JP2018145466A - Manufacturing method of aluminum alloy sheet for beverage can excellent in bottom moldability and bottom part strength - Google Patents

Manufacturing method of aluminum alloy sheet for beverage can excellent in bottom moldability and bottom part strength Download PDF

Info

Publication number
JP2018145466A
JP2018145466A JP2017039872A JP2017039872A JP2018145466A JP 2018145466 A JP2018145466 A JP 2018145466A JP 2017039872 A JP2017039872 A JP 2017039872A JP 2017039872 A JP2017039872 A JP 2017039872A JP 2018145466 A JP2018145466 A JP 2018145466A
Authority
JP
Japan
Prior art keywords
aluminum alloy
rolling
cold rolling
hot
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017039872A
Other languages
Japanese (ja)
Other versions
JP6850635B2 (en
Inventor
黒木 俊博
Toshihiro Kuroki
俊博 黒木
真一 山口
Shinichi Yamaguchi
真一 山口
晃典 湯田
Akinori Yuda
晃典 湯田
原田 俊宏
Toshihiro Harada
俊宏 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MA Aluminum Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP2017039872A priority Critical patent/JP6850635B2/en
Publication of JP2018145466A publication Critical patent/JP2018145466A/en
Application granted granted Critical
Publication of JP6850635B2 publication Critical patent/JP6850635B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of an aluminum alloy sheet for beverage can excellent in bottom moldability and bottom part strength.SOLUTION: An aluminum alloy sheet having sheet thickness of 0.210 to 0.470 mm and bearing force after coating galling of 230 to 320 N/mmis provided by conducting CAL annealing with holding temperature of 300 to 540°C for 5 to 60 sec. once or two times by using a continuous annealing device in a process of cold rolling, and a final stabilization annealing under a condition of temperature increase rate of 3°C/min. or more, holding temperature of 120 to 140°C, holding time of 1 to 2 hr. and cooling rate of 10°C/min. or more after final cold rolling when an aluminum alloy sheet is manufactured through a homogenization process, a soaking treatment on an ingot obtained by smelting an aluminum alloy containing, by mass%, Si:0.35% or less, Fe:0.35 to 0.55%, Cu:0.15 to 0.48%, Mn:0.8 to 1.15%, Mg:0.60 to 1.60%, and semi-continuously casting the same; hot rough rolling; hot finish rolling and cold rolling.SELECTED DRAWING: Figure 2

Description

本発明は、ボトム成形性およびボトム部強度に優れる飲料缶用アルミニウム合金板の製造方法に関する。   The present invention relates to a method for producing an aluminum alloy plate for beverage cans having excellent bottom formability and bottom portion strength.

飲料用アルミニウム缶の缶ボディには、JIS3004(AA3004)またはJIS3104合金などの、Al−Mn−Mg系合金硬質板が用いられている。同合金硬質板には、容器として使用するために必要な強度や耐食性、美麗な外観、優れた成形性などが要求される。
前記アルミニウム合金の硬質板は、一般的なアルミニウム合金板と同様に、溶解・鋳造・均質化・熱間圧延・冷間圧延等の工程を経て製造される。
Al-Mn-Mg based alloy hard plates such as JIS3004 (AA3004) or JIS3104 alloy are used for the can body of aluminum beverage cans. The alloy hard plate is required to have strength and corrosion resistance necessary for use as a container, a beautiful appearance, and excellent formability.
The hard plate of the aluminum alloy is manufactured through processes such as melting, casting, homogenization, hot rolling, cold rolling and the like in the same manner as a general aluminum alloy plate.

しかし、アルミニウム合金の圧延板の機械的性質に異方性があると、缶ボディを成形する際の成形性を阻害したり、成形後の缶ボディの対称性が低下したり、材料の使用歩留まりが低下するなどの問題がある。圧延板の異方性は、結晶粒の方位分布(集合組織)に依存する。そこで、冷間圧延による集合組織の変化を考慮し、冷間圧延前の再結晶で生じる集合組織を制御することにより、アルミニウム合金圧延板の異方性を低減することが可能になると考えられる。   However, if the mechanical properties of the aluminum alloy rolled plate are anisotropic, the formability when forming the can body is hindered, the symmetry of the can body after forming is reduced, and the material usage yield is reduced. There are problems such as lowering. The anisotropy of the rolled sheet depends on the crystal grain orientation distribution (texture). Therefore, it is considered that the anisotropy of the rolled aluminum alloy sheet can be reduced by taking into account the change in texture due to cold rolling and controlling the texture that occurs during recrystallization before cold rolling.

上述の観点から、アルミニウム合金圧延板の異方性を制御するために、冷間圧延前の再結晶をどのように制御するかが重要であり、この観点から、飲料缶用アルミニウム合金板の製造方法は、以下の3種に分類することができる。
(1)熱間圧延→再結晶→最終冷延
第1の方法は、熱間圧延で比較的薄肉の例えば3mm以下のアルミニウム合金板材に圧延し、熱間圧延後、コイルに巻取った状態でそのまま再結晶させ、あるいは、人工的に焼鈍を施して再結晶させた後、冷間圧延を行う方法である。
(2)熱間圧延→低圧下冷延→再結晶→最終冷延
第2の方法は、熱間圧延で比較的薄肉の例えば3mm以下のアルミニウム合金板材に圧延し、その後比較的低圧下の、例えば以下の特許文献1に記載のように、アルミニウム合金板材に6〜15%の冷間圧延を行った後、焼鈍を施し、最後に圧下率90%程度の最終冷間圧延を実施する方法である。
(3)熱間圧延→冷間圧延→連続焼鈍炉を用いた再結晶→比較的低圧下の最終冷延
第3の方法は、アルミニウム合金板材の熱間圧延後、第一冷間圧延を行い、その後、連続焼鈍炉を用いて、比較的高温に急速加熱し、その後急速冷却する焼鈍を行い、最後に比較的低圧下率の例えば60%程度の冷間圧延を行う方法である。
From the above viewpoint, in order to control the anisotropy of the aluminum alloy rolled sheet, it is important how to control the recrystallization before cold rolling. From this viewpoint, the production of the aluminum alloy sheet for beverage cans Methods can be classified into the following three types.
(1) Hot rolling → Recrystallization → Final cold rolling In the first method, hot rolling is performed to a relatively thin aluminum alloy sheet of, for example, 3 mm or less, and after hot rolling, it is wound on a coil. This is a method in which recrystallization is performed as it is, or after artificial annealing and recrystallization, and then cold rolling.
(2) Hot rolling → low-pressure cold rolling → recrystallization → final cold rolling The second method is hot rolling to a relatively thin-walled aluminum alloy sheet of, for example, 3 mm or less, and then under a relatively low pressure. For example, as described in the following Patent Document 1, after performing cold rolling of 6 to 15% on an aluminum alloy sheet, annealing is performed, and finally the final cold rolling with a reduction rate of about 90% is performed. is there.
(3) Hot rolling → cold rolling → recrystallization using a continuous annealing furnace → final cold rolling at a relatively low pressure The third method is to perform first cold rolling after hot rolling of an aluminum alloy sheet. Thereafter, using a continuous annealing furnace, annealing is performed by rapid heating to a relatively high temperature, followed by rapid cooling, and finally cold rolling at a relatively low pressure reduction rate of, for example, about 60%.

また、熱間圧延後に冷間圧延を施し、再結晶焼鈍を行った後、再度冷間圧延を行う技術が以下の特許文献2に記載され、冷間圧延後に仕上げ焼鈍を行う技術が以下の特許文献3に記載されている。   In addition, a technique for performing cold rolling after hot rolling and performing recrystallization annealing and then performing cold rolling again is described in Patent Document 2 below, and a technique for performing finish annealing after cold rolling is described in the following patent. It is described in Document 3.

特許第3644819号公報Japanese Patent No. 3644819 特開平4−13852号公報Japanese Patent Laid-Open No. 4-13852 特開平4−56743号公報Japanese Patent Laid-Open No. 4-56743

ところで、アルミニウム缶に対する低価格化の要求は厳しく、このため缶の薄肉軽量化が進められているが、薄肉軽量化に伴い、缶のボトム成形性とボトム部強度(特に缶軸方向の応力に対する座屈強度)の確保が必要となってきている。
前記ボトム成形性とボトム部強度を確保する手段として、最終冷間圧延後に焼鈍を行い、深絞り成形性を改善し、張出成形性を改善する方法を考えることができるが、最終冷間圧延後に焼鈍を行うと材料自体の機械的性質が変化し、ミクロ組織も変化する問題がある。
By the way, there is a strict demand for lower prices for aluminum cans. For this reason, the cans are being made thinner and lighter, but with the thinner and lighter weights, the bottom formability and bottom strength of the can (particularly against stress in the axial direction of the can). Ensuring buckling strength is required.
As a means of ensuring the bottom formability and the bottom part strength, it is possible to consider a method of performing annealing after the final cold rolling, improving the deep drawing formability, and improving the stretch formability. If annealing is performed later, the mechanical properties of the material itself change and the microstructure also changes.

本発明は、上述の問題を解決するためになされたものであり、材料自体の機械的強度およびミクロ組織の変化を生じさせることなくボトム成形性とボトム部強度に優れた飲料缶用アルミニウム合金板を製造する方法の提供を目的とする。   The present invention has been made to solve the above-described problems, and is an aluminum alloy plate for beverage cans that has excellent bottom formability and bottom portion strength without causing changes in the mechanical strength and microstructure of the material itself. It aims at providing the method of manufacturing.

本発明の缶ボディ用アルミニウム合金板の製造方法は、質量%で、Si:0.35%以下、Fe:0.35〜0.55%、Cu:0.15〜0.48%、Mn:0.8〜1.15%、Mg:0.60〜1.60%を含有し、残部がAl及び不可避不純物からなる組成のアルミニウム合金を溶製し、半連続鋳造して得た鋳塊を均質化処理した後、均熱処理し、熱間粗圧延と熱間仕上げ圧延と冷間圧延を経て飲料缶用アルミニウム合金板を製造するに際し、冷間圧延の途中で連続焼鈍装置を用いて1回または2回、300〜540℃の温度に5〜60秒保持する連続焼鈍を行い、最終冷間圧延後に昇温速度3℃/min以上、保持温度120〜140℃、保持時間1〜2時間、冷却速度10℃/min以上の条件で最終安定化焼鈍を行い、板厚0.210〜0.470mm、塗装焼付け後の耐力230〜320N/mmのアルミニウム合金板を得ることを特徴とする。 The manufacturing method of the aluminum alloy plate for can bodies of this invention is mass%, Si: 0.35% or less, Fe: 0.35-0.55%, Cu: 0.15-0.48%, Mn: An ingot obtained by melting an aluminum alloy having a composition containing 0.8 to 1.15%, Mg: 0.60 to 1.60%, the balance being Al and inevitable impurities, and semi-continuously casting After homogenization treatment, soaking treatment, hot rough rolling, hot finish rolling, and cold rolling to produce an aluminum alloy sheet for beverage cans, once using a continuous annealing device during the cold rolling. Or twice, continuous annealing is performed at a temperature of 300 to 540 ° C. for 5 to 60 seconds, and after the final cold rolling, a heating rate of 3 ° C./min or more, a holding temperature of 120 to 140 ° C., a holding time of 1 to 2 hours, Final stabilization annealing is performed at a cooling rate of 10 ° C./min or more, and the sheet thickness is 0 210~0.470Mm, characterized in that to obtain an aluminum alloy plate strength 230~320N / mm 2 after baking.

本発明において、前記鋳塊に対して行なう均質化処理を555〜605℃で4〜10時間加熱する条件で行ない、均熱処理を500〜555℃で1時間以上加熱する条件で行ない、出側温度を400〜460℃に設定して熱間粗圧延を行い、仕上板厚を2.0〜3.6mmに設定し、仕上げ温度を240〜360℃に設定して熱間仕上げ圧延を行い、最終冷間圧延率を76〜95%に設定して冷間圧延することが好ましい。
本発明において、前記組成に対し、更に、Cr:0.05%以下、Zn:0.25%以下、Ti:0.10%以下のうち、少なくとも1種または2種以上を含有してなるアルミニウム合金を用いることが好ましい。
In the present invention, the homogenization treatment performed on the ingot is performed under the condition of heating at 555 to 605 ° C. for 4 to 10 hours, and the soaking is performed at the temperature of heating at 500 to 555 ° C. for 1 hour or more. Is set to 400 to 460 ° C., hot rough rolling is performed, the finishing plate thickness is set to 2.0 to 3.6 mm, the finishing temperature is set to 240 to 360 ° C., and hot finishing rolling is performed. It is preferable to perform cold rolling with the cold rolling rate set to 76 to 95%.
In the present invention, aluminum containing at least one or more of Cr: 0.05% or less, Zn: 0.25% or less, Ti: 0.10% or less with respect to the composition. It is preferable to use an alloy.

本発明の缶ボディ用アルミニウム合金板の製造方法は、SiとFeとCuとMnとMgを特定範囲含有した組成のアルミニウム合金を溶製し、熱間粗圧延と熱間仕上げ圧延と冷間圧延を施すに際し、冷間圧延の途中で300〜540℃の温度に5〜60秒保持する連続焼鈍を行い、最終冷間圧延後に昇温速度3℃/min以上、保持温度120〜140℃、保持時間1〜2時間、冷却速度10℃/min以上の条件で最終安定化焼鈍を行うので、ボトム成形性に優れ、ボトム部強度に優れる飲料缶用アルミニウム合金板を製造することができる。
最終安定化焼鈍を上述の条件で行うことにより、缶形成後のボトム座屈耐性が向上する。
The method for producing an aluminum alloy plate for a can body according to the present invention includes melting an aluminum alloy having a specific range of Si, Fe, Cu, Mn, and Mg, hot rough rolling, hot finish rolling, and cold rolling. During the cold rolling, continuous annealing is performed at a temperature of 300 to 540 ° C. for 5 to 60 seconds, and after the final cold rolling, the heating rate is 3 ° C./min or more, the holding temperature is 120 to 140 ° C. Since final stabilization annealing is performed for 1 to 2 hours at a cooling rate of 10 ° C./min or more, an aluminum alloy plate for beverage cans having excellent bottom formability and excellent bottom portion strength can be produced.
By performing final stabilization annealing on the above-mentioned conditions, the bottom buckling tolerance after can formation improves.

本発明に係る製造方法を実施する際に、熱間圧延工程において用いる装置と工程を示す説明図。Explanatory drawing which shows the apparatus and process which are used in a hot rolling process, when implementing the manufacturing method which concerns on this invention. 本発明に係る製造方法の実施に用いる連続焼鈍装置の一例を示す概略構成図。The schematic block diagram which shows an example of the continuous annealing apparatus used for implementation of the manufacturing method which concerns on this invention. DI缶の製造方法の一例を示す工程図。Process drawing which shows an example of the manufacturing method of DI can. DI缶の一例を示す部分断面図。The fragmentary sectional view which shows an example of DI can.

以下、本発明に係るボトム成形性に優れ、ボトム部強度に優れる飲料缶用アルミニウム合金板の製造方法の各実施形態について説明するが、本発明は以下に説明する実施形態に制限されるものではない。
初めに、本実施形態で用いる缶ボディ用アルミニウム合金板の組成について説明する。
本実施形態の缶ボディ用アルミニウム合金板は、質量%で、Si:0.35%以下(0%を除く)、Fe:0.35〜0.55%、Cu:0.15〜0.48%、Mn:0.80〜1.15%、Mg:0.60〜1.60%以下を含有し、残部が不可避的不純物とAlからなる組成のアルミニウム合金からなる。また、前記組成比のアルミニウム合金に、更に、Cr:0.05%以下、Zn:0.25%、Ti:0.10%以下のうち、1種または2種以上を含有させたアルミニウム合金を用いても良い。
以下、本実施形態で使用するアルミニウム合金の組成限定理由について説明する。
なお、本明細書において記載する各元素の含有量は、特に限定しない限り質量%であり、また、特に規定しない限り上限と下限を含むものとする。例えば0.35〜0.55%とする表記は0.35%以上0.55%以下を意味する。また、温度や時間等の範囲を表記する場合も、特に明記しない限り、上限と下限を含むものとする。例えば、300〜540℃は300℃以上540℃以下を意味し、1〜2時間は1時間以上2時間以下を意味する。
Hereinafter, although each embodiment of the manufacturing method of the aluminum alloy plate for beverage cans which is excellent in bottom moldability and excellent in the bottom part strength according to the present invention will be described, the present invention is not limited to the embodiment described below. Absent.
First, the composition of the aluminum alloy plate for can bodies used in the present embodiment will be described.
The aluminum alloy plate for a can body according to the present embodiment is, by mass, Si: 0.35% or less (excluding 0%), Fe: 0.35 to 0.55%, Cu: 0.15 to 0.48. %, Mn: 0.80 to 1.15%, Mg: 0.60 to 1.60% or less, and the balance is made of an aluminum alloy having a composition of inevitable impurities and Al. Further, an aluminum alloy containing one or more of Cr: 0.05% or less, Zn: 0.25%, Ti: 0.10% or less in the aluminum alloy having the above composition ratio. It may be used.
Hereinafter, the reasons for limiting the composition of the aluminum alloy used in this embodiment will be described.
In addition, content of each element described in this specification is mass% unless otherwise specified, and includes an upper limit and a lower limit unless otherwise specified. For example, the notation of 0.35 to 0.55% means 0.35% or more and 0.55% or less. Moreover, when noting ranges, such as temperature and time, an upper limit and a lower limit are included unless otherwise specified. For example, 300 to 540 ° C. means 300 ° C. or more and 540 ° C. or less, and 1 to 2 hours means 1 hour or more and 2 hours or less.

「Si:0.35%以下」
Siは、同時に含有するMgと化合物を形成し易く、固溶硬化作用、分散硬化作用および析出硬化作用を有する他、Al、Mn、Feなどと化合物を形成し、成形時のダイスに対する焼付きを防止する効果がある。Siの含有量は、0.35質量%を越えると加工性が劣化して不都合である。
「Fe:0.35〜0.55%」
Feは、結晶の微細化および成形時のダイスに対する焼付きを防止する効果がある。Feの含有量は、0.35質量%未満では所望の効果が得られず、0.55質量%を越えると加工性を劣化させる。
"Si: 0.35% or less"
Si easily forms a compound with Mg contained at the same time, has a solid solution hardening action, a dispersion hardening action and a precipitation hardening action, and forms a compound with Al, Mn, Fe, etc., and seizes the die during molding. There is an effect to prevent. If the Si content exceeds 0.35% by mass, workability deteriorates, which is inconvenient.
"Fe: 0.35-0.55%"
Fe has the effect of preventing crystal fineness and seizure to a die during molding. If the Fe content is less than 0.35% by mass, the desired effect cannot be obtained, and if it exceeds 0.55% by mass, the workability deteriorates.

「Cu:0.15〜0.48%」
Cuは、Mgと化合物を形成し易く、固溶硬化、分散硬化および析出硬化に寄与する。
Cuの含有量は、0.15質量%未満では所望の効果が得られず、0.48質量%を越えると加工性を劣化させる。
「Mn:0.8〜1.15%」
Mnは、Fe、Si、Alなどと化合物を形成し易く、晶出相および分散相となって分散硬化作用を現すと共に成形時のダイスに対する焼付きを防止する効果がある。Mnの含有量は、0.8質量%未満では所望の効果が得られず、1.15質量%を越えると加工性が劣化する。
「Mg:0.60〜1.60%」
Mgは、固溶体強化作用を有し、圧延による加工硬化性を高めるとともに、前記Siや前記Cuと共存することによって分散硬化と析出硬化作用を現す。Mgの含有量は、0.60質量%未満では所望の効果が得られず、1.60質量%を越えると加工性を劣化させるようになる。
"Cu: 0.15-0.48%"
Cu easily forms a compound with Mg, and contributes to solid solution hardening, dispersion hardening, and precipitation hardening.
If the Cu content is less than 0.15% by mass, the desired effect cannot be obtained, and if it exceeds 0.48% by mass, the workability deteriorates.
“Mn: 0.8 to 1.15%”
Mn is easy to form a compound with Fe, Si, Al, etc., becomes a crystallization phase and a dispersed phase, exhibits a dispersion hardening action, and has an effect of preventing seizure to a die during molding. If the Mn content is less than 0.8% by mass, the desired effect cannot be obtained, and if it exceeds 1.15% by mass, the workability deteriorates.
“Mg: 0.60 to 1.60%”
Mg has a solid solution strengthening action, enhances work hardening by rolling, and exhibits dispersion hardening and precipitation hardening action by coexisting with Si and Cu. If the Mg content is less than 0.60% by mass, the desired effect cannot be obtained, and if it exceeds 1.60% by mass, the workability deteriorates.

本実施形態で用いるアルミニウム合金において、前記Si、Fe、Cu、Mn、Mgの主要成分に加え、以下のCr、Zn、Tiのいずれか1種または2種以上を含有しても良い。
「Cr:0.05%以下」
Crは結晶の微細化と成形加工時にダイスに対する焼き付きを防止する効果を発揮する。Crの含有量は、0.05質量%を越えると脆くなり加工性が劣化するため0.05質量%以下が望ましい。
In the aluminum alloy used in the present embodiment, in addition to the main components of Si, Fe, Cu, Mn, and Mg, one or more of the following Cr, Zn, and Ti may be contained.
"Cr: 0.05% or less"
Cr exhibits the effect of preventing seizure on the die during crystal refinement and molding. If the Cr content exceeds 0.05% by mass, it becomes brittle and the workability deteriorates, so 0.05% by mass or less is desirable.

「Zn:0.25%以下」
ZnはMg、Si、Cuの析出物を微細化する作用を有する。Znの含有量は、0.25質量%を越えると加工性と耐食性を劣化させるため、Znを添加する場合は0.25質量%以下が望ましい。
「Ti:0.10%以下」
Tiは、結晶粒を微細化して加工性を改善する効果がある。ただし、Tiの含有量は0.10質量%を越えると粗大な化合物を生成し、逆に加工性を劣化させるため、0.10質量%以下が望ましい。
“Zn: 0.25% or less”
Zn has the effect of refining Mg, Si and Cu precipitates. If the Zn content exceeds 0.25% by mass, the workability and corrosion resistance deteriorate, so when Zn is added, the content is preferably 0.25% by mass or less.
“Ti: 0.10% or less”
Ti has the effect of improving the workability by refining crystal grains. However, if the Ti content exceeds 0.10% by mass, a coarse compound is formed, and conversely, the workability is deteriorated. Therefore, the content is preferably 0.10% by mass or less.

<ボトム成形性とボトム部強度に優れる飲料缶用アルミニウム合金板の製造方法>
次に、本実施形態に係るボトム成形性とボトム部強度に優れる飲料缶用アルミニウム合金板の製造方法の実施の形態について説明する。
本実施形態の飲料缶用アルミニウム合金板の製造方法においては、前記組成のアルミニウム合金を溶製し、鋳造して得た鋳塊に対して均質化処理、均熱処理を施した後、熱間粗圧延およびそれに続く熱間仕上げ圧延による熱間圧延を行い、冷間圧延を行うことにより所望の板厚の飲料缶用アルミニウム合金板を得る。
更に、前記の工程において、冷間圧延の途中で連続焼鈍装置を用いて1回または2回、300〜540℃の温度に5〜60秒保持する連続焼鈍(CAL焼鈍)を行い、最終冷間圧延後に昇温速度3℃/min以上、保持温度120〜140℃、保持時間1〜2時間、冷却速度10℃/min以上の条件で最終安定化焼鈍を行うことが重要となる。
以下、本実施形態のボトム成形性とボトム部強度に優れる飲料缶用アルミニウム合金板の製造方法について工程順に説明する。
<Method for producing aluminum alloy plate for beverage can excellent in bottom moldability and bottom portion strength>
Next, an embodiment of a method for producing an aluminum alloy plate for beverage cans excellent in bottom formability and bottom portion strength according to this embodiment will be described.
In the method for producing an aluminum alloy plate for beverage cans according to this embodiment, the aluminum alloy having the above composition is melted and subjected to homogenization treatment and soaking treatment on the ingot obtained by casting, followed by hot roughening. Hot rolling is performed by rolling and subsequent hot finish rolling, and cold rolling is performed to obtain an aluminum alloy plate for a beverage can having a desired plate thickness.
Furthermore, in the above-mentioned process, continuous annealing (CAL annealing) is performed at a temperature of 300 to 540 ° C. for 5 to 60 seconds once or twice using a continuous annealing apparatus during the cold rolling, and the final cold After rolling, it is important to perform final stabilization annealing under conditions of a heating rate of 3 ° C./min or more, a holding temperature of 120 to 140 ° C., a holding time of 1 to 2 hours, and a cooling rate of 10 ° C./min or more.
Hereafter, the manufacturing method of the aluminum alloy plate for drink cans which is excellent in the bottom moldability and bottom part intensity | strength of this embodiment is demonstrated in order of a process.

「鋳造」
前記組成のアルミニウム合金を溶解後、常法に従ってアルミニウム合金溶湯から鋳塊を鋳造するが、鋳造に先立ち、アルミニウム合金を溶製した際に、水素ガスや酸化物などの介在物を除去し、半連続鋳造法により鋳塊を得る。
この半連続鋳造の際の凝固速度は通常、5〜20℃/秒とされる。鋳造された鋳塊の厚さは、例えば500〜600mm程度とすることができる。
次に、鋳塊の面削を行い、鋳塊の表面を1〜25mm程度切削し、面削体を作製する。なお面削は後述する均質化処理の後に行っても良い。
"casting"
After the aluminum alloy having the above composition is melted, an ingot is cast from the molten aluminum alloy according to a conventional method. When the aluminum alloy is melted prior to casting, inclusions such as hydrogen gas and oxide are removed, An ingot is obtained by a continuous casting method.
The solidification rate in this semi-continuous casting is usually 5 to 20 ° C./second. The thickness of the cast ingot can be about 500 to 600 mm, for example.
Next, chamfering of the ingot is performed, and the surface of the ingot is cut by about 1 to 25 mm to produce a face cut body. The chamfering may be performed after a homogenization process described later.

「均質化処理」
次に、作製した面削体に均質化処理を施す。均質化処理は一般に、溶湯の凝固によって生じたミクロ偏析の均質化、過飽和固溶元素の析出、凝固によって形成された準安定相の平衡相への転移などのために行われる。
均質化処理においては、均質化温度を555〜605℃の範囲内とすることが重要である。均質化温度が555℃未満では後述の連続焼鈍の効果が得られず、後述の熱間圧延工程や冷間圧延工程においてクラックが発生し易く、最終板材の耳率が高くなる。また、均質化温度が605℃を超えると、鋳塊が溶融するおそれがある。
"Homogenization treatment"
Next, a homogenization process is performed on the manufactured face cut body. The homogenization treatment is generally performed for homogenization of microsegregation generated by solidification of the molten metal, precipitation of supersaturated solid solution elements, transition of a metastable phase formed by solidification to an equilibrium phase, and the like.
In the homogenization treatment, it is important that the homogenization temperature is in the range of 555 to 605 ° C. When the homogenization temperature is less than 555 ° C., the effect of continuous annealing described later cannot be obtained, cracks are easily generated in the hot rolling process and the cold rolling process described later, and the ear rate of the final plate material is increased. Further, if the homogenization temperature exceeds 605 ° C, the ingot may be melted.

均質化処理において、面削体は100℃/時以下の加熱速度で均質化温度まで加熱することが好ましい。加熱速度が100℃/時を超えると、部分的に溶融を生じるおそれがある。
また、均質化処理において、均質化温度に保持する時間(均質化時間)は4時間以上10時間以下とすることが好ましい。均質化時間が4時間未満では、均質化が充分に進行しない場合がある。しかし、均質化時間が長すぎても効果はなく生産効率が低下する。以上の観点から、好ましい均質化時間は4〜10時間の範囲内である。この均質化処理は、均質化時間が比較的長いので、通常、バッチ方式の炉中に置くことで行われる。
「均熱処理」
本実施形態において、均質化処理の後さらに面削体を500〜555℃まで冷却し、所定時間保持する均熱処理後、熱間圧延を開始する。500〜555℃の温度範囲での保持時間(均熱時間)は、1時間以上行うことが望ましい。
In the homogenization treatment, it is preferable to heat the face milling body to a homogenization temperature at a heating rate of 100 ° C./hour or less. If the heating rate exceeds 100 ° C./hour, melting may occur partially.
In the homogenization treatment, the time for maintaining the homogenization temperature (homogenization time) is preferably 4 hours or more and 10 hours or less. If the homogenization time is less than 4 hours, the homogenization may not proceed sufficiently. However, if the homogenization time is too long, there is no effect and the production efficiency is lowered. From the above viewpoint, the preferable homogenization time is in the range of 4 to 10 hours. Since the homogenization time is relatively long, this homogenization treatment is usually performed by placing it in a batch type furnace.
"Soaking heat treatment"
In this embodiment, after the homogenization treatment, the face cut body is further cooled to 500 to 555 [deg.] C., and after soaking for a predetermined time, hot rolling is started. The holding time (soaking time) in the temperature range of 500 to 555 ° C. is desirably performed for 1 hour or more.

「熱間圧延」
熱間圧延は、熱間粗圧延およびそれに続く熱間仕上げ圧延からなり、本実施形態においては、シングルミルのリバース式熱間仕上圧延機を使用して熱間仕上げ圧延を行うことが好ましい。
熱間圧延工程においては、図1に示すように、熱間粗圧延機20を用いて板厚20mm程度まで熱間粗圧延した後、熱間仕上圧延機30を用いて板厚2〜3.6mmまで熱間圧延する。
"Hot rolling"
The hot rolling includes hot rough rolling and subsequent hot finish rolling. In the present embodiment, it is preferable to perform hot finish rolling using a single-mill reverse hot finish rolling mill.
In the hot rolling process, as shown in FIG. 1, after hot rough rolling to a thickness of about 20 mm using a hot rough rolling machine 20, a thickness of 2 to 3 using a hot finish rolling mill 30. Hot-roll to 6 mm.

図1に示す熱間粗圧延機20は、例えば上下のワークロール21、22、およびバックアップロール23、24と、複数の搬送ローラが配列された搬送路4、6を備え、搬送されてきたアルミニウム合金の板材5をワークロール21、22間を通過させて目的の厚さに圧延する装置である。
図1において、ワークロール21、22の左右両側の搬送路4、6から繰り返しアルミニウム合金の板材5をワークロール21、22の間に供給して順次粗圧延することにより、熱間粗圧延機20は板材5を必要な厚さまで圧延して板材7とすることができる。
The hot roughing mill 20 shown in FIG. 1 includes, for example, upper and lower work rolls 21 and 22, backup rolls 23 and 24, and transport paths 4 and 6 in which a plurality of transport rollers are arranged, and has been transported aluminum. This is an apparatus for rolling an alloy plate 5 to a desired thickness by passing between work rolls 21 and 22.
In FIG. 1, a hot rough rolling machine 20 is obtained by repeatedly supplying aluminum sheet 5 between the work rolls 21 and 22 and sequentially rolling them from the conveying paths 4 and 6 on the left and right sides of the work rolls 21 and 22. Can roll the plate 5 to a required thickness to form a plate 7.

図1に示す熱間仕上圧延機30は、シングルミルのリバース式熱間仕上圧延機であり、例えば上下のワークロール31、32およびバックアップロール33、34と、これらロールの入り側に設置されたリール型の送出巻取装置35と、出側に設置されたリール型の送出巻取装置36とを具備してなる。この熱間仕上圧延機30は、送出巻取装置35から送り出してワークロール31、32間を通過させて熱間圧延した板材を送出巻取装置36で巻き取る操作と、送出巻取装置36から再度ワークロール31、32間を通過させて熱間圧延した板材を送出巻取装置35で巻き取る操作を繰り返し必要回数行うとともに、圧延操作の度に徐々にワークロール31、32間の間隔を調節することにより、アルミニウム合金の板材を目的の板厚まで熱間仕上圧延する装置である。   The hot finish rolling mill 30 shown in FIG. 1 is a single-mill reverse hot finish rolling mill, for example, upper and lower work rolls 31 and 32 and backup rolls 33 and 34 and installed on the entrance side of these rolls. A reel-type delivery winding device 35 and a reel-type delivery winding device 36 installed on the outlet side are provided. The hot finish rolling mill 30 is configured to wind a sheet material that is hot-rolled from the feed winder 35 and passed between the work rolls 31 and 32 by the feed winder 36, and from the feed winder 36. The operation of winding the sheet material hot-rolled by passing between the work rolls 31 and 32 again with the feed winder 35 is repeated as many times as necessary, and the interval between the work rolls 31 and 32 is gradually adjusted for each rolling operation. By doing so, it is an apparatus that hot-rolls an aluminum alloy plate material to a target plate thickness.

前記均熱処理後、均熱炉から取り出したスラブは通常直ちに熱間粗圧延を開始するが、スラブ温度が500℃未満にならなければ、熱間粗圧延開始を遅延してもよい。熱間粗圧延のパス数は、鋳塊(スラブ)厚さ、仕上げ厚さ、スラブ幅、合金組成などに依存するが、十数パス〜二十数パスの範囲が一般的である。
熱間粗圧延は、圧延材が厚い間は、通常圧延機の前後に搬送テーブルが設置された1スタンド式粗圧延機(図1に示す熱間粗圧延機20)を用いて圧延する。しかし、板が薄くなると、必要な搬送テーブル長が長くなり、板の自重によるたるみも大きくなり、板の冷却も生じ易くなる。
After the soaking process, the slab taken out from the soaking furnace usually starts hot rough rolling immediately, but if the slab temperature does not become less than 500 ° C., the start of hot rough rolling may be delayed. The number of hot rough rolling passes depends on the ingot (slab) thickness, finished thickness, slab width, alloy composition, and the like, but is generally in the range of tens of passes to tens of passes.
In the hot rough rolling, while the rolled material is thick, rolling is usually performed using a one-stand type rough rolling mill (hot rough rolling mill 20 shown in FIG. 1) in which a conveyance table is installed before and after the rolling mill. However, if the plate is thinned, the necessary transfer table length is increased, the slack due to the weight of the plate is increased, and the plate is likely to be cooled.

そのため、搬送テーブルで保持するには、板厚が十数mm以上必要である。したがって、粗圧延機から仕上圧延機に板を送る際の最低板厚は、コイル重量や板幅に依存するが、工業的に用いられている重量・幅の場合、16mm程度以上であることが好ましい。また、粗圧延機から仕上げ圧延機に送る際の板厚が厚すぎる場合には、仕上圧延機での圧延パス回数の増加を招き、生産性を低下させる。したがって、仕上げ圧延機に送る際の板厚の上限は40mm以下であることが好ましい。上述の厚さ上限から下限の範囲内までアルミニウム合金の板材が薄くなった場合に、図1に示す構成のシングルミルのリバース式熱間仕上圧延機で熱間仕上げ圧延を行う。   Therefore, in order to hold on the transfer table, the plate thickness needs to be more than 10 mm. Therefore, the minimum plate thickness when the plate is sent from the roughing mill to the finishing mill depends on the coil weight and the plate width, but in the case of the weight and width used industrially, it is about 16 mm or more. preferable. Moreover, when the plate | board thickness at the time of sending to a finishing mill from a rough mill is too thick, the increase in the number of rolling passes in a finishing mill will be caused, and productivity will be reduced. Therefore, it is preferable that the upper limit of the sheet thickness at the time of sending to a finishing mill is 40 mm or less. When the aluminum alloy sheet is thinned from the above upper limit to the lower limit, hot finish rolling is performed with a single mill reverse hot finish rolling mill having the configuration shown in FIG.

熱間仕上げ圧延は、シングルミルのリバース式熱間仕上圧延機を使用して行う。
圧延機の両側に巻取装置があるシングルミルのリバース式熱間仕上圧延機(図1に示す熱間仕上圧延機30)を使用することにより、熱間仕上板厚を小さくすることができる。
従って、以降の冷間圧延の圧下率を小さくできるので、冷間圧延のパス回数を削減でき、生産性を向上させることができる。これに対し、例えば、巻取装置が片方にだけ設置された熱間仕上圧延機を用いた場合、搬送テーブル上で保持できる板厚に最小値が存在するために、熱間圧延で圧延可能な最小板厚が増加することになる。このため、熱間圧延後の冷間圧下率が増加する。
Hot finish rolling is performed using a single-mill reverse hot finish rolling mill.
By using a single-mill reverse hot finish rolling mill (hot finish rolling mill 30 shown in FIG. 1) having a winding device on both sides of the rolling mill, the hot finish plate thickness can be reduced.
Therefore, since the reduction ratio of the subsequent cold rolling can be reduced, the number of cold rolling passes can be reduced and the productivity can be improved. On the other hand, for example, when a hot finish rolling mill in which the winding device is installed only on one side is used, there is a minimum value for the plate thickness that can be held on the transfer table, so that it can be rolled by hot rolling. The minimum plate thickness will increase. For this reason, the cold rolling reduction after hot rolling increases.

前述の如く、熱間圧延の仕上り板厚の薄肉化は、冷間圧延パス回数の削減による生産性の向上に寄与する。そのため、本実施形態において、熱間仕上げ圧延の仕上げ板厚は、2.0〜3.6mmの範囲内とすることが好ましい。仕上げ板厚が2.0mm未満では冷間圧延の圧下率が不足し、低い耳率が得られない。仕上げ板厚が3.6mmを超えると冷間圧延のパス回数が増加して生産性が低下する。   As described above, the reduction in the thickness of the finished sheet of hot rolling contributes to the improvement of productivity by reducing the number of cold rolling passes. Therefore, in this embodiment, it is preferable that the finishing plate thickness of the hot finish rolling is in the range of 2.0 to 3.6 mm. If the finished sheet thickness is less than 2.0 mm, the cold rolling reduction ratio is insufficient, and a low ear ratio cannot be obtained. If the finished plate thickness exceeds 3.6 mm, the number of cold rolling passes increases and productivity decreases.

「冷間圧延」
次に、熱間圧延後の板材に対し、最終冷間圧下率76〜95%の範囲内となるように冷間圧延を施す。最終冷間圧延の圧下率を76〜95%の範囲内とすることにより、必要な機械的性質、特に塗装焼付け処理後の耐力が好適な範囲となるとともに、缶成形において異方性、ネック成形性がバランスよく得られるという効果がある。
最終冷間圧延の圧下率を76%未満にすると、缶成形による加工硬化が進み、ネック成形性が悪化する。
冷間圧延の圧下率について95%を超えると、加工率が過剰となって異方性が悪化するとともに、板材の強度が高くなり過ぎて後述するDI成形性が損なわれるおそれがある。
冷間圧延により、板厚0.210〜0.470mmの飲料缶用アルミニウム合金板を得ることができる。また、このアルミニウム合金板は、塗装焼付け後の耐力が230〜320N/mmの範囲であることが好ましい。
"Cold rolling"
Next, cold rolling is performed on the plate material after hot rolling so that the final cold rolling reduction is within a range of 76 to 95%. By setting the reduction ratio of the final cold rolling within the range of 76 to 95%, the necessary mechanical properties, in particular, the proof stress after the coating baking process are within a suitable range, and anisotropy and neck forming in can molding. There is an effect that sex is obtained in a well-balanced manner.
When the reduction ratio of the final cold rolling is less than 76%, work hardening by can molding proceeds and neck formability deteriorates.
If the rolling reduction of cold rolling exceeds 95%, the processing rate becomes excessive and the anisotropy deteriorates, and the strength of the plate material becomes too high, and there is a possibility that the DI formability described later is impaired.
By cold rolling, an aluminum alloy plate for beverage cans having a plate thickness of 0.210 to 0.470 mm can be obtained. Moreover, it is preferable that this aluminum alloy plate has the yield strength after baking by coating in the range of 230 to 320 N / mm 2 .

「冷間圧延途中の1回または2回の中間焼鈍」
中間焼鈍工程は、前記冷間圧延中の板材に対し、図2に基本構成を示す連続焼鈍装置を用いて、加熱速度10〜200℃/秒の範囲(10℃/秒以上、200℃/秒以下の範囲)で加熱し、保持温度300〜540℃の範囲(300℃以上、540℃以下の範囲)に5〜60秒保持した後、冷却速度10〜200℃/秒の範囲で冷却することで行う。
この中間焼鈍工程は、アルミニウム合金板材を半軟化状態にもたらすものであって、焼鈍後の耐力;YS(Yield Strength)を好適な範囲とすることが好ましい。
焼鈍温度が300℃未満では軟化が不十分で、冷間加工不良となり易い問題がある。焼鈍温度が540℃を越えるか、または、保持時間が60秒を越えると溶質元素の固溶度が過剰になり、最終製品の機械的性質が高くなり、飲料缶のネック成形性が悪化する。さらに保持時間が60秒を超えると生産性が低下する。
“One or two intermediate annealings during cold rolling”
In the intermediate annealing step, a continuous annealing apparatus having a basic configuration shown in FIG. 2 is used for the plate during the cold rolling, and the heating rate is in the range of 10 to 200 ° C./second (10 ° C./second or more, 200 ° C./second). The following range) is heated, held at a holding temperature of 300 to 540 ° C. (300 ° C. or higher and 540 ° C. or lower) for 5 to 60 seconds, and then cooled at a cooling rate of 10 to 200 ° C./second. To do.
This intermediate annealing step brings the aluminum alloy sheet material into a semi-softened state, and it is preferable that the yield strength after annealing; YS (Yield Strength) is in a suitable range.
When the annealing temperature is less than 300 ° C., the softening is insufficient and there is a problem that cold working is liable to occur. If the annealing temperature exceeds 540 ° C. or the holding time exceeds 60 seconds, the solid solubility of the solute element becomes excessive, the mechanical properties of the final product become high, and the neck moldability of the beverage can deteriorates. Further, when the holding time exceeds 60 seconds, the productivity is lowered.

図2に連続焼鈍装置(Continuous Annealing Line:略称CAL)の基本構成の一例を示すが、この例の連続焼鈍装置40は、供給ロール41から長尺のアルミニウム合金の板材42を引き出して緩衝装置43を介し数10m〜100m程度の長い炉本体44に供給し、この炉本体44内で移動中に前記の条件で焼鈍し、焼鈍後に炉本体44から板材42を引き出し、緩衝装置46を介し巻取ロール47に巻き取ることができる装置である。この連続焼鈍装置40によれば、炉本体44を通過するアルミニウム合金の板材42を連続単体処理できるために、バッチ式の焼鈍炉よりもより正確な加熱条件と冷却条件で中間焼鈍処理を行うことができる。   FIG. 2 shows an example of the basic configuration of a continuous annealing device (Continuous Annealing Line: CAL). The continuous annealing device 40 in this example draws a long aluminum alloy plate 42 from a supply roll 41 and cushions 43. Is supplied to a long furnace body 44 having a length of several tens to 100 m, and is annealed under the above-mentioned conditions while moving in the furnace body 44. It is an apparatus that can be wound around a roll 47. According to this continuous annealing apparatus 40, since the aluminum alloy plate 42 passing through the furnace body 44 can be continuously processed alone, the intermediate annealing process is performed under more accurate heating and cooling conditions than the batch type annealing furnace. Can do.

そして、連続焼鈍装置40ならば、アルミニウム合金の板材42を供給ロール41に巻き付けた状態のコイルの幅や径が異なっても、換言するとアルミニウム合金の板材42の幅や厚さ、処理するべき長さが異なっていても、製造したい順番に焼鈍処理できるために、同一の大きさのコイルのみを焼鈍炉に搬入して焼鈍していたバッチ式の焼鈍炉の場合に比べて中間在庫の増加を抑えることができる。   And if it is the continuous annealing apparatus 40, even if the width | variety and diameter of the coil of the state which wound the aluminum alloy board | plate material 42 around the supply roll 41 differ, in other words, the width | variety and thickness of the aluminum alloy board | plate material 42, and the length which should be processed Even if the lengths are different, annealing can be performed in the order in which they are to be manufactured. Can be suppressed.

「最終安定化焼鈍」
最終冷間圧延後に最終安定化焼鈍を行う。最終安定化焼鈍は、最終冷間圧延後に昇温速度3℃/min以上、保持温度120〜140℃、保持時間1〜2時間、冷却速度10℃/min以上の条件で行うことが望ましい。
昇温速度3℃/min未満では粒界に微量元素が析出するおそれがあり、アルミニウム合金板が局部的に加工不良となるおそれがある。
保持温度が120℃未満では十分な効果が得られずアルミニウム合金板の成形性が不良となるおそれがあり、保持温度が140℃を超える場合は析出が過剰となりアルミニウム合金板の成形性が不良となるおそれがある。
保持温度が1時間未満ではアルミニウム合金板の成形性不良となるおそれがあり、保持温度が2時間を超えるようでは生産性が低下する問題がある。
冷却速度が10℃/min未満ではアルミニウム合金板の結晶粒界に微量元素が析出するおそれがあり、局部的に加工不良となるおそれがある。
最終安定化焼鈍を行うことで缶底部成形などの局部成形性を改善することができ、成形異常を有効に抑制することが可能である。
"Final stabilization annealing"
Final stabilization annealing is performed after final cold rolling. The final stabilization annealing is desirably performed under conditions of a temperature increase rate of 3 ° C./min or more, a holding temperature of 120 to 140 ° C., a holding time of 1 to 2 hours, and a cooling rate of 10 ° C./min or more after the final cold rolling.
If the rate of temperature increase is less than 3 ° C./min, trace elements may be precipitated at the grain boundaries, and the aluminum alloy plate may be locally defective in processing.
If the holding temperature is less than 120 ° C, a sufficient effect may not be obtained and the formability of the aluminum alloy plate may be poor. If the holding temperature exceeds 140 ° C, the precipitation becomes excessive and the formability of the aluminum alloy plate is poor. There is a risk.
If the holding temperature is less than 1 hour, the formability of the aluminum alloy plate may be poor, and if the holding temperature exceeds 2 hours, the productivity is lowered.
If the cooling rate is less than 10 ° C./min, trace elements may be precipitated at the crystal grain boundaries of the aluminum alloy plate, and there is a possibility that local processing defects may occur.
By performing final stabilization annealing, local moldability such as can bottom molding can be improved, and molding abnormalities can be effectively suppressed.

以下に、上述のアルミニウム合金板を用いてDI缶を製造する工程とDI缶の概要について説明する。
図3は、DI缶の製造方法の工程図を、図4はDI缶を示す部分断面図であり、これらの図において符号10は、DI缶を示している。
DI缶10は、アルミニウム合金製の有底筒状のDI缶であって、板厚が0.210mm以上0.470mm以下とされるアルミニウム合金の板材に、しごき率が54.2%以上64.8%以下とされる絞りしごき加工を施して成形されており、例えば、缶軸方向の大きさ、すなわち高さが約122.5mm、外径が65mm以上67mm以下とされている。胴部は、肉厚が0.095mm以上0.110mm以下とされるとともに引張り強さが、340MPa以上410MPa以下とされ、かつこの場合の缶体重量が11.6g以下とされる。
Below, the outline | summary of the process and DI can which manufacture a DI can using the above-mentioned aluminum alloy plate are demonstrated.
FIG. 3 is a process diagram of a method for manufacturing a DI can, and FIG. 4 is a partial cross-sectional view showing the DI can. In these drawings, reference numeral 10 indicates the DI can.
The DI can 10 is a bottomed cylindrical DI can made of an aluminum alloy, and an iron alloy plate material having a thickness of 0.210 mm or more and 0.470 mm or less has an ironing ratio of 54.2% or more and 64. For example, the size in the can axis direction, that is, the height is about 122.5 mm, and the outer diameter is 65 mm or more and 67 mm or less. The body portion has a wall thickness of 0.095 mm to 0.110 mm, a tensile strength of 340 MPa to 410 MPa, and a can body weight of 11.6 g or less.

また、底部12は、図4に示すように、胴部11の缶軸方向における内側に向けて凹むドーム部12aを備えるとともに、このドーム部12aの外周縁部が胴部11の缶軸方向における外側に向けて突出する環状凸部12cとされている。この環状凸部12cの缶軸方向における頂部が、DI缶10が正立姿勢となるように、このDI缶10を接地面L上に配置したときに接地面Lに接する接地部12bとされる。
また、DI缶10は、ポリエステル系塗料を使用して、文字情報等の印刷部分も含め、胴部11の外面を印刷、塗装し、この外面印刷及び外面塗装がされたDI缶10を180℃×30秒間加熱することにより50mg/dmの塗膜を形成させた後に、DI缶10の内面にエポキシ系塗料を使用して内面塗装し、200℃×60秒間加熱することにより40mg/dmの塗膜を形成させた外面印刷、外面塗装及び内面塗装がなされている。
Further, as shown in FIG. 4, the bottom portion 12 includes a dome portion 12 a that is recessed inward in the can axis direction of the trunk portion 11, and an outer peripheral edge portion of the dome portion 12 a is in the can axis direction of the trunk portion 11. It is set as the annular convex part 12c which protrudes toward the outer side. The top of the annular convex portion 12c in the can axis direction is a grounding portion 12b that contacts the grounding surface L when the DI can 10 is placed on the grounding surface L so that the DI can 10 is in an upright posture. .
In addition, the DI can 10 is made by printing and painting the outer surface of the body portion 11 including a printed portion such as character information using a polyester-based paint, and the DI can 10 subjected to the outer surface printing and the outer surface coating is 180 ° C. After forming a 50 mg / dm 2 coating film by heating for 30 seconds, the inner surface of the DI can 10 was coated with an epoxy-based paint and heated to 200 ° C. for 60 seconds to be 40 mg / dm 2 The outer surface printing, the outer surface coating, and the inner surface coating in which the above coating film is formed are performed.

このDI缶は、例えば、以下の工程により製造される。
前述の工程で得られたアルミニウム合金板を打ち抜いて直径が約150mmとされた図3に示す円板状の板材(0ブランク)Wを成形する。
次に、この板材Wをカッピングプレスによって絞り加工することによりカップ状体W1に成形する。
次いで、DI加工装置によって、カップ状体W1に再絞りしごき加工を施して有底筒状体W2を形成する。この際の、しごき率は、例えば、60.4%で胴部11の最薄部における肉厚が0.100mmになるまで絞りしごき加工が施される。
This DI can is manufactured by the following processes, for example.
A disc-shaped plate material (0 blank) W shown in FIG. 3 having a diameter of about 150 mm is formed by punching the aluminum alloy plate obtained in the above-described process.
Next, the plate material W is drawn into a cup-shaped body W1 by drawing with a cupping press.
Subsequently, the DI processing apparatus performs redrawing and ironing on the cup-shaped body W1 to form a bottomed cylindrical body W2. In this case, the ironing rate is, for example, 60.4%, and the ironing process is performed until the thickness of the thinnest portion of the body portion 11 becomes 0.100 mm.

再絞りしごき加工に用いるDI加工装置は、再絞り加工するための円形の貫通孔を有する一枚の再絞りダイと、この再絞りダイと同軸に配列される円形の貫通孔を有する複数枚(例えば、3枚)のアイアニング・ダイ(しごきダイ)と、アイアニング・ダイと同軸とされ、上記それぞれのアイアニング・ダイの各貫通孔の内部に嵌合可能とされ、軸方向に移動自在とされる円筒状のパンチスリーブと、このパンチスリーブの外側に嵌合された円筒状のカップホルダースリーブとを備えている。   The DI processing apparatus used for the redrawing ironing process includes a single redrawing die having a circular through hole for redrawing processing, and a plurality of sheets having circular through holes arranged coaxially with the redrawing die ( For example, three ironing dies (ironing dies) are coaxial with the ironing die, and can be fitted into the through holes of the respective ironing dies, and are movable in the axial direction. A cylindrical punch sleeve and a cylindrical cup holder sleeve fitted to the outside of the punch sleeve are provided.

DI加工装置による再絞り加工は、カップW1をパンチスリーブと再絞りダイとの間に配置して、カップホルダースリーブ及びパンチスリーブを前進させてカップホルダースリーブが、再絞りダイの端面にカップW1の底面を押し付けてカップ押し付け動作を行ないながら、パンチスリーブがカップW1を再絞りダイの貫通孔内に押し込むことにより行われる。その結果、所定の内径を有する再絞り加工されたカップが成形される。引き続き、再絞り加工されたカップを複数のアイアニング・ダイを順次通過させて徐々にしごき加工をして、カップ状体の側壁をしごいて側壁を延伸させて側壁高さを高くするとともに壁厚を薄くして有底筒状体W2を形成する。   In the redrawing process by the DI processing apparatus, the cup W1 is disposed between the punch sleeve and the redrawing die, the cup holder sleeve and the punch sleeve are advanced, and the cup holder sleeve is moved to the end face of the redrawing die. The punch sleeve pushes the cup W1 into the through hole of the redraw die while pressing the bottom surface to perform the cup pressing operation. As a result, a redrawn cup having a predetermined inner diameter is formed. Subsequently, the redrawn cup is passed through a plurality of ironing dies one after another and gradually ironed, and the side wall of the cup-shaped body is squeezed to extend the side wall to increase the side wall height and wall thickness. To form a bottomed cylindrical body W2.

しごき加工が終了した有底筒状体W2は、パンチスリーブがさらに前方に押し出して底部をボトム成形金型に押圧することにより、底部が、例えばドーム形状に形成される。
この有底筒状体W2は、側壁がしごかれることで冷間加工硬化されて強度が高くなる。
The bottomed cylindrical body W <b> 2 that has been subjected to the ironing process has its bottom formed, for example, in a dome shape by the punch sleeve further pushing forward and pressing the bottom against the bottom molding die.
The bottomed cylindrical body W2 is cold-worked and hardened by the side walls being squeezed to increase the strength.

次に、有底筒状体W2の開口端部W2aをトリミングする。
DI加工装置によって形成された有底筒状体W2の開口端部W2aは、その缶軸方向に波打つような凹凸形状とされ不均一であるため、有底筒状体W2の開口端部W2aを切断してトリミングすることにより缶軸方向における側壁の高さを全周に亙って均一にする。
このようにして、胴部11と底部12とを有する横断面円形のDI缶10を形成することができる。
Next, the open end W2a of the bottomed cylindrical body W2 is trimmed.
Since the opening end W2a of the bottomed cylindrical body W2 formed by the DI processing apparatus is uneven and has a concavo-convex shape that undulates in the can axis direction, the opening end W2a of the bottomed cylindrical body W2 is By cutting and trimming, the height of the side wall in the can axis direction is made uniform over the entire circumference.
In this way, the DI can 10 having a circular cross section having the body 11 and the bottom 12 can be formed.

前述の製造方法により得られたアルミニウム合金板であるならば、上述のDI缶の製造方法においてしごき加工を受けた場合であってもネック成形性に優れさせることができ、傷や成形不良などの問題を生じないアルミニウム缶を得ることができる。
また、前述の製造方法により得られたアルミニウム合金板であるならば、ネック部の缶軸方向での強度、換言すると、ボトム座屈耐性が向上したアルミニウム缶を得ることができる。
If it is the aluminum alloy plate obtained by the above-mentioned manufacturing method, even when it is subjected to ironing in the above-mentioned DI can manufacturing method, it can be made excellent in neck formability, such as scratches and molding defects. An aluminum can that does not cause problems can be obtained.
Moreover, if it is the aluminum alloy plate obtained by the above-mentioned manufacturing method, the aluminum can which improved the intensity | strength in the can axial direction of a neck part, in other words bottom buckling tolerance, can be obtained.

以下、実施例を示して、本発明に係る飲料缶用アルミニウム合金板の製造方法について更に詳しく説明するが、本発明は以下の実施例に限定されるものではない。
表1、表2に示す組成のアルミニウム合金を溶解し、脱ガスおよび溶湯ろ過後、半連続鋳造により厚さ600mm、幅1100mm、長さ4.5mのスラブに鋳造した。
EXAMPLES Hereinafter, although an Example is shown and it demonstrates further in detail about the manufacturing method of the aluminum alloy plate for drink cans concerning this invention, this invention is not limited to a following example.
Aluminum alloys having the compositions shown in Tables 1 and 2 were melted, degassed and filtered with molten metal, and then cast into a slab having a thickness of 600 mm, a width of 1100 mm, and a length of 4.5 m by semi-continuous casting.

次に、前記スラブを面削後、均質化・均熱兼用炉を用いて、保持温度565℃かつ保持時間6時間の均質化処理を施した後、保持温度520℃まで炉中で冷却し、当該保持温度にて保持時間1時間の均熱処理を施した。
続いて、図1に示す構成の熱間粗圧延機20を使用して板厚20mmまで430℃で熱間粗圧延した後、図1に示すシングルミルのリバース式熱間仕上圧延機30を使用して、熱間仕上げ圧延により表1、表2に示す仕上板厚のアルミニウム合金板材を得た。
熱間粗圧延の出側温度は、表1、表2に示すように430℃とした。
Next, after chamfering the slab, using a homogenizing and soaking furnace, a homogenization treatment is performed at a holding temperature of 565 ° C. and a holding time of 6 hours, and then cooled in the furnace to a holding temperature of 520 ° C., A soaking treatment was performed at the holding temperature for a holding time of 1 hour.
Subsequently, hot rough rolling is performed at 430 ° C. up to a plate thickness of 20 mm using the hot rough rolling mill 20 having the configuration shown in FIG. 1, and then the single mill reverse hot finish rolling mill 30 shown in FIG. 1 is used. And the aluminum alloy sheet material of the finishing board thickness shown in Table 1 and Table 2 was obtained by hot finish rolling.
As shown in Tables 1 and 2, the outlet temperature of the hot rough rolling was set to 430 ° C.

次に、熱間圧延後のアルミニウム合金板材に圧下率0〜20%の第1冷間圧延を施した後、図2に示す構成の連続焼鈍装置を用いて表3、表4に示す保持温度、保持時間の条件で第1中間焼鈍(CAL)を行なった。
次いで、第1中間焼鈍後のアルミニウム合金板材に表3、表4に示す圧下率(77〜97%)で最終冷間圧延を施し、表3、表4に示す板厚(mm)の飲料缶用アルミニウム合金板を得た。
なお、No.10、11の試料は第1冷間圧延(圧下率61%)と第2冷間圧延(圧下率20%)と最終冷間圧延(圧下率77%)を施し、冷間圧延の間に中間CALを2回施してアルミニウム合金板材を得た。
Next, after subjecting the aluminum alloy sheet after hot rolling to first cold rolling with a reduction rate of 0 to 20%, holding temperatures shown in Tables 3 and 4 using a continuous annealing apparatus having the configuration shown in FIG. First intermediate annealing (CAL) was performed under the condition of holding time.
Next, the aluminum alloy sheet after the first intermediate annealing was subjected to final cold rolling at the rolling reductions (77 to 97%) shown in Tables 3 and 4, and beverage cans having the plate thickness (mm) shown in Tables 3 and 4 An aluminum alloy plate was obtained.
The samples No. 10 and 11 were subjected to the first cold rolling (reduction rate 61%), the second cold rolling (reduction rate 20%), and the final cold rolling (reduction rate 77%). In the meantime, intermediate CAL was applied twice to obtain an aluminum alloy sheet.

得られた缶ボディ用アルミニウム合金板を210℃×10分の条件で塗装焼き付け相当の熱処理を行い、ベーキング後の耐力(AB耐力、0.2%耐力)を測定した。
得られた缶ボディ用アルミニウム合金板のブランク材については、図3を基に説明したDI加工により容量350ccの飲料缶に加工した。
The obtained aluminum alloy plate for a can body was subjected to a heat treatment equivalent to painting baking under the conditions of 210 ° C. × 10 minutes, and the proof strength after baking (AB proof strength, 0.2% proof strength) was measured.
About the obtained blank material of the aluminum alloy plate for can bodies, it processed into the drink can of capacity 350cc by DI process demonstrated based on FIG.

「異方性(耳率)」
得られた缶ボディ用アルミニウム合金板の異方性評価として、カップ成形における耳率を測定した。
耳率は、素材をエリクセン試験機で深絞り加工したカップの側壁高さから計算した。加工条件はポンチ径;33mm(平頭ポンチ)、絞り比;1.75、しわ押さえ力;3kNとした。このカップの側壁高さをデジタルマイクロメーターで測定し、次式により耳率を算出した。
(山平均高さ−谷平均高さ)÷谷平均高さ×100=耳率(%)
なお、0°および180°の山の平均高さと45°、135°、225°、315°の山の平均高さをそれぞれ求め、いずれか高い方の山を上式の山平均高さとした。また、90°および270°の谷平均高さを求め、上式の谷平均高さとした。
耳率による異方性の評価としてはn=3の平均値で、2.5%未満を「○」、2.5〜3.5%を「△」、3.5を超える試料を「×」と判定した。
"Anisotropy (ear rate)"
As anisotropy evaluation of the obtained aluminum alloy plate for can bodies, the ear rate in cup molding was measured.
The ear rate was calculated from the height of the side wall of the cup that was deep-drawn from the Eriksen testing machine. The processing conditions were punch diameter: 33 mm (flat head punch), drawing ratio: 1.75, wrinkle holding force: 3 kN. The side wall height of this cup was measured with a digital micrometer, and the ear rate was calculated by the following formula.
(Mountain average height-average valley height) ÷ average valley height x 100 = ear rate (%)
The average height of the 0 ° and 180 ° peaks and the average height of the 45 °, 135 °, 225 °, and 315 ° peaks were determined, and the higher one was defined as the average height of the above equation. In addition, the average valley heights of 90 ° and 270 ° were obtained and used as the average valley height of the above formula.
As an evaluation of anisotropy by the ear ratio, the average value of n = 3 is less than 2.5% as “◯”, 2.5 to 3.5% as “△”, and samples exceeding 3.5 as “×” Was determined.

「ネック成形性」
ネック成形性の評価は、すべての試料について350cc飲料缶にDI成形して実施した。DI成形後の缶の口端部をトリムにより除去し、洗浄乾燥後、缶内外面に塗装印刷を施し、ダイネック成形およびスピンフロー成形を行い、内径およそ55mmの350cc飲料缶のネック形状とした。なお、DI成形の際に、ネック成形加工を受ける部位の肉厚を薄くすることにより、ネック成形加工におけるフランジ先端のしわ発生を促進評価した。各試料24缶の製缶を行い、フランジ先端のしわの程度を目視評価し、しわが認められなかった若しくは極軽微なしわが認められたものを「○」、極軽微なしわが多数認められたもの若しくはしわが明瞭に認められたものを「×」とした。
"Neck formability"
The neck formability was evaluated by DI molding of 350cc beverage cans for all samples. After the DI molding, the mouth end of the can was removed by trim, washed and dried, and coated and printed on the inner and outer surfaces of the can, followed by die neck molding and spin flow molding to form a neck shape of a 350 cc beverage can having an inner diameter of approximately 55 mm. In addition, during the DI molding, the thickness of the portion subjected to the neck molding process was thinned to evaluate the generation of wrinkles at the flange tip in the neck molding process. 24 cans of each sample were made, the degree of wrinkles at the flange tip was visually evaluated, and “○” indicates that no wrinkles were observed or very slight wrinkles were observed, and many extremely small wrinkles were observed. Or the thing where wrinkles were recognized clearly was made into "x".

「座屈強度」
座屈強度は、缶軸方向の缶の強度を測定し、キャップの巻締時相当荷重の1.2倍の荷重を加えた際に座屈が発生しなかったものを「○」、座屈が発生したものを「×」と評価した。
「DI成形性」
DI成形性は、1,000缶の連続製缶時に缶胴切れが全く発生しなかったものを「○」、1缶以上発生したものを「×」と評価した。
「ボトム成形性」
ボトム成形性は、1,000缶の連続製缶時にボトム周辺部の亀裂又は破断が全く発生しなかったものを「○」、1缶以上発生したものを「×」と評価した。
以上の結果を以下の表1〜表4に記載する。
"Buckling strength"
The buckling strength is measured by measuring the strength of the can in the axial direction of the can, and “○” indicates that no buckling occurred when a load equivalent to 1.2 times the load when the cap was tightened was applied. The thing which generate | occur | produced was evaluated as "x".
"DI moldability"
The DI moldability was evaluated as “◯” when no can barrel breakage occurred at the time of continuous production of 1,000 cans, and “×” when one or more cans occurred.
"Bottom moldability"
The bottom moldability was evaluated as “◯” when no cracks or breakage of the bottom peripheral part occurred at the time of continuous production of 1,000 cans, and “×” when one or more cans occurred.
The above results are shown in Tables 1 to 4 below.

Figure 2018145466
Figure 2018145466

Figure 2018145466
Figure 2018145466

Figure 2018145466
Figure 2018145466

Figure 2018145466
Figure 2018145466

表1、表3に示すようにNo.1〜21の実施例試料は、合金成分、均質化温度、均熱温度、熱間粗圧延温度、熱間仕上げ圧延温度、熱間仕上げ圧延板厚、中間CAL回数、中間CAL温度、中間CAL時間、最終冷間圧延率(最終冷延率)、安定化焼鈍時の昇温速度、安定化焼鈍時の保持温度、安定化焼鈍時の保持時間、安定化焼鈍時の冷却速度、最終板厚をそれぞれ望ましい範囲として製造したアルミニウム合金板である。No.1〜21の実施例試料はいずれもAB耐力に優れ、異方性が少なく、ネック成形性に優れ、座屈強度が高く、DI成形性及びボトム成形性にも優れたアルミニウム合金板であった。   As shown in Tables 1 and 3, the examples of Nos. 1 to 21 are alloy components, homogenization temperature, soaking temperature, hot rough rolling temperature, hot finish rolling temperature, hot finish rolled sheet thickness, Number of intermediate CALs, intermediate CAL temperature, intermediate CAL time, final cold rolling rate (final cold rolling rate), rate of temperature increase during stabilization annealing, holding temperature during stabilization annealing, holding time during stabilization annealing, stable This is an aluminum alloy plate manufactured with the cooling rate at the time of chemical annealing and the final plate thickness within the desired ranges, respectively. Examples Nos. 1 to 21 are aluminum alloy plates having excellent AB yield strength, little anisotropy, excellent neck formability, high buckling strength, and excellent DI formability and bottom formability. there were.

No.22の比較例試料は中間CALの実施を略し、他の条件は実施例と同等条件で製造した試料であるが、異方性が悪化した。
No.23の比較例試料は中間CALの温度を望ましい条件の下限の300℃よりも低く設定して製造した試料であるが、異方性が悪化した。
No.24の比較例試料は中間CALの温度を望ましい条件の上限の540℃よりも高く設定して製造した試料であるが、AB耐力が高くなりすぎた。AB耐力が高すぎる場合、DI成形性とネック成形性が低下する。
No.25の比較例試料は中間CALの時間を望ましい条件の上限の60秒よりも長く設定して製造した試料である。この試料はAB耐力が高くなり過ぎ、DI成形性とネック成形性が悪化した。
The comparative sample of No. 22 abbreviate | omitted implementation of intermediate | middle CAL, and other conditions are the samples manufactured on the conditions equivalent to an Example, but the anisotropy deteriorated.
The comparative sample of No. 23 was manufactured by setting the temperature of the intermediate CAL lower than the lower limit of 300 ° C., which is a desirable condition, but the anisotropy deteriorated.
The comparative sample of No. 24 is a sample manufactured by setting the temperature of the intermediate CAL higher than the upper limit of 540 ° C., which is a desirable condition, but the AB proof stress was too high. When AB yield strength is too high, DI moldability and neck moldability will fall.
The comparative sample of No. 25 is a sample manufactured by setting the intermediate CAL time to be longer than the upper limit of 60 seconds, which is a desirable condition. This sample had too high AB yield strength, and DI moldability and neck moldability deteriorated.

No.26の比較例試料は安定化焼鈍時の昇温速度を下限の3℃/minより低くした試料であるが、ボトム成形性が低下した。
No.27の比較例試料は安定化焼鈍時の冷却速度を下限の10℃/minより低くした試料であるが、ボトム成形性が低下した。
No.28の比較例試料は安定化焼鈍時の保持温度を下限の120℃より低くした試料であるが、ボトム成形性が低下した。
No.29の比較例試料は安定化焼鈍時の保持温度を上限の140℃より高くした試料であるが、ボトム成形性が低下した。
The comparative sample of No. 26 was a sample in which the rate of temperature increase during stabilization annealing was lower than the lower limit of 3 ° C./min, but the bottom moldability was lowered.
The comparative sample of No. 27 was a sample in which the cooling rate during the stabilization annealing was lower than the lower limit of 10 ° C./min, but the bottom moldability was lowered.
The comparative sample of No. 28 was a sample in which the holding temperature during the stabilization annealing was lower than the lower limit of 120 ° C., but the bottom moldability was lowered.
The comparative sample of No. 29 was a sample in which the holding temperature during the stabilization annealing was higher than the upper limit of 140 ° C., but the bottom moldability was lowered.

No.30の比較例試料は安定化焼鈍時の保持時間を下限の1時間より短くした試料であるが、ボトム成形性が低下した。
No.31の比較例試料は熱間圧延仕上板厚を望ましい板厚の上限3.6mmより厚くし最終冷延率が望ましい範囲の上限を超えた試料であるが、異方性とDI成形性およびネック成形性に問題を生じた。
No.32の比較例試料はアルミニウム合金板の望ましいSi含有量の上限0.35質量%を超えるSiを含む試料であるが、AB耐力が高くなりすぎ、ネック成形性とDI成形性に問題を生じた。
No.33の比較例試料はアルミニウム合金板の望ましいFe含有量の下限0.35質量%より少ないFeを含む試料であるが、DI成形性に問題を生じた。
The comparative sample of No. 30 was a sample in which the holding time during the stabilization annealing was shorter than the lower limit of 1 hour, but the bottom moldability was lowered.
The comparative sample of No. 31 is a sample in which the hot rolled finish plate thickness is thicker than the upper limit of the desired plate thickness of 3.6 mm and the final cold rolling rate exceeds the upper limit of the desired range. And there was a problem with neck formability.
The comparative sample of No. 32 is a sample containing Si exceeding the upper limit of 0.35% by mass of the desired Si content of the aluminum alloy plate, but the AB yield strength becomes too high, and there is a problem in neck formability and DI formability. occured.
The comparative sample of No. 33 is a sample containing Fe that is less than the lower limit of 0.35% by mass of the desirable Fe content of the aluminum alloy plate, but has a problem in DI formability.

No.34の比較例試料はアルミニウム合金板の望ましいFe含有量の上限0.55質量%より多いFeを含む試料であるが、ネック成形性とDI成形性に問題を生じた。
No.35の比較例試料はアルミニウム合金板の望ましいCu含有量の下限0.15質量%より少ないCuを含む試料であるが、AB耐力が不足し、座屈強度に問題を生じた。
No.36の比較例試料はアルミニウム合金板の望ましいCu含有量の上限0.48質量%より多いCuを含む試料であるが、ネック成形性とDI成形性に問題を生じた。
The comparative sample of No. 34 is a sample containing Fe that exceeds the upper limit of 0.55% by mass of the upper limit of the desirable Fe content of the aluminum alloy plate, but has a problem in neck formability and DI formability.
The comparative sample of No. 35 was a sample containing less Cu than the lower limit of 0.15% by mass of the desirable Cu content of the aluminum alloy plate, but the AB yield strength was insufficient, causing a problem in buckling strength.
The comparative sample of No. 36 was a sample containing more Cu than the upper limit of 0.48 mass% of the desirable Cu content of the aluminum alloy plate, but it caused problems in neck formability and DI formability.

No.37の比較例試料はアルミニウム合金板の望ましいMn含有量の下限0.8質量%より少ないMnを含む試料であるが、DI成形性に問題を生じた。
No.38の比較例試料はアルミニウム合金板の望ましいMn含有量の上限1.15質量%より多いMnを含む試料であるが、ネック成形性に問題を生じた。
No.39の比較例試料はアルミニウム合金板の望ましいMg含有量の下限0.6質量%より少ないMgを含む試料であるが、AB耐力が不足し、座屈強度に問題を生じた。
No.40の比較例試料はアルミニウム合金板の望ましいMg含有量の上限1.6質量%より多いMgを含む試料であるが、ネック成形性とDI成形性に問題を生じた。
The comparative sample of No. 37 was a sample containing less than 0.8% by mass of the lower limit of the desirable Mn content of the aluminum alloy plate, but it caused a problem in DI formability.
The comparative sample of No. 38 is a sample containing Mn that is higher than the upper limit of 1.15% by mass of the desirable Mn content of the aluminum alloy plate, but has a problem in neck formability.
The comparative sample of No. 39 was a sample containing less Mg than the lower limit of 0.6% by mass of the desirable Mg content of the aluminum alloy plate, but the AB yield strength was insufficient, causing a problem in buckling strength.
The comparative sample of No. 40 is a sample that contains more Mg than the upper limit of 1.6% by mass of the desirable Mg content of the aluminum alloy plate, but it caused problems in neck formability and DI formability.

以上の結果から、AB耐力に優れ、異方性が少なく、ネック成形性に優れ、座屈強度が高く、DI成形性及びボトム成形性にも優れた飲料缶用のアルミニウム合金板を得るためには、合金成分、熱間仕上げ圧延板厚、中間CAL回数、中間CAL温度、中間CAL時間を望ましい範囲に設定した上で、安定化焼鈍時の昇温速度、保持温度、保持時間、冷却速度をそれぞれ望ましい範囲とすることが重要であることがわかる。   From the above results, in order to obtain an aluminum alloy plate for beverage cans having excellent AB yield strength, low anisotropy, excellent neck formability, high buckling strength, and excellent DI formability and bottom formability. Set the alloy composition, hot finish rolled sheet thickness, intermediate CAL count, intermediate CAL temperature, intermediate CAL time in the desired range, and set the heating rate, holding temperature, holding time, and cooling rate during stabilization annealing. It can be seen that it is important to set the respective desired ranges.

W…ブランク材、W1…カップ、W2…缶体、W2a…開口端部、4、6…搬送路、5、7…板材、10…DI缶、11…胴部、12…底部、12a…ドーム部、12b…接地部、12c…環状凸部、13…ネック部、14…フランジ部、20…熱間粗圧延機、21、22…ワークロール、23、24…バックアップロール、30…熱間仕上圧延機、31、32…ワークロール、33、34…バックアップロール、35、36…送出巻取装置、40…連続焼鈍装置、41…供給ロール、42…アルミニウム合金板材、43、46…緩衝装置、44…炉体、47…巻取ロール。   W ... Blank material, W1 ... Cup, W2 ... Can body, W2a ... Open end, 4, 6 ... Conveyance path, 5, 7 ... Plate material, 10 ... DI can, 11 ... Body, 12 ... Bottom, 12a ... Dome Part, 12b ... grounding part, 12c ... annular convex part, 13 ... neck part, 14 ... flange part, 20 ... hot rough rolling mill, 21, 22 ... work roll, 23, 24 ... backup roll, 30 ... hot finish Rolling mills 31, 32 ... work rolls, 33, 34 ... backup rolls, 35, 36 ... delivery winding device, 40 ... continuous annealing device, 41 ... supply roll, 42 ... aluminum alloy sheet, 43, 46 ... shock absorber, 44 ... furnace body, 47 ... winding roll.

Claims (3)

質量%で、Si:0.35%以下、Fe:0.35〜0.55%、Cu:0.15〜0.48%、Mn:0.8〜1.15%、Mg:0.60〜1.60%を含有し、残部がAl及び不可避不純物からなる組成のアルミニウム合金を溶製し、半連続鋳造して得た鋳塊を均質化処理した後、均熱処理し、熱間粗圧延と熱間仕上げ圧延と冷間圧延を経て飲料缶用アルミニウム合金板を製造するに際し、
冷間圧延の途中で連続焼鈍装置を用いて1回または2回、300〜540℃の温度に5〜60秒保持する連続焼鈍を行い、
最終冷間圧延後に昇温速度3℃/min以上、保持温度120〜140℃、保持時間1〜2時間、冷却速度10℃/min以上の条件で最終安定化焼鈍を行い、
板厚0.210〜0.470mm、塗装焼付け後の耐力230〜320N/mmのアルミニウム合金板を得ることを特徴とするボトム成形性とボトム部強度に優れる飲料缶用アルミニウム合金板の製造方法。
In mass%, Si: 0.35% or less, Fe: 0.35-0.55%, Cu: 0.15-0.48%, Mn: 0.8-1.15%, Mg: 0.60 An ingot obtained by melting an aluminum alloy containing ˜1.60%, the balance consisting of Al and inevitable impurities, and semi-continuous casting is homogenized and then subjected to soaking and hot rough rolling. When producing aluminum alloy plates for beverage cans through hot finish rolling and cold rolling,
In the course of cold rolling, continuous annealing is performed once or twice using a continuous annealing apparatus and held at a temperature of 300 to 540 ° C. for 5 to 60 seconds,
After the final cold rolling, the final stabilization annealing is performed under the conditions of a heating rate of 3 ° C./min or more, a holding temperature of 120 to 140 ° C., a holding time of 1 to 2 hours, and a cooling rate of 10 ° C./min or more.
A method for producing an aluminum alloy plate for beverage cans having excellent bottom formability and bottom portion strength, characterized by obtaining an aluminum alloy plate having a plate thickness of 0.210 to 0.470 mm and a proof stress of 230 to 320 N / mm 2 after painting and baking. .
前記鋳塊に対して行なう均質化処理を555〜605℃で4〜10時間加熱する条件で行ない、均熱処理を500〜555℃で1時間以上加熱する条件で行ない、出側温度を400〜460℃に設定して熱間粗圧延を行い、仕上板厚を2.0〜3.6mmに設定し、仕上げ温度を240〜360℃に設定して熱間仕上げ圧延を行い、最終冷間圧延率を76〜95%に設定して冷間圧延することを特徴とする請求項1に記載のボトム成形性とボトム部強度に優れる飲料缶用アルミニウム合金板の製造方法。   The homogenization treatment performed on the ingot is performed under the condition of heating at 555 to 605 ° C. for 4 to 10 hours, the soaking is performed under the condition of heating at 500 to 555 ° C. for 1 hour or more, and the outlet temperature is set to 400 to 460. Hot rough rolling is performed at a temperature set to ℃, the finishing plate thickness is set to 2.0 to 3.6 mm, the finishing temperature is set to 240 to 360 ℃, the hot finish rolling is performed, and the final cold rolling rate The manufacturing method of the aluminum alloy plate for drink cans which is excellent in the bottom moldability and bottom part intensity | strength of Claim 1 characterized by performing cold rolling by setting 76 to 95%. 前記組成に対し、更に、Cr:0.05%以下、Zn:0.25%以下、Ti:0.10%以下のうち、少なくとも1種または2種以上を含有してなるアルミニウム合金を用いることを特徴とする請求項1または請求項2に記載のボトム成形性とボトム部強度に優れる飲料缶用アルミニウム合金板の製造方法。   In addition to the above composition, an aluminum alloy containing at least one or more of Cr: 0.05% or less, Zn: 0.25% or less, Ti: 0.10% or less is used. The manufacturing method of the aluminum alloy plate for drink cans which is excellent in the bottom moldability and bottom part intensity | strength of Claim 1 or Claim 2 characterized by these.
JP2017039872A 2017-03-02 2017-03-02 A method for manufacturing an aluminum alloy plate for beverage cans, which has excellent bottom moldability and bottom strength. Active JP6850635B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017039872A JP6850635B2 (en) 2017-03-02 2017-03-02 A method for manufacturing an aluminum alloy plate for beverage cans, which has excellent bottom moldability and bottom strength.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017039872A JP6850635B2 (en) 2017-03-02 2017-03-02 A method for manufacturing an aluminum alloy plate for beverage cans, which has excellent bottom moldability and bottom strength.

Publications (2)

Publication Number Publication Date
JP2018145466A true JP2018145466A (en) 2018-09-20
JP6850635B2 JP6850635B2 (en) 2021-03-31

Family

ID=63590751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017039872A Active JP6850635B2 (en) 2017-03-02 2017-03-02 A method for manufacturing an aluminum alloy plate for beverage cans, which has excellent bottom moldability and bottom strength.

Country Status (1)

Country Link
JP (1) JP6850635B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109266888A (en) * 2018-12-03 2019-01-25 东北轻合金有限责任公司 A kind of 308 alloy cast ingot and its preparation method and application
CN111945043A (en) * 2020-07-31 2020-11-17 河南泰鸿新材料有限公司 5M49-O state aluminum alloy plate strip for door plate and preparation method and application thereof
CN113088731A (en) * 2021-04-13 2021-07-09 内蒙古联晟新能源材料有限公司 Production process of aluminum alloy brazing foil blank
CN113477743A (en) * 2021-09-08 2021-10-08 山东宏桥新型材料有限公司 Aluminum alloy pop can body and processing method thereof
CN115233051A (en) * 2022-09-20 2022-10-25 中铝材料应用研究院有限公司 High-strength corrosion-resistant aluminum alloy plate for ship and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04276047A (en) * 1991-02-28 1992-10-01 Sky Alum Co Ltd Production of hard aluminum alloy sheet for forming
JPH06128707A (en) * 1992-10-14 1994-05-10 Mitsubishi Alum Co Ltd Production of aluminum alloy foil
JPH11256290A (en) * 1998-03-06 1999-09-21 Sky Alum Co Ltd Manufacture of aluminum alloy sheet for can body
JP2016020531A (en) * 2014-07-14 2016-02-04 三菱アルミニウム株式会社 Method for manufacturing aluminum alloy sheet for can body excellent in di moldability, neck moldability and ear ratio

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04276047A (en) * 1991-02-28 1992-10-01 Sky Alum Co Ltd Production of hard aluminum alloy sheet for forming
JPH06128707A (en) * 1992-10-14 1994-05-10 Mitsubishi Alum Co Ltd Production of aluminum alloy foil
JPH11256290A (en) * 1998-03-06 1999-09-21 Sky Alum Co Ltd Manufacture of aluminum alloy sheet for can body
JP2016020531A (en) * 2014-07-14 2016-02-04 三菱アルミニウム株式会社 Method for manufacturing aluminum alloy sheet for can body excellent in di moldability, neck moldability and ear ratio

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109266888A (en) * 2018-12-03 2019-01-25 东北轻合金有限责任公司 A kind of 308 alloy cast ingot and its preparation method and application
CN111945043A (en) * 2020-07-31 2020-11-17 河南泰鸿新材料有限公司 5M49-O state aluminum alloy plate strip for door plate and preparation method and application thereof
CN113088731A (en) * 2021-04-13 2021-07-09 内蒙古联晟新能源材料有限公司 Production process of aluminum alloy brazing foil blank
CN113477743A (en) * 2021-09-08 2021-10-08 山东宏桥新型材料有限公司 Aluminum alloy pop can body and processing method thereof
CN115233051A (en) * 2022-09-20 2022-10-25 中铝材料应用研究院有限公司 High-strength corrosion-resistant aluminum alloy plate for ship and preparation method thereof
CN115233051B (en) * 2022-09-20 2023-01-24 中铝材料应用研究院有限公司 Preparation method of high-strength corrosion-resistant aluminum alloy plate for ship

Also Published As

Publication number Publication date
JP6850635B2 (en) 2021-03-31

Similar Documents

Publication Publication Date Title
JP4019082B2 (en) Aluminum alloy plate for bottle cans with excellent high temperature characteristics
JP5818457B2 (en) Method for producing aluminum alloy plate for can body with low ear rate and method for producing aluminum alloy plate for bottle-type beverage can with low ear rate
JP2018145466A (en) Manufacturing method of aluminum alloy sheet for beverage can excellent in bottom moldability and bottom part strength
JP4019083B2 (en) Aluminum alloy cold rolled sheet for bottle cans with excellent high temperature characteristics
US9546411B2 (en) Aluminum-alloy sheet and method for producing the same
JP6336434B2 (en) Aluminum alloy plate for can body and manufacturing method thereof
JPH11181558A (en) Production of aluminum alloy sheet for low and positive pressure can body
JP6718701B2 (en) Method for producing aluminum alloy sheet for beverage can body excellent in anisotropy and neck formability, and for bottle can body excellent in anisotropy and bottle neck formability
JP5568031B2 (en) Aluminum alloy cold rolled sheet for bottle cans
JP4791072B2 (en) Aluminum alloy plate for beverage can body and manufacturing method thereof
JP2009235477A (en) Aluminum alloy sheet for drink can barrel, and method for producing the same
JP6611338B2 (en) Method for producing aluminum alloy plate for thin-walled beverage can excellent in formability and anisotropy
JP6684568B2 (en) Method for producing aluminum alloy plate for beverage can body or beverage bottle can body excellent in anisotropy and neck formability
JP4011293B2 (en) Method for producing aluminum alloy sheet material for can body having excellent resistance to torsion
JP2016020531A (en) Method for manufacturing aluminum alloy sheet for can body excellent in di moldability, neck moldability and ear ratio
JP6912886B2 (en) Aluminum alloy plate for beverage can body and its manufacturing method
JP3550259B2 (en) Aluminum alloy plate for DI can body excellent in high-speed ironing formability and method for producing the same
JP3409195B2 (en) Aluminum alloy hard plate for forming and manufacturing method thereof
JP4019084B2 (en) Aluminum alloy cold rolled sheet for bottle cans with excellent high temperature characteristics
KR20220146620A (en) Manufacturing method and equipment for aluminum can sheet
JP6678431B2 (en) Aluminum alloy plate for cap and its manufacturing method
JP2007051307A (en) Aluminum alloy sheet for can body having excellent bottom wrinkle property, and its manufacturing method
JP2006283112A (en) Aluminum alloy sheet for drink can barrel, and method for producing the same
JP5882034B2 (en) Aluminum alloy plate for cap and method for producing the same
JP2003306750A (en) Method for manufacturing aluminum alloy sheet for bottle-shaped beverage can

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181116

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210308

R150 Certificate of patent or registration of utility model

Ref document number: 6850635

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250