JP5356359B2 - Aluminum alloy coated plate for positive pressure can lid and manufacturing method thereof - Google Patents

Aluminum alloy coated plate for positive pressure can lid and manufacturing method thereof Download PDF

Info

Publication number
JP5356359B2
JP5356359B2 JP2010263117A JP2010263117A JP5356359B2 JP 5356359 B2 JP5356359 B2 JP 5356359B2 JP 2010263117 A JP2010263117 A JP 2010263117A JP 2010263117 A JP2010263117 A JP 2010263117A JP 5356359 B2 JP5356359 B2 JP 5356359B2
Authority
JP
Japan
Prior art keywords
aluminum alloy
lid
positive pressure
temperature
coated plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010263117A
Other languages
Japanese (ja)
Other versions
JP2012112007A (en
Inventor
峰光 岡田
洋 横井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP2010263117A priority Critical patent/JP5356359B2/en
Priority to PCT/JP2011/075894 priority patent/WO2012070391A1/en
Publication of JP2012112007A publication Critical patent/JP2012112007A/en
Application granted granted Critical
Publication of JP5356359B2 publication Critical patent/JP5356359B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • C22C21/08Alloys based on aluminium with magnesium as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/047Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with magnesium as the next major constituent

Abstract

Provided is a coated aluminum alloy sheet for pressurized-can lids which, even when produced in a reduced thickness without through a process annealing step, suffers no decrease in toughness, has satisfactory formability during lid forming, and has excellent resistance to cracking by buckling. The coated aluminum alloy sheet has a composition which contains, in terms of mass%, 0.04-0.20% Si, 0.35-0.70% Mn, 0.12-0.30% Fe, 0.01-0.10% Cu, and 4.0-5.5% Mg, the remainder comprising Al and incidental impurities, and has a thickness of 0.190-0.230 mm. The sheet is characterized by having a tensile strength of 360-400 MPa and a proof strength of 320-355 MPa. The sheet is further characterized in that when a test piece cut out of the sheet along the direction perpendicular to the rolling direction is subjected to a 90º reversed cyclic bending test at an inner bending radius of 1.0 mm while applying a constant load of 100 N to the test piece, then the number of cycles to rupture is 7 or more.

Description

本発明は、缶蓋用のアルミニウム合金塗装板、特に陽圧缶の蓋として好適に使用される陽圧缶蓋用アルミニウム合金塗装板およびその製造方法に関する。   The present invention relates to an aluminum alloy coated plate for a can lid, and more particularly to an aluminum alloy coated plate for a positive pressure can lid that is suitably used as a lid for a positive pressure can and a method for producing the same.

飲料缶などに使用されるイージーオープン缶蓋材には、絞り加工性、カール成形性、リベット加工性、スコア加工性、開缶性などが優れていることが要求される。特に、ビール缶、炭酸飲料缶など、内容物充填後に高い内圧が加わる陽圧缶においては、高い耐圧が必要であり、素材である缶蓋材すなわち缶蓋用アルミニウム合金塗装板には高い強度が要求される。   Easy open can lid materials used for beverage cans and the like are required to have excellent drawing processability, curl formability, rivet processability, score processability, can openability, and the like. In particular, in positive pressure cans such as beer cans and carbonated beverage cans, where high internal pressure is applied after filling the contents, high pressure resistance is necessary, and the can lid material, that is, the aluminum alloy coated plate for can lids, has high strength. Required.

近年、コスト低減のために缶蓋材の薄肉化が進められ、一方、環境負荷軽減のために、缶蓋材の製造において、熱間圧延工程直後や冷間圧延工程途中における中間焼鈍工程の省略が強く望まれている。しかし、単なる中間焼鈍工程の省略は、材料の靱性を著しく低下させ、このため、特に薄肉化された缶蓋においては耐バックリング亀裂性が低下する。なお、耐バックリング亀裂性とは、夏期の車中などで気温が上がることにより缶内圧が上昇して蓋が膨れるだけでなく、さらに本来凹状のカウンターシンク部が凸状に変形するバックリングを起こした時に材料に亀裂が入り難い性能を意味する。   In recent years, the thickness of can lid materials has been reduced in order to reduce costs. On the other hand, in order to reduce environmental burden, in the production of can lid materials, the intermediate annealing process is omitted immediately after the hot rolling process or in the middle of the cold rolling process. Is strongly desired. However, the omission of the simple intermediate annealing step significantly reduces the toughness of the material, and therefore the buckling crack resistance is lowered particularly in a thinned can lid. Buckling resistance refers to buckling that not only causes the pressure inside the can to rise and the lid swells when the temperature rises in the car during the summer, but also causes the concave countersink part to deform into a convex shape. It means that the material does not easily crack when it is woken up.

このようなことから、中間焼鈍工程を省略し、また同時に薄肉化した場合においても、耐バックリング亀裂性に優れたアルミニウム合金缶蓋材が要求されており、耐バックリング亀裂性を高めるための手法が種々提案されている。例えば、金属間化合物のサイズ、個数を制御したり、Si、Mn、Fe、Cu、Mg、遷移金属元素などの合金成分量を調整することにより、缶蓋材の特性を改善することが提案されているが、必ずしも陽圧用缶蓋材として必要な強度を満たすことができず、薄肉化が進んだ場合、製蓋後の耐圧を維持し、また耐バックリング亀裂性を維持するには十分ではない。   Therefore, even when the intermediate annealing step is omitted and the thickness is reduced at the same time, an aluminum alloy can lid material excellent in buckling crack resistance is required, and the resistance to buckling crack resistance is improved. Various methods have been proposed. For example, it has been proposed to improve the characteristics of can lid materials by controlling the size and number of intermetallic compounds and adjusting the amount of alloy components such as Si, Mn, Fe, Cu, Mg, and transition metal elements. However, it does not necessarily meet the strength required for a positive pressure can lid material, and when thinning progresses, it is not enough to maintain the pressure resistance after lid making and to maintain buckling crack resistance. Absent.

特開2001−11558号公報JP 2001-11558 A 特開2001−164347号公報JP 2001-164347 A 特開2007−23340号公報JP 2007-23340 A 特開2009−221567号公報JP 2009-221567 A

本発明は、上記従来の問題点を解消する陽圧缶用の缶蓋材を得るために、陽圧缶蓋用アルミニウム合金塗装板の製造条件、すなわち、鋳塊の均質化処理、熱間圧延、冷間圧延、塗装焼付け処理などの条件と、缶蓋材としての特性との関係について試験、検討を重ねた結果としてなされたものであり、その目的は、中間焼鈍工程を省略し、かつ薄肉化しても、靱性が低下することなく、蓋成形時の成形性が良好であり、耐バックリング亀裂性に優れた陽圧缶蓋用アルミニウム合金塗装板およびその製造方法を提供することにある。   In order to obtain a can lid material for a positive pressure can that eliminates the above-mentioned conventional problems, the present invention provides production conditions for an aluminum alloy coated plate for a positive pressure can lid, that is, homogenization treatment of an ingot, hot rolling It was made as a result of repeated testing and examination of the relationship between conditions such as cold rolling and paint baking treatment and properties as a can lid material. Its purpose is to eliminate the intermediate annealing process and to reduce the thickness An object of the present invention is to provide an aluminum alloy coated plate for a positive pressure can lid, which has good formability at the time of lid forming without deterioration in toughness and is excellent in buckling crack resistance, and a method for producing the same.

上記の目的を達成するための請求項1による陽圧缶蓋用アルミニウム合金塗装板は、質量%で、Si:0.04〜0.20%、Mn:0.35〜0.70%、Fe:0.12〜0.30%、Cu:0.01〜0.10%、Mg:4.0〜5.5%を含有し、残部がAl及び不可避的不純物からなる組成を有し、厚さが0.190mm以上0.230mm以下のアルミニウム合金塗装板であって、引張強さが360〜400MPa、耐力が320〜355MPaで、圧延方向に対して90°方向に試験片を採取し、該試験片に100Nの一定荷重を負荷し、内曲げ半径1.0mmで90°両振り繰り返し曲げ試験を行った場合における破断限界回数が7回以上であることを特徴とする。以下の説明において、合金成分値は全て質量%で示す。   To achieve the above object, the aluminum alloy coated plate for a positive pressure can lid according to claim 1 is in mass%, Si: 0.04 to 0.20%, Mn: 0.35 to 0.70%, Fe : 0.12 to 0.30%, Cu: 0.01 to 0.10%, Mg: 4.0 to 5.5%, with the balance being composed of Al and inevitable impurities, Is an aluminum alloy coated plate having a thickness of 0.190 mm or more and 0.230 mm or less, a tensile strength of 360 to 400 MPa, a proof stress of 320 to 355 MPa, a test piece taken in a 90 ° direction with respect to the rolling direction, When a constant load of 100 N is applied to the test piece and a 90 ° double swing repeated bending test is performed with an inner bending radius of 1.0 mm, the fracture limit number is 7 or more. In the following description, all alloy component values are indicated by mass%.

請求項2による陽圧缶蓋用アルミニウム合金塗装板の製造方法は、請求項1記載の陽圧缶蓋用アルミニウム合金塗装板を製造する方法であって、前記組成を有するアルミニウム合金を溶解、鋳造し、得られた鋳塊を均質化熱処理した後、熱間圧延を行い、厚さ0.190mm以上0.230mm以下まで冷間圧延し、得られた冷間圧延板に塗装を施して、260℃以上でかつ前記組成中のMn含有量%を[Mn]としたとき、33×[Mn]+247で求められる温度(℃)以上300℃以下の温度で塗装焼付け処理することを特徴とする。   A method for producing an aluminum alloy coated plate for a positive pressure can lid according to claim 2 is a method for producing an aluminum alloy coated plate for a positive pressure can lid according to claim 1, wherein the aluminum alloy having the above composition is melted and cast. The ingot thus obtained is subjected to homogenization heat treatment, and then hot-rolled, cold-rolled to a thickness of 0.190 mm to 0.230 mm, and the resulting cold-rolled plate is coated, 260 When the Mn content% in the composition is [Mn], the coating baking process is performed at a temperature (° C) of not less than 33 × [Mn] +247 and not more than 300 ° C.

請求項3による陽圧缶蓋用アルミニウム合金塗装板の製造方法は、請求項1記載の陽圧缶蓋用アルミニウム合金塗装板を製造する方法であって、前記組成を有するアルミニウム合金を溶解、鋳造し、得られた鋳塊を均質化熱処理した後、熱間圧延を行い、厚さ0.190mm以上0.230mm以下まで冷間圧延し、得られた冷間圧延板を、4〜25℃/秒の昇温速度で、260℃以上でかつ前記組成中のMn含有量%を[Mn]としたとき、33×[Mn]+247で求められる温度(℃)以上300℃以下の温度に加熱して0〜20秒間保持する熱処理を行い、塗装を施して、220℃以上260℃未満の温度で塗装焼付け処理することを特徴とする。   A method for producing an aluminum alloy coated plate for a positive pressure can lid according to claim 3 is a method for producing an aluminum alloy coated plate for a positive pressure can lid according to claim 1, wherein the aluminum alloy having the above composition is melted and cast. The ingot thus obtained was subjected to homogenization heat treatment, followed by hot rolling and cold rolling to a thickness of 0.190 mm or more and 0.230 mm or less. Heating to a temperature of not less than 260 ° C. and a Mn content% in the composition of [Mn] at a temperature rise rate of 2 sec. Then, heat treatment is performed for 0 to 20 seconds, coating is performed, and coating baking is performed at a temperature of 220 ° C. or higher and lower than 260 ° C.

中間焼鈍工程を省略し、かつ薄肉化しても、靱性が低下することなく、蓋成形時の成形性が良好であり、耐バックリング亀裂性に優れた陽圧缶蓋用アルミニウム合金塗装板およびその製造方法が提供される。   Even if the intermediate annealing process is omitted and the thickness is reduced, the toughness does not decrease, the moldability at the time of lid molding is good, and the aluminum alloy coated plate for positive pressure can lids with excellent buckling crack resistance and its A manufacturing method is provided.

本発明の陽圧缶蓋用アルミニウム合金塗装板における合金成分の意義および限定理由について説明する。
Si:0.04〜0.20%
Siは、製造原価の低減のため、安価な地金やリサイクル原料を使用するためには、混入を避けられない元素であり、好ましい含有量は0.04〜0.20%の範囲である。0.20%を超えて含有すると、鋳造凝固過程で晶出する金属間化合物MgSiおよびAl−Mn−Si系、Al−Fe−Mn−Si系の金属間化合物の生成と粗大化を引き起こして、缶蓋成形時およびバックリング時の亀裂の発生位置および伝播経路となり、耐バックリング亀裂性、成形性が低下し易くなる。Si含有量が0.04%未満では、高純度の地金原料が必要となり、地金のコストが増加し、また鋳造時の規制が厳しくなり生産性を低下させる。Siのさらに好ましい含有範囲は、金属間化合物量が著しく減少する0.04〜0.15%である。
The significance and reasons for limitation of the alloy components in the aluminum alloy coated plate for a positive pressure can lid of the present invention will be described.
Si: 0.04 to 0.20%
Si is an element that cannot be avoided in order to use inexpensive bullion and recycled raw materials in order to reduce manufacturing costs, and the preferred content is in the range of 0.04 to 0.20%. If it exceeds 0.20%, it causes the formation and coarsening of intermetallic compounds Mg 2 Si and Al—Mn—Si and Al—Fe—Mn—Si based intermetallic compounds that crystallize during the casting solidification process. Thus, the crack generation position and propagation path at the time of can lid molding and buckling become a phenomenon, and the buckling crack resistance and moldability are likely to deteriorate. If the Si content is less than 0.04%, a high-purity raw metal raw material is required, and the cost of the raw metal increases, and regulations at the time of casting become stricter and productivity is lowered. A more preferable content range of Si is 0.04 to 0.15% at which the amount of intermetallic compound is remarkably reduced.

Mn:0.35〜0.70%
Mnは、強度を高めるよう機能するとともに、結晶粒を微細化させる。好ましい含有量は0.35〜0.70%の範囲であり、0.70%を超えると、凝固過程で晶出するAl−Mn系、Al−Fe−Mn系、Al−Mn−Si系、Al−Fe−Mn−Si系の金属間化合物の生成と粗大化を引き起こし、過剰にSiを添加したときと同じ問題が発生してしまう。Mn含有量が0.35%未満では十分な強度を得ることができない。
Mn: 0.35 to 0.70%
Mn functions to increase the strength and refines the crystal grains. The preferred content is in the range of 0.35 to 0.70%, and when it exceeds 0.70%, Al—Mn system, Al—Fe—Mn system, Al—Mn—Si system that crystallizes in the solidification process, The generation of Al-Fe-Mn-Si-based intermetallic compounds and coarsening are caused, and the same problem as when excessive Si is added occurs. If the Mn content is less than 0.35%, sufficient strength cannot be obtained.

Fe:0.12〜0.30%
Feは、強度を高めるよう機能するとともに、結晶粒を微細化させる。好ましい含有量は0.12〜0.30%の範囲であり、0.30%を超えると、鋳造凝固過程で晶出するAl−Fe系、Al−Fe−Mn系、Al−Fe−Si系、Al−Fe−Mn−Si系の金属間化合物の生成と粗大化を引き起こし、過剰にSiを添加したときと同じ問題が発生してしまうため、添加量の抑制が必要である。また、Fe含有量が0.12%未満では、高純度の地金原料が必要となり、地金原料のコストが増加し、また鋳造時の規制が厳しくなり生産性を低下させる。Feのさらに好ましい含有範囲は、Mnの固溶量を著しく低下させない0.12〜0.26%である。
Fe: 0.12-0.30%
Fe functions to increase the strength and refines the crystal grains. The preferred content is in the range of 0.12 to 0.30%, and when it exceeds 0.30%, Al—Fe, Al—Fe—Mn, and Al—Fe—Si that crystallize during the casting solidification process. The generation of Al-Fe-Mn-Si-based intermetallic compounds and coarsening are caused, and the same problem as when Si is added excessively occurs. Therefore, it is necessary to suppress the addition amount. On the other hand, if the Fe content is less than 0.12%, a high-purity bare metal raw material is required, the cost of the bare metal raw material is increased, and regulations at the time of casting become strict and productivity is lowered. A more preferable content range of Fe is 0.12 to 0.26% which does not significantly reduce the solid solution amount of Mn.

Fe含有量が0.30%以下であっても、0.26%を超え0.30%以下の範囲では、Mnの固溶量が低下し、同一Mn量であってもAl−Fe−Mn系、Al−Fe−Mn−Si系の金属間化合物量を多くする作用があるため、特に厳しい耐バックリング亀裂性が求められる酎ハイや非アルコール系炭酸飲料用途、または板厚が0.220mm以下の場合には問題となることがある。そのため、内容物が酎ハイや非アルコール系炭酸飲料である場合や板厚が0.220mm以下の場合には、Fe含有量を0.26%以下に制限することが好ましい。   Even if the Fe content is 0.30% or less, in the range of more than 0.26% and 0.30% or less, the solid solution amount of Mn is reduced, and even if the amount of Mn is the same, Al-Fe-Mn , Al-Fe-Mn-Si-based intermetallic compounds are used to increase the amount of intermetallic compounds, so that particularly severe buckling crack resistance is required. It can be a problem in the following cases: Therefore, when the content is a high-alcohol or non-alcoholic carbonated beverage or when the plate thickness is 0.220 mm or less, the Fe content is preferably limited to 0.26% or less.

Cu:0.01〜0.10%
Cuは、強度を高め、成形性を向上させるよう機能する。好ましい含有量は0.01〜0.10%の範囲であり、0.10%を超えると、鋳造時の鋳塊割れ、および熱間圧延時の割れを引き起こし易く、板材の製造が困難となる。また、0.01%未満では、高純度の地金原料が必要となり、地金原料のコストが増加し、また鋳造時の規制が厳しくなり生産性を低下させる。Cuのさらに好ましい含有範囲は、リサイクル原料の使用が可能で、熱間圧延時の生産性を低下させない0.02〜0.05%である。
Cu: 0.01 to 0.10%
Cu functions to increase strength and improve formability. The preferred content is in the range of 0.01 to 0.10%, and if it exceeds 0.10%, it tends to cause ingot cracking during casting and cracking during hot rolling, making it difficult to produce a plate material. . On the other hand, if it is less than 0.01%, a high-purity bare metal raw material is required, the cost of the bare metal raw material increases, and regulations at the time of casting become strict and productivity is lowered. A more preferable content range of Cu is 0.02 to 0.05% in which recycled raw materials can be used and productivity during hot rolling is not reduced.

Mg:4.0〜5.5%
Mgは、Mg自体の固溶により強度を高め、塗装焼付け硬化性を付与する。また、Mgの含有は、転位との相互作用による加工硬化量を大きくし、内圧が負荷されるアルミニウム合金缶蓋材に対して必要な強度を得るため、必要不可欠な元素であり、好ましい含有量は4.0〜5.5%の範囲である。Mgの含有量が4.0%未満では陽圧缶用の蓋として十分な強度を得ることができず、5.5%を超えて含有されると熱間圧延時の割れを引き起こし易く、板材の製造が困難となる。
Mg: 4.0 to 5.5%
Mg increases strength by solid solution of Mg itself, and imparts paint bake hardenability. In addition, Mg content is an indispensable element for increasing the amount of work hardening due to interaction with dislocations and obtaining the required strength for aluminum alloy can lid materials to which internal pressure is applied. Is in the range of 4.0-5.5%. If the Mg content is less than 4.0%, sufficient strength cannot be obtained as a lid for a positive pressure can, and if it exceeds 5.5%, cracking during hot rolling is likely to occur. Is difficult to manufacture.

本発明の陽圧缶蓋用アルミニウム合金塗装板の製造工程は、溶解、鋳造工程、均質化熱処理工程、熱間圧延工程、冷間圧延工程および塗装焼き付け工程を必須工程として含み、従来工程において通常行われている、熱間圧延工程直後、冷間圧延途中の中間焼鈍工程を省略する。   The manufacturing process of the aluminum alloy coated plate for a positive pressure can lid of the present invention includes a melting process, a casting process, a homogenizing heat treatment process, a hot rolling process, a cold rolling process, and a paint baking process as essential processes. Immediately after the hot rolling step, the intermediate annealing step during the cold rolling is omitted.

前記の組成を有するアルミニウム合金を溶解し、半連続鋳造方法(DC鋳造法)により造塊し、得られた鋳塊を均質化熱処理する。均質化熱処理工程は、鋳塊を440〜530℃の温度に加熱し、1〜20時間保持する条件で行うのが好ましい。均質化熱処理温度が440℃未満では、均質化熱処理時間が長時間必要となり、生産性の低下を招く。一方、均質化熱処理温度が530℃を超えると、金属間化合物の粗大化が生じ易くなり、缶蓋成形時およびバックリング時の亀裂の発生位置および伝播経路となり、成形性および耐バックリング亀裂性を低下させる。また、均質化熱処理温度での保持時間が1時間未満では、組織の均質化が得られず、20時間を超えると、金属間化合物が粗大化し易く、均質化熱処理温度が530℃を超えたときと同じ問題が発生する。   The aluminum alloy having the above composition is melted and ingoted by a semi-continuous casting method (DC casting method), and the resulting ingot is subjected to a homogenization heat treatment. The homogenization heat treatment step is preferably performed under the condition that the ingot is heated to a temperature of 440 to 530 ° C. and held for 1 to 20 hours. When the homogenization heat treatment temperature is less than 440 ° C., the homogenization heat treatment time is required for a long time, resulting in a decrease in productivity. On the other hand, when the homogenization heat treatment temperature exceeds 530 ° C., the intermetallic compound is likely to be coarsened, and it becomes a crack generation position and propagation path at the time of can lid molding and buckling. Reduce. In addition, when the holding time at the homogenization heat treatment temperature is less than 1 hour, the homogenization of the structure is not obtained, and when it exceeds 20 hours, the intermetallic compound is easily coarsened, and the homogenization heat treatment temperature exceeds 530 ° C. The same problem occurs.

均質化熱処理後、熱間圧延を行う。熱間圧延工程において、熱間圧延完了時の終了温度は300℃以上とするのが好ましく、熱延終了温度を300℃以上として再結晶組織を得る。熱間圧延終了温度が300℃未満では十分に均質な再結晶組織を得ることができず、製品に対する冷間圧延工程を含めた実質的な加工硬化量の増加が生じ、成形性および耐バックリング亀裂性が劣るとともに、製品強度のばらつきが大きくなり、缶蓋材としての品質が低下する。   After the homogenization heat treatment, hot rolling is performed. In the hot rolling step, the end temperature at the completion of hot rolling is preferably 300 ° C. or higher, and the recrystallization structure is obtained by setting the hot rolling end temperature to 300 ° C. or higher. When the hot rolling finish temperature is less than 300 ° C., a sufficiently homogeneous recrystallized structure cannot be obtained, resulting in a substantial increase in the work hardening amount including the cold rolling process for the product, formability and buckling resistance. In addition to inferior cracking properties, the product strength varies greatly, and the quality as a can lid material decreases.

熱間圧延後、0.190mm以上0.230mm以下の最終厚さまで冷間圧延する。冷間圧延の圧延率は85〜93%とするのが好ましい。冷間圧延率が85%未満では、熱間圧延終了時の板厚が薄くなり、熱間圧延で安定して製造できる板厚の下限を超えてしまうおそれがあるばかりでなく、冷間圧延による加工硬化量が小さくなり、内圧が負荷されるアルミニウム合金缶蓋材に必要な強度を得ることができない。また、冷間圧延率が93%を超えると、加工硬化が大きくなり過ぎ、成形性に劣るだけでなく、冷間圧延板端部の耳割れが発生し易くなり、生産性が劣ることとなる。   After hot rolling, cold rolling is performed to a final thickness of 0.190 mm or more and 0.230 mm or less. The rolling rate of cold rolling is preferably 85 to 93%. If the cold rolling rate is less than 85%, the sheet thickness at the end of hot rolling becomes thin and there is a risk that the lower limit of the sheet thickness that can be stably produced by hot rolling may be exceeded. The work hardening amount becomes small, and the strength required for the aluminum alloy can lid material to which the internal pressure is applied cannot be obtained. Further, if the cold rolling rate exceeds 93%, work hardening becomes excessively large and not only the formability is inferior, but also the edge cracks of the cold rolled plate end easily occur, and the productivity is inferior. .

本発明においては、熱間圧延後および冷間圧延の途中で中間焼鈍を行わないことが望ましい。従って、熱間圧延後、中間焼鈍を施すことなく、0.190mm以上0.230mm以下の最終厚さまで冷間圧延される。中間焼鈍を行うことなしに製造した缶蓋材においては、結晶粒の長さと幅の比、(結晶粒の長さ/結晶粒の幅)が20以上となり、缶蓋材として必要な強度が付与される。(結晶粒の長さ/結晶粒の幅)が20未満では、缶蓋材に必要な強度を得ることが難しい。   In the present invention, it is desirable not to perform intermediate annealing after hot rolling and during cold rolling. Therefore, after hot rolling, cold rolling is performed to a final thickness of 0.190 mm or more and 0.230 mm or less without performing intermediate annealing. In can lid materials manufactured without intermediate annealing, the ratio of crystal grain length to width (crystal grain length / crystal grain width) is 20 or more, giving the strength required for can lid materials. Is done. If (the length of crystal grains / the width of crystal grains) is less than 20, it is difficult to obtain the strength required for the can lid material.

結晶粒の長さと幅の比、(結晶粒の長さ/結晶粒の幅)は、圧延方向に平行で且つ圧延面に垂直な断面を200倍で偏光子を用いた光学顕微鏡で観察し、20個以上の結晶粒の長さと幅を測定して、(結晶粒の長さ/結晶粒の幅)の値を平均した値である。結晶粒の長さは圧延方向に測定し、結晶粒の幅は圧延方向に垂直な方向に測定する。なお、(結晶粒の長さ/結晶粒の幅)の値は、熱間圧延板の再結晶粒の形状と冷間圧延率から幾何学的に決まるものであり、容易に推定することが可能である。熱間圧延終了時点で再結晶組織となり、ほぼ球状の再結晶粒を得、最高93%の冷間圧延率で冷間圧延した場合、(結晶粒の長さ/結晶粒の幅)の値は500を超えることはない。   The ratio of crystal grain length to width, (crystal grain length / crystal grain width), was observed with an optical microscope using a polarizer at 200 times the cross section parallel to the rolling direction and perpendicular to the rolling surface, This is a value obtained by measuring the length and width of 20 or more crystal grains and averaging the values of (crystal grain length / crystal grain width). The length of the crystal grains is measured in the rolling direction, and the width of the crystal grains is measured in a direction perpendicular to the rolling direction. The value of (crystal grain length / crystal grain width) is geometrically determined from the shape of the recrystallized grains of the hot-rolled sheet and the cold rolling rate, and can be easily estimated. It is. When the hot rolling is completed, a recrystallized structure is obtained, and a substantially spherical recrystallized grain is obtained. When cold rolling is performed at a maximum cold rolling rate of 93%, the value of (crystal grain length / crystal grain width) is No more than 500.

得られた冷間圧延板に有機樹脂を塗装し、塗装焼付け処理を行う。この塗装焼付け工程は、缶蓋材板面に有機樹脂を塗装し焼付けるだけでなく、調質焼鈍を兼ねている。塗装焼付け処理は、塗装焼付け処理時の材料到達温度(Peak Metal Temperature(PMT)、以下、塗装焼付け温度とは、塗装焼付け処理時の材料到達温度をいう)を260℃以上で、かつ前記本発明のアルミニウム合金組成中のMn含有量%を[Mn]としたとき33×[Mn]+247で求められる温度(℃)以上300℃以下の温度として、保持時間0秒を超え20秒以下の条件で行うのが望ましい。塗装焼付け温度が260℃未満では、冷間圧延工程で導入された転位組織が十分に回復せず、缶蓋の耐バックリング亀裂性に劣る。また前記のように、Mn含有量が増加すると、ますます耐バックリング亀裂性が低下するため、塗装焼付け温度が260℃以上であっても、33×[Mn]+247で求められる温度(℃)未満では、缶蓋の耐バックリング亀裂性に劣る。塗装焼付け温度が300℃を超えると、PMTにおける強度変化が大きくなり、量産時には製品仕様に合った強度に調整することが困難となるばかりでなく、回復が進みすぎて缶蓋材に必要な強度が得られない。   The resulting cold-rolled plate is coated with an organic resin and subjected to a paint baking process. This paint baking process not only coats and bakes organic resin on the surface of the can lid material plate, but also serves as temper annealing. In the paint baking process, the material arrival temperature (Peak Metal Temperature (PMT), hereinafter referred to as the paint baking temperature refers to the material arrival temperature in the paint baking process) at 260 ° C. or higher, and the present invention. When the Mn content% in the aluminum alloy composition is [Mn], the temperature (° C.) to 300 ° C. is obtained by 33 × [Mn] +247, and the holding time is longer than 0 seconds and not longer than 20 seconds. It is desirable to do it. If the coating baking temperature is less than 260 ° C., the dislocation structure introduced in the cold rolling process is not sufficiently recovered, and the buckling crack resistance of the can lid is poor. Further, as described above, as the Mn content increases, the resistance to buckling cracking is further reduced. Therefore, even when the coating baking temperature is 260 ° C. or higher, the temperature (° C.) required by 33 × [Mn] +247. If it is less than this, it is inferior to the buckling crack resistance of a can lid. If the coating baking temperature exceeds 300 ° C, the strength change in the PMT will increase, and it will be difficult to adjust the strength to meet the product specifications during mass production. Cannot be obtained.

また、塗膜性能を維持する観点から塗装焼付け温度を260℃以上とすることができない場合は、塗装焼付け処理前に、望ましくは連続焼鈍炉を用いて、昇温速度4〜25℃/秒、到達温度260℃以上でかつ33×[Mn]+247で求められる温度(℃)から300℃の範囲の温度で、保持時間0秒を超え20秒以下の予備加熱を行い、塗装を施して、220℃以上260℃未満の温度で、塗装焼付け処理することにより上記の効果を得ることができる。予備加熱の昇温速度が4℃/秒未満では、材料が高温に保持される時間が長くなり、量産時には製品仕様に合った強度に調整することが困難となるとともに、回復が進みすぎて缶蓋材に必要な強度が得られない。25℃/秒を超えると、冷間圧延工程で導入された転位組織が十分に回復せず、缶蓋の耐バックリング亀裂性に劣る。   Also, in the case where the coating baking temperature cannot be 260 ° C. or more from the viewpoint of maintaining the coating film performance, it is preferable to use a continuous annealing furnace before the coating baking process, preferably at a heating rate of 4 to 25 ° C./second, 220 ° C. or higher and a temperature in the range of 33 ° C. (Mn) +247 (300 ° C.) to 300 ° C., preheating for a holding time exceeding 0 seconds and 20 seconds or less, coating, 220 The above-mentioned effect can be obtained by performing a coating baking process at a temperature of not lower than 260 ° C. and lower than 260 ° C. If the temperature increase rate of the preheating is less than 4 ° C / second, the time during which the material is kept at a high temperature becomes long, and it becomes difficult to adjust the strength to meet the product specifications at the time of mass production. The strength required for the lid cannot be obtained. When it exceeds 25 ° C./second, the dislocation structure introduced in the cold rolling step is not sufficiently recovered, and the can lid is inferior in buckling crack resistance.

予備加熱温度(材料到達温度、以下同じ)が、260℃以上でかつ33×[Mn]+247で求められる温度(℃)から300℃の温度範囲を外れると、前記のように、予備加熱をせず塗装焼付け処理のみを行う実施形態において、塗装焼付け温度が条件を外れた場合と同様の不具合が生じる。塗装焼付け温度が220℃未満では、例えば塗膜強度や母材との接着強度など必要な塗膜性能を得るのが困難になる。260℃以上では、塗装焼付け処理前に予備加熱を行う影響で、量産時には製品仕様に合った強度に調整することが困難となるばかりでなく、回復が進みすぎて缶蓋材に必要な強度が得られない。   When the preheating temperature (material arrival temperature, the same applies hereinafter) is 260 ° C or higher and is out of the temperature range of 300 ° C from the temperature (° C) obtained by 33 × [Mn] +247, preheating is performed as described above. In the embodiment in which only the coating baking process is performed, the same problem as when the coating baking temperature is out of the condition occurs. When the coating baking temperature is less than 220 ° C., it is difficult to obtain necessary coating film performance such as coating film strength and adhesive strength with a base material. Above 260 ° C, it is difficult to adjust the strength to meet the product specifications during mass production due to the effect of preheating before the baking treatment, and the strength required for the can lid material is increased due to excessive recovery. I can't get it.

本発明のアルミニウム合金塗装板において、塗装焼付け後の引張強さは360〜400MPaとすることが重要である。塗装焼付け後の引張強さは、前記塗装焼付け温度および後述する繰り返し曲げと密接に関係する。塗装焼付け温度が高いと塗装焼付け後の引張強さは小さく、かつ繰り返し曲げ回数は多くなる。引張強さが360MPa未満では、缶蓋材の強度として十分でなく、低い内圧でバックリングを起こし易くなる。400MPaを超えると、繰り返し曲げ回数が低下し、バックリングでの亀裂が発生し易くなる。   In the aluminum alloy coated plate of the present invention, it is important that the tensile strength after baking is 360 to 400 MPa. The tensile strength after paint baking is closely related to the paint baking temperature and the repeated bending described later. When the coating baking temperature is high, the tensile strength after baking is small and the number of repeated bendings is large. If the tensile strength is less than 360 MPa, the strength of the can lid material is not sufficient, and buckling is likely to occur at a low internal pressure. If it exceeds 400 MPa, the number of repeated bendings will decrease, and cracks in the buckling will easily occur.

また、耐力は320〜355MPaとすることが重要である。塗装焼付け後の耐力は、引張強さと同様、塗装焼付け温度および繰り返し曲げと密接に関係する。塗装焼付け温度が高いと塗装焼付け後の耐力は小さく、かつ繰り返し曲げ回数は多くなる。耐力が320MPa未満では、缶蓋材の強度として十分でなく、低い内圧でバックリングが起こし易くなる。355MPaを超えると、繰り返し曲げ回数が低下し、バックリングでの亀裂が発生し易くなる。   It is important that the proof stress is 320 to 355 MPa. Yield after paint baking is closely related to paint baking temperature and repeated bending as well as tensile strength. When the paint baking temperature is high, the proof stress after paint baking is small, and the number of repeated bending increases. If the yield strength is less than 320 MPa, the strength of the can lid material is not sufficient, and buckling is likely to occur at a low internal pressure. When it exceeds 355 MPa, the number of times of repeated bending decreases, and cracks at the buckling tend to occur.

本発明のアルミニウム合金塗装板においては、圧延方向に対して90°方向に試験片を採取し、該試験片に100Nの一定荷重を負荷し、内曲げ半径1.0mmで90°両振り繰り返し曲げ試験を行った場合における破断限界回数が7回以上であることも重要な構成要件である。バックリング時の亀裂の発生し易さは、繰り返し曲げ回数で評価することができる。繰り返し曲げ試験条件はつぎのとおりである。圧延方向に対して90°方向に、長さ200mm、幅12.5mmの試験片を採取し、該試験片に、100Nの一定荷重を負荷した状態で、内曲げRを1.0mmとして、左右90°曲げによる両振り試験を行う。90°曲げ毎に1回とカウントし、4回で1サイクルを終了する。7回未満ではバックリング時に亀裂が発生し易いため不合格、7回以上を合格と評価する。   In the aluminum alloy coated plate of the present invention, a test piece is taken in a direction of 90 ° with respect to the rolling direction, a constant load of 100 N is applied to the test piece, and 90 ° double swing bending is performed with an inner bending radius of 1.0 mm. It is also an important constituent requirement that the number of times of fracture limit when the test is performed is 7 times or more. The ease of cracking during buckling can be evaluated by the number of repeated bendings. The repeated bending test conditions are as follows. A test piece having a length of 200 mm and a width of 12.5 mm was taken in the direction of 90 ° with respect to the rolling direction, and a constant load of 100 N was applied to the test piece, and the inner bending R was set to 1.0 mm, and left and right Perform a swing test by bending at 90 °. Counting once every 90 ° bend, one cycle ends with 4 times. If it is less than 7 times, cracks are likely to occur during buckling, so it is rejected, and 7 times or more is evaluated as acceptable.

本発明のアルミニウム合金塗装板において、板厚は0.190〜0.230mmとするのが好ましい。薄肉化は、蓋1枚当たりの質量を低下させることによるコストダウン効果があるが、板厚が0.230mmを超えると、現行の蓋材に対してコストダウン効果が小さく、一方、板厚0.190mm未満では、陽圧用缶蓋材の強度、靭性を同時に得ることが困難であり、製蓋後の耐圧不足、またはバックリング時の亀裂発生をもたらす。   In the aluminum alloy coated plate of the present invention, the plate thickness is preferably 0.190 to 0.230 mm. Thinning has a cost reduction effect by reducing the mass per lid, but if the plate thickness exceeds 0.230 mm, the cost reduction effect is small compared to the current lid material, while the plate thickness is 0 If it is less than 190 mm, it is difficult to obtain the strength and toughness of the positive pressure can lid material at the same time, resulting in insufficient pressure resistance after lid formation or cracking during buckling.

本発明の陽圧缶蓋用アルミニウム合金塗装板は、陽圧缶の内容物が酎ハイや非アルコール系炭酸飲料である陽圧缶の缶蓋として用いられる場合に特に有効である。例えば、陽圧缶の内容物がビールの場合に比べて、内容物が酎ハイや炭酸飲料の缶は、初期内圧および温度上昇による缶内圧上昇が大きいため、一般に要求耐圧が高く、高耐圧を確保するため材料強度を増加すると、バックリング亀裂が発生し易くなる。これに対して、本発明のアルミニウム合金塗装板では、材料強度を増加させてもなお、耐バックリング性に優れるので、酎ハイや非アルコール系炭酸飲料を内容物とする場合に非常に有効である。上記酎ハイは焼酎を炭酸水で割った飲み物を意味し、非アルコール系炭酸飲料は実質的にアルコールを含有していない炭酸飲料を意味する。   The aluminum alloy coated plate for a positive pressure can lid of the present invention is particularly effective when the contents of the positive pressure can are used as a can lid of a positive pressure can which is a high alcohol or non-alcohol carbonated beverage. For example, compared to the case where the contents of the positive pressure can are beer, the contents of the high-capacity or carbonated drink cans have a higher required internal pressure because the initial internal pressure and the increase in the internal pressure due to the temperature increase are large. If the material strength is increased to ensure, buckling cracks are likely to occur. On the other hand, the aluminum alloy coated plate of the present invention is excellent in buckling resistance even if the material strength is increased, so it is very effective when the content is high-alcohol or non-alcoholic carbonated beverages. is there. The cocoon high means a drink obtained by dividing shochu with carbonated water, and the non-alcoholic carbonated drink means a carbonated drink substantially containing no alcohol.

本発明においては、前記の製造方法、とくに特定された塗装焼付け処理、および予備加熱処理と塗装焼付け処理との組み合わせにより、従来通常行われていた、熱間圧延直後の中間焼鈍工程、および冷間圧延途中の中間焼鈍工程を省略しても、強度、成形性および耐バックリング亀裂性に優れた陽圧缶蓋用アルミニウム合金塗装板を製造することができる。中間焼鈍工程を省略することにより、製造エネルギーを低減させ、化石燃料の燃焼によるCO2ガスの排出を抑制し、環境負荷を低減することもできる。   In the present invention, an intermediate annealing step immediately after hot rolling, which has been conventionally performed by the above-described manufacturing method, particularly a combination of the specified baking process, and the preheating process and the baking process, and cold Even if the intermediate annealing step during rolling is omitted, an aluminum alloy coated plate for a positive pressure can lid having excellent strength, formability and buckling crack resistance can be produced. By omitting the intermediate annealing step, the production energy can be reduced, the emission of CO2 gas due to the combustion of fossil fuel can be suppressed, and the environmental load can be reduced.

以下、本発明の実施例を比較例と対比して説明し、本発明の効果を実証する。なお、これらの実施例は、本発明の一実施態様を示すものであり、本発明はこれらに限定されない。   Examples of the present invention will be described below in comparison with comparative examples to demonstrate the effects of the present invention. In addition, these Examples show one embodiment of this invention, and this invention is not limited to these.

実施例1
表1に示す組成を有するアルミニウム合金(合金A〜J)を溶解、DC鋳造で鋳造し、得られた鋳塊を、500℃で4時間の均質化処理した後、厚さ2.1mmまで熱間圧延した。熱間圧延の終了温度は310〜350℃として、再結晶組織を得た。その後、中間焼鈍することなく冷間圧延を冷間圧延率が90%となるように行い、板厚0.210mmの冷間圧延板(試験材)を得た。
Example 1
Aluminum alloys (alloys A to J) having the compositions shown in Table 1 were melted and cast by DC casting. The resulting ingot was homogenized at 500 ° C. for 4 hours, and then heated to a thickness of 2.1 mm. Rolled for a while. The end temperature of hot rolling was 310 to 350 ° C., and a recrystallized structure was obtained. Then, cold rolling was performed without intermediate annealing so that the cold rolling rate was 90%, and a cold rolled sheet (test material) having a sheet thickness of 0.210 mm was obtained.

試験材について、表2に示す条件で塗装焼付け処理を行った後、以下の方法で引張試験、繰り返し曲げ試験を行い、耐圧および耐バックリング亀裂性、結晶粒の長さと幅の比を評価した。結果を表2に示す。なお、試験材7〜9については、塗装焼付け処理前に、表2に示す条件で予備加熱を行った。また、表1において、本発明の条件を外れたものには下線を付した。   The test material was subjected to paint baking under the conditions shown in Table 2, and then subjected to a tensile test and a repeated bending test by the following methods to evaluate the pressure resistance and buckling crack resistance, and the ratio of crystal grain length to width. . The results are shown in Table 2. In addition, about the test materials 7-9, the preheating was performed on the conditions shown in Table 2 before the coating baking process. Moreover, in Table 1, the thing outside the conditions of this invention was underlined.

引張試験:圧延方向を長手方向として5号試験片を採取し、JIS Z 2201に準拠して引張試験を行い、引張強さおよび耐力を測定した。
繰り返し曲げ試験:前記の方法で行い、曲げ回数7回以上を合格、7回未満を不合格と評価した。
耐圧および耐バックリング亀裂性:冷間圧延板(試験材)から、204径(外径:2インチ+4/16インチ)の蓋を各々20枚採取し、缶胴に巻締め、内部に圧力をかけてバックリングさせた。耐圧性は、バックリングさせたときの圧力の最小値が540kPa以上を合格(○)、540kPa未満を不合格(×)と評価した。耐バックリング亀裂性は、20枚全てに亀裂が発生しなかった場合を合格(○)、亀裂が1枚でも認められた場合は不合格(×))とした。
(結晶粒の長さ/結晶粒の幅):前記の方法により、結晶粒の長さと幅の比、(結晶粒の長さ/結晶粒の幅)を測定した。
Tensile test: No. 5 test piece was taken with the rolling direction as the longitudinal direction, a tensile test was performed in accordance with JIS Z 2201, and tensile strength and yield strength were measured.
Repeated bending test: The above method was used, and the number of bendings of 7 times or more was evaluated as acceptable, and less than 7 were evaluated as unacceptable.
Pressure resistance and buckling resistance: 20 cold-rolled plates (test materials), each having 204 diameters (outer diameter: 2 inches + 4/16 inches), 20 pieces of lids are taken and wound around a can body. I made it buckle over. With regard to pressure resistance, the minimum value of the pressure when buckling was evaluated was 540 kPa or more as acceptable (◯), and less than 540 kPa as unacceptable (x). The buckling crack resistance was determined to be acceptable (◯) when no cracks occurred on all 20 sheets and rejected (×) when even one crack was observed.
(Crystal grain length / Crystal grain width): The ratio of the crystal grain length to the width, (Crystal grain length / Crystal grain width) was measured by the method described above.

Figure 0005356359
Figure 0005356359

Figure 0005356359
Figure 0005356359

表2に示すように、本発明に従う試験材1〜10はいずれも、引張強さ360〜400MPa、耐力320〜355MPaの優れた強度、良好な耐圧性を有し、繰り返し曲げ回数が7回以上で、良好な耐バックリング亀裂性をそなえており、結晶粒の長さと幅の比はいずれも20を超えていた。   As shown in Table 2, each of the test materials 1 to 10 according to the present invention has excellent tensile strength of 360 to 400 MPa, proof strength of 320 to 355 MPa, good pressure resistance, and the number of repeated bendings is 7 times or more. Thus, it had good buckling crack resistance, and the ratio between the length and the width of the crystal grains exceeded 20.

比較例1
実施例1で得られたアルミニウム合金(合金A〜J)の鋳塊を、500℃で4時間の均質化処理した後、厚さ2.1mmまで熱間圧延した。熱間圧延の終了温度は310〜350℃として、再結晶組織を得た。その後、中間焼鈍することなく冷間圧延を冷間圧延率が90%となるように行い、板厚0.210mmの冷間圧延板(試験材)を得た。但し、試験材15および20については、板厚0.185mm(圧延率91.2%)まで冷間圧延を行った。試験材32は、熱間圧延後、板厚0.6mmまで冷間圧延した後、450℃で5秒保持する中間焼鈍を行い、板厚0.210mmまで冷間圧延したものである。
Comparative Example 1
The aluminum alloy (alloys A to J) ingot obtained in Example 1 was homogenized at 500 ° C. for 4 hours, and then hot-rolled to a thickness of 2.1 mm. The end temperature of hot rolling was 310 to 350 ° C., and a recrystallized structure was obtained. Then, cold rolling was performed without intermediate annealing so that the cold rolling rate was 90%, and a cold rolled sheet (test material) having a sheet thickness of 0.210 mm was obtained. However, the test materials 15 and 20 were cold-rolled to a plate thickness of 0.185 mm (rolling rate: 91.2%). After the hot rolling, the test material 32 is cold-rolled to a sheet thickness of 0.6 mm, then subjected to intermediate annealing that is held at 450 ° C. for 5 seconds, and cold-rolled to a sheet thickness of 0.210 mm.

試験材について、表3に示す条件で塗装焼付け処理を行った後、実施例と同じ方法で、引張試験、繰り返し曲げ試験を行い、耐圧および耐バックリング亀裂性、結晶粒の長さと幅の比を評価した。結果を表3に示す。なお、試験材29〜31については、塗装焼付け処理前に、表3に示す条件で予備加熱を行った。また、表3において、予備加熱、塗装焼付け処理、引張強さ、耐力、繰り返し曲げ回数において、本発明の条件を外れたものには下線を付した。   About the test material, after performing the paint baking treatment under the conditions shown in Table 3, the tensile test and the repeated bending test were performed in the same manner as in the examples, the pressure resistance and the buckling crack resistance, the ratio of the length and width of the crystal grains. Evaluated. The results are shown in Table 3. In addition, about the test materials 29-31, the preheating was performed on the conditions shown in Table 3 before the coating baking process. Further, in Table 3, those that deviated from the conditions of the present invention in the preheating, paint baking treatment, tensile strength, proof stress, and number of repeated bendings were underlined.

Figure 0005356359
Figure 0005356359

表3に示すように、試験材11および12はMn量が少ないため、耐力が低く、耐圧性が劣っていた。試験材13、16、18は塗装焼付け温度が低いため、繰り返し曲げ回数が少なく、耐バックリング亀裂性が劣っていた。試験材14は塗装焼付け温度が高いため、引張強さおよび耐力が低く、耐圧性が劣っていた。試験材17、19は塗装焼付け温度が高いため耐力が低く、耐圧性が劣っていた。   As shown in Table 3, since the test materials 11 and 12 had a small amount of Mn, the proof stress was low and the pressure resistance was inferior. Since the test materials 13, 16, and 18 had a low coating baking temperature, the number of repeated bending was small, and the buckling crack resistance was inferior. Since the test material 14 had a high coating baking temperature, the tensile strength and proof stress were low, and the pressure resistance was inferior. Since the test materials 17 and 19 had a high coating baking temperature, the proof stress was low and the pressure resistance was inferior.

試験材15、20は板厚が薄いため、耐圧性が劣っていた。試験材21はMn量が多くまた塗装焼付け温度が低いため、引張強さおよび耐力が高く、繰り返し曲げ回数が少なく、耐バックリング亀裂性が劣っていた。試験材22、23はMn量が多いため、試験材24はSi量が多いため、また試験材25はFe量が多いため、いずれも繰り返し曲げ回数が少なく、耐バックリング亀裂性が劣っていた。試験材26はCu量が多いため、試験材28はMg量が多いため、いずれも熱間圧延で耳割れが生じて健全な板材の製造が困難となり、著しく生産性が低下したものとなった。   Since the test materials 15 and 20 were thin, their pressure resistance was inferior. Since the test material 21 had a large amount of Mn and a low coating baking temperature, the tensile strength and proof strength were high, the number of repeated bending was small, and the buckling crack resistance was inferior. Since the test materials 22 and 23 have a large amount of Mn, the test material 24 has a large amount of Si, and the test material 25 has a large amount of Fe. Therefore, the number of repeated bendings was small, and the buckling crack resistance was inferior. . Since the test material 26 has a large amount of Cu, the test material 28 has a large amount of Mg. Therefore, in all cases, ear cracking occurred during hot rolling, making it difficult to produce a sound plate material, and the productivity was significantly reduced. .

試験材27はMg量が少ないため、引張強さおよび耐力が低く、耐圧性が劣っていた。試験材29は予備加熱の昇温速度が遅いため、耐力が低く、耐圧性が劣っていた。試験材30は予備加熱の昇温速度が早いため、耐力が高く、繰り返し曲げ回数が少なく、耐バックリング亀裂性が劣っていた。試験材31は予備加熱を実施した場合の塗装焼付け温度が高いため、耐力が低く、耐圧性が劣っていた。試験材32は、熱間圧延後、中間焼鈍を行って冷間圧延したもので、結晶粒の長さと幅の比が9.7と小さく、耐力が低く、耐圧性に劣っていた。なお、試験材11〜31については、熱間圧延後に中間焼鈍を行うことなく、最終板厚まで冷間圧延したものであり、いずれも結晶粒の長さと幅の比は20を超えていた。   Since the test material 27 had a small amount of Mg, the tensile strength and proof stress were low, and the pressure resistance was inferior. The test material 29 had low proof stress and poor pressure resistance because of the slow heating rate of preheating. Since the test material 30 had a high rate of temperature increase during the preliminary heating, the yield strength was high, the number of repeated bendings was small, and the buckling crack resistance was inferior. Since the test material 31 had a high coating baking temperature when preheating was performed, the proof stress was low and the pressure resistance was poor. The test material 32 was hot-rolled and then cold-rolled by intermediate annealing. The ratio of the crystal grain length to the width was as small as 9.7, the proof stress was low, and the pressure resistance was poor. In addition, about the test materials 11-31, it cold-rolled to the final board thickness, without performing intermediate annealing after hot rolling, and the ratio of the length and width of a crystal grain exceeded 20 in all.

Claims (3)

質量%で、Si:0.04〜0.20%、Mn:0.35〜0.70%、Fe:0.12〜0.30%、Cu:0.01〜0.10%、Mg:4.0〜5.5%を含有し、残部がAl及び不可避的不純物からなる組成を有し、厚さが0.190mm以上0.230mm以下のアルミニウム合金塗装板であって、引張強さが360〜400MPa、耐力が320〜355MPaで、圧延方向に対して90°方向に試験片を採取し、該試験片に100Nの一定荷重を負荷し、内曲げ半径1.0mmで90°両振り繰り返し曲げ試験を行った場合における破断限界回数が7回以上であることを特徴とする陽圧缶蓋用アルミニウム合金塗装板。 In mass%, Si: 0.04 to 0.20%, Mn: 0.35 to 0.70%, Fe: 0.12 to 0.30%, Cu: 0.01 to 0.10%, Mg: It is an aluminum alloy coated plate containing 4.0 to 5.5%, the balance being Al and inevitable impurities, and having a thickness of 0.190 mm or more and 0.230 mm or less, and having a tensile strength of A test piece is taken in a direction of 90 ° with respect to the rolling direction at 360 to 400 MPa and a proof stress of 320 to 355 MPa. A constant load of 100 N is applied to the test piece, and 90 ° double swing is repeated with an inner bending radius of 1.0 mm. An aluminum alloy coated plate for a positive pressure can lid, wherein the number of times of fracture limit in a bending test is 7 or more. 請求項1記載の陽圧缶蓋用アルミニウム合金塗装板を製造する方法であって、前記組成を有するアルミニウム合金を溶解、鋳造し、得られた鋳塊を均質化熱処理した後、熱間圧延を行い、厚さ0.190mm以上0.230mm以下まで冷間圧延し、得られた冷間圧延板に塗装を施して、260℃以上でかつ前記組成中のMn含有量%を[Mn]としたとき、33×[Mn]+247で求められる温度(℃)以上300℃以下の温度で塗装焼付け処理することを特徴とする陽圧缶蓋用アルミニウム合金塗装板の製造方法。 A method for producing an aluminum alloy coated plate for a positive pressure can lid according to claim 1, wherein the aluminum alloy having the above composition is melted and cast, the ingot obtained is subjected to homogenization heat treatment, and then hot rolled. And cold-rolled to a thickness of 0.190 mm or more and 0.230 mm or less, and the obtained cold-rolled plate was coated, and the Mn content% in the composition was set to [Mn] at 260 ° C. or more. A method of producing an aluminum alloy coated plate for a positive pressure can lid, characterized in that a coating baking process is performed at a temperature (° C.) or higher and 300 ° C. or lower calculated by 33 × [Mn] +247. 請求項1記載の陽圧缶蓋用アルミニウム合金塗装板を製造する方法であって、前記組成を有するアルミニウム合金を溶解、鋳造し、得られた鋳塊を均質化熱処理した後、熱間圧延を行い、厚さ0.190mm以上0.230mm以下まで冷間圧延し、得られた冷間圧延板を、4〜25℃/秒の昇温速度で、260℃以上でかつ前記組成中のMn含有量%を[Mn]としたとき、33×[Mn]+247で求められる温度(℃)以上300℃以下の温度に加熱して0〜20秒間保持する熱処理を行い、塗装を施して、220℃以上260℃未満の温度で塗装焼付け処理することを特徴とする陽圧缶蓋用アルミニウム合金塗装板の製造方法。 A method for producing an aluminum alloy coated plate for a positive pressure can lid according to claim 1, wherein the aluminum alloy having the above composition is melted and cast, the ingot obtained is subjected to homogenization heat treatment, and then hot rolled. And cold-rolled to a thickness of 0.190 mm to 0.230 mm, and the obtained cold-rolled sheet has a temperature increase rate of 4 to 25 ° C./second and is 260 ° C. or more and contains Mn in the composition When the amount% is [Mn], a heat treatment is performed by heating to a temperature (° C.) of not less than 33 × [Mn] +247 and maintaining at a temperature of 300 ° C. or less and holding for 0 to 20 seconds, and coating is performed. A method for producing an aluminum alloy coated plate for a positive pressure can lid, wherein the coating baking treatment is performed at a temperature of 260 ° C. or lower.
JP2010263117A 2010-11-26 2010-11-26 Aluminum alloy coated plate for positive pressure can lid and manufacturing method thereof Active JP5356359B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010263117A JP5356359B2 (en) 2010-11-26 2010-11-26 Aluminum alloy coated plate for positive pressure can lid and manufacturing method thereof
PCT/JP2011/075894 WO2012070391A1 (en) 2010-11-26 2011-11-10 Coated aluminum alloy sheet for pressurized-can lid and process for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010263117A JP5356359B2 (en) 2010-11-26 2010-11-26 Aluminum alloy coated plate for positive pressure can lid and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2012112007A JP2012112007A (en) 2012-06-14
JP5356359B2 true JP5356359B2 (en) 2013-12-04

Family

ID=46145739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010263117A Active JP5356359B2 (en) 2010-11-26 2010-11-26 Aluminum alloy coated plate for positive pressure can lid and manufacturing method thereof

Country Status (2)

Country Link
JP (1) JP5356359B2 (en)
WO (1) WO2012070391A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6435268B2 (en) * 2013-10-30 2018-12-05 株式会社Uacj Aluminum alloy plate for can end and manufacturing method thereof
JP6289152B2 (en) * 2014-02-18 2018-03-07 株式会社神戸製鋼所 Aluminum alloy plate for can lid
CN106029923B (en) * 2014-02-18 2017-11-24 株式会社神户制钢所 Cover aluminium alloy plate
JP6289153B2 (en) * 2014-02-18 2018-03-07 株式会社神戸製鋼所 Aluminum alloy plate for can lid
WO2016063876A1 (en) * 2014-10-20 2016-04-28 株式会社神戸製鋼所 Aluminium alloy sheet for can lid
JP2017075354A (en) * 2015-10-14 2017-04-20 株式会社神戸製鋼所 Aluminum alloy sheet for can-top
CN105803275A (en) * 2016-03-17 2016-07-27 中铝科学技术研究院有限公司 Aluminum alloy sheet material for thin ring-pull can cover and preparation method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08218144A (en) * 1995-02-14 1996-08-27 Kobe Steel Ltd Aluminum alloy sheet for can end excellent in stress corrosion cracking resistance in score part
JP2000008133A (en) * 1998-06-23 2000-01-11 Furukawa Electric Co Ltd:The Aluminum alloy sheet for can cover excellent in shatter strength and its production
JP3726893B2 (en) * 2001-10-23 2005-12-14 古河スカイ株式会社 Method for producing an aluminum alloy plate used for a lid for a positive pressure can excellent in rivet formability, score workability and blow-up resistance
JP2009221567A (en) * 2008-03-18 2009-10-01 Furukawa-Sky Aluminum Corp Aluminum alloy sheet for positive pressure coated can lid, and method for producing the same
JP2010053367A (en) * 2008-08-26 2010-03-11 Sumitomo Light Metal Ind Ltd Aluminum alloy sheet for can end, and method for manufacturing the same

Also Published As

Publication number Publication date
JP2012112007A (en) 2012-06-14
WO2012070391A1 (en) 2012-05-31

Similar Documents

Publication Publication Date Title
JP5356359B2 (en) Aluminum alloy coated plate for positive pressure can lid and manufacturing method thereof
WO2013008457A1 (en) Steel sheet for can and process for producing same
WO2010113333A1 (en) Steel sheet for high‑strength container and manufacturing method thereof
JP2010053367A (en) Aluminum alloy sheet for can end, and method for manufacturing the same
JP6316747B2 (en) Aluminum alloy plate for blow molding and manufacturing method thereof
TW201404897A (en) Three-piece can and method for manufacturing same
JP2008169417A (en) Aluminum alloy sheet for aerosol container, and its manufacturing method
JP2008208399A (en) Thin-wall cold-rolled steel sheet for drum and manufacturing method therefor
JP2007023340A (en) Aluminum alloy sheet for positive-pressure can top, and method for producing the same
WO2019058935A1 (en) Aluminum alloy plate for bottle-shaped can body and manufacturing method thereof
JP3852210B2 (en) Steel plate for modified 3-piece can and manufacturing method thereof
JP4708555B2 (en) Continuous solution quenching method for rolled aluminum alloy sheets with excellent formability and flatness
JP2005320633A (en) Steel sheet for two-piece contoured can, and manufacturing method therefor
JP6435268B2 (en) Aluminum alloy plate for can end and manufacturing method thereof
JP2003129203A (en) Production method for aluminum alloy plate excellent in rivet formability, score workability, and blowup resistance and used for lid of positive-pressure can
JP4750392B2 (en) Aluminum alloy plate for bottle-shaped cans
JP4202894B2 (en) Mg-containing Al alloy
JP2001073104A (en) Manufacture of aluminum alloy soft sheet for deep drawing
JP2009280839A (en) HIGH STRENGTH AND HIGH FORMABILITY Al-Mg-Mn BASED ALUMINUM ALLOY SHEET, AND METHOD FOR PRODUCING THE SAME
JPH09256097A (en) Baking-finished aluminium alloy sheet for can end and its production
JP2002294399A (en) High strength thin steel sheet for welded can having excellent flange formability and production method therefor
JP4392263B2 (en) Aluminum alloy plate for packaging container end and manufacturing method thereof
JP5480647B2 (en) Aluminum alloy composite plate for packaging container lid and manufacturing method thereof
JPH08218146A (en) Steel sheet for welded can excellent in flange workability and neck formability and production thereof
JP4375786B2 (en) Aluminum alloy plate for can bodies with excellent secondary workability of can walls after paint baking

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130828

R150 Certificate of patent or registration of utility model

Ref document number: 5356359

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350