈強度)を良好に満足するという結果となった。一方、本発明で規制した条件を満足しない比較例(比較例1〜16)では、前記評価項目の全てを良好に満足するものは得られなかった。   As shown in Table 2, in the examples (Examples 1 to 6) that satisfy all the conditions regulated by the present invention, all of the evaluation items (ironing formability, flange part size, surface quality, screw buckling strength) are obtained. The result was satisfactory. On the other hand, in the comparative examples (Comparative Examples 1 to 16) that do not satisfy the conditions regulated by the present invention, those that satisfactorily satisfy all the evaluation items were not obtained.

比較例1はネジ座屈強度が実用上問題のない水準に達しておらず、比較例2はしごき成形性が「×(不良)」であった。また、比較例3はネジ座屈強度が実用上問題のない水準に達しておらず、比較例4はしごき成形性が「×(不良)」であるとともに表面品質が「×(不良)」であった。   In Comparative Example 1, the screw buckling strength did not reach a practically satisfactory level, and in Comparative Example 2, the ironing formability was “x (defect)”. Further, Comparative Example 3 does not reach a practically satisfactory level of screw buckling strength, and Comparative Example 4 has an iron moldability of “x (defect)” and a surface quality of “x (defect)”. there were.

比較例5はネジ座屈強度が実用上問題のない水準に達しておらず、比較例6はしごき成形性が「×(不良)」であった。そして、比較例7はしごき成形性及びフランジ部寸法が「×(不良)」であり、比較例8はフランジ部寸法が「×(不良)」であった。   In Comparative Example 5, the screw buckling strength did not reach a practically satisfactory level, and in Comparative Example 6, the ironing formability was “x (defect)”. In Comparative Example 7, the ironing formability and the flange part dimensions were “x (defect)”, and in Comparative Example 8, the flange part dimensions were “x (defect)”.

比較例9はフランジ部寸法が「×(不良)」であり、比較例10はしごき成形性及びフランジ部寸法が「×(不良)」であった。   In Comparative Example 9, the dimension of the flange portion was “x (defect)”, and in Comparative Example 10, the ironing formability and the flange portion dimension were “x (defect)”.

比較例11はしごき成形性及びフランジ部寸法が「×(不良)」であり、比較例12は表面品質が「×(不良)」であった。また、比較例13及び比較例14はしごき成形性及びフランジ部寸法が「×(不良)」であった。   In Comparative Example 11, the ironing formability and the flange size were “x (defect)”, and in Comparative Example 12, the surface quality was “x (defect)”. Further, Comparative Example 13 and Comparative Example 14 were “× (defect)” in the ironing formability and the flange portion dimensions.

比較例15はフランジ部寸法が「×(不良)」であり、比較例16はしごき成形性及びフランジ部寸法が「×(不良)」であった。   In Comparative Example 15, the flange part dimension was “x (defect)”, and in Comparative Example 16, the ironing formability and the flange part dimension were “x (defect)”.

なお、比較例12のアルミニウム合金板は、特許文献に記載された従来のアルミニウム合金板を想定したものである。本実施例で示したように、この従来のアルミニウム合金板は、表面品質について一定の水準を満たさないものである。従って、本実施例によって、本発明に係るアルミニウム合金板が従来のアルミニウム合金板と比較して、優れているのが客観的に明らかとなった。   In addition, the aluminum alloy plate of the comparative example 12 assumes the conventional aluminum alloy plate described in the patent document. As shown in this example, this conventional aluminum alloy sheet does not satisfy a certain level of surface quality. Therefore, this example objectively revealed that the aluminum alloy plate according to the present invention is superior to the conventional aluminum alloy plate.

1 3ピースボトル缶
2 胴体部
3 ネック部
4 口部
5 底蓋
11 DI缶
12 胴体部
13 ネック部
14 開口部
21 ラミネート材
22 カップ
22a フランジ部
DESCRIPTION OF SYMBOLS 1 3 piece bottle can 2 Body part 3 Neck part 4 Mouth part 5 Bottom cover 11 DI can 12 Body part 13 Neck part 14 Opening part 21 Laminating material 22 Cup 22a Flange part

Claims (2)

Cuを0.10〜0.35質量%、Mgを0.80〜1.60質量%、Mnを0.80〜1.30質量%、Feを0.35〜0.70質量%、Siを0.10〜0.35質量%それぞれ含有し、残部がAl及び不可避的不純物から構成されるとともに、270℃で20秒間の熱処理を施した後の耐力が225〜255N/mmであり、かつ、耳率が5%以下であるアルミニウム合金板であって、
冷間圧延後の当該アルミニウム合金板の酸素濃度について、10.0質量%以上である領域が板表面から板厚方向に0.08μm以内であることを特徴とする樹脂被覆缶胴用アルミニウム合金板。
Cu is 0.10 to 0.35 mass%, Mg is 0.80 to 1.60 mass%, Mn is 0.80 to 1.30 mass%, Fe is 0.35 to 0.70 mass%, Si is Each containing 0.10 to 0.35% by mass, the balance being composed of Al and inevitable impurities, and the yield strength after heat treatment at 270 ° C. for 20 seconds is 225 to 255 N / mm 2 , and An aluminum alloy plate having an ear rate of 5% or less,
An aluminum alloy plate for a resin-coated can body, characterized in that the oxygen concentration of the aluminum alloy plate after cold rolling is 10.0% by mass or more within 0.08 μm in the plate thickness direction from the plate surface .
Cuを0.10〜0.35質量%、Mgを0.80〜1.60質量%、Mnを0.80〜1.30質量%、Feを0.35〜0.70質量%、Siを0.10〜0.35質量%それぞれ含有し、残部がAl及び不可避的不純物から構成されるアルミニウム合金を溶解・鋳造して鋳塊を作製する溶解・鋳造工程と、
前記溶解・鋳造工程において作製されたアルミニウム合金の前記鋳塊に480〜540℃で10時間以上、均質化熱処理を施す均質化熱処理工程と、
前記均質化熱処理工程において均質化熱処理が施されたアルミニウム合金の前記鋳塊を熱間圧延し、巻き取り温度を320℃以上にして巻き取る熱間圧延工程と、
前記熱間圧延工程において熱間圧延が施されたアルミニウム合金板に、冷間加工の圧延率を80〜90%に設定して冷間圧延する冷間圧延工程と、
を含むことを特徴とする樹脂被覆缶胴用アルミニウム合金板の製造方法。
Cu is 0.10 to 0.35 mass%, Mg is 0.80 to 1.60 mass%, Mn is 0.80 to 1.30 mass%, Fe is 0.35 to 0.70 mass%, Si is A melting / casting step for producing an ingot by melting and casting an aluminum alloy containing 0.10 to 0.35% by mass and the balance being composed of Al and inevitable impurities;
A homogenization heat treatment step of subjecting the ingot of the aluminum alloy produced in the melting / casting step to a homogenization heat treatment at 480 to 540 ° C. for 10 hours or more;
Hot rolling the ingot of the aluminum alloy that has been subjected to the homogenization heat treatment in the homogenization heat treatment step, and winding the coil at a coiling temperature of 320 ° C. or higher; and
A cold rolling process in which the aluminum alloy sheet that has been hot-rolled in the hot-rolling process is cold-rolled by setting a rolling rate of cold working to 80 to 90%;
The manufacturing method of the aluminum alloy plate for resin-coated can bodies characterized by including.
JP2010079169A 2010-03-30 2010-03-30 Method for producing aluminum alloy sheet for resin-coated can body Expired - Fee Related JP5491933B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010079169A JP5491933B2 (en) 2010-03-30 2010-03-30 Method for producing aluminum alloy sheet for resin-coated can body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010079169A JP5491933B2 (en) 2010-03-30 2010-03-30 Method for producing aluminum alloy sheet for resin-coated can body

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2014003909A Division JP5976023B2 (en) 2014-01-14 2014-01-14 Aluminum alloy plate for resin-coated can body

Publications (2)

Publication Number Publication Date
JP2011208258A true JP2011208258A (en) 2011-10-20
JP5491933B2 JP5491933B2 (en) 2014-05-14

Family

ID=44939608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010079169A Expired - Fee Related JP5491933B2 (en) 2010-03-30 2010-03-30 Method for producing aluminum alloy sheet for resin-coated can body

Country Status (1)

Country Link
JP (1) JP5491933B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014112600A1 (en) 2013-01-18 2014-07-24 大成プラス株式会社 Heat exchanger and method for manufacturing same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004238653A (en) * 2003-02-04 2004-08-26 Kobe Steel Ltd Resin coated aluminum alloy sheet for packaging container, and its manufacturing method
JP2007270204A (en) * 2006-03-30 2007-10-18 Kobe Steel Ltd Al alloy sheet superior in formability for stretch flange and manufacturing method therefor
JP2008202134A (en) * 2007-02-22 2008-09-04 Kobe Steel Ltd Aluminum alloy hot rolled sheet having excellent press formability

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004238653A (en) * 2003-02-04 2004-08-26 Kobe Steel Ltd Resin coated aluminum alloy sheet for packaging container, and its manufacturing method
JP2007270204A (en) * 2006-03-30 2007-10-18 Kobe Steel Ltd Al alloy sheet superior in formability for stretch flange and manufacturing method therefor
JP2008202134A (en) * 2007-02-22 2008-09-04 Kobe Steel Ltd Aluminum alloy hot rolled sheet having excellent press formability

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014112600A1 (en) 2013-01-18 2014-07-24 大成プラス株式会社 Heat exchanger and method for manufacturing same

Also Published As

Publication number Publication date
JP5491933B2 (en) 2014-05-14

Similar Documents

Publication Publication Date Title
JP4019082B2 (en) Aluminum alloy plate for bottle cans with excellent high temperature characteristics
JP3913260B1 (en) Aluminum alloy cold rolled sheet for bottle cans with excellent neck formability
JP2012188703A (en) Aluminum-alloy sheet for resin coated can body, and method for producing the same
JP5675447B2 (en) Aluminum alloy plate for resin-coated can body and manufacturing method thereof
JP4019083B2 (en) Aluminum alloy cold rolled sheet for bottle cans with excellent high temperature characteristics
WO2014129385A1 (en) Aluminum alloy plate for can body and production method therefor
JP5568031B2 (en) Aluminum alloy cold rolled sheet for bottle cans
JP5113411B2 (en) Aluminum alloy plate for packaging container and method for producing the same
JP5976023B2 (en) Aluminum alloy plate for resin-coated can body
JP2010189730A (en) Method of producing aluminum alloy sheet for beverage can barrel
JP5491933B2 (en) Method for producing aluminum alloy sheet for resin-coated can body
JP3719673B2 (en) Aluminum alloy plate for resin-coated packaging container and method for producing the same
JP5745364B2 (en) Aluminum can plate for can body and method for manufacturing the same, and resin-coated aluminum alloy plate for can body and method for manufacturing the same
JP5480688B2 (en) Aluminum alloy plate for PP cap and method for producing the same
JP4019084B2 (en) Aluminum alloy cold rolled sheet for bottle cans with excellent high temperature characteristics
JP2006097076A (en) Aluminum-alloy sheet for bottle can, and its manufacturing method
JP2005048288A (en) Aluminum alloy sheet for bottle can excellent in shape stability and strength of bottom part
JP4846457B2 (en) Manufacturing method of aluminum alloy plate for caps with excellent bending workability
JP2012197510A (en) Molten metal oxidation-controlled aluminum-magnesium alloy
JP4995494B2 (en) High-strength aluminum alloy plate for wide-mouth bottle can cap and method for producing the same
JP5080150B2 (en) Manufacturing method of aluminum alloy plate for high-strength cap with excellent openability and ear rate
JP2006070344A (en) Aluminum alloy sheet for resin-coated packing container and its production method
JP5480647B2 (en) Aluminum alloy composite plate for packaging container lid and manufacturing method thereof
JP2006265715A (en) Aluminum alloy sheet for resin coated packaging container and method for manufacturing the same
JP5498757B2 (en) Aluminum alloy plate for cap

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140228

R150 Certificate of patent or registration of utility model

Ref document number: 5491933

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees