JP4708555B2 - Continuous solution quenching method for rolled aluminum alloy sheets with excellent formability and flatness - Google Patents

Continuous solution quenching method for rolled aluminum alloy sheets with excellent formability and flatness Download PDF

Info

Publication number
JP4708555B2
JP4708555B2 JP2000378840A JP2000378840A JP4708555B2 JP 4708555 B2 JP4708555 B2 JP 4708555B2 JP 2000378840 A JP2000378840 A JP 2000378840A JP 2000378840 A JP2000378840 A JP 2000378840A JP 4708555 B2 JP4708555 B2 JP 4708555B2
Authority
JP
Japan
Prior art keywords
quenching
alloy
aluminum alloy
solution
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000378840A
Other languages
Japanese (ja)
Other versions
JP2002180220A (en
Inventor
康夫 高木
悟志 藤原
正直 大山
雅之 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2000378840A priority Critical patent/JP4708555B2/en
Publication of JP2002180220A publication Critical patent/JP2002180220A/en
Application granted granted Critical
Publication of JP4708555B2 publication Critical patent/JP4708555B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Straightening Metal Sheet-Like Bodies (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、成形性と平坦度に優れたアルミニウム合金圧延薄板の連続溶体化焼き入れ処理方法(以下、アルミニウムを単にAlと言う)に関するものである。
【0002】
【従来の技術】
従来、自動車用パネル材として用いられるAl合金板材は、非熱処理型のAl-Mg 系(AA 乃至JIS 5000系) Al合金が主であった。しかし、近年、更なる軽量化を目的とし、熱処理型のAl合金を用いて、成形加工後の焼付塗装工程における焼付硬化性を利用して、強度を向上させる方法が行われている。このような熱処理型Al合金としては、主として、AA乃至JIS 6000系に属するAl-Mg-Si系Al合金が用いられている。そして、このAl-Mg-Si系Al合金としては、欧米ではAA 6111 、6022、6016などのAl合金が実用に供されている。
【0003】
Al合金板を自動車用パネル材とするためには、Al合金板材を所望パネル材形状にするための、深絞り、張出し、曲げ、伸びフランジなどの成形加工が施される。このため、Al合金板には、高い成形性が要求される。
【0004】
したがって、熱処理型Al合金のAl-Mg-Si系Al合金板材では、要求される高成形性を得るために、常法による熱間圧延後、或いは更に冷間圧延後の、溶体化焼き入れ処理が必須および重要となる。即ち、この溶体化焼き入れ処理において、時効硬化反応を引き起こすために必要な合金元素の固溶体を得るとともに、連続的に引き続く焼入処理工程において、溶体化処理によって固溶した状態を室温まで強制的に凍結し、過飽和固溶体を得る。この結果、成形加工時の低耐力による成形性と、成形後の焼付塗装時に高耐力化する人工時効硬化性が確保される。
【0005】
この特性を確保するためには、溶体化処理温度を高くするとともに、焼き入れ処理の際の冷却速度を極力速くすることが好ましい。したがって、この目的で、溶体化処理後の冷却速度を規定したプレス成形性用の6000系Al合金板の製造方法の発明も数多く提案されている。
【0006】
しかし、薄板化および広幅化したAl合金板の連続的な溶体化処理および焼き入れ処理を行う場合、Al合金板の表面に局部的な歪みが生じやすくなるという新たな問題が生じる。
【0007】
従来から、溶体化焼き入れ処理におけるAl合金板の全体形状の歪みや変形の問題に対し、焼き入れ処理後に、ローラーレベラーやテンションレベラー、あるいはストレッチやスキンパス軽圧下等の矯正処理を行うことによって、Al合金板の前記変形を除去することが、例えば、特開昭62-278256 号、特開昭64−11953 号、特開平2-122045号、特開平2-122055号など公報により公知である。
【0008】
そして、これら従来技術では、問題とするAl合金板の全体形状の変形の矯正処理後に、特定の条件下 (例えば60〜360 ℃) で熱処理 (焼鈍) を行って、矯正処理に伴う成形性の低下を抑制することを必須としている。
【0009】
【発明が解決しようとする課題】
しかし、これら従来技術では、本発明で問題とする、薄板化および広幅化したAl合金板の、しかも、高速の通板速度で連続的に溶体化処理および焼き入れ処理を行う場合に生じるAl合金板の局部的な歪みの問題解決にはならない。
【0010】
その理由は、まず、本発明で問題とするAl合金板の局部的な歪みと、これら従来技術で問題とするAl合金板の変形 (表現としては同じ歪みと称してはいるが) とでは、歪みの内容が全く異なる。
【0011】
本発明で問題とするAl合金板の歪みとは、本発明条件下の連続熱処理工程で、Al合金板の表面に局部的かつ板の長手方向に連続的に生じる局部的な歪みである。これに対して、これら従来技術で問題とするAl合金板の変形は、本発明の局部的な歪みではなく、Al合金板の熱膨張- 収縮による反り、波うち、ねじれ等の板全体乃至板の全体形状の変形である。
【0012】
即ち、本発明で言う局部的な歪みとは、図1 に模式的に示す通り、Al合金板1 の表面に局部的かつ板の長手方向に連続的に生じるクレーター状の凹凸 (凹み) 2 である。この本発明で言う局部的な歪みの発生要因は、未だ明らかではない。しかし、前記従来技術のAl合金板の全体的な変形のような、溶体化焼き入れ処理の際のAl合金板の熱膨張- 収縮による熱歪みだけではなく、前工程での圧延における板の局部的な歪み等の履歴や、薄板化および広幅化したAl合金板の高速での通板速度やライン張力、冷却手段や条件なども複雑に関与しているものと推考される。
【0013】
そして、Al合金板に、本発明で言う局部的な歪みが生じた場合には、勿論、従来のAl合金板の前記全体的な変形と同様に、Al合金板の平坦度 (フラットネス) を著しく阻害する。
【0014】
なお、前記従来技術で問題とするAl合金板の変形は、Al合金板の全体形状の変形であるため、ローラーレベラーやテンションレベラー、あるいはストレッチやスキンパス等のいずれの矯正手段を選択するにせよ、焼き入れ後のAl合金板の変形を矯正するためには、比較的高い圧下量や張力が必要となる。
【0015】
この結果、これら従来技術では、焼き入れ後のAl合金板の矯正処理による強度、特に耐力値の大幅な増加と、成形性の大幅な低下が不可避であるという致命的な問題がある。
【0016】
このため、これら従来技術では、前記各公報にも共通して記載されているように、Al合金板の矯正処理後に、特定の条件下 (例えば60〜360 ℃) で熱処理 (焼鈍) を行って、矯正処理に伴う成形性の低下を抑制することが必須となる。しかも、この熱処理だけでは成形性を十分に回復させることが難しい。また、この熱処理工程を付加することにより、製造工程が煩雑となって、経済的にも不利となる問題もある。
【0017】
ちなみに、本発明が対象とする連続的な溶体化焼き入れ処理方法では、前記従来技術で問題とされている、反り、波うち、ねじれ等のAl合金板の全体的な変形は問題とはならない。
【0018】
なぜなら、本発明のような連続熱処理工程において、これら従来技術で問題とするAl合金板の全体乃至板の全体形状の変形が生じた場合、工程での通板自体が困難となり、板の品質以前に、操業自体ができなくなる。したがって、本発明のような連続熱処理工程においては、これら従来技術で問題とするAl合金板の全体乃至板の全体形状の変形が生じないことが設備およびライン張力などの操業の基本条件として、既に解決済みの問題である。
【0019】
このため、本発明の局部的な歪みの問題は、本発明が対象とする、薄板化および広幅化したAl合金板における、しかも高速化した連続的な溶体化焼き入れ処理に特有の問題と言うことができる。また、これら従来技術で問題とするAl合金板の全体形状の変形はバッチ式の溶体化焼き入れ処理に特有の問題とも言える。
【0020】
したがって、本発明では、本発明の局部的な歪みが生じる (問題となる) 連続的な溶体化焼き入れ処理のみを対象とし、コイル状態でバッチ式に溶体化焼き入れを行ったり、切り板の状態でバッチ式に溶体化焼き入れを行うタイプの処理は対象外とする。なお、本発明で言う連続的な溶体化焼き入れ処理とは、熱間圧延上がり乃至冷間圧延上がりの圧延薄板コイルを巻き戻しながら、連続的に熱処理炉に通板して溶体化焼き入れ処理を行い、再び薄板コイルに巻き取る処理のことを言う。
【0021】
ここにおいて、本発明の局部的な歪みは、本発明が対象とする連続的な溶体化焼き入れ処理において、溶体化処理温度を高くするとともに、焼き入れ処理の際の冷却速度を速くした場合に、より生じやすくなる。また、Al合金板 (コイル) が薄板化するほど、この傾向が大きい。
【0022】
実際、本発明者らの知見によれば、板厚が1.5mm を越えるような、比較的厚板のAl合金板 (コイル) の場合には、このようなAl合金板表面の局部的な歪みの問題は小さくなる。また、薄板化したAl合金板の場合でも、溶体化処理温度が500 ℃未満で焼き入れ開始温度が500 ℃未満のより低温の場合にも、同様にこの問題は小さくなる。
【0023】
そして、この局部的な歪みの問題は、材料の面からも、時効硬化特性や成形性向上のために、Si:0.5〜1.6%とし、Mg/Si が1.2 以下の割合とした高Si量Al-Mg-Si系Al合金板において特に顕著となる。Si量を高めた場合には、焼き入れ処理時の冷却の際、冷却速度が遅いと、特に粒界へのSi析出による成形性の低下の問題が大きくなる。したがって、高Si量Al-Mg-Si系Al合金板では、焼き入れ処理時の冷却速度を特に速める必要があり、局部的な歪み発生の問題が大きくなる。
【0024】
したがって、このような連続的な溶体化焼き入れ処理方法において、本発明で問題とする局部的な歪みによる平坦度低下の問題と材料特性である成形性の向上との問題を、同時に解決する手段は今までに無く、いずれかの特性が必然的に犠牲なり制約を受けてしまうのが実情であった。
【0025】
本発明はこの様な事情に着目してなされたものであって、その目的は、連続熱処理炉において、Al合金板 (コイル) の薄肉化や広幅化により生じる、局部的な歪み改善と材料特性の向上との問題を同時に解決する、成形性と平坦度に優れたAl合金圧延薄板の連続溶体化焼き入れ処理方法を提供しようとするものである。
【0026】
【課題を解決するための手段】
この目的を達成するための本発明請求項1 の要旨は、 Mg:0.2 〜1.0%(質量%、以下同じ)、Si:0.5〜1.6%を、Mg/Si が1.2 以下の割合で含み、板厚が1.5mm 以下のAl-Mg-Si系アルミニウム合金圧延薄板の連続溶体化焼き入れ処理方法であって、前記アルミニウム合金圧延薄板のコイルを巻き戻しながら連続的に熱処理炉に通板して溶体化焼き入れ処理を行うに際し、前記熱処理炉において、薄板を500 〜590 ℃の温度範囲に5 秒以上保持する溶体化処理を行った後、直ちに平均冷却速度50℃/ 秒以上で120 ℃以下の温度まで水と空気との混合ミストを前記薄板に噴射あるいは噴霧して冷却する焼き入れ処理を行い、その後30分以内に、前記焼き入れ処理後に生じた板の局部的な歪みの矯正を、この歪み矯正後の薄板の耐力(σ0.2 )の増加を抑制しつつ、施すことである。
【0027】
前記要旨とすることにより、歪み矯正後の焼鈍処理を行わずとも、Al合金圧延薄板の成形性を確保した上で、本発明で問題とする局部的な歪みを防止することができる。
【0028】
また、請求項2 のように、前記焼き入れ処理後に生じた板の局部的な歪みの矯正を、コイルを巻き取るまでの、連続溶体化焼き入れ処理工程中で行うことにより、焼き入れ処理後の局部的な歪み矯正までの時間的制約(30 分以内) を簡便に確保することができるとともに、連続的な溶体化焼き入れ処理方法の効率も低下させることがない。
【0029】
更に、請求項1 または2 の方法によって処理されたAl合金圧延薄板は、請求項3 のように、自動車パネル用として好適である。
【0030】
【発明の実施の形態】
(Al 合金化学成分組成)
まず、本発明Al-Mg-Si系Al合金における、化学成分組成について説明する。
本発明のAl-Mg-Si系Al合金は、自動車などの輸送機材のパネル材としての特性を満足する必要がある。この内、特に自動車のパネル材やフレーム材としては、基本的に、人工時効処理 (ベークハード) 前の耐力で 90N/mm2以上を有してプレス成形性に優れることや、プレス成形後の塗装焼付 (人工時効処理) 時に耐力が増加する焼付硬化性、あるいは、合金成分の量が少ないリサイクル性などの諸特性に優れていることが必要である。
【0031】
以下、このAl合金の成分組成について説明する。前記要求諸特性を満足するためには、Al-Mg-Si系の6000系Al合金の成分規格 (AA 6111 、6022、6016などのAl合金、JIS 6101、6003、6151、6061、6N01、6063などのAl合金) に相当するものとして、基本的にMg:0.2〜1.0% (質量% 、以下同じ) 、Si:0.5〜1.6%を、Mg/Si が1.2 以下の割合で含有し、その他、Fe、Mn、Cr、Cu、Zn、Ti、B などを後述する量含むことを許容する。
【0032】
しかし、6000系Al合金の各成分規格通りにならずとも、6000系Al合金の前記基本的な特性を有してさえいれば、更なる特性の向上や他の特性を付加するための、成分組成の変更は適宜許容される。
【0033】
次に、各主要元素の含有量についての範囲と臨界的意義について説明する。
Mg:0.2〜1.0%。
Mgは人工時効時 (塗装焼付け処理など) により、Siとともに化合物相(Mg2 Si など) を形成して、また、Cu含有組成では更にCu、Alと化合物相を形成して、使用時の高強度 (耐力) 乃至焼き付け硬化性を付与するために必須の元素である。Mgの0.2%未満の含有では高強度 (耐力) 乃至焼き付け硬化性が得られないず、また、成形時に割れを生じる可能性もある。一方、1.0%を越えて含有されると、鋳造時および焼き入れ時に、粗大な粒子が晶出乃至析出して成形性を阻害する。したがって、Mgの含有量は0.2 〜1.0%の範囲とする。
【0034】
Si:0.5〜1.6%。
SiもMgとともに、人工時効処理により、化合物相(Mg2 Si など) を形成して、使用時の高強度 (耐力) を付与するために必須の元素である。0.5%未満のSiの含有では十分な焼き付け硬化性と強度が得られない。一方、1.6%を越えて含有されると、鋳造時および焼き入れ時に粗大な粒子として析出して、成形性を阻害する。したがって、Siの含有量は0.5 〜1.6%の範囲とする。なお、人工時効処理時の化合物相の形成状態は、MgとSiの含有量の比にも大きく影響される。Mg/Si が1.2 を超えると、化合物相の形成 (Mg2 Siの析出など) が粗となり、強度向上の効果が小さくなる。したがって、Mg/Si は1.2 以下とする。
【0035】
次に、Fe、Mn、Cr、Cu、Zn、Ti、B などは、スクラップなどの溶解材から混入されやすく、基本的に不純物ではあるが、含有される場合の効果もあるので、各々以下に記載する含有量は許容される。
【0036】
Fe:0.01 〜0.3%、Mn:0.01 〜0.3%、Cr:0.01 〜0.3%。
これらの元素は均質化熱処理時およびその後の熱間圧延時に分散粒子を生成する。これらの分散粒子は再結晶後の粒界移動を妨げる効果があるため、微細な結晶粒を得ることができ、成形性に寄与する。各々の下限未満の含有量では、この効果が得られず、一方、過剰な (上限を越える) 含有は溶解、鋳造時に粗大な金属間化合物を生成しやすく、成形時の破壊の起点となり、逆に、成形性を低下させる原因となる。このため、含有する場合のこれらの元素量は各々、Fe:0.01 〜0.3%、Mn:0.01 〜0.3%、Cr:0.01 〜0.3%とする。
【0037】
Cu:0.005〜1.2%。
Cu は焼き付け加熱時にMg、Alと化合物相を形成して析出し、焼き付け硬化性を付与するとともに、T4調質時の固溶状態において、成形性を向上させる。Cuの含有量が0.005%未満では、これらの効果が無く、1.2%を越えると効果が飽和する。また、Cuの含有量が多くなると、塗装後の耐蝕性の内、特に耐糸さび性を劣化させる。したがって、含有する場合のCu量は0.005 〜1.2%とする。
【0038】
Zn:1.0%以下。
Znは多量に含有されると耐蝕性が低下する。したがって、Zn含有量は1.0%以下のできるだけ少ない含有量とすることが好ましい。
【0039】
Ti:0.0001 〜0.1%。
Tiは鋳塊の結晶粒を微細化し、プレス成形性を向上させる。Tiの0.001%未満の含有では、この効果が得られず、一方、Tiを0.1%を越えて含有すると、粗大な晶出物を形成し、成形性を低下させる。したがって、含有する場合のTi量は0.0001〜0.1%の範囲とすることが好ましい。
【0040】
B:1 〜300ppm。
B はTiと同様、鋳塊の結晶粒を微細化し、プレス成形性を向上させる。B の1ppm未満の含有では、この効果が得られず、一方、300ppmを越えて含有されると、やはり粗大な晶出物を形成し、成形性を低下させる。したがって、含有する場合のB 量は1 〜300ppmの範囲とすることが好ましい。
【0041】
また、Ni、V 、Zr、Sc、Agなどの他の元素は、基本的に不純物であり、少ない方が望ましいが、板の特性を阻害しない範囲での含有は許容する。
【0042】
(Al合金板の製造方法)
本発明におけるAl合金板は、本発明で規定するT4処理以外は、常法により製造が可能である。例えば、6000系Al合金成分規格範囲内に溶解調整されたAl合金溶湯を、連続鋳造圧延法、半連続鋳造法(DC鋳造法)等の通常の溶解鋳造法を適宜選択して鋳造する。
【0043】
次いで、このAl合金鋳塊に均質化熱処理を施した後、熱間圧延、または必要により更に (必要により中間焼鈍後) 冷間圧延 (必要によりパス間で中間焼鈍) によりコイル状の所望Al合金薄板の形状に塑性加工される。そして、これら圧延薄板コイルは、本発明で規定するT4処理 (溶体化焼入れ処理) が行わる。
【0044】
なお、熱間圧延後または冷間圧延途中の中間焼鈍は、板の異方性を抑制し、リジングと呼ばれる成形加工後の板表面に生じる凹凸状の表面欠陥を抑止するため、必要により行う。この中間焼鈍を行う場合、焼鈍温度は350 〜590 ℃の範囲とするのが好ましい。焼鈍温度が350 ℃未満ではリジング抑止効果が不十分であり、590 ℃を越えた場合には、局部溶融を起こして、却って成形性が低下する可能性がある。
【0045】
連続溶体化焼入れ処理。
本発明で言う連続的な溶体化焼き入れ処理とは、前記した通り、本発明の局部的な歪みが問題となる、特に板厚が1.5mm 以下のAl合金圧延薄板コイルを巻き戻しながら、連続的に熱処理炉に通板して溶体化焼き入れ処理を行い、再び薄板コイルに巻き取る処理のことを言う。また、この連続的な溶体化焼き入れ処理において、前記板厚が1.5mm 以下の薄板に加えて、更に板幅が1300mm以上の広幅で、またライン (通板) 速度が10m/分以上の高速で通板する際には、より本発明の局部的な歪みが問題となるので、本発明を適用することがより好ましい。
【0046】
一方、特に板厚が1.5mm を越えるような、また、加えて10m/分未満のライン速度、あるいは板幅が1300mm以下のような、比較的厚板で狭幅のAl合金板 (コイル) の場合には、このようなAl合金板表面の局部的な歪みの問題は小さくなり、本発明の適用は必要がない。
【0047】
溶体化処理時の板の加熱速度。
熱処理炉における溶体化処理時の板の加熱速度は、成形性向上の観点から、200 ℃/ 分以上とすることが好ましい。200 ℃/ 分以上とすることにより、再結晶組織が微細になり、成形性が向上する。一方、加熱速度が200 ℃/ 分未満では、このような効果がなく、成形性が低下する可能性がある。
【0048】
溶体化処理温度。
溶体化処理は、成形性向上の観点から、温度500 〜590 ℃の温度で、この温度範囲に5 秒以上の時間保持する。溶体化処理温度が500 ℃未満では、および保持時間が5 秒未満では、固溶元素であるMg、Si、Cuの溶体化が不十分となり、強度および成形性が低下する。一方、溶体化処理温度が590 ℃を越えた場合は、局部溶融を起こして、やはり成形性が低下する。
【0049】
焼き入れ処理。
溶体化処理後の焼き入れ処理は、成形性向上の観点から、溶体化処理後直ちに、かつ平均冷却速度50℃/ 秒以上で120 ℃以下の温度まで冷却する。120 ℃以下の温度までの平均冷却速度が50℃/ 秒未満では、本発明のような高Si量Al-Mg-Si系Al合金板においては、冷却過程で、より顕著に結晶粒界へ金属間化合物が析出して、成長してしまう結果、成形性が著しく低下する。
【0050】
120 ℃以下の温度まで冷却した後に、更に焼付硬化性を高めるために、50〜120 ℃の温度に1 〜48時間保持するような高温保持を行っても良い。50℃未満の温度や1 時間未満の保持時間では、焼付硬化性の向上効果が少ない。また、120 ℃を越える温度や48時間を越える保持時間では、効果が飽和するとともに、準安定相が析出して、T4の耐力が高くなり、成形性が低下する。更に、この高温保持を行う場合は、効果を高めるために、焼き入れ冷却温度を50〜120 ℃とし、このまま再加熱せず、あるいは室温まで冷却後、10分以内に、板を再加熱して前記高温保持を行うことが好ましい。
【0051】
焼き入れ処理時の冷却手段。
焼き入れ処理時の冷却手段は、本発明で問題とする局部歪みの抑制のために、水と空気との混合ミストを板に噴射や噴霧する冷却手段が最適である。冷却手段を水の噴射や噴霧によった場合、より薄板でより広幅の板の場合のような条件が厳しい場合に、本発明で問題とする局部歪みを大きくしたり、前記従来技術で問題とするAl合金板の全体的な変形が生じる可能性がある。
【0052】
これに対し、水と空気との混合ミストは、より薄板でより広幅の板の場合のような条件が厳しい場合に、冷却能を低下させずに、局部歪みが抑制することが可能である。したがって、焼き入れ処理後の板に対する、歪み矯正の負荷が減り、歪み矯正による耐力 (σ0.2)の増加を抑制することが可能となる。
【0053】
水と空気との混合ミストにおける気液比、即ち空気の冷却水に対する混合割合は、Al合金板表面に歪みが発生することを抑制する混合ミストが得られる範囲ならば、混合ミストの水量密度との関係から適宜選択される。但し、気液比が小さすぎる (空気の冷却水に対する混合割合が少なすぎる) 場合には、スプレー水による冷却と大差なくなり、Al合金板表面に歪みが発生することを抑制できない。また、Al合金板表面の歪み発生を抑制するためには、板表面を均一冷却することが必要で、この点、気液混合ミストの平均粒径は50μm 以下が好ましい。
【0054】
なお、前記した通り、冷却に際し、この混合ミストのみで冷却する場合のみではなく、混合ミストに加えて、スプレー水冷却や浸漬冷却等の水冷手段を付加して用いても良い。Al合金板表面の歪みの発生は、500 ℃以上の溶体化処理温度からの冷却の初期段階、即ち、Al合金板温度が高温状態での冷却の際に問題となるものである。したがって、この冷却の初期段階以降の、Al合金板表面の歪みの発生があまり問題とならない、板が比較的低温の状態での、所定温度乃至室温までの冷却を、混合ミストではなく、スプレー水冷却や浸漬冷却等の水冷手段によって代替しても、混合ミストと組み合わせても良い。
【0055】
歪み矯正。
次に、焼き入れ処理後の板に対し、焼き入れ処理後30分以内に、本発明で問題とする局部歪みの矯正を施し、局部歪みをなくして、板の平坦度を確保する。これによって、耐力 (σ0.2)の増加を最低限に抑制した、局部歪みの矯正が可能となる。そして、この結果、前記従来技術のような、歪み矯正後の焼鈍処理が不要となる。
【0056】
歪み矯正後の焼鈍処理を局部歪みの矯正が、焼き入れ処理後30分を越えて行われた場合、室温での時効硬化が進み、板の強度が高くなり、局部歪みの矯正効果が不十分となり、板の平坦度を確保できなくなる。また、局部歪みの矯正時の耐力 (σ0.2)の増加も大きくなり、成形性を阻害する。このため、前記従来技術のように、成形性回復のための、歪み矯正後の焼鈍処理が必須となってしまう。
【0057】
局部歪みの矯正は、焼き入れ処理後の通板中の板に対し、コイルを巻き取るまでの、前記連続溶体化焼き入れ処理工程中 (インライン) で行うか、焼き入れ処理後オフラインで行う。ただ、前記した通り、局部歪みの矯正をインラインで行う方が、焼き入れ処理後の局部的な歪み矯正までの時間的制約(30 分以内) を簡便に確保することができるとともに、連続的な溶体化焼き入れ処理方法の効率も低下させることがないので好ましい。
【0058】
また、局部的な歪み矯正の、前記120 ℃以下の温度とする焼き入れ (冷却) 温度との関係では、室温まで冷却された板に対して歪み矯正してもよく、また、焼入終了温度を60〜130 ℃の比較的高温に保持された板に対して歪み矯正してもよい。ただ、この板を高温保持する場合の保持温度の安定性を保つ観点からは、高温保持前に歪み矯正を行うことが好ましい。
【0059】
なお、局部歪みの矯正手段は、ローラーレベラーやテンションレベラーあるいはストレッチやスキンパス等の公知の手段が適宜選択される。
【0060】
そして、これら矯正手段によって、圧下および/ または張力を、インラインであれば、通板中の板に対し付加して局部歪みの矯正を行う。この際、板の成形性が低下しないように、矯正後の板の耐力 (σ0.2)の増加を抑制することが、勿論重要である。
【0061】
この調質処理の後に、Al合金板表面の洗浄を適宜行い製品板とする。また、製品Al合金板をプレス成形されるまで保管する際の、耐食性を確保するために、Al合金板表面に防錆油や潤滑油を塗布することも有効である。
【0062】
【実施例】
次に、本発明の実施例を説明する。表1 に示す組成のAl合金の鋳塊をDC鋳造法により溶製後、540 ℃×8 時間の範囲で均質化熱処理を施し、厚さ3.5mm まで熱間圧延した。そして更に、厚さ1.0mm 、幅1600mmの薄板まで冷間圧延した。この冷延薄板コイルを巻き戻しながら、連続熱処理炉に通板し、表2 、3 に示す加熱速度と温度 (保持時間10秒) で溶体化処理後、直ちに、表2 、3 に示す焼き入れ (冷却) 速度にて、室温までミスト冷却により焼入れ処理を行った。
【0063】
そして、この溶体化焼入れ処理後の室温の板に対して、矯正までの時間を種々変えて、表2 、3 に示す条件で、8 段のローラーレベラーによる歪みの矯正を行って、再びコイルに巻き取った。表2 、3 には最入側と最出側のローラーのインターメッシュ量 (ローラーの板への押し込み量、mm) を示す。なお、表3 に示す発明例と比較例は、この歪み矯正後に再加熱してコイルに巻き取り、表3 に示す温度と保持時間の条件で高温保持した。
【0064】
これらのコイルより供試材を採取し、これら溶体化焼入れ処理後および歪み矯正後のAl合金板の機械的な特性 (耐力) 、歪み矯正後の平坦度や加工性、および塗装焼き付け後の機械的な特性 (耐力) を評価した。これらの結果を表4 、5 に示す。
【0065】
このうち、Al合金板の耐力 (σ0.2)は、JIS Z 2241法にて引張試験を行って測定した。なお、引張方向はLT= 圧延方向に対し90°方向とした。
【0066】
また、Al合金板の歪み矯正後の平坦度の評価は、Al合金板表面の目視および軟砥石による研磨した際のAl合金板表面の目視により行い、表面が平滑であるものを〇、本発明で問題とする局部的な歪み (径が150mm 以下のクレーター状の凹み) が板の長手方向に認められるものを×として評価した。
【0067】
そして、歪み矯正後の加工性は、Al合金板が長期間放置されて室温時効し、その後、自動車のアウターパネルとしてプレス成形されることを模擬して、前記溶体化焼入後室温で90日間放置後の供試材をブランク材として、大型プレス機を用いてプレス成形し、シワ押さえ力(BHF) が70トン以上で割れを生じずに成形可能であったものを◎、BHF が40〜60トン以上で割れを生じずに成形可能であったものを〇、BHF が40トン以下で割れを生じて成形不可であったものを×として評価した。
【0068】
更に、Al合金板が同じく長期間放置されて室温時効し、その後、自動車のアウターパネルとして、プレス成形後、フラットヘム加工されることを模擬した曲げ試験を行った。即ち、前記溶体化焼入後室温で90日間放置後、ストレッチを行って5%の予歪みを与えた後、曲げ半径0.5mm にて180 度曲げ試験を行った。そして、試験後の試験片の曲げ部表面の割れの状況を目視観察した結果、曲げ部表面に凹部状の割れも肌あれも発生しなかったものを○とし、曲げ部表面に凹部が発生しており、この凹部の最底部に新生面が観察されたものを割れが発生したとして×とした。なお、前記凹部の最底部に新生面が観察されないものは肌あれが発生したと評価される。
【0069】
また、塗装焼付硬化後に相当するAl板の耐力として、前記溶体化焼入後室温で90日間放置後のAl合金板を、ストレッチを行って2%の予歪みを与えた後、170 ℃×20分の加熱を行った後の耐力 (σ0.2)も測定した。
【0070】
表1 〜5 から明らかな通り、本発明成分範囲内で、かつ、本発明溶体化焼き入れ処理条件範囲内、および焼き入れ後30分以内に歪み矯正した発明例No.1〜10、18〜22は、本発明で問題とする局部的な歪みが無く、平坦度に優れている。また、Al合金板の歪み矯正後の耐力増加が少なく、プレス成形性や曲げ加工性などの加工性に優れている。更に、焼き付け後の耐力も高い。また、歪みの矯正後に再加熱して高温保持した発明例No.18 〜22は、特に焼き付け後の耐力が高い。
【0071】
これに対し、比較例No.11 、12 (表1 の合金6 、7)は、本発明溶体化焼き入れ処理条件範囲内で、かつ焼き入れ後30分以内に歪み矯正しているので、本発明で問題とする局部的な歪みは無く、平坦度に優れている。しかし、各々、Si量、Mg量が本発明の上限を越えているので、プレス成形性や曲げ加工性などの加工性に劣る。
【0072】
また、Si量が本発明の下限を下回る比較例No.13(表1 の合金8)は、本発明溶体化焼き入れ処理条件範囲内で、焼き入れ後30分以内に歪み矯正したので、平坦度には優れているものの、プレス成形性に劣る。
【0073】
更に、比較例No.14 は、本発明成分範囲内だが、焼き入れ後30分を越えて歪み矯正している。このため、本発明で問題とする局部的な歪みが生じており、平坦度が劣る。また、溶体化焼き入れ処理の冷却速度が本発明の下限を下回り、プレス成形性や曲げ加工性などの加工性に劣り、塗装焼き付け後の耐力も低い。
【0074】
また、比較例No.15 は、本発明成分範囲内だが、溶体化温度が本発明の下限を下回り、プレス成形性や曲げ加工性などの加工性に劣り、塗装焼き付け後の耐力も低い。
【0075】
また、本発明成分範囲内で、本発明溶体化焼き入れ処理条件範囲内だが、焼き入れ後30分を越えて歪み矯正している比較例No.16 、17は、本発明で問題とする局部的な歪みが生じており、平坦度が劣る。また、歪み矯正時のインターメッシュ量および/ または引っ張り力が大きくなるため、歪み矯正後の耐力増加が大きくなっており、プレス成形性や曲げ加工性などの加工性にも劣る。
【0076】
そして表3 、5 において、比較例No.23 は、本発明成分範囲内および発明溶体化焼き入れ処理条件範囲内で、焼き入れ後30分以内に歪み矯正したので、平坦度には優れている。しかし、歪み矯正後の高温保持温度が高すぎるため、成形までの長期間の保管中に室温時効が生じ、耐力が高くなっており、プレス成形性や曲げ加工性などの加工性にも劣る。
【0077】
また、本発明成分範囲内で、本発明溶体化焼き入れ処理条件範囲内だが、焼き入れ後30分を越えて歪み矯正している比較例No.24 は、本発明で問題とする局部的な歪みが生じており、平坦度が劣る。また、歪み矯正時のインターメッシュ量および/ または引っ張り力が大きくなるため、歪み矯正後の耐力増加が大きくなっており、プレス成形性や曲げ加工性などの加工性にも劣る。
【0078】
更に、比較例No.25 は、本発明成分範囲内で、焼き入れ後30分以内に歪み矯正したので、平坦度には優れている。しかし、溶体化焼き入れ処理の冷却速度が本発明の下限を下回り、プレス成形性や曲げ加工性などの加工性に劣り、塗装焼き付け後の耐力も低い。
【0079】
したがって、これらの結果から、本発明における各規定の臨界的意義が裏付けられる。
【0080】
【表1】

Figure 0004708555
【0081】
【表2】
Figure 0004708555
【0082】
【表3】
Figure 0004708555
【0083】
【表4】
Figure 0004708555
【0084】
【表5】
Figure 0004708555
【0085】
【発明の効果】
本発明によれば、連続熱処理炉において、ライン速度の高速化や、Al合金板 (コイル) の薄肉化や広幅化により生じる、局部的な歪み改善と材料特性の向上との問題を同時に解決する、成形性と平坦度に優れたAl合金圧延薄板の連続溶体化焼き入れ処理方法を提供することができる。したがって、Al合金板の自動車、車両、船舶などの輸送機材用への用途の拡大を図ることができる点で、多大な工業的な価値を有するものである。
【図面の簡単な説明】
【図1】本発明で言うAl合金板の局部的な歪みを示す説明図である。
【符号の説明】
1:Al合金板、2:局部的な歪み (クレーター状の凹凸 )[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a continuous solution quenching method (hereinafter, aluminum is simply referred to as Al) of a rolled aluminum alloy sheet excellent in formability and flatness.
[0002]
[Prior art]
Conventionally, Al alloy sheet materials used as automotive panel materials have been mainly non-heat-treatable Al—Mg (AA to JIS 5000) Al alloys. However, in recent years, for the purpose of further weight reduction, a method for improving the strength by using a heat-treatable Al alloy and using the bake hardenability in the bake coating process after the forming process has been performed. As such a heat-treatable Al alloy, Al-Mg-Si-based Al alloys belonging to AA to JIS 6000 series are mainly used. As this Al-Mg-Si Al alloy, Al alloys such as AA 6111, 6022, 6016 have been put to practical use in Europe and the United States.
[0003]
In order to make an Al alloy plate into a panel material for automobiles, a forming process such as deep drawing, overhanging, bending, and stretch flange is performed to make the Al alloy plate into a desired panel material shape. For this reason, high formability is required for the Al alloy plate.
[0004]
Therefore, in the heat-treatable Al alloy Al-Mg-Si Al alloy sheet, in order to obtain the required high formability, the solution hardening treatment after hot rolling or further cold rolling by a conventional method Is essential and important. That is, in this solution quenching process, a solid solution of alloy elements necessary to cause age hardening reaction is obtained, and in the subsequent quenching process step, the solution state by solution treatment is forced to room temperature. To obtain a supersaturated solid solution. As a result, it is possible to secure moldability due to low yield strength during molding and artificial age-hardening properties that provide higher yield strength during baking after molding.
[0005]
In order to ensure this characteristic, it is preferable to increase the solution treatment temperature and to increase the cooling rate during the quenching process as much as possible. Therefore, for this purpose, many inventions of a method for producing a 6000 series Al alloy plate for press formability in which the cooling rate after solution treatment is defined have been proposed.
[0006]
However, when performing continuous solution treatment and quenching treatment of a thinned and widened Al alloy plate, a new problem arises that local distortion is likely to occur on the surface of the Al alloy plate.
[0007]
Conventionally, for the problem of distortion and deformation of the overall shape of the Al alloy plate in the solution quenching process, by performing a correction process such as roller leveler or tension leveler, or stretch or skin pass light pressure after quenching process, The removal of the deformation of the Al alloy plate is known, for example, from JP-A 62-278256, JP-A 64-11953, JP-A 2-122045, and JP-A 2-122055.
[0008]
And in these prior arts, after correcting the deformation of the entire shape of the Al alloy plate in question, heat treatment (annealing) is performed under specific conditions (for example, 60 to 360 ° C.) to improve the formability associated with the correction processing. It is essential to suppress the decline.
[0009]
[Problems to be solved by the invention]
However, in these prior arts, an Al alloy produced when a thinned and widened Al alloy plate, which is a problem in the present invention, is continuously subjected to a solution treatment and a quenching treatment at a high plate feed speed. It does not solve the problem of local distortion of the board.
[0010]
The reason is that, firstly, the local strain of the Al alloy plate that is a problem in the present invention and the deformation of the Al alloy plate that is a problem in these conventional techniques (although they are referred to as the same strain as an expression) The content of the distortion is completely different.
[0011]
The strain of the Al alloy plate which is a problem in the present invention is a local strain generated locally on the surface of the Al alloy plate and continuously in the longitudinal direction of the plate in the continuous heat treatment step under the conditions of the present invention. On the other hand, the deformation of the Al alloy plate, which is a problem in these prior arts, is not the local strain of the present invention, but the entire plate or plate such as warpage, wave, twist, etc. due to thermal expansion and contraction of the Al alloy plate. This is a deformation of the overall shape.
[0012]
That is, the local strain referred to in the present invention is a crater-like unevenness (dent) 2 that is locally generated on the surface of the Al alloy plate 1 and continuously in the longitudinal direction of the plate, as schematically shown in FIG. is there. The cause of the local distortion referred to in the present invention is not yet clear. However, not only the thermal distortion due to the thermal expansion and contraction of the Al alloy plate during the solution quenching process, such as the overall deformation of the Al alloy plate of the prior art, but also the local part of the plate in the rolling in the previous process It is inferred that the history of general strain, etc., the sheet feeding speed and line tension at high speed of the thinned and widened Al alloy sheet, the cooling means and conditions are also involved in a complicated manner.
[0013]
When the local distortion referred to in the present invention occurs in the Al alloy plate, of course, the flatness (flatness) of the Al alloy plate can be reduced as in the case of the overall deformation of the conventional Al alloy plate. Remarkably inhibits.
[0014]
In addition, since the deformation of the Al alloy plate, which is a problem in the prior art, is a deformation of the overall shape of the Al alloy plate, regardless of which correction means such as a roller leveler, a tension leveler, or a stretch or skin pass is selected, In order to correct the deformation of the Al alloy plate after quenching, a relatively high reduction amount and tension are required.
[0015]
As a result, in these conventional techniques, there is a fatal problem that a large increase in strength, particularly a proof stress value, and a large decrease in formability are inevitable due to the straightening treatment of the Al alloy plate after quenching.
[0016]
Therefore, in these prior arts, as described in common in each of the above publications, after straightening the Al alloy plate, heat treatment (annealing) is performed under specific conditions (for example, 60 to 360 ° C.). Therefore, it is essential to suppress a decrease in formability associated with the correction treatment. Moreover, it is difficult to sufficiently recover the moldability only by this heat treatment. In addition, the addition of this heat treatment step causes a problem that the manufacturing process becomes complicated and disadvantageous economically.
[0017]
By the way, in the continuous solution quenching method targeted by the present invention, the overall deformation of the Al alloy plate such as warpage, wave, and twist, which is a problem in the prior art, is not a problem. .
[0018]
This is because, in the continuous heat treatment process as in the present invention, when deformation of the entire Al alloy plate or the entire shape of the plate, which is a problem in the prior art, occurs, it is difficult to pass the plate itself in the process, and the quality before the plate quality In addition, the operation itself becomes impossible. Therefore, in the continuous heat treatment process as in the present invention, the basic condition of operation such as equipment and line tension is that the deformation of the entire Al alloy plate or the entire shape of the plate, which is a problem in the prior art, does not occur. Resolved issue.
[0019]
For this reason, the problem of local distortion of the present invention is a problem peculiar to the continuous solution hardening and quenching process, which is the target of the present invention, in the thinned and widened Al alloy sheet and at a high speed. be able to. Moreover, it can be said that the deformation of the overall shape of the Al alloy plate, which is a problem in these conventional techniques, is a problem peculiar to the batch type solution heat treatment.
[0020]
Therefore, in the present invention, only the continuous solution quenching process in which the local distortion of the present invention occurs (problem) is targeted. The type of processing that involves solution hardening and quenching in batch mode is excluded. The continuous solution quenching process referred to in the present invention is a solution quenching process by continuously passing through a heat treatment furnace while rewinding a rolled thin sheet coil after hot rolling or cold rolling. This refers to the process of winding around a thin coil again.
[0021]
Here, the local distortion of the present invention occurs when the solution treatment temperature is increased and the cooling rate during the quenching process is increased in the continuous solution quenching process targeted by the present invention. , More likely to occur. In addition, this tendency increases as the Al alloy plate (coil) becomes thinner.
[0022]
In fact, according to the knowledge of the present inventors, in the case of a relatively thick Al alloy plate (coil) whose thickness exceeds 1.5 mm, such local distortion of the Al alloy plate surface is observed. The problem becomes smaller. In the case of a thinned Al alloy plate, this problem is similarly reduced when the solution treatment temperature is lower than 500 ° C. and the quenching start temperature is lower than 500 ° C.
[0023]
The problem of local strain is that, from the viewpoint of materials, Si: 0.5-1.6% and Mg / Si ratio of 1.2 or less are used in order to improve age hardening characteristics and formability. This is particularly noticeable in the -Mg-Si Al alloy sheet. When the amount of Si is increased, if the cooling rate is low during cooling during the quenching process, the problem of deterioration of formability due to Si precipitation at the grain boundary is particularly serious. Therefore, in the high Si content Al—Mg—Si based Al alloy plate, it is necessary to particularly increase the cooling rate during the quenching process, and the problem of local distortion is increased.
[0024]
Therefore, in such a continuous solution hardening treatment method, means for simultaneously solving the problem of flatness reduction due to local distortion and the improvement of formability as material characteristics, which are problems in the present invention. In the past, one of the characteristics was inevitably sacrificed and constrained.
[0025]
The present invention has been made paying attention to such circumstances, and its purpose is to improve local strain and material properties caused by thinning and widening of an Al alloy plate (coil) in a continuous heat treatment furnace. It is an object of the present invention to provide a continuous solution quenching method for an Al alloy rolled sheet with excellent formability and flatness, which simultaneously solves the problem of improvement of the above.
[0026]
[Means for Solving the Problems]
In order to achieve this object, the gist of claim 1 of the present invention is that Mg: 0.2 to 1.0% (mass%, the same applies hereinafter), Si: 0.5 to 1.6%, Mg / Si is 1.2 or less, A method of continuous solution hardening and quenching of an Al-Mg-Si-based aluminum alloy rolled sheet having a thickness of 1.5 mm or less, wherein the aluminum alloy rolled sheet is continuously passed through a heat treatment furnace while rewinding the coil. In performing the chemical quenching treatment, in the heat treatment furnace, after the solution treatment for holding the thin plate in the temperature range of 500 to 590 ° C for 5 seconds or more, immediately, the average cooling rate is 50 ° C / second or more and 120 ° C or less. Up to temperature Spray or spray a mixed mist of water and air on the thin plate Perform quenching treatment to cool, then within 30 minutes, Said Occurs after quenching Thin Correction of local distortion of the board , While suppressing the increase in the yield strength (σ0.2) of the thin plate after this distortion correction, It is to apply.
[0027]
By making it into the said summary, the local distortion which is a problem by this invention can be prevented, after ensuring the moldability of an Al alloy rolled sheet, without performing the annealing process after distortion correction.
[0028]
Further, as in claim 2, by correcting the local distortion of the plate generated after the quenching process in the continuous solution quenching process until the coil is wound, Thus, it is possible to easily secure the time restriction (within 30 minutes) until the local distortion correction, and the efficiency of the continuous solution quenching method is not lowered.
[0029]
Furthermore, the Al alloy rolled sheet treated by the method of claim 1 or 2 is suitable for automobile panels as in claim 3.
[0030]
DETAILED DESCRIPTION OF THE INVENTION
(Al alloy chemical composition)
First, the chemical component composition in the Al-Mg-Si Al alloy of the present invention will be described.
The Al—Mg—Si-based Al alloy of the present invention needs to satisfy the characteristics as a panel material for transportation equipment such as automobiles. Of these, especially for automobile panel materials and frame materials, the load resistance before artificial aging treatment (bake hard) is basically 90 N / mm. 2 Excellent press-formability due to the above, excellent properties such as bake hardenability that increases the yield strength during paint baking (artificial aging treatment) after press molding, and recyclability with a small amount of alloy components It is necessary to be.
[0031]
Hereinafter, the component composition of this Al alloy will be described. In order to satisfy the above required characteristics, Al-Mg-Si based 6000 series Al alloy component standards (Al alloys such as AA 6111, 6022, 6016, JIS 6101, 6003, 6151, 6061, 6N01, 6063, etc. In general, Mg: 0.2 to 1.0% (mass%, the same shall apply hereinafter), Si: 0.5 to 1.6%, and Mg / Si at a ratio of 1.2 or less, , Mn, Cr, Cu, Zn, Ti, B and the like are allowed to be contained in amounts to be described later.
[0032]
However, even if it does not comply with each component standard of 6000 series Al alloy, as long as it has the basic characteristics of 6000 series Al alloy, it is a component for further improvement of characteristics and addition of other characteristics. Changes in the composition are allowed as appropriate.
[0033]
Next, the range and critical significance of the content of each main element will be described.
Mg: 0.2-1.0%.
Mg is compounded with Si (Mg) due to artificial aging (paint baking treatment, etc.). 2 In addition, in a Cu-containing composition, a compound phase is formed with Cu and Al, which is an essential element for imparting high strength (yield strength) or bake hardenability during use. If the Mg content is less than 0.2%, high strength (yield strength) or bake hardenability cannot be obtained, and cracking may occur during molding. On the other hand, if the content exceeds 1.0%, coarse particles are crystallized or precipitated during casting and quenching, thereby impairing moldability. Therefore, the Mg content is in the range of 0.2 to 1.0%.
[0034]
Si: 0.5-1.6%.
Si is also compounded with Mg (Mg) by artificial aging treatment. 2 It is an essential element for providing high strength (yield strength) during use. If the Si content is less than 0.5%, sufficient bake hardenability and strength cannot be obtained. On the other hand, if the content exceeds 1.6%, it precipitates as coarse particles during casting and quenching, thereby impairing formability. Therefore, the Si content is in the range of 0.5 to 1.6%. The formation state of the compound phase during the artificial aging treatment is greatly influenced by the ratio of the Mg and Si contents. When Mg / Si exceeds 1.2, compound phase formation (Mg 2 Si precipitation, etc.) becomes rough, and the effect of improving the strength becomes small. Therefore, Mg / Si is 1.2 or less.
[0035]
Next, Fe, Mn, Cr, Cu, Zn, Ti, B, etc. are easily mixed from melting materials such as scrap and are basically impurities, but there are also effects when they are contained. The stated contents are acceptable.
[0036]
Fe: 0.01 to 0.3%, Mn: 0.01 to 0.3%, Cr: 0.01 to 0.3%.
These elements produce dispersed particles during the homogenization heat treatment and subsequent hot rolling. Since these dispersed particles have the effect of hindering the grain boundary movement after recrystallization, fine crystal grains can be obtained, which contributes to moldability. If the content is less than the lower limit of each, this effect cannot be obtained.On the other hand, if the content is excessive (exceeding the upper limit), a coarse intermetallic compound is likely to be formed during melting and casting, which becomes a starting point of fracture during molding, In addition, the moldability is reduced. For this reason, the content of these elements when contained is set to Fe: 0.01 to 0.3%, Mn: 0.01 to 0.3%, and Cr: 0.01 to 0.3%, respectively.
[0037]
Cu: 0.005-1.2%.
Cu forms a compound phase with Mg and Al during baking and deposits, imparts bake hardenability, and improves formability in the solid solution state during T4 tempering. If the Cu content is less than 0.005%, these effects are not obtained, and if it exceeds 1.2%, the effects are saturated. Further, when the Cu content is increased, the corrosion resistance after coating, in particular, the thread rust resistance is deteriorated. Therefore, the Cu content when contained is 0.005 to 1.2%.
[0038]
Zn: 1.0% or less.
When Zn is contained in a large amount, the corrosion resistance decreases. Therefore, it is preferable that the Zn content is as small as possible, 1.0% or less.
[0039]
Ti: 0.0001 to 0.1%.
Ti refines ingot crystal grains and improves press formability. If Ti is contained in an amount of less than 0.001%, this effect cannot be obtained. On the other hand, if Ti is contained in an amount exceeding 0.1%, a coarse crystallized product is formed and formability is lowered. Therefore, when Ti is contained, the Ti content is preferably in the range of 0.0001 to 0.1%.
[0040]
B: 1 to 300 ppm.
B, like Ti, refines ingot crystal grains and improves press formability. If the content of B is less than 1 ppm, this effect cannot be obtained. On the other hand, if the content exceeds 300 ppm, a coarse crystallized product is formed and the moldability is lowered. Therefore, the B content when contained is preferably in the range of 1 to 300 ppm.
[0041]
In addition, other elements such as Ni, V, Zr, Sc, and Ag are basically impurities, and it is desirable that they be less. However, inclusion in a range that does not impair the characteristics of the plate is allowed.
[0042]
(Al alloy plate manufacturing method)
The Al alloy plate in the present invention can be produced by a conventional method except for the T4 treatment specified in the present invention. For example, a molten Al alloy melt adjusted within a 6000 series Al alloy component standard range is cast by appropriately selecting a normal melting casting method such as a continuous casting rolling method or a semi-continuous casting method (DC casting method).
[0043]
Next, this Al alloy ingot is subjected to homogenization heat treatment, and then hot-rolled, or if necessary (after intermediate annealing if necessary) cold rolling (intermediate annealing between passes if necessary) to form a coiled desired Al alloy Plastic processing into the shape of a thin plate. These rolled thin sheet coils are subjected to T4 treatment (solution hardening treatment) defined in the present invention.
[0044]
The intermediate annealing after the hot rolling or during the cold rolling is performed as necessary in order to suppress the anisotropy of the plate and to suppress uneven surface defects generated on the plate surface after the forming process called ridging. When this intermediate annealing is performed, the annealing temperature is preferably in the range of 350 to 590 ° C. If the annealing temperature is less than 350 ° C, the effect of inhibiting ridging is insufficient, and if it exceeds 590 ° C, local melting may occur and the moldability may be lowered.
[0045]
Continuous solution quenching treatment.
As described above, the continuous solution hardening treatment referred to in the present invention is a problem of local distortion of the present invention, in particular, while rewinding an Al alloy rolled thin sheet coil having a sheet thickness of 1.5 mm or less. In other words, it refers to a process of passing through a heat treatment furnace, performing a solution quenching process, and winding it again around a thin coil. In addition, in this continuous solution quenching process, in addition to the thin plate having a thickness of 1.5 mm or less, the plate width is 1300 mm or more, and the line (passing plate) speed is 10 m / min or more. When the sheet is passed through, the local distortion of the present invention becomes a problem. Therefore, it is more preferable to apply the present invention.
[0046]
On the other hand, a relatively thick and narrow Al alloy plate (coil) such as a plate thickness exceeding 1.5 mm, a line speed of less than 10 m / min, or a plate width of 1300 mm or less, in particular. In such a case, the problem of local distortion on the surface of the Al alloy plate is reduced, and the application of the present invention is not necessary.
[0047]
The heating rate of the plate during solution treatment.
The heating rate of the plate during the solution treatment in the heat treatment furnace is preferably 200 ° C./min or more from the viewpoint of improving formability. By setting it to 200 ° C / min or more, the recrystallized structure becomes fine and the moldability is improved. On the other hand, when the heating rate is less than 200 ° C./min, such an effect is not obtained and the moldability may be lowered.
[0048]
Solution treatment temperature.
The solution treatment is maintained at a temperature of 500 to 590 ° C. for 5 seconds or more in this temperature range from the viewpoint of improving moldability. If the solution treatment temperature is less than 500 ° C. and the holding time is less than 5 seconds, the solution of Mg, Si, and Cu, which are solid solution elements, is insufficient, and the strength and formability are reduced. On the other hand, when the solution treatment temperature exceeds 590 ° C., local melting occurs and the moldability is also lowered.
[0049]
Quenching process.
The quenching treatment after the solution treatment is performed immediately after the solution treatment and is cooled to a temperature of 120 ° C. or less at an average cooling rate of 50 ° C./second or more from the viewpoint of improving moldability. When the average cooling rate to a temperature of 120 ° C. or less is less than 50 ° C./second, in the high Si content Al—Mg—Si based Al alloy sheet as in the present invention, the metal is more remarkably moved to the grain boundary during the cooling process. As a result of precipitation and growth of the intermetallic compound, the moldability is significantly reduced.
[0050]
After cooling to a temperature of 120 ° C. or lower, in order to further enhance the bake hardenability, a high temperature holding at a temperature of 50 to 120 ° C. for 1 to 48 hours may be performed. At temperatures below 50 ° C and holding times of less than 1 hour, the effect of improving bake hardenability is small. In addition, when the temperature exceeds 120 ° C. or the holding time exceeds 48 hours, the effect is saturated and a metastable phase is precipitated, the yield strength of T4 increases, and the moldability decreases. Furthermore, when maintaining this high temperature, in order to enhance the effect, the quenching cooling temperature is set to 50 to 120 ° C. It is preferable to perform the high temperature holding.
[0051]
Cooling means during quenching process.
The cooling means during the quenching process is optimally a cooling means for spraying or spraying a mixed mist of water and air onto the plate in order to suppress local distortion, which is a problem in the present invention. The cooling means is sprayed or sprayed with water. If When conditions are severe, such as in the case of thinner and wider plates, the local distortion that is a problem in the present invention may be increased, or the overall deformation of the Al alloy plate that is a problem in the prior art may occur. There is.
[0052]
On the other hand, the mixed mist of water and air can suppress the local distortion without reducing the cooling ability when the conditions are severe as in the case of a thinner plate and a wider plate. Therefore, the strain correction load on the plate after quenching treatment is reduced, and the proof stress (σ 0.2 ) Can be suppressed.
[0053]
The gas-liquid ratio in the mixed mist of water and air, that is, the mixing ratio of air to cooling water is within the range in which mixed mist that suppresses the occurrence of distortion on the Al alloy plate surface can be obtained. It is suitably selected from the relationship. However, when the gas-liquid ratio is too small (the mixing ratio of air to cooling water is too small), the difference from the cooling with spray water does not occur, and the occurrence of distortion on the Al alloy plate surface cannot be suppressed. Further, in order to suppress the occurrence of strain on the Al alloy plate surface, it is necessary to cool the plate surface uniformly, and in this respect, the average particle size of the gas-liquid mixed mist is preferably 50 μm or less.
[0054]
As described above, the cooling is not limited to the case of cooling with only this mixed mist, but may be used by adding water cooling means such as spray water cooling or immersion cooling in addition to the mixed mist. The occurrence of strain on the surface of the Al alloy plate is a problem in the initial stage of cooling from a solution treatment temperature of 500 ° C. or higher, that is, in the case of cooling when the temperature of the Al alloy plate is high. Therefore, after the initial stage of cooling, the generation of distortion on the surface of the Al alloy plate is not a serious problem. Cooling from a predetermined temperature to room temperature when the plate is at a relatively low temperature is performed using spray water instead of mixed mist. It may be replaced by water cooling means such as cooling or immersion cooling, or may be combined with mixed mist.
[0055]
Distortion correction.
Next, the local distortion, which is a problem in the present invention, is corrected within 30 minutes after the quenching process to eliminate the local distortion and ensure the flatness of the board. As a result, the yield strength (σ 0.2 ) Increase in local distortion can be minimized. As a result, an annealing process after distortion correction as in the prior art is not required.
[0056]
When the correction of local distortion is performed after 30 minutes after quenching, the aging hardening at room temperature proceeds, the strength of the plate increases, and the effect of correcting local distortion is insufficient. Thus, the flatness of the plate cannot be secured. Also, the proof stress (σ 0.2 ) Also increases, impairing moldability. For this reason, the annealing process after distortion correction for a moldability recovery like the said prior art will become essential.
[0057]
The correction of the local distortion is performed in the continuous solution quenching process (inline) until the coil is wound on the plate in the passed plate after the quenching process, or offline after the quenching process. However, as described above, in-line correction of in-line distortion can easily secure time constraints (within 30 minutes) until local distortion correction after quenching, It is preferable because the efficiency of the solution hardening treatment method is not lowered.
[0058]
In addition, in relation to the local distortion correction and the quenching (cooling) temperature of 120 ° C. or lower, distortion correction may be performed on a plate cooled to room temperature, and the quenching end temperature is May be corrected with respect to a plate held at a relatively high temperature of 60 to 130 ° C. However, from the viewpoint of maintaining the stability of the holding temperature when the plate is held at a high temperature, it is preferable to correct the distortion before holding the high temperature.
[0059]
As a means for correcting local distortion, a known means such as a roller leveler, a tension leveler, a stretch or a skin pass is appropriately selected.
[0060]
And by these correction means, if it is in-line, reduction and / or tension | tensile_strength is added with respect to the board in a threading board, and local distortion is corrected. At this time, the strength of the plate after correction (σ 0.2 It is of course important to suppress the increase in).
[0061]
After this tempering treatment, the surface of the Al alloy plate is appropriately washed to obtain a product plate. It is also effective to apply rust preventive oil or lubricating oil to the surface of the Al alloy plate in order to ensure corrosion resistance when storing the product Al alloy plate until it is press-molded.
[0062]
【Example】
Next, examples of the present invention will be described. An ingot of Al alloy having the composition shown in Table 1 was melted by a DC casting method, subjected to homogenization heat treatment in a range of 540 ° C. × 8 hours, and hot-rolled to a thickness of 3.5 mm. Further, it was cold-rolled to a thin plate having a thickness of 1.0 mm and a width of 1600 mm. While rewinding this cold-rolled thin coil, it was passed through a continuous heat treatment furnace and immediately after solution treatment at the heating rate and temperature shown in Tables 2 and 3 (holding time 10 seconds), quenching shown in Tables 2 and 3 was performed. (Cooling) The quenching process was performed by mist cooling to room temperature at a speed.
[0063]
Then, the room temperature plate after the solution hardening treatment was subjected to various correction times and under the conditions shown in Tables 2 and 3, the distortion was corrected with an 8-stage roller leveler, and the coil was again formed. Winded up. Tables 2 and 3 show the amount of intermesh (the amount of pressing of the roller into the plate, mm) of the most input side and most output side rollers. Note that the invention examples and comparative examples shown in Table 3 were reheated after being distorted and wound into a coil, and kept at a high temperature under the conditions of temperature and holding time shown in Table 3.
[0064]
Sample materials were collected from these coils, and the mechanical properties (strength) of these Al alloy sheets after solution hardening and distortion correction, flatness and workability after distortion correction, and machines after paint baking. Characteristics (yield strength) were evaluated. These results are shown in Tables 4 and 5.
[0065]
Of these, the yield strength of the Al alloy sheet (σ 0.2 ) Was measured by a tensile test according to JIS Z 2241 method. The tensile direction was 90 ° with respect to LT = rolling direction.
[0066]
In addition, the evaluation of the flatness after correcting the distortion of the Al alloy plate is performed by visual observation of the Al alloy plate surface and visual observation of the Al alloy plate surface when polished with a soft grinding stone. The case where the local distortion (crater-like dent with a diameter of 150 mm or less) which is a problem was recognized in the longitudinal direction of the plate was evaluated as x.
[0067]
And the workability after distortion correction is 90 days at room temperature after solution quenching, simulating that an Al alloy plate is left standing for a long time and aged at room temperature, and then press molded as an outer panel of an automobile. The test material after standing as a blank material was press-molded using a large press, and the wrinkle holding force (BHF) was 70 tons or more and could be formed without cracking ◎, BHF 40 ~ The case where it was possible to mold without cracking at 60 tons or more was evaluated as ◯, and the case where BHF was 40 tons or less and cracked and could not be molded was evaluated as x.
[0068]
Further, a bending test simulating that the Al alloy plate was allowed to stand for a long period of time and aged at room temperature, and then flat-hem processed after press forming as an outer panel of an automobile was performed. That is, after the solution quenching and standing at room temperature for 90 days, the sample was stretched to give a pre-strain of 5%, and then subjected to a 180 ° bending test at a bending radius of 0.5 mm. As a result of visual observation of the cracked surface condition of the test piece after the test, the surface of the bent part was evaluated as ◯ where no concave cracks or rough surface occurred, and a concave part was generated on the surface of the bent part. A case where a new surface was observed at the bottom of the concave portion was marked as x when cracking occurred. In addition, what the new surface is not observed in the lowest part of the said recessed part is evaluated that the rough skin generate | occur | produced.
[0069]
In addition, as the yield strength of the corresponding Al plate after paint bake hardening, the Al alloy plate after standing for 90 days at room temperature after solution quenching was stretched to give a pre-strain of 2%, then 170 ° C. × 20 Yield after heating for min (σ 0.2 ) Was also measured.
[0070]
As is apparent from Tables 1 to 5, Invention Examples Nos. 1 to 10 and 18 to 18 in which the distortion was corrected within the component range of the present invention, within the range of the solution heat treatment condition of the present invention, and within 30 minutes after quenching. No. 22 has no local distortion which is a problem in the present invention, and has excellent flatness. In addition, there is little increase in yield strength after strain correction of Al alloy plate, and it is excellent in workability such as press formability and bending workability. Furthermore, the yield strength after baking is also high. Inventive Examples Nos. 18 to 22, which are reheated after distortion correction and kept at a high temperature, have particularly high yield strength after baking.
[0071]
On the other hand, Comparative Examples Nos. 11 and 12 (Alloys 6 and 7 in Table 1) are subjected to distortion correction within the range of the solution heat treatment conditions of the present invention and within 30 minutes after quenching. There is no local distortion which is a problem in the invention, and the flatness is excellent. However, since the Si amount and the Mg amount exceed the upper limit of the present invention, they are inferior in workability such as press formability and bending workability.
[0072]
Further, Comparative Example No. 13 (Alloy 8 in Table 1) whose Si amount is below the lower limit of the present invention was flattened within 30 minutes after quenching within the range of the solution heat treatment conditions of the present invention. Although it is excellent in degree, it is inferior in press formability.
[0073]
Further, Comparative Example No. 14 is within the component range of the present invention, but the distortion is corrected over 30 minutes after quenching. For this reason, the local distortion which is a problem in the present invention occurs, and the flatness is inferior. Further, the cooling rate of the solution quenching process is lower than the lower limit of the present invention, the workability such as press formability and bending workability is inferior, and the yield strength after baking is low.
[0074]
Comparative Example No. 15 is within the component range of the present invention, but the solution temperature is below the lower limit of the present invention, the workability such as press formability and bending workability is inferior, and the proof stress after baking is low.
[0075]
In addition, within the range of the present invention component, within the range of the solution hardening treatment condition of the present invention, the comparative examples No. 16 and 17 that have corrected the strain for more than 30 minutes after quenching are the local problems in the present invention. Distortion occurs and the flatness is poor. Further, since the amount of intermesh and / or tensile force at the time of distortion correction is increased, the increase in yield strength after distortion correction is increased, and workability such as press formability and bending workability is inferior.
[0076]
And in Tables 3 and 5, Comparative Example No. 23 is excellent in flatness because distortion was corrected within 30 minutes after quenching within the range of the present invention component and within the range of the inventive solution quenching treatment condition. . However, since the high temperature holding temperature after distortion correction is too high, aging occurs at room temperature during long-term storage until molding, the proof stress is high, and workability such as press formability and bending workability is poor.
[0077]
In addition, within the range of the present invention component, within the range of the solution hardening quenching treatment condition of the present invention, the comparative example No. 24 in which distortion correction is performed for more than 30 minutes after quenching is a localized problem that is a problem in the present invention. Distortion has occurred and flatness is poor. In addition, since the amount of intermesh and / or tensile force at the time of distortion correction increases, the increase in yield strength after distortion correction increases, and the workability such as press formability and bending workability also deteriorates.
[0078]
Furthermore, Comparative Example No. 25 is excellent in flatness because the distortion was corrected within 30 minutes after quenching within the component range of the present invention. However, the cooling rate of the solution hardening treatment is lower than the lower limit of the present invention, the workability such as press formability and bending workability is inferior, and the proof stress after paint baking is low.
[0079]
Therefore, these results support the critical significance of each provision in the present invention.
[0080]
[Table 1]
Figure 0004708555
[0081]
[Table 2]
Figure 0004708555
[0082]
[Table 3]
Figure 0004708555
[0083]
[Table 4]
Figure 0004708555
[0084]
[Table 5]
Figure 0004708555
[0085]
【The invention's effect】
According to the present invention, in a continuous heat treatment furnace, the problems of local distortion improvement and material property improvement caused by increasing the line speed and thinning or widening the Al alloy plate (coil) are simultaneously solved. Further, it is possible to provide a continuous solution quenching method for an Al alloy rolled sheet having excellent formability and flatness. Therefore, it has a great industrial value in that the use of the Al alloy plate for transportation equipment such as automobiles, vehicles, and ships can be expanded.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing local distortion of an Al alloy plate referred to in the present invention.
[Explanation of symbols]
1: Al alloy plate, 2: Local distortion (crater-like irregularities)

Claims (3)

Mg:0.2 〜1.0%(質量%、以下同じ)、Si:0.5〜1.6%を、Mg/Si が1.2 以下の割合で含み、板厚が1.5mm 以下のAl-Mg-Si系アルミニウム合金圧延薄板の連続溶体化焼き入れ処理方法であって、前記アルミニウム合金圧延薄板のコイルを巻き戻しながら連続的に熱処理炉に通板して溶体化焼き入れ処理を行うに際し、前記熱処理炉において、薄板を500 〜590 ℃の温度範囲に5 秒以上保持する溶体化処理を行った後、直ちに平均冷却速度50℃/ 秒以上で120 ℃以下の温度まで水と空気との混合ミストを前記薄板に噴射あるいは噴霧して冷却する焼き入れ処理を行い、その後30分以内に、前記焼き入れ処理後に生じた板の局部的な歪みの矯正を、この歪み矯正後の薄板の耐力(σ0.2 )の増加を抑制しつつ、施すことを特徴とする成形性と平坦度に優れたアルミニウム合金圧延薄板の連続溶体化焼き入れ処理方法。Rolled Al-Mg-Si aluminum alloy sheet containing Mg: 0.2 to 1.0% (mass%, the same shall apply hereinafter) , Si: 0.5 to 1.6%, with a Mg / Si ratio of 1.2 or less, and a sheet thickness of 1.5 mm or less In the heat treatment furnace, when the solution hardening quenching process is performed by continuously passing the coil of the aluminum alloy rolled thin plate through the heat treatment furnace while rewinding the coil of the aluminum alloy rolled thin plate, Immediately after the solution treatment for 5 seconds or more in the temperature range of ~ 590 ° C, a mixed mist of water and air is sprayed or sprayed on the thin plate to an average cooling rate of 50 ° C / second or more to 120 ° C or less. performs quenching process to to cool, then within 30 minutes, the correction of localized distortion of the thin plate formed after the hardening process, the increase in yield strength (? 0.2) of the thin plate after the straightening suppressing while, aluminum alloy pressure with excellent moldability and flatness, characterized in that subjecting Continuous solution quenching method for thin sheets. 前記焼き入れ処理後に生じた板の局部的な歪みの矯正を、コイルを巻き取るまでの、連続溶体化焼き入れ処理工程中で行う請求項1に記載の成形性と平坦度に優れたアルミニウム合金圧延薄板の連続溶体化焼き入れ処理方法。Aluminum correction of localized distortion of the thin plate formed after the hardening process, to wind the coil, excellent moldability and flatness of claim 1 carried out in a continuous solution heat quenching process Continuous solution quenching method for rolled alloy sheet. 前記アルミニウム合金圧延薄板が自動車パネル用である請求項1または2に記載の成形性と平坦度に優れたアルミニウム合金圧延薄板の連続溶体化焼き入れ処理方法。  The method for continuous solution hardening and quenching of an aluminum alloy rolled sheet having excellent formability and flatness according to claim 1 or 2, wherein the rolled sheet of aluminum alloy is for an automotive panel.
JP2000378840A 2000-12-13 2000-12-13 Continuous solution quenching method for rolled aluminum alloy sheets with excellent formability and flatness Expired - Lifetime JP4708555B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000378840A JP4708555B2 (en) 2000-12-13 2000-12-13 Continuous solution quenching method for rolled aluminum alloy sheets with excellent formability and flatness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000378840A JP4708555B2 (en) 2000-12-13 2000-12-13 Continuous solution quenching method for rolled aluminum alloy sheets with excellent formability and flatness

Publications (2)

Publication Number Publication Date
JP2002180220A JP2002180220A (en) 2002-06-26
JP4708555B2 true JP4708555B2 (en) 2011-06-22

Family

ID=18847328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000378840A Expired - Lifetime JP4708555B2 (en) 2000-12-13 2000-12-13 Continuous solution quenching method for rolled aluminum alloy sheets with excellent formability and flatness

Country Status (1)

Country Link
JP (1) JP4708555B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006299342A (en) * 2005-04-20 2006-11-02 Sumitomo Light Metal Ind Ltd Method for manufacturing aluminum alloy material for press forming and pressed material
DE602005011997D1 (en) * 2005-05-25 2009-02-05 Nippon Light Metal Co HREN FOR THIS
JP4732819B2 (en) * 2005-07-19 2011-07-27 古河スカイ株式会社 Quenching method
JP5329746B2 (en) * 2006-07-13 2013-10-30 株式会社神戸製鋼所 Aluminum alloy sheet for warm forming
JP5432439B2 (en) * 2007-06-27 2014-03-05 株式会社神戸製鋼所 Aluminum alloy sheet for warm forming
JP5814834B2 (en) * 2012-03-07 2015-11-17 株式会社神戸製鋼所 Aluminum alloy plate for automobile hood inner panel
MX2020003528A (en) * 2017-10-23 2020-07-29 Novelis Inc High-strength, highly formable aluminum alloys and methods of making the same.
CN114934161B (en) * 2022-05-26 2023-02-28 东北大学 Continuous roller type solid solution and rapid immersion quenching equipment and method for aluminum alloy plate
CN115747535B (en) * 2022-09-07 2023-10-03 河南明晟新材料科技有限公司 Manufacturing method for improving edge covering performance of 6016 automobile stamping plate

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR9508997A (en) * 1994-09-06 1997-11-25 Alcan Int Ltd Heat treatment process for aluminum alloy plate
US5718780A (en) * 1995-12-18 1998-02-17 Reynolds Metals Company Process and apparatus to enhance the paintbake response and aging stability of aluminum sheet materials and product therefrom
JP4186240B2 (en) * 1997-10-03 2008-11-26 株式会社神戸製鋼所 Al-Mg-Si aluminum alloy sheet for forming

Also Published As

Publication number Publication date
JP2002180220A (en) 2002-06-26

Similar Documents

Publication Publication Date Title
JP4901757B2 (en) Aluminum alloy plate and manufacturing method thereof
JP5059423B2 (en) Aluminum alloy plate
JP4312819B2 (en) Aluminum alloy sheet with excellent ridging marks during molding
JP2020503428A (en) Method for producing 6XXX aluminum sheet
JP2008045192A (en) Aluminum alloy sheet showing excellent ridging-mark resistance at molding
JP2021510774A (en) Manufacturing method of 6XXX aluminum sheet with high surface quality
JP3590685B2 (en) Manufacturing method of aluminum alloy sheet for automobile outer panel
JP4708555B2 (en) Continuous solution quenching method for rolled aluminum alloy sheets with excellent formability and flatness
JP2008169417A (en) Aluminum alloy sheet for aerosol container, and its manufacturing method
JP4086350B2 (en) Method for producing aluminum alloy sheet for forming
JPH1180913A (en) Manufacture of aluminum alloy sheet
JP2006283113A (en) Aluminum alloy sheet for drink can barrel, and method for producing the same
JP6912886B2 (en) Aluminum alloy plate for beverage can body and its manufacturing method
JP3791337B2 (en) Highly formable aluminum alloy plate and method for producing the same
JPS626740B2 (en)
JP2003221637A (en) Aluminum alloy plate for fabrication and its manufacturing process
JP2004043938A (en) Method for manufacturing annealed aluminum alloy sheet superior in appearance
WO2019174870A1 (en) Method of manufacturing an almgsi alloy sheet product
JP2595836B2 (en) Aluminum alloy sheet for press forming excellent in curability by low-temperature baking and method for producing the same
JP3749627B2 (en) Al alloy plate with excellent press formability
JP4237326B2 (en) Method for producing aluminum alloy sheet excellent in formability and corrosion resistance
JP3644818B2 (en) Method for producing aluminum alloy plate for can body
JP3871462B2 (en) Method for producing aluminum alloy plate for can body
JP4771726B2 (en) Aluminum alloy plate for beverage can body and manufacturing method thereof
JP3644819B2 (en) Method for producing aluminum alloy plate for can body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110317

R150 Certificate of patent or registration of utility model

Ref document number: 4708555

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

EXPY Cancellation because of completion of term