JP6289153B2 - Aluminum alloy plate for can lid - Google Patents

Aluminum alloy plate for can lid Download PDF

Info

Publication number
JP6289153B2
JP6289153B2 JP2014028185A JP2014028185A JP6289153B2 JP 6289153 B2 JP6289153 B2 JP 6289153B2 JP 2014028185 A JP2014028185 A JP 2014028185A JP 2014028185 A JP2014028185 A JP 2014028185A JP 6289153 B2 JP6289153 B2 JP 6289153B2
Authority
JP
Japan
Prior art keywords
aluminum alloy
alloy plate
mass
lid
formability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014028185A
Other languages
Japanese (ja)
Other versions
JP2015151597A (en
Inventor
友己 田中
友己 田中
有賀 康博
康博 有賀
正浩 山口
正浩 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2014028185A priority Critical patent/JP6289153B2/en
Priority to CN201580008711.6A priority patent/CN106029923B/en
Priority to PCT/JP2015/054340 priority patent/WO2015125791A1/en
Publication of JP2015151597A publication Critical patent/JP2015151597A/en
Application granted granted Critical
Publication of JP6289153B2 publication Critical patent/JP6289153B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、缶蓋用アルミニウム合金板に関し、特に材料強度とリベット成形性のバランスのよいイージーオープン缶蓋用アルミニウム合金板に関する。   The present invention relates to an aluminum alloy plate for can lids, and more particularly to an aluminum alloy plate for easy open can lids having a good balance between material strength and rivet formability.

缶蓋用アルミニウム合金板に求められる特性として、蓋加工に耐える成形性、飲料充填後内圧に耐える耐圧強度、及び正常かつ簡単に開けるための開缶性が挙げられる。
一方、近年、低コスト化の観点から、缶蓋用アルミニウム合金板の薄肉化が求められている。しかし、アルミニウム合金板を薄肉化すると缶蓋の耐圧強度が低下する。缶蓋の耐圧強度の低下を抑制する方法の1つとして、アルミニウム合金自体を高強度化することが考えられるが、高強度化に伴って成形性が低下するという問題が生じる。このため、缶蓋用アルミニウム合金板を薄肉化するには、強度と成形性のバランスを向上させることが必要である。
Properties required for the aluminum alloy plate for can lids include formability that can withstand lid processing, pressure resistance that can withstand internal pressure after beverage filling, and can openability for normal and easy opening.
On the other hand, in recent years, thinning of the aluminum alloy plate for can lids is required from the viewpoint of cost reduction. However, when the aluminum alloy plate is thinned, the pressure resistance of the can lid decreases. As one of the methods for suppressing the decrease in the pressure resistance of the can lid, it is conceivable to increase the strength of the aluminum alloy itself. However, there arises a problem that the formability decreases as the strength is increased. For this reason, in order to reduce the thickness of the aluminum alloy plate for can lids, it is necessary to improve the balance between strength and formability.

缶蓋用アルミニウム合金板(缶蓋用Al−Mg系合金板)の材料強度を保ったまま成形性を向上させる技術の1つとして、金属間化合物の存在状態や集合組織の制御などが行われてきた。例えば特許文献1には、直径50μmの視野内に存在する直径3μm以上の金属間化合物の粒子数と、0.2mm2内に存在する直径1μm以上の金属間化合物の粒子数をそれぞれ規定した缶蓋用アルミニウム合金板が記載されている。特許文献2には、1mm2内に存在する長さが1μm以上の金属間化合物の粒子数と、板厚方向1/4の部分における圧延集合組織成分を規定した缶蓋用アルミニウム合金板が記載されている。特許文献3には、1mm2内に存在する円相当径0.7μm以上の金属間化合物の粒子数と、塗膜形成後の耐力を規定した缶蓋用アルミニウム合金板が記載されている。   As one of the techniques for improving the formability while maintaining the material strength of the aluminum alloy plate for can lids (Al-Mg alloy plate for can lids), the control of the presence of intermetallic compounds and the texture is performed. I came. For example, in Patent Document 1, the number of particles of an intermetallic compound having a diameter of 3 μm or more existing in a visual field having a diameter of 50 μm and the number of particles of an intermetallic compound having a diameter of 1 μm or more existing in 0.2 mm 2 are defined. An aluminum alloy plate is described. Patent Document 2 describes an aluminum alloy plate for can lids that defines the number of intermetallic compound particles having a length of 1 μm or more existing in 1 mm 2 and the rolling texture component in a portion in the plate thickness direction 1/4. ing. Patent Document 3 describes an aluminum alloy plate for can lids that defines the number of particles of an intermetallic compound having an equivalent circle diameter of 0.7 μm or more present within 1 mm 2 and the proof stress after coating film formation.

特開平05−302139公報JP 05-302139 A 特開2002−105574号公報JP 2002-105574 A 特開2007−277694号公報JP 2007-277694 A

特許文献1〜3に記載されたサイズ(円相当直径が0.7μm以上)の金属間化合物は、リベット成形時に割れの起点となる。このため、特許文献1〜3に記載されているように、このサイズの金属間化合物の単位面積当たりの粒子数を少なくしたり、面積率を小さくしたりすることで、リベット成形時に発生する割れを抑制することができる。
しかし、リベット成形時に割れが発生していなくても、くびれが発生していると、ステイク(タブを蓋に付けるためにリベット部をたたいてつぶす加工)時に割れが発生する可能性がある。そして、従来の技術ではリベット成形時のくびれまで制御できておらず、くびれを抑制したより良いリベット成形性が求められている。
The intermetallic compound having a size described in Patent Documents 1 to 3 (equivalent circle diameter is 0.7 μm or more) becomes a starting point of cracking during rivet molding. For this reason, as described in Patent Documents 1 to 3, by reducing the number of particles per unit area of the intermetallic compound of this size, or by reducing the area ratio, cracks that occur during rivet molding Can be suppressed.
However, even if cracks do not occur during rivet molding, if constriction occurs, cracks may occur during stake (processing to strike the rivet portion to attach the tab to the lid). In the conventional technique, the constriction at the time of rivet forming cannot be controlled, and better rivet formability with reduced constriction is required.

本発明は、材料強度を低下させることなく、優れたリベット成形性を有する缶蓋用アルミニウム合金板を提供することを目的とする。   An object of this invention is to provide the aluminum alloy plate for can lids which has the outstanding rivet formability, without reducing material strength.

缶蓋用アルミニウム合金板(Al−Mg系合金板)の材料強度を低下させることなく、リベット成形性を向上させる手段として、固溶元素濃度増加による固溶強化量増加、及び加工硬化特性(均一変形能)の向上が考えられる。固溶強化や加工硬化は、転位と溶質原子の間に働く相互作用により転位の運動が妨げられることから生じる。アルミニウム合金では母相(Al)と溶質原子(Mg,Cu,Mn)の間の原子半径の差が、前記相互作用の大きさを支配しているといわれている。Mg,Cu,Mnは母相(Al)との原子半径差が大きく、固溶強化量が大きいが、MgやMnは添加量を増加すると固溶量だけでなく晶出物も増加し、晶出物の増加により成形性が低下する。このため、本発明者らは、Cuの固溶量の増加に着目し、材料強度を低下させることなく成形性を向上させ、特にリベット成形時のくびれの発生を抑制しようと考えた。   As a means to improve the rivet formability without reducing the material strength of the aluminum alloy plate for can lids (Al-Mg alloy plate), the amount of solid solution strengthening increased by increasing the concentration of solid solution elements, and work hardening characteristics (uniform) Improvement of deformation ability is conceivable. Solid solution strengthening and work hardening occur because dislocation movement is hindered by the interaction between dislocations and solute atoms. In an aluminum alloy, it is said that the difference in atomic radius between the parent phase (Al) and the solute atoms (Mg, Cu, Mn) dominates the magnitude of the interaction. Mg, Cu, and Mn have a large atomic radius difference from the parent phase (Al) and a large amount of solid solution strengthening, but Mg and Mn increase not only the amount of solid solution but also the amount of crystallized matter. Formability decreases due to an increase in the amount of products. For this reason, the present inventors paid attention to an increase in the solid solution amount of Cu, and decided to improve the formability without reducing the material strength, and particularly to suppress the occurrence of necking during rivet forming.

本発明に係る缶蓋用アルミニウム合金板は、Mg:3.8〜5.5質量%、Fe:0.1〜0.5質量%、Si:0.05〜0.3質量%、Mn:0.01〜0.6質量%、Cu:0.06〜0.3質量%以下を含有し、残部がAl及び不可避不純物からなるアルミニウム合金板であって、Cu固溶濃度が0.06質量%以上であり、円相当直径が300nmを超える金属間化合物の面積率が0.3%以上2.0%以下であることを特徴とする。   The aluminum alloy plate for can lids according to the present invention has Mg: 3.8 to 5.5% by mass, Fe: 0.1 to 0.5% by mass, Si: 0.05 to 0.3% by mass, Mn: An aluminum alloy plate containing 0.01 to 0.6 mass%, Cu: 0.06 to 0.3 mass% or less, with the balance being Al and inevitable impurities, and the Cu solid solution concentration is 0.06 mass %, And the area ratio of the intermetallic compound having an equivalent circle diameter of more than 300 nm is 0.3% or more and 2.0% or less.

これまでの蓋材用アルミニウム合金板は、高強度化するとリベット成形性が低下し、逆に優れたリベット成形性を得るには、材料強度を低下させる必要があった。一方、本発明に係る蓋材用アルミニウム合金板は、高い材料強度を有するにも関わらず、優れたリベット成形性を有する。本発明によれば、缶蓋用アルミニウム合金板を薄肉化した場合でも、飲料充填後の耐圧強度に不足がなく、リベット成形性及び開缶性にも優れた缶蓋用アルミニウム合金板を提供することができる。   Conventional aluminum alloy plates for lid materials have a reduced rivet formability when the strength is increased. Conversely, in order to obtain an excellent rivet formability, it is necessary to reduce the material strength. On the other hand, the aluminum alloy plate for a lid material according to the present invention has excellent rivet formability despite having high material strength. According to the present invention, even when the aluminum alloy plate for can lids is thinned, there is provided an aluminum alloy plate for can lids that has no deficiency in pressure resistance after beverage filling and is excellent in rivet formability and can openability. be able to.

アルミニウム合金板による缶蓋の平面図である。It is a top view of the can lid by an aluminum alloy plate. 開缶性の評価時に使用する缶蓋のスコアの断面図である。It is sectional drawing of the score of the can lid used at the time of evaluation of can opening property. 開缶性の評価時に使用する開缶荷重測定機の概要図である。図3(a)は開缶荷重測定機の斜視図である。図3(b)は開缶荷重測定機の測定時の缶蓋付近の断面模式図である。図3(c)は開缶荷重測定機に缶蓋を設置するときの缶蓋の向きを示す正面模式図である。It is a schematic diagram of the can open load measuring machine used at the time of evaluation of can openability. FIG. 3A is a perspective view of an open load measuring machine. FIG.3 (b) is a cross-sectional schematic diagram of can-lid vicinity at the time of the measurement of an open can load measuring machine. FIG.3 (c) is a front schematic diagram which shows the direction of a can lid when installing a can lid in a can opening load measuring machine.

以下、本発明に係る缶蓋用アルミニウム合金板及びその製造方法について、詳細に説明する。
(アルミニウム合金の成分組成)
Mg:3.8〜5.5質量%
Mgは、アルミニウム合金板の強度を向上させる効果がある。しかし、Mgの含有量が3.8質量%未満の場合、アルミニウム合金板の強度が不十分であり、缶蓋に成形したときの耐圧強度が不足する。一方、Mgの含有量が5.5質量%を超える場合、アルミニウム合金板の強度が過剰となり、リベット成形性が低下する。従って、Mgの含有量は3.8〜5.5質量%とする。
Hereinafter, the aluminum alloy plate for can lids and the manufacturing method thereof according to the present invention will be described in detail.
(Component composition of aluminum alloy)
Mg: 3.8 to 5.5% by mass
Mg has the effect of improving the strength of the aluminum alloy plate. However, when the Mg content is less than 3.8% by mass, the strength of the aluminum alloy plate is insufficient, and the pressure resistance when formed into a can lid is insufficient. On the other hand, when the Mg content exceeds 5.5% by mass, the strength of the aluminum alloy plate becomes excessive, and the rivet formability decreases. Therefore, the Mg content is set to 3.8 to 5.5% by mass.

Fe:0.1〜0.5質量%
Feは、アルミニウム合金板中にAl−Fe(−Mn)系、Al−Fe(−Mn)−Si系金属間化合物を形成し、缶蓋に成形したときのスコア部の引裂き性を高め、開缶性を向上させる効果がある。しかし、Feの含有量が0.1質量%未満の場合、スコア部の引裂き性が向上せず、開缶時にスコア脱線(開缶時にスコア部以外に亀裂が伝播すること)や開缶力の増大によるタブ折れといった開缶不良が生じ易くなる。一方、Feの含有量が0.5質量%を超える場合、アルミニウム合金板中の300nmを超える金属間化合物の面積率が所定の範囲よりも大きくなり、リベット成形性が低下する。従って、Feの含有量は0.1〜0.5質量%とする。
Fe: 0.1 to 0.5% by mass
Fe forms Al-Fe (-Mn) -based and Al-Fe (-Mn) -Si-based intermetallic compounds in the aluminum alloy plate, and improves the tearability of the score part when it is molded into a can lid. There is an effect of improving canability. However, if the Fe content is less than 0.1% by mass, the tearability of the score part does not improve, and score derailment at the time of can open (crack propagates to other than the score part at the time of can open) and can opening force Opening defects such as tab breakage due to increase are likely to occur. On the other hand, when the Fe content exceeds 0.5% by mass, the area ratio of intermetallic compounds exceeding 300 nm in the aluminum alloy plate is larger than a predetermined range, and the rivet formability is lowered. Therefore, the Fe content is 0.1 to 0.5 mass%.

Si:0.05〜0.3質量%
Siは、アルミニウム合金板中にMg−Si系、Al−Fe(−Mn)系、Al−Fe(−Mn)−Si系金属間化合物を形成し、缶蓋に成形したときのスコア部の引裂き性を高め、開缶性を向上させる効果がある。しかし、Siの含有量が0.05質量%未満の場合、Feと同様に開缶性が向上しない。また、アルミニウム合金板の原材料に使用できるスクラップ量が減少し、またアルミニウム地金の必要純度が高くなるため、コストが増大する。一方、Siの含有量が0.3質量%を超える場合、アルミニウム合金板中の300nmを超える金属間化合物の面積率が所定の範囲よりも大きくなり、リベット成形性が低下する。従って、Siの含有量は0.05〜0.3質量%とする。
Si: 0.05-0.3 mass%
Si forms a Mg-Si, Al-Fe (-Mn), Al-Fe (-Mn) -Si intermetallic compound in an aluminum alloy plate, and tears the score part when formed into a can lid It has the effect of improving the performance and improving the can openability. However, when the Si content is less than 0.05% by mass, the openability is not improved as in the case of Fe. In addition, the amount of scrap that can be used as the raw material for the aluminum alloy plate is reduced, and the required purity of the aluminum ingot is increased, which increases the cost. On the other hand, when the Si content exceeds 0.3% by mass, the area ratio of the intermetallic compound exceeding 300 nm in the aluminum alloy plate becomes larger than the predetermined range, and the rivet formability decreases. Therefore, the Si content is set to 0.05 to 0.3% by mass.

Mn:0.01〜0.6質量%
Mnは、アルミニウム合金板の強度を向上させる効果があるとともに、アルミニウム合金板中にAl−Fe−Mn系、Al−Fe−Mn−Si系金属間化合物を形成させ、缶蓋に成形したときのスコア部の引裂き性を高め、開缶性を向上させる効果がある。しかし、Mnの含有量が0.01質量%未満の場合、アルミニウム合金板の強度向上効果や缶蓋に成形したときの開缶性向上効果が得られない。一方、Mnの含有量が0.6質量%を超える場合、アルミニウム合金板中の300nmを超える金属間化合物の面積率が所定の範囲よりも大きくなり、リベット成形性が低下する。従って、Mnの含有量は0.01〜0.6質量%とする。
Mn: 0.01 to 0.6% by mass
Mn has the effect of improving the strength of the aluminum alloy sheet, and when Al-Fe-Mn and Al-Fe-Mn-Si intermetallic compounds are formed in the aluminum alloy sheet and formed into a can lid. There is an effect of improving the tearability of the score part and improving the can openability. However, when the content of Mn is less than 0.01% by mass, the effect of improving the strength of the aluminum alloy plate or the effect of improving the openability when formed into a can lid cannot be obtained. On the other hand, when the content of Mn exceeds 0.6% by mass, the area ratio of intermetallic compounds exceeding 300 nm in the aluminum alloy plate becomes larger than a predetermined range, and the rivet formability decreases. Therefore, the content of Mn is set to 0.01 to 0.6% by mass.

Cu:0.06〜0.3質量%
Cuは、アルミニウム合金板の強度を向上させる効果がある。また、固溶させることにより、成形性も向上する。しかし、Cuの含有量が0.06質量%未満の場合、母相への固溶量が少なく、強度と成形性のバランスが低下し、リベット成形性が向上しない。一方、Cuの含有量が0.3質量%を超える場合、アルミニウム合金板の強度が過剰となり、リベット成形性が低下する。従って、Cuの含有量は0.06〜0.30質量%とする。
Cu: 0.06-0.3 mass%
Cu has the effect of improving the strength of the aluminum alloy plate. Moreover, a moldability improves also by making it dissolve. However, when the Cu content is less than 0.06% by mass, the amount of solid solution in the parent phase is small, the balance between strength and formability is lowered, and rivet formability is not improved. On the other hand, when the Cu content exceeds 0.3% by mass, the strength of the aluminum alloy plate becomes excessive, and the rivet formability decreases. Therefore, the Cu content is set to 0.06 to 0.30 mass%.

不可避不純物
本発明に係るアルミニウム合金は、前記添加成分以外に残部Alと不可避不純物を含有する。不可避不純物は、Crが0.3質量%以下、Znが0.3質量%以下、Tiが0.1質量%以下、Zrが0.1質量%以下、Bが0.1質量%以下、その他の元素が各々0.05質量%以下の範囲内で許容される。不可避不純物の含有量がこの範囲内であれば、本発明に係るアルミニウム合金板の特性に影響しない。
Inevitable Impurities The aluminum alloy according to the present invention contains the balance Al and inevitable impurities in addition to the additive components. Inevitable impurities are 0.3 mass% or less for Cr, 0.3 mass% or less for Zn, 0.1 mass% or less for Ti, 0.1 mass% or less for Zr, 0.1 mass% or less for B, etc. Are permitted within a range of 0.05% by mass or less. If the content of inevitable impurities is within this range, it does not affect the characteristics of the aluminum alloy sheet according to the present invention.

(Cu固溶濃度)
前記したように、母相(Al)へのCu固溶濃度が大きいと、固溶強化量の増加により材料強度が増加し、かつ加工硬化特性(均一変形能)が向上し、リベット成形時のくびれの発生を抑制できる。しかし、Cu固溶濃度が0.06質量%より少ないと、その効果が不足する。従って、Cu固溶濃度は0.06質量%以上とし、好ましくは0.09質量%以上、より好ましくは0.12質量%以上とする。なお、Cuの添加量に対する固溶量の割合(Cu固溶濃度/Cu含有量)は、好ましくは0.75以上とし、より好ましくは0.87以上とする。
(Cu solid solution concentration)
As described above, when the Cu solid solution concentration in the parent phase (Al) is large, the material strength is increased due to the increase in the solid solution strengthening amount, and the work hardening characteristics (uniform deformation ability) are improved. Constriction can be suppressed. However, if the Cu solid solution concentration is less than 0.06% by mass, the effect is insufficient. Therefore, the Cu solid solution concentration is 0.06% by mass or more, preferably 0.09% by mass or more, and more preferably 0.12% by mass or more. In addition, the ratio of the solid solution amount to the added amount of Cu (Cu solid solution concentration / Cu content) is preferably 0.75 or more, and more preferably 0.87 or more.

(アルミニウム合金板中の金属間化合物)
アルミニウム合金板中に、円相当直径が300nmを超える金属間化合物を適度に分布させることにより、アルミニウム合金板を缶蓋に成形したときのスコア部の引裂き性を高め、開缶性を向上させる効果が得られる。アルミニウム合金板の板表面において、円相当直径が300nmを超える金属間化合物の面積率が0.3%よりも小さい場合、スコア部の引裂き性が低下し、開缶性が悪化する。一方、板表面において、円相当直径が300nmを超える金属間化合物の面積率が2.0%を超える場合、リベット成形の際に金属間化合物によって亀裂が発生し、かつ伝播し易くなり、成形性が低下する。従って、円相当直径が300nmを超える金属間化合物の面積率は0.3%以上2.0%以下とする。この面積率の上限は好ましくは1.0%であり、下限は好ましくは0.4%である。
(Intermetallic compounds in aluminum alloy plates)
The effect of increasing the tearability of the score part when aluminum alloy plates are molded into can lids and improving the can openability by appropriately distributing intermetallic compounds with equivalent circle diameters exceeding 300 nm in aluminum alloy plates Is obtained. On the surface of the aluminum alloy plate, when the area ratio of the intermetallic compound having an equivalent circle diameter of more than 300 nm is smaller than 0.3%, the tearability of the score portion is lowered and the openability is deteriorated. On the other hand, when the area ratio of the intermetallic compound with an equivalent circle diameter exceeding 300 nm exceeds 2.0% on the plate surface, cracks are generated by the intermetallic compound during rivet forming, and it is easy to propagate and formability. Decreases. Therefore, the area ratio of the intermetallic compound having an equivalent circle diameter exceeding 300 nm is set to be 0.3% or more and 2.0% or less. The upper limit of this area ratio is preferably 1.0%, and the lower limit is preferably 0.4%.

(アルミニウム合金板の製造方法)
本発明に係るアルミニウム合金板は、鋳造、均質化熱処理、熱間圧延、1次冷間圧延、中間焼鈍、2次冷間圧延の工程で製造することができる。本発明に係るアルミニウム合金板の製造方法は、特に均質化熱処理を400℃〜550℃の温度範囲で1〜10時間保持する点、及び中間焼鈍を連続して2回行う点に特徴がある。以下、各工程について説明する。
(Aluminum alloy plate manufacturing method)
The aluminum alloy sheet according to the present invention can be produced by the steps of casting, homogenizing heat treatment, hot rolling, primary cold rolling, intermediate annealing, and secondary cold rolling. The method for producing an aluminum alloy sheet according to the present invention is particularly characterized in that the homogenization heat treatment is maintained in a temperature range of 400 ° C. to 550 ° C. for 1 to 10 hours, and the intermediate annealing is performed twice continuously. Hereinafter, each step will be described.

まず、DC鋳造法等の公知の半連続鋳造法によりアルミニウム合金を鋳造する。
次に、鋳塊表層の不均一な組織となる領域を面削にて除去した後、均質化熱処理を施す。均質化熱処理は400〜550℃の温度範囲で1〜10時間保持する。均質化熱処理温度が400℃未満の場合又は保持時間が1時間未満の場合、円相当直径が300nmを超える金属間化合物の面積率が所定の範囲よりも小さくなり、開缶性が低下する。また、均質化熱処理温度が550℃を超える場合、熱間圧延時にバーニングが生じる。また、保持時間が10時間を超える場合、生産性が低下する。
均質化熱処理後、冷却することなく続けて熱間圧延を行い、好ましくは300℃以上で熱間圧延を終了する。作製された熱間圧延材は再結晶組織となる。
First, an aluminum alloy is cast by a known semi-continuous casting method such as a DC casting method.
Next, after removing the area | region used as an inhomogeneous structure | tissue of an ingot surface layer by chamfering, homogenization heat processing is performed. The homogenization heat treatment is held in a temperature range of 400 to 550 ° C. for 1 to 10 hours. When the homogenization heat treatment temperature is less than 400 ° C. or the holding time is less than 1 hour, the area ratio of the intermetallic compound having an equivalent circle diameter of more than 300 nm is smaller than a predetermined range, and the openability is lowered. When the homogenization heat treatment temperature exceeds 550 ° C., burning occurs during hot rolling. Moreover, when holding time exceeds 10 hours, productivity will fall.
After the homogenization heat treatment, the hot rolling is continued without cooling, and the hot rolling is preferably finished at 300 ° C. or higher. The produced hot rolled material has a recrystallized structure.

前記熱間圧延板を、総圧延率50〜80%で冷間圧延(1次冷間圧延)する。総圧延率が50%未満の場合、圧延による蓄積歪みが不足し、次工程の中間焼鈍にて再結晶粒径が大きくなり、リベット成形性を含む成形性が悪くなってしまう。一方、総圧延率が80%を超える場合、圧延パス数が多くなり生産性が低下する。   The hot-rolled sheet is cold-rolled (primary cold-rolling) at a total rolling rate of 50 to 80%. When the total rolling rate is less than 50%, the accumulated strain due to rolling becomes insufficient, the recrystallized grain size becomes large in the subsequent intermediate annealing, and the formability including the rivet formability is deteriorated. On the other hand, when the total rolling rate exceeds 80%, the number of rolling passes increases and productivity decreases.

次に、前記冷間圧延板を中間焼鈍して再結晶させるとともに、Cuの固溶濃度を増加させる。この中間焼鈍は連続して2回行う。1回目の中間焼鈍は、材料温度380℃〜550℃の範囲、保持時間が10分以内の条件で行い、室温まで冷却後、再加熱して2回目の中間焼鈍を行う。2回目の中間焼鈍は、同じく材料温度380℃〜550℃の範囲、保持時間が10分以内の条件で行う。2回目の中間焼鈍後の冷却速度は100℃/min以上とする。中間焼鈍の保持温度が550℃を超える場合、又は保持時間が10分間を超える場合、焼鈍工程終了後の再結晶粒が大きくなり、製品板の成形性が低下する。中間焼鈍の保持温度が380℃未満の場合、Cuの固溶濃度が所定の範囲内に入らず、リベット成形性が向上しない。また、中間焼鈍の回数が1回の場合、又は2回目の冷却速度が100℃/min未満の場合、Cuの固溶濃度が所定の範囲内に入らず、リベット成形性が向上しない。   Next, the cold-rolled sheet is annealed and recrystallized, and the solid solution concentration of Cu is increased. This intermediate annealing is performed twice continuously. The first intermediate annealing is performed under conditions where the material temperature is in the range of 380 ° C. to 550 ° C. and the holding time is within 10 minutes, and after cooling to room temperature, reheating is performed to perform the second intermediate annealing. Similarly, the second intermediate annealing is performed under conditions where the material temperature is in the range of 380 ° C. to 550 ° C. and the holding time is within 10 minutes. The cooling rate after the second intermediate annealing is set to 100 ° C./min or more. When the holding temperature of the intermediate annealing exceeds 550 ° C., or when the holding time exceeds 10 minutes, the recrystallized grains after the annealing process are finished, and the formability of the product plate is lowered. When the holding temperature of the intermediate annealing is less than 380 ° C., the solid solution concentration of Cu does not fall within a predetermined range, and the rivet formability is not improved. In addition, when the number of intermediate annealing is one or when the second cooling rate is less than 100 ° C./min, the solid solution concentration of Cu does not fall within a predetermined range and the rivet formability is not improved.

続いて、前記焼鈍した冷間圧延板を、総圧延率を50〜85%で再度冷間圧延(2次冷間圧延)する。総圧延率が50%未満の場合、圧延による加工硬化が小さく強度が低下し、缶蓋へ成形したときの耐圧強度が不足する。一方、総圧延率が85%を超える場合、缶蓋用アルミニウム合金板の強度が高くなり過ぎ、リベット成形性を含む製品板の成形性が低下する。従って、総圧延率は50〜85%とする。   Subsequently, the annealed cold rolled sheet is cold rolled again (secondary cold rolling) at a total rolling rate of 50 to 85%. When the total rolling rate is less than 50%, the work hardening by rolling is small and the strength is lowered, and the pressure strength when formed into a can lid is insufficient. On the other hand, when the total rolling rate exceeds 85%, the strength of the aluminum alloy plate for can lids becomes too high, and the formability of the product plate including the rivet formability is lowered. Accordingly, the total rolling rate is 50 to 85%.

以上の工程で製造した缶蓋用アルミニウム合金板は、クロメート系やジルコン系などの表面処理を施し、エポキシ系樹脂や塩ビゾル系、ポリエルテル系などの有機塗料を塗布し、PMT(Peak Metal Temperature:メタル到達温度)が230〜280℃程度で焼付け処理された後、缶蓋へと成形される。   The aluminum alloy plate for can lids manufactured by the above process is subjected to surface treatment such as chromate or zircon, and an organic resin such as epoxy resin, vinyl chloride sol or polyertel is applied, and PMT (Peak Metal Temperature: After being baked at a metal reached temperature of about 230 to 280 ° C., it is formed into a can lid.

以下、本発明の効果を確認した実施例を、本発明の要件を満たさない比較例と対比して具体的に説明する。なお、本発明はこの実施例に限定されるものではない。
表1に示すアルミニウム合金(No.27を除く)を半連続鋳造法(DC)にて鋳造し、鋳塊表層を面削してスラブを作製した。このスラブに均質化熱処理を施した後、熱間圧延を行って熱間圧延板とし、この熱間圧延板に対し、1次冷間圧延(圧延率70%)、中間焼鈍、2次冷間圧延(圧延率79%)を順次行い、板厚0.215mmの缶蓋用アルミニウム合金板を作製した。また、No.27のアルミニウム合金は、特許文献1の発明を模擬するために連続鋳造法(CC)にて鋳造し、連続鋳造板を均質化処理せず1次冷間圧延(圧延率70%)、中間焼鈍、2次冷間圧延(圧延率79%)を順次行い、板厚0.215mmの缶蓋用アルミニウム合金板を作製した。均質化熱処理及び中間焼鈍条件を表1,2に示す。
Hereinafter, examples in which the effects of the present invention have been confirmed will be specifically described in comparison with comparative examples that do not satisfy the requirements of the present invention. In addition, this invention is not limited to this Example.
Aluminum alloys shown in Table 1 (excluding No. 27) were cast by a semi-continuous casting method (DC), and the ingot surface layer was chamfered to produce a slab. After subjecting this slab to homogenization heat treatment, it is hot-rolled to form a hot-rolled sheet. The hot-rolled sheet is subjected to primary cold rolling (rolling rate 70%), intermediate annealing, and secondary cold. Rolling (rolling rate 79%) was sequentially performed to produce an aluminum alloy plate for can lids having a plate thickness of 0.215 mm. No. The aluminum alloy No. 27 was cast by the continuous casting method (CC) in order to simulate the invention of Patent Document 1, and the primary cast cold rolling (rolling rate 70%) and intermediate annealing without homogenizing the continuous cast plate. Secondary cold rolling (rolling rate 79%) was sequentially performed to produce an aluminum alloy plate for can lids having a plate thickness of 0.215 mm. Tables 1 and 2 show the homogenization heat treatment and intermediate annealing conditions.

Figure 0006289153
Figure 0006289153

Figure 0006289153
Figure 0006289153

製造したNo.1〜33のアルミニウム合金板を供試材とし、Cuの固溶濃度、円相当直径が300nmを超える金属間化合物の面積率、0.2%耐力、リベット成形性及び開缶荷重を、以下に示す要領で測定した。その結果を表2に示す。   No. manufactured 1 to 33 aluminum alloy plates as test materials, the solid solution concentration of Cu, the area ratio of the intermetallic compound having an equivalent circle diameter exceeding 300 nm, 0.2% proof stress, rivet formability and can open load are as follows: Measured as indicated. The results are shown in Table 2.

(Cu固溶濃度)
アルミニウム合金板をフェノールで分解後、0.1μm孔のフィルターを用いてろ過し、ろ液をICP(Inductively Coupled Plasma)発光分光分析装置内に導入し、ネブライザーで霧状にして小さなミストのみプラズマ内に吹き込み、Cuの固溶濃度を測定した。なお、ろ液に0.1μm未満の析出物が含まれていたとしても、霧状にした際に大きなミストとして分析されずに排出されるため、分析値には0.1μm未満の析出物も含まれない。
(Cu solid solution concentration)
After the aluminum alloy plate is decomposed with phenol, it is filtered using a 0.1 μm pore filter, and the filtrate is introduced into an ICP (Inductively Coupled Plasma) emission spectrophotometer, and is nebulized with a nebulizer so that only a small mist is contained in the plasma. The solid solution concentration of Cu was measured. In addition, even if the filtrate contains a precipitate of less than 0.1 μm, it is discharged without being analyzed as a large mist when it is atomized. Not included.

(円相当直径が300nmを超える金属間化合物の面積率)
アルミニウム合金板の圧延方向平行断面をバフ研磨により鏡面とし、この鏡面化された面において、走査型電子顕微鏡(SEM)にて、加速電圧15kVで倍率500倍の組成像(COMPO像)を20視野(合計面積0.75mm2以上)撮影した。この組成像のうち、母相より白いコントラストで得られる粒子をAl−Fe(−Mn)系、Al−Fe(−Mn)−Si系金属間化合物とみなし、黒いコントラストで得られる粒子をMg−Si系金属間化合物とみなした。この組成像から、画像処理により円相当直径300nmを超える金属間化合物の面積率(撮影面積に対する百分率)を算出した。
(Area ratio of intermetallic compound with equivalent circle diameter exceeding 300 nm)
A parallel section in the rolling direction of the aluminum alloy plate is mirror-finished by buffing, and 20 views of a composition image (COMPO image) at an acceleration voltage of 15 kV and a magnification of 500 times are obtained on this mirror-finished surface with a scanning electron microscope (SEM). (Total area 0.75 mm2 or more) Photographed. Among these composition images, particles obtained with white contrast from the parent phase are regarded as Al-Fe (-Mn) -based and Al-Fe (-Mn) -Si-based intermetallic compounds, and particles obtained with black contrast are Mg-- It was regarded as a Si-based intermetallic compound. From this composition image, the area ratio (percentage of the photographing area) of the intermetallic compound exceeding the equivalent circle diameter of 300 nm was calculated by image processing.

(0.2%耐力)
アルミニウム合金板に対し、塗装・焼付け工程を模擬したオイルバスによる255℃×20秒の熱処理を施した後、引張方向が圧延方向と平行になるようにJIS−5号引張試験片を作製した。この試験片を用い、JIS−Z2241に準じて引張試験を行い、0.2%耐力を求めた。0.2%耐力の適正範囲は300MPa以上であり、この範囲であれば、薄肉化された缶蓋であっても耐圧強度を満足する。
(0.2% yield strength)
The aluminum alloy plate was heat treated at 255 ° C. for 20 seconds using an oil bath simulating a painting / baking process, and then a JIS-5 tensile test piece was prepared so that the tensile direction was parallel to the rolling direction. Using this test piece, a tensile test was performed according to JIS-Z2241, and a 0.2% yield strength was obtained. An appropriate range of 0.2% proof stress is 300 MPa or more, and within this range, even a thin can lid satisfies the compressive strength.

(リベット成形性)
リベット成形工程は、缶蓋中央部を張り出させるバブル成形工程と、張出部(バブル)を1〜3工程で縮径しつつ急峻な突起とするボタン成形工程と、突起(ボタン)にタブを組付けた後に前記突起を押し潰してタブをかしめるステイク工程とで構成される。タブを正常に固定するためには、ステイク後のリベット径の大きさを確保する必要があり、そのため、ボタン成形工程終了後の突起(ボタン)高さを十分に高く成形できるアルミニウム合金板が求められる。
ここでは、バブル工程を模擬した試験にてリベット成形性を評価した。すなわち、アルミニウム合金板に対し、塗装・焼付け工程を模擬したオイルバスによる255℃×20秒の熱処理を施した後、φ6mmの微小張出試験を行い、くびれや割れが発生しない限界張出高さを求めた。限界張出高さの適正範囲は1.45mm以上とした。アルミニウム合金板の限界張出高さが1.45mm以上であれば、実成形時に十分な高さのボタンを成形することができる。
(Rivet formability)
The rivet forming process includes a bubble forming process for projecting the center of the can lid, a button forming process for reducing the diameter of the projecting part (bubble) in steps 1 to 3 and a steep protrusion, and a tab on the protrusion (button). And a stake process in which the protrusion is crushed and the tab is crimped. In order to fix the tab normally, it is necessary to ensure the size of the rivet diameter after stake. Therefore, an aluminum alloy plate that can be formed with a sufficiently high protrusion (button) height after the button forming process is required. It is done.
Here, rivet formability was evaluated by a test simulating a bubble process. That is, after the aluminum alloy sheet was heat-treated at 255 ° C for 20 seconds using an oil bath simulating the painting and baking process, a micro-extrusion test of φ6 mm was performed, and the limit overhang height at which no constriction or cracking occurred Asked. The appropriate range of the limit overhang height was 1.45 mm or more. If the limit overhang height of the aluminum alloy plate is 1.45 mm or more, a button having a sufficient height can be formed during actual forming.

(開缶荷重)
アルミニウム合金板について、塗装・焼付け工程を模擬したオイルバスによる255℃×20秒の熱処理を施した後、204径フルフォーム・エンド金型にてシェル成型、コンバージョン成形、タブのステイクを行った後に、開缶試験を行った。図1は、開缶試験に用いた缶蓋の平面図である。図2は、開缶試験に用いた缶蓋のスコア3の断面図である。図3は、開缶時の荷重を測定する開缶荷重測定機の概要図である。図3(a)は開缶荷重測定機5の斜視図である。図3(b)は開缶荷重測定機5の測定時の缶蓋1付近の断面模式図である。図3(c)は開缶荷重測定機5に缶蓋1を設置するときの缶蓋1の向きを示す正面模式図である。缶蓋1をスコア3に対してタブ4が上方となるように、開缶荷重測定機5に缶蓋1を設置する(図3(c))。缶蓋1のタブ4に掛止具6を引っ掛けて、掛止部7とする(図3(b))。掛止具6を水平方向へ引っ張って3Nの引張荷重を負荷し、その状態で掛止具6を静止させた後、缶蓋1をX方向に回転させた。ロードセルにて荷重を測定し、最も高い荷重を開缶荷重とした。開缶荷重の適正範囲は25N以下とした。なお、前記微小張出試験で限界張出高さが1.45mm未満のアルミニウム合金については、必要な突起(ボタン)高さが得られずタブを正常に付けることができないため、開缶荷重を測定する試験を行わなかった。
(Opening load)
After aluminum alloy plate is heat treated at 255 ° C for 20 seconds using an oil bath that simulates the painting and baking process, after shell molding, conversion molding, and tab stake using a 204-diameter full-form end mold A can open test was conducted. FIG. 1 is a plan view of a can lid used in a can open test. FIG. 2 is a cross-sectional view of the score 3 of the can lid used in the can open test. FIG. 3 is a schematic view of a can opening load measuring machine that measures the load at the time of opening the can. FIG. 3A is a perspective view of the can opening load measuring machine 5. FIG. 3B is a schematic cross-sectional view of the vicinity of the can lid 1 at the time of measurement by the can open load measuring device 5. FIG. 3C is a schematic front view showing the direction of the can lid 1 when the can lid 1 is installed in the can opening load measuring device 5. The can lid 1 is placed on the can opening load measuring device 5 so that the tab 4 is located above the score 3 with respect to the score 3 (FIG. 3C). A hook 6 is hooked on the tab 4 of the can lid 1 to form a hook 7 (FIG. 3B). The latch 6 was pulled in the horizontal direction to apply a 3N tensile load, and the latch 6 was stationary in that state, and then the can lid 1 was rotated in the X direction. The load was measured with a load cell, and the highest load was taken as the can open load. The appropriate range of the can opening load was 25 N or less. For aluminum alloys whose limit overhang height is less than 1.45 mm in the micro overhang test, the necessary protrusion (button) height cannot be obtained and the tab cannot be properly attached. There was no test to measure.

表1,2に示すように、成分組成、Cuの固溶濃度、及び円相当直径が300nmを超える金属間化合物の面積率(以下、300nm超の金属間化合物の面積率という)が本発明の規定範囲内のNo.1〜16(実施例)は、0.2%耐力及び開缶荷重が適正で、リベット成形性が優れる。従って、No.1〜16のアルミニウム合金板は、肉厚が0.215mmと薄いが、イージーオープン缶蓋用として好適に使用し得る。   As shown in Tables 1 and 2, the component composition, the solid solution concentration of Cu, and the area ratio of the intermetallic compound having an equivalent circle diameter exceeding 300 nm (hereinafter referred to as the area ratio of the intermetallic compound exceeding 300 nm) No. within the specified range. Nos. 1 to 16 (Examples) have appropriate 0.2% yield strength and can open load, and excellent rivet formability. Therefore, no. The aluminum alloy plates 1 to 16 have a thin thickness of 0.215 mm, but can be suitably used for easy open can lids.

一方、No.17〜33(比較例)は、成分組成、Cuの固溶濃度、及び300nm超の金属間化合物の面積率のいずれかが本発明の規定範囲内でなく、下記のとおり、0.2%耐力、開缶荷重及びリベット成形性のいずれかが適正値を満たさない。
No.17はMg含有量が過剰なため、リベット成形性が劣り、No.18はMg含有量が不足するため、0.2%耐力が低い。
No.19はFe含有量が過剰なため、300nm超の金属間化合物の面積率が大きくリベット成形性が劣り、No.20はFe含有量が不足するため、300nm超の金属間化合物の面積率が小さく開缶荷重が大きい。
No.21はSi含有量が過剰なため、300nm超の金属間化合物の面積率が大きくリベット成形性が劣り、No.22はSi含有量が不足するため、300nm超の金属間化合物の面積率が小さく開缶荷重が大きい。
On the other hand, no. 17-33 (comparative example) is any one of the component composition, the solid solution concentration of Cu, and the area ratio of the intermetallic compound exceeding 300 nm is not within the specified range of the present invention. Either the can opening load or the rivet formability does not satisfy the appropriate value.
No. No. 17 has an excessive Mg content, so the rivet formability is inferior. No. 18 has a low 0.2% yield strength due to insufficient Mg content.
No. No. 19 has an excessive Fe content, so that the area ratio of the intermetallic compound exceeding 300 nm is large and the rivet formability is inferior. Since the Fe content of 20 is insufficient, the area ratio of intermetallic compounds exceeding 300 nm is small and the can opening load is large.
No. In No. 21, since the Si content is excessive, the area ratio of the intermetallic compound exceeding 300 nm is large and the rivet formability is inferior. No. 22 has an insufficient Si content, so the area ratio of the intermetallic compound exceeding 300 nm is small and the can opening load is large.

No.23はMn含有量が過剰なため、300nm超の金属間化合物の面積率が大きくリベット成形性が劣り、No.24はMn含有量が不足するため、0.2%耐力が低く、300nm超の金属間化合物の面積率が小さく開缶荷重が大きい。
No.25はCu含有量が過剰なため、リベット成形性が劣り、No.26はCu含有量が不足するため、Cuの固溶濃度が低くリベット成形性が劣る。
No.27は均質化熱処理を行っていないため、300nm超の金属間化合物の面積率が小さく開缶荷重が大きい。No.28は均質化処理の保持温度が低いため、300nm超の金属間化合物の面積率が小さく開缶荷重が大きい。No.29は均質化処理の保持時間が短いため、300nm超の金属間化合物の面積率が小さく開缶荷重が大きい。
No. No. 23 has an excessive Mn content, so that the area ratio of intermetallic compounds exceeding 300 nm is large and the rivet formability is inferior. No. 24 has a low Mn content, so the 0.2% yield strength is low, the area ratio of intermetallic compounds exceeding 300 nm is small, and the opening load is large.
No. No. 25 has an excessive Cu content, resulting in poor rivet formability. No. 26 has insufficient Cu content, so the solid solution concentration of Cu is low and the rivet formability is poor.
No. Since No. 27 is not subjected to homogenization heat treatment, the area ratio of intermetallic compounds exceeding 300 nm is small and the can opening load is large. No. Since No. 28 has a low holding temperature in the homogenization treatment, the area ratio of the intermetallic compound exceeding 300 nm is small and the opening load is large. No. Since No. 29 has a short holding time for the homogenization treatment, the area ratio of the intermetallic compound exceeding 300 nm is small and the can opening load is large.

No.30は中間焼鈍の保持温度が低いため、Cuの固溶濃度が増加せず、リベット成形性が劣る。No.31,32は中間焼鈍が1回だけのため、Cuの固溶濃度が増加せずリベット成形性が劣る。No.33は2回目の中間焼鈍後の冷却速度が小さいため、Cuの固溶濃度が低くリベット成形性が劣る。   No. No. 30 has a low holding temperature for intermediate annealing, so the solid solution concentration of Cu does not increase and the rivet formability is poor. No. Since No. 31 and 32 are only subjected to intermediate annealing once, the solid solution concentration of Cu does not increase and the rivet formability is inferior. No. No. 33 has a low cooling rate after the second intermediate annealing, so the Cu solid solution concentration is low and the rivet formability is poor.

1 缶蓋
2 リベット部
3 スコア
4 タブ
5 開缶荷重測定機
6 掛止具
7 掛止部
DESCRIPTION OF SYMBOLS 1 Can lid 2 Rivet part 3 Score 4 Tab 5 Opening load measuring machine 6 Latching tool 7 Latching part

Claims (1)

Mg:3.8〜5.5質量%、Fe:0.1〜0.5質量%、Si:0.05〜0.3質量%、Mn:0.08〜0.6質量%、Cu:0.06〜0.3質量%以下を含有し、残部がAl及び不可避不純物からなるアルミニウム合金板であって、Cu固溶濃度が0.06質量%以上であり、円相当直径が300nmを超える金属間化合物の面積率が0.3%以上2.0%以下であることを特徴とする缶蓋用アルミニウム合金板。 Mg: 3.8 to 5.5% by mass, Fe: 0.1 to 0.5% by mass, Si: 0.05 to 0.3% by mass, Mn: 0.08 to 0.6% by mass , Cu: It is an aluminum alloy plate containing 0.06 to 0.3% by mass or less, the balance being Al and inevitable impurities, the Cu solid solution concentration is 0.06% by mass or more, and the equivalent circle diameter exceeds 300 nm An aluminum alloy plate for can lids, wherein the area ratio of the intermetallic compound is 0.3% or more and 2.0% or less.
JP2014028185A 2014-02-18 2014-02-18 Aluminum alloy plate for can lid Expired - Fee Related JP6289153B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014028185A JP6289153B2 (en) 2014-02-18 2014-02-18 Aluminum alloy plate for can lid
CN201580008711.6A CN106029923B (en) 2014-02-18 2015-02-17 Cover aluminium alloy plate
PCT/JP2015/054340 WO2015125791A1 (en) 2014-02-18 2015-02-17 Aluminum alloy plate for can lids

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014028185A JP6289153B2 (en) 2014-02-18 2014-02-18 Aluminum alloy plate for can lid

Publications (2)

Publication Number Publication Date
JP2015151597A JP2015151597A (en) 2015-08-24
JP6289153B2 true JP6289153B2 (en) 2018-03-07

Family

ID=53894186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014028185A Expired - Fee Related JP6289153B2 (en) 2014-02-18 2014-02-18 Aluminum alloy plate for can lid

Country Status (1)

Country Link
JP (1) JP6289153B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6289152B2 (en) * 2014-02-18 2018-03-07 株式会社神戸製鋼所 Aluminum alloy plate for can lid

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09268341A (en) * 1996-04-01 1997-10-14 Furukawa Electric Co Ltd:The Baking-coated al alloy sheet for can lid material, excellent in stress corrosion cracking resistance in score part, and its production
JP2001303164A (en) * 2000-04-24 2001-10-31 Sky Alum Co Ltd Aluminum hard sheet for can cover and its producing method
JP3694859B2 (en) * 2000-09-29 2005-09-14 古河スカイ株式会社 Aluminum alloy hard plate for can lid and manufacturing method thereof
JP2007023340A (en) * 2005-07-15 2007-02-01 Sumitomo Light Metal Ind Ltd Aluminum alloy sheet for positive-pressure can top, and method for producing the same
JP5356359B2 (en) * 2010-11-26 2013-12-04 住友軽金属工業株式会社 Aluminum alloy coated plate for positive pressure can lid and manufacturing method thereof
JP6289152B2 (en) * 2014-02-18 2018-03-07 株式会社神戸製鋼所 Aluminum alloy plate for can lid

Also Published As

Publication number Publication date
JP2015151597A (en) 2015-08-24

Similar Documents

Publication Publication Date Title
JP6210896B2 (en) Aluminum alloy plate for can lid and manufacturing method thereof
WO2015125791A1 (en) Aluminum alloy plate for can lids
JP5870791B2 (en) Aluminum alloy plate excellent in press formability and shape freezing property and manufacturing method thereof
JP2007169740A (en) Aluminum alloy sheet having excellent formability and its production method
WO2014046010A1 (en) Aluminum alloy plate exhibiting excellent baking finish hardening properties
WO2013118611A1 (en) Aluminum alloy sheet for di can body
JP6336434B2 (en) Aluminum alloy plate for can body and manufacturing method thereof
JP5568031B2 (en) Aluminum alloy cold rolled sheet for bottle cans
JP5379883B2 (en) Aluminum alloy plate and manufacturing method thereof
JP6224550B2 (en) Aluminum alloy sheet for forming
JP2009173972A (en) Aluminum alloy sheet having excellent ridging mark property upon forming
JP2007277694A (en) Painted aluminum-alloy sheet for lid of positive pressure can, and manufacturing method therefor
JP2016141886A (en) Aluminum alloy sheet for can top
JP6289152B2 (en) Aluminum alloy plate for can lid
JP6289153B2 (en) Aluminum alloy plate for can lid
JP2004010982A (en) Aluminum alloy sheet having excellent bending workability and press formability
JP2008062255A (en) SUPERPLASTIC MOLDING METHOD FOR Al-Mg-Si BASED ALUMINUM ALLOY SHEET HAVING REDUCED GENERATION OF CAVITY, AND Al-Mg-Si BASED ALUMINUM ALLOY MOLDED SHEET
WO2016063876A1 (en) Aluminium alloy sheet for can lid
JP6305154B2 (en) Aluminum alloy plate for can lid
WO2017065137A1 (en) Aluminum alloy plate for can end
JP6301175B2 (en) Aluminum alloy sheet with excellent formability and bake hardenability
JP2016079502A (en) Aluminum alloy sheet for can-top
JP2017206765A (en) Aluminum alloy sheet for can top
JP2016079501A (en) Aluminum alloy sheet for can-top
JP2016079503A (en) Aluminum alloy sheet for can-top

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170926

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180206

R150 Certificate of patent or registration of utility model

Ref document number: 6289153

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees