JP6611338B2 - Method for producing aluminum alloy plate for thin-walled beverage can excellent in formability and anisotropy - Google Patents

Method for producing aluminum alloy plate for thin-walled beverage can excellent in formability and anisotropy Download PDF

Info

Publication number
JP6611338B2
JP6611338B2 JP2016064167A JP2016064167A JP6611338B2 JP 6611338 B2 JP6611338 B2 JP 6611338B2 JP 2016064167 A JP2016064167 A JP 2016064167A JP 2016064167 A JP2016064167 A JP 2016064167A JP 6611338 B2 JP6611338 B2 JP 6611338B2
Authority
JP
Japan
Prior art keywords
aluminum alloy
rolling
temperature
alloy plate
cold rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016064167A
Other languages
Japanese (ja)
Other versions
JP2017179402A (en
Inventor
充 齊藤
俊博 黒木
晃典 湯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MA Aluminum Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP2016064167A priority Critical patent/JP6611338B2/en
Publication of JP2017179402A publication Critical patent/JP2017179402A/en
Application granted granted Critical
Publication of JP6611338B2 publication Critical patent/JP6611338B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Metal Rolling (AREA)

Description

本発明は成形性および異方性に優れる薄肉飲料缶用アルミニウム合金板の製造方法に関する。   The present invention relates to a method for producing an aluminum alloy plate for a thin-walled beverage can excellent in formability and anisotropy.

飲料用アルミニウム缶の缶ボディには、JIS3004(AA3004)またはJIS3104合金などの、Al−Mn系合金硬質板が用いられている。同合金硬質板には、飲料用の容器として使用するために必要な強度や耐食性、美麗な外観、優れた成形性などが要求される。
前記合金硬質板は、一般的なアルミニウム合金板と同様に、溶解・鋳造・均質化・熱間圧延・冷間圧延等の工程を経て製造される。そして通常、缶ボディ各部の強度や成形性のバランスが最適な3/4硬質〜特硬質に調質されている。即ち、アルミニウム合金板を圧延途中に一旦再結晶させ、軟質状態とした後、圧下率50〜90%程度の冷間圧延を行い、主として加工硬化により適度な強度としている。
An Al—Mn alloy hard plate such as JIS3004 (AA3004) or JIS3104 alloy is used for a can body of an aluminum can for beverages. The alloy hard plate is required to have strength and corrosion resistance necessary for use as a beverage container, a beautiful appearance, and excellent formability.
The said alloy hard plate is manufactured through processes, such as melting | dissolving, casting, homogenization, hot rolling, cold rolling, like a general aluminum alloy plate. In general, the balance of strength and formability of each part of the can body is tempered from 3/4 hard to special hard. That is, the aluminum alloy plate is recrystallized once in the course of rolling to be in a soft state, and then cold-rolled with a reduction rate of about 50 to 90% to obtain an appropriate strength mainly by work hardening.

最近の工業的な冷間圧延機を用いてアルミニウム合金板を圧延した場合、圧延による発熱で材料温度が高くなるため、圧延のままでも十分な延性が得られる。従って、通常、アルミニウム合金板は圧延のままの調質(H16〜H19)で用いられている。アルミニウム合金板の圧延速度が遅い場合など十分な延性が得られない場合には、安定化焼鈍を施して、H3X調質でアルミニウム合金板を用いることも考えられる。
しかし、アルミニウム合金の圧延板の機械的性質に異方性があると、缶ボディを成形する際の成形性を阻害したり、成形後の缶ボディの対称性が低下したり、材料の使用歩留まりが低下するなどの問題がある。圧延板の異方性は、結晶粒の方位分布(集合組織)に依存する。そこで、冷間圧延による集合組織の変化を考慮し、冷間圧延前の再結晶で生じる集合組織を制御することにより、アルミニウム合金圧延板の異方性を低減することが可能になると考えられる。
When an aluminum alloy sheet is rolled using a recent industrial cold rolling mill, the material temperature becomes high due to heat generated by rolling, so that sufficient ductility can be obtained even with rolling. Therefore, the aluminum alloy sheet is usually used in a tempered condition (H16 to H19) as it is rolled. When sufficient ductility cannot be obtained, for example, when the rolling speed of the aluminum alloy plate is slow, it is conceivable that the aluminum alloy plate is used with H3X refining by performing stabilization annealing.
However, if the mechanical properties of the aluminum alloy rolled plate are anisotropic, the formability when forming the can body is hindered, the symmetry of the can body after forming is reduced, and the material usage yield is reduced. There are problems such as lowering. The anisotropy of the rolled sheet depends on the crystal grain orientation distribution (texture). Therefore, it is considered that the anisotropy of the rolled aluminum alloy sheet can be reduced by taking into account the change in texture due to cold rolling and controlling the texture that occurs during recrystallization before cold rolling.

上述の観点から、アルミニウム合金圧延板の異方性を制御するために、冷間圧延前の再結晶をどのように制御するかが技術的に重要であり、この観点から、薄肉飲料缶用アルミニウム合金板の製造方法は、以下の3種に分類することができる。
(1)熱間圧延→再結晶→最終冷延
第1の方法は、熱間圧延で比較的薄肉の例えば3mm以下のアルミニウム合金板材に圧延し、熱間圧延後、コイルに巻取った状態でそのまま再結晶させ、あるいは、人工的に焼鈍を施して再結晶させた後、冷間圧延を行う方法である。
(2)熱間圧延→低圧下冷延→再結晶→最終冷延
第2の方法は、熱間圧延で比較的薄肉の例えば3mm以下のアルミニウム合金板材に圧延し、その後比較的低圧下の、例えば以下の特許文献1に記載のように、アルミニウム合金板材に6〜15%の冷間圧延を行った後、焼鈍を施し、再結晶させた後、最後に圧下率90%程度の最終冷間圧延を実施する方法である。
(3)熱間圧延→冷間圧延→連続焼鈍炉を用いた再結晶→比較的低圧下の最終冷延
第3の方法は、アルミニウム合金板材の熱間圧延後、第一冷間圧延を行い、その後、連続焼鈍炉を用いて、比較的高温に急速加熱し、その後急速冷却する焼鈍を行い、再結晶させた後、最後に比較的低圧下率の例えば60%程度の冷間圧延を行う方法である。
From the above viewpoint, in order to control the anisotropy of the aluminum alloy rolled sheet, it is technically important how to control recrystallization before cold rolling. From this viewpoint, aluminum for thin-walled beverage cans The manufacturing method of an alloy plate can be classified into the following three types.
(1) Hot rolling → Recrystallization → Final cold rolling In the first method, hot rolling is performed to a relatively thin aluminum alloy sheet of, for example, 3 mm or less, and after hot rolling, it is wound on a coil. This is a method in which recrystallization is performed as it is, or after artificial annealing and recrystallization, and then cold rolling.
(2) Hot rolling → low-pressure cold rolling → recrystallization → final cold rolling The second method is hot rolling to a relatively thin-walled aluminum alloy sheet of, for example, 3 mm or less, and then under a relatively low pressure. For example, as described in Patent Document 1 below, after 6-15% of the aluminum alloy sheet is cold-rolled, it is annealed and recrystallized, and finally the final cold at a reduction rate of about 90%. This is a method of performing rolling.
(3) Hot rolling → cold rolling → recrystallization using a continuous annealing furnace → final cold rolling at a relatively low pressure The third method is to perform first cold rolling after hot rolling of an aluminum alloy sheet. Then, using a continuous annealing furnace, rapid heating to a relatively high temperature, followed by rapid cooling, recrystallization, and finally cold rolling at a relatively low low rate of, for example, about 60% Is the method.

上述の製造方法の他に、アルミニウム合金のスラブに対し熱間粗圧延と熱間仕上げ圧延を行うに際し、熱間粗圧延の開始温度を規定し、厚み200mm〜150mmの各パスの圧下量と150mm〜15mmの各段階の温度制御により再結晶を促進し、熱間仕上げ圧延における最終パスまでの温度制御、上がり温度、上がり板厚を制御することでDI缶のDI加工時の成形性と塗装焼付け後の成形性に優れさせたアルミニウム合金板の製造方法が知られている(特許文献2参照)。
また、アルミニウム合金鋳塊に対し熱間圧延後に80%以上の圧延率で冷間圧延し、冷間圧延後の出側温度が140〜150℃の場合に110℃まで5℃/時間以下の冷却速度を選択し、出側温度が150〜180℃の場合に110℃まで30℃/時間以下の冷却速度で冷却する容器用アルミニウム合金板の製造方法が知られている(特許文献3参照)。
In addition to the manufacturing method described above, when hot rough rolling and hot finish rolling are performed on an aluminum alloy slab, the starting temperature of hot rough rolling is defined, and the reduction amount of each pass with a thickness of 200 mm to 150 mm and 150 mm Re-crystallization is promoted by temperature control at each stage of ~ 15mm, temperature control up to the final pass in hot finish rolling, rising temperature, and rising plate thickness are controlled to formability and paint baking of DI cans during DI processing. A method for producing an aluminum alloy plate with excellent later formability is known (see Patent Document 2).
In addition, the aluminum alloy ingot is cold-rolled at a rolling rate of 80% or more after hot rolling, and when the outlet temperature after cold rolling is 140 to 150 ° C, cooling to 110 ° C is 5 ° C / hour or less. A method for producing an aluminum alloy plate for containers is known in which a speed is selected and cooling is performed at a cooling rate of 30 ° C./hour or less to 110 ° C. when the outlet temperature is 150 to 180 ° C. (see Patent Document 3).

特許第3644819号公報Japanese Patent No. 3644819 特許第3644818号公報Japanese Patent No. 3644818 特許第3748438号公報Japanese Patent No. 3748438

ところで、アルミニウム缶に対する低価格化の要求は厳しく、このため材料使用量を出来るだけ低減する試みが続けられている。しかし、素材板厚を薄くすると、成形性と異方性をバランスさせることが難しくなるので、成形性と異方性を良好にバランスさせるという要望が高くなっている。
例えば、アルミニウム合金板の異方性を制御するには、タンデム式の熱間仕上げ圧延機を用いることが有効であるが、シングルリバース式の熱間仕上げ圧延機では十分な立方晶方位を得ることが容易ではなく、異方性の制御が難しいという問題がある。
By the way, the demand for lower prices for aluminum cans is severe, and therefore, attempts to reduce the amount of material used as much as possible continue. However, since it becomes difficult to balance formability and anisotropy when the material plate thickness is reduced, there is an increasing demand for a good balance between formability and anisotropy.
For example, to control the anisotropy of an aluminum alloy sheet, it is effective to use a tandem hot finish rolling mill, but a single reverse hot finish rolling mill can obtain sufficient cubic orientation. However, it is difficult to control the anisotropy.

また、先に記載の(1)の方法と(2)の方法を比較すると、(2)に記載の方法では、(1)に記載の方法に比べて比較的低圧下の冷間圧延という処理が追加されるが、この冷間圧延処理により焼鈍時の立方体集合組織の発達を促進できる利点を有する。
本発明者らは、シングルリバース式の熱間仕上げ圧延機を用いて薄肉飲料缶用アルミニウム合金板を製造する条件について種々研究を重ねた結果、熱間圧延条件を制御し、さらに冷間圧延および中間焼鈍条件を制御することにより、成形性を確保しつつ異方性の制御も実現できる製造方法を見出し、本願発明に到達した。
Further, when the method (1) described above is compared with the method (2), the method described in (2) is a process of cold rolling under a relatively low pressure compared to the method described in (1). However, this cold rolling process has the advantage that the development of the cube texture during annealing can be promoted.
The inventors have conducted various studies on the conditions for producing an aluminum alloy sheet for thin-walled beverage cans using a single reverse hot finish rolling mill. As a result, the hot rolling conditions were controlled, and cold rolling and By controlling the intermediate annealing conditions, the inventors have found a production method capable of realizing the control of anisotropy while ensuring the formability, and have reached the present invention.

本発明は、上述の問題を解決するためになされたものであり、成形性および異方性に優れる薄肉飲料缶用アルミニウム合金板の製造方法の提供を目的とする。   This invention is made | formed in order to solve the above-mentioned problem, and it aims at provision of the manufacturing method of the aluminum alloy plate for thin-walled beverage cans which is excellent in a moldability and anisotropy.

本発明の薄肉飲料缶用アルミニウム合金板の製造方法は、質量%で、Si:0.35%以下、Fe:0.35〜0.55%、Cu:0.15〜0.48%、Mn:0.8〜1.15%、Mg:0.60〜1.60%を含有し、残部がAl及び不可避不純物からなる組成のアルミニウム合金を溶製し、半連続鋳造して得た鋳塊を均質化処理および均熱処理を経て出側材料温度を400〜460℃とする熱間粗圧延により熱間粗圧延板とした後、1パス目出側温度を380℃以下、2パス目出側温度を340℃以下、3パス目出側仕上げ温度を240〜300℃とする熱間仕上げ圧延により板厚2〜4mmの熱間仕上げ圧延板を得た後、圧下率30〜59%で第1冷間圧延を行い、次いで連続焼鈍装置を用いて保持温度300〜400℃、保持時間5〜30秒の条件で第1中間焼鈍を行い、次いで圧下率5〜20%の第2冷間圧延を行い、その後、保持温度320〜380℃、保持時間2〜6時間のバッチ焼鈍を行い、続いて圧下率70〜90%で板厚0.200〜0.280mmとなるまで最終冷間圧延を行って塗装焼付け後の耐力230〜320N/mmのアルミニウム合金板を得ることを特徴とする成形性および異方性に優れる薄肉飲料缶用アルミニウム合金板の製造方法。 The manufacturing method of the aluminum alloy plate for thin-walled beverage cans of the present invention is mass%, Si: 0.35% or less, Fe: 0.35-0.55%, Cu: 0.15-0.48%, Mn : 0.8 to 1.15%, Mg: 0.60 to 1.60%, an ingot obtained by melting and semi-continuously casting an aluminum alloy having the balance consisting of Al and inevitable impurities Is subjected to a homogenization treatment and a soaking process to form a hot rough rolled sheet by hot rough rolling at a delivery-side material temperature of 400 to 460 ° C., and then the first pass first-side temperature is 380 ° C. or lower, and the second pass first-side side. After obtaining a hot-finished rolled sheet having a thickness of 2 to 4 mm by hot finish rolling with a temperature of 340 ° C. or lower and a 3-pass finish side finishing temperature of 240 to 300 ° C., the first reduction is performed at a rolling reduction of 30 to 59%. Cold rolling, then using a continuous annealing device, holding temperature 300-400 ° C., holding The first intermediate annealing is performed for 5 to 30 seconds, the second cold rolling is performed at a rolling reduction of 5 to 20%, and then the batch annealing is performed at a holding temperature of 320 to 380 ° C. and a holding time of 2 to 6 hours. Then, the final cold rolling is performed until the sheet thickness becomes 0.200 to 0.280 mm at a rolling reduction of 70 to 90% to obtain an aluminum alloy sheet having a proof strength of 230 to 320 N / mm 2 after baking. The manufacturing method of the aluminum alloy plate for thin-walled beverage cans which is excellent in formability and anisotropy.

本発明の薄肉飲料缶用アルミニウム合金板の製造方法において、前記組成に対し、更に、Cr:0.05%以下、Zn:0.25%以下、Ti:0.10%以下のうち、少なくとも1種または2種以上を含有してなるアルミニウム合金を用いることができる。
本発明の薄肉飲料缶用アルミニウム合金板の製造方法において、前記均質化処理を555〜605℃の温度範囲で4〜10時間行い、前記均熱処理を500〜555℃の温度範囲で1時間以上行うことが好ましい。
本発明の薄肉飲料缶用アルミニウム合金板の製造方法において、前記冷間圧延後、保持温度120〜140℃、保持時間2〜4時間の条件で最終安定化焼鈍を行うことが好ましい。
In the method for producing an aluminum alloy plate for a thin-walled beverage can according to the present invention, at least one of Cr: 0.05% or less, Zn: 0.25% or less, Ti: 0.10% or less with respect to the composition. An aluminum alloy containing two or more seeds can be used.
In the method for producing an aluminum alloy plate for thin-walled beverage cans according to the present invention, the homogenization treatment is performed at a temperature range of 555 to 605 ° C for 4 to 10 hours, and the soaking is performed at a temperature range of 500 to 555 ° C for 1 hour or more. It is preferable.
In the method for producing an aluminum alloy plate for a thin-walled beverage can according to the present invention, it is preferable that after the cold rolling, final stabilization annealing is performed under conditions of a holding temperature of 120 to 140 ° C. and a holding time of 2 to 4 hours.

本発明の薄肉飲料缶用アルミニウム合金板の製造方法は、SiとFeとCuとMnとMgを特定範囲含有した組成のアルミニウム合金を溶製し、熱間粗圧延により出側材料温度400〜460℃として圧延板を得た後、1〜3パスを規定の出側温度に制御する熱間仕上げ圧延を施し、特定条件の第1冷間圧延と連続焼鈍と第2冷間圧延とバッチ焼鈍と最終冷間圧延を施して板厚0.200〜0.280mmとすることにより、成形性と異方性の両方に優れた薄肉飲料缶用アルミニウム合金板を提供することができる。
また、最終冷間圧延後に保持温度、保持時間を制御した安定化焼鈍を行うことにより、成形性と異方性に更に優れた薄肉飲料缶用アルミニウム合金板を提供できる。
The manufacturing method of the aluminum alloy plate for thin-walled beverage cans of the present invention melts an aluminum alloy having a specific range of Si, Fe, Cu, Mn, and Mg, and performs material temperature 400 to 460 on the outlet side by hot rough rolling. After obtaining a rolled sheet at 0 ° C., it is subjected to hot finish rolling for controlling 1 to 3 passes to a specified delivery temperature, and the first cold rolling and continuous annealing, the second cold rolling and batch annealing under specific conditions By performing the final cold rolling to a thickness of 0.200 to 0.280 mm, an aluminum alloy plate for a thin beverage can excellent in both formability and anisotropy can be provided.
Moreover, the aluminum alloy plate for thin-walled beverage cans which is further excellent in formability and anisotropy can be provided by performing the stabilization annealing which controlled holding temperature and holding time after the last cold rolling.

本発明に係る製造方法を実施する際に、熱間圧延工程において用いる装置と工程を示す説明図。Explanatory drawing which shows the apparatus and process which are used in a hot rolling process, when implementing the manufacturing method which concerns on this invention. 連続焼鈍装置の一例を示す構成図。The block diagram which shows an example of a continuous annealing apparatus. DI缶の製造方法の一例を示す工程図。Process drawing which shows an example of the manufacturing method of DI can. DI缶の一例を示す部分断面図。The fragmentary sectional view which shows an example of DI can.

以下、本発明に係る薄肉飲料缶用アルミニウム合金板の各実施形態について説明するが、本発明は以下に説明する実施形態に制限されるものではない。
初めに、本実施形態で用いる薄肉飲料缶用アルミニウム合金板の組成について説明する。
本実施形態の薄肉飲料缶用アルミニウム合金板は、質量%で、Si:0.35%以下、Fe:0.35〜0.55%、Cu:0.15〜0.48%、Mn:0.80〜1.15%、Mg:0.60〜1.60%以下を含有し、残部不可避的不純物とAlからなる組成のアルミニウム合金からなる。また、前記組成比のアルミニウム合金に、更に、Cr:0.05%以下、Zn:0.25%以下、Ti:0.10%以下のうち、1種または2種以上を含有させたアルミニウム合金を用いても良い。
以下、本実施形態で使用するアルミニウム合金の組成限定理由について説明する。
なお、本明細書において記載する各元素の含有量は、特に限定しない限り質量%であり、また、特に規定しない限り上限と下限を含むものとする。例えば0.35〜0.55%とする表記は0.35%以上0.55%以下を意味する。
Hereinafter, although each embodiment of the aluminum alloy plate for thin-walled beverage cans according to the present invention will be described, the present invention is not limited to the embodiment described below.
First, the composition of the aluminum alloy plate for thin-walled beverage cans used in this embodiment will be described.
The aluminum alloy plate for thin-walled beverage cans of this embodiment is in mass%, Si: 0.35% or less, Fe: 0.35-0.55%, Cu: 0.15-0.48%, Mn: 0 .80 to 1.15%, Mg: 0.60 to 1.60% or less, and the balance is made of an aluminum alloy having a composition of inevitable impurities and Al. Further, an aluminum alloy containing one or more of Cr: 0.05% or less, Zn: 0.25% or less, Ti: 0.10% or less in the aluminum alloy having the above composition ratio. May be used.
Hereinafter, the reasons for limiting the composition of the aluminum alloy used in this embodiment will be described.
In addition, content of each element described in this specification is mass% unless otherwise specified, and includes an upper limit and a lower limit unless otherwise specified. For example, the notation of 0.35 to 0.55% means 0.35% or more and 0.55% or less.

「Si:0.35%以下」
Siは、同時に含有するMgと化合物を形成し易く、固溶硬化作用、分散硬化作用および析出硬化作用を有する他、Al、Mn、Feなどと化合物を形成し、成形時のダイスに対する焼付きを防止する効果がある。Siの含有量は、0.35質量%を越えると加工性が劣化する傾向がある。
「Fe:0.35〜0.55%」
Feは、結晶粒の微細化および成形時のダイスに対する焼付きを防止する効果がある。Feの含有量は、0.35質量%未満では所望の効果が得られず、0.55質量%を越えると加工性を劣化させる。
"Si: 0.35% or less"
Si easily forms a compound with Mg contained at the same time, has a solid solution hardening action, a dispersion hardening action and a precipitation hardening action, and forms a compound with Al, Mn, Fe, etc., and seizes the die during molding. There is an effect to prevent. If the Si content exceeds 0.35 mass%, the workability tends to deteriorate.
"Fe: 0.35-0.55%"
Fe has the effect of preventing crystal fineness and seizure of the die during molding. If the Fe content is less than 0.35% by mass, the desired effect cannot be obtained, and if it exceeds 0.55% by mass, the workability deteriorates.

「Cu:0.15〜0.48%」
Cuは、Mgと化合物を形成し易く、固溶硬化、分散硬化および析出硬化に寄与する。
Cuの含有量は、0.15質量%未満では所望の効果が得られず、0.48質量%を越えると加工性を劣化させる。
「Mn:0.8〜1.15%」
Mnは、Fe、Si、Alなどと化合物を形成し易く、晶出相および分散相となって分散硬化作用を現すと共に成形時のダイスに対する焼付きを防止する効果がある。Mnの含有量は、0.8質量%未満では所望の硬化特性が得られず、1.15質量%を越えると加工性が劣化する。
「Mg:0.60〜1.60%」
Mgは、固溶体強化作用を有し、圧延による加工硬化性を高めるとともに、前記Siや前記Cuと共存することによって分散硬化と析出硬化作用を現す。Mgの含有量は、0.60質量%未満では所望の効果が得られず、1.60質量%を越えると加工性を劣化させるようになる。
"Cu: 0.15-0.48%"
Cu easily forms a compound with Mg, and contributes to solid solution hardening, dispersion hardening, and precipitation hardening.
If the Cu content is less than 0.15% by mass, the desired effect cannot be obtained, and if it exceeds 0.48% by mass, the workability deteriorates.
“Mn: 0.8 to 1.15%”
Mn is easy to form a compound with Fe, Si, Al, etc., becomes a crystallization phase and a dispersed phase, exhibits a dispersion hardening action, and has an effect of preventing seizure to a die during molding. If the Mn content is less than 0.8% by mass, desired curing characteristics cannot be obtained, and if it exceeds 1.15% by mass, the workability deteriorates.
“Mg: 0.60 to 1.60%”
Mg has a solid solution strengthening action, enhances work hardening by rolling, and exhibits dispersion hardening and precipitation hardening action by coexisting with Si and Cu. If the Mg content is less than 0.60% by mass, the desired effect cannot be obtained, and if it exceeds 1.60% by mass, the workability deteriorates.

本実施形態で用いるアルミニウム合金において、前記Si、Fe、Cu、Mn、Mgの主要成分に加え、以下のCr、Zn、Tiのいずれか1種または2種以上を含有しても良い。
「Cr:0.05%以下」
Crは結晶の微細化と成形加工時にダイスに対する焼き付きを防止する効果を発揮する。Crの含有量は、0.05質量%を越えると加工性が劣化する。
In the aluminum alloy used in the present embodiment, in addition to the main components of Si, Fe, Cu, Mn, and Mg, one or more of the following Cr, Zn, and Ti may be contained.
"Cr: 0.05% or less"
Cr exhibits the effect of preventing seizure on the die during crystal refinement and molding. If the Cr content exceeds 0.05% by mass, the workability deteriorates.

「Zn:0.25%以下」
ZnはMg、Si、Cuの析出物を微細化する作用を有する。Znの含有量は、0.25質量%を越えると加工性と耐食性を劣化させる。
「Ti:0.10%以下」
Tiは、結晶粒を微細化して加工性を改善する効果がある。ただし、Tiの含有量は0.10質量%を越えると粗大な化合物を生成し、逆に加工性を劣化させる。
“Zn: 0.25% or less”
Zn has the effect of refining Mg, Si and Cu precipitates. If the Zn content exceeds 0.25% by mass, workability and corrosion resistance are deteriorated.
“Ti: 0.10% or less”
Ti has the effect of improving the workability by refining crystal grains. However, if the Ti content exceeds 0.10% by mass, a coarse compound is formed, and conversely, workability is deteriorated.

<缶ボディ用アルミニウム合金板の製造方法>
次に、本実施形態に係る成形性と異方性に優れた薄肉飲料缶用アルミニウム合金板の製造方法について説明する。
本実施形態の薄肉飲料缶用アルミニウム合金板の製造方法においては、前記組成のアルミニウム合金を溶製し、鋳造して得た鋳塊に対して均質化処理、均熱処理を施した後、熱間粗圧延およびそれに続く熱間仕上げ圧延による熱間圧延を行い、第1冷間圧延と連続焼鈍と第2冷間圧延とバッチ焼鈍を施し、さらに圧下率70〜90%の最終冷間圧延を行うことにより所望の板厚の薄肉飲料缶用アルミニウム合金板を得る。
更に、前記の工程に加え、最終冷間圧延後に保持温度120〜140℃、保持時間2〜4時間の条件で安定化焼鈍を行うこともできる。
以下、本実施形態の成形性と異方性に優れた薄肉飲料缶用アルミニウム合金板の製造方法について工程順に説明する。
<Method for producing aluminum alloy plate for can body>
Next, the manufacturing method of the aluminum alloy plate for thin-walled beverage cans excellent in formability and anisotropy according to this embodiment will be described.
In the method for producing an aluminum alloy plate for thin-walled beverage cans according to the present embodiment, the aluminum alloy having the above composition is melted, and the ingot obtained by casting is subjected to homogenization treatment and soaking, and then hot. Hot rolling by rough rolling and subsequent hot finish rolling is performed, first cold rolling, continuous annealing, second cold rolling and batch annealing are performed, and further, final cold rolling at a reduction rate of 70 to 90% is performed. Thus, an aluminum alloy plate for a thin beverage can having a desired plate thickness is obtained.
Furthermore, in addition to the above-described steps, stabilization annealing can also be performed under conditions of a holding temperature of 120 to 140 ° C. and a holding time of 2 to 4 hours after the final cold rolling.
Hereinafter, the manufacturing method of the aluminum alloy plate for thin-walled beverage cans excellent in formability and anisotropy of this embodiment will be described in the order of steps.

「鋳造」
前記組成のアルミニウム合金を溶解後、常法に従ってアルミニウム合金溶湯から鋳塊を鋳造するが、鋳造に先立ち、アルミニウム合金を溶製した際に、水素ガスや酸化物などの介在物を除去し、半連続鋳造法により鋳塊を得る。
このときの凝固速度は通常、5〜20℃/秒とされる。鋳造された鋳塊の厚さは、例えば500〜600mm程度とすることができる。
次に、面削を行い、鋳塊の表面を1〜25mm程度切削し、面削体を作製する。なお面削は後述する均質化処理の後に行っても良い。
"casting"
After the aluminum alloy having the above composition is melted, an ingot is cast from the molten aluminum alloy according to a conventional method. When the aluminum alloy is melted prior to casting, inclusions such as hydrogen gas and oxide are removed, An ingot is obtained by a continuous casting method.
The solidification rate at this time is usually 5 to 20 ° C./second. The thickness of the cast ingot can be about 500 to 600 mm, for example.
Next, chamfering is performed, and the surface of the ingot is cut by about 1 to 25 mm to produce a chamfered body. The chamfering may be performed after a homogenization process described later.

「均質化処理」
次に、作製した面削体に均質化処理を施す。均質化処理は一般に、溶湯の凝固によって生じたミクロ偏析の均質化、過飽和固溶元素の析出、凝固によって形成された準安定相の平衡相への転移などのために行われる。
均質化処理においては、均質化温度を555〜605℃の範囲内とすることが重要である。均質化温度が555℃未満では後述の連続焼鈍の効果が得られず、後述の熱間圧延工程や第1冷間圧延工程においてクラックが発生し易く、最終板材の耳率が高くなる。また、均質化温度が605℃を超えると、鋳塊が溶融するおそれがある。
"Homogenization treatment"
Next, a homogenization process is performed on the manufactured face cut body. The homogenization treatment is generally performed for homogenization of microsegregation generated by solidification of the molten metal, precipitation of supersaturated solid solution elements, transition of a metastable phase formed by solidification to an equilibrium phase, and the like.
In the homogenization treatment, it is important that the homogenization temperature is in the range of 555 to 605 ° C. If the homogenization temperature is less than 555 ° C., the effect of continuous annealing described later cannot be obtained, cracks are likely to occur in the hot rolling process and the first cold rolling process described later, and the ear rate of the final plate material is increased. Further, if the homogenization temperature exceeds 605 ° C, the ingot may be melted.

均質化処理において、面削体は100℃/時以下の加熱速度で均質化温度まで加熱することが好ましい。加熱速度が100℃/時を超えると、部分的に溶融を生じるおそれがある。
また、均質化処理において、均質化温度に保持する時間(均質化時間)は4時間以上10時間以下とすることが好ましい。均質化時間が4時間未満では、均質化が充分に進行しない場合がある。しかし、均質化時間が長すぎても効果はなく生産効率が低下する。以上の観点から、好ましい均質化時間は4〜10時間の範囲内である。この均質化処理は、均質化時間が比較的長いので、通常、バッチ方式の炉中に置くことで行われる。
本実施形態において、均質化処理の後さらに面削体を500〜555℃まで冷却し、所定時間保持する均熱処理後、熱間圧延を開始する。500〜555℃の温度範囲での保持時間(均熱時間)は、1時間以上、例えば1〜10時間程度行うことができる。
In the homogenization treatment, it is preferable to heat the face milling body to a homogenization temperature at a heating rate of 100 ° C./hour or less. If the heating rate exceeds 100 ° C./hour, melting may occur partially.
In the homogenization treatment, the time for maintaining the homogenization temperature (homogenization time) is preferably 4 hours or more and 10 hours or less. If the homogenization time is less than 4 hours, the homogenization may not proceed sufficiently. However, if the homogenization time is too long, there is no effect and the production efficiency is lowered. From the above viewpoint, the preferable homogenization time is in the range of 4 to 10 hours. Since the homogenization time is relatively long, this homogenization treatment is usually performed by placing it in a batch type furnace.
In this embodiment, after the homogenization treatment, the face cut body is further cooled to 500 to 555 [deg.] C., and after soaking for a predetermined time, hot rolling is started. The holding time (soaking time) in the temperature range of 500 to 555 ° C. can be performed for 1 hour or more, for example, about 1 to 10 hours.

「熱間圧延」
熱間圧延は、熱間粗圧延およびそれに続く熱間仕上げ圧延からなり、本実施形態においては、シングルリバース式熱間仕上圧延機を使用して熱間仕上げ圧延を行うことが好ましい。
熱間圧延工程においては、図1に示すように、熱間粗圧延機20を用いて板厚20〜16mm程度まで熱間粗圧延した後、熱間仕上圧延機30を用いて板厚2〜4mmまで熱間圧延する。
"Hot rolling"
The hot rolling includes hot rough rolling and subsequent hot finish rolling. In this embodiment, it is preferable to perform hot finish rolling using a single reverse hot finish rolling mill.
In the hot rolling process, as shown in FIG. 1, hot rough rolling is performed to a thickness of about 20 to 16 mm using a hot rough rolling machine 20, and then a hot finishing rolling mill 30 is used to obtain a thickness of 2 to 2 mm. Hot-roll to 4 mm.

図1に示す熱間粗圧延機20は、例えば上下のワークロール21、22、およびバックアップロール23、24と、複数の搬送ローラが配列された搬送路4、6を備え、搬送されてきたアルミニウム合金の板材5をワークロール21、22間のギャップに通して目的の厚さに圧延する装置である。
図1において、ワークロール21、22の前後両側の搬送路4、6から繰り返しアルミニウム合金の板材5をワークロール21、22に供給して順次粗圧延することにより、熱間粗圧延機20は板材5を必要な厚さまで圧延して板材7とすることができる。
The hot roughing mill 20 shown in FIG. 1 includes, for example, upper and lower work rolls 21 and 22, backup rolls 23 and 24, and transport paths 4 and 6 in which a plurality of transport rollers are arranged, and has been transported aluminum. This is an apparatus for rolling an alloy plate 5 to a desired thickness through a gap between work rolls 21 and 22.
In FIG. 1, the hot rough rolling mill 20 is made of a plate material by repeatedly supplying the aluminum alloy plate material 5 to the work rolls 21 and 22 from the conveying paths 4 and 6 on both sides before and after the work rolls 21 and 22 and sequentially rolling them. 5 can be rolled to a required thickness to obtain a plate 7.

図1に示す熱間仕上圧延機30は、シングルリバース式熱間仕上圧延機であり、例えば上下のワークロール31、32およびバックアップロール33、34と、これらロールの入り側に設置されたリール型の送出巻取装置35と、出側に設置されたリール型の送出巻取装置36とを具備してなる。この熱間仕上圧延機30は、送出巻取装置35から送り出してワークロール31、32間を通過させて熱間圧延した板材を送出巻取装置36で巻き取る操作と、送出巻取装置36から再度ワークロール31、32間を通過させて熱間圧延した板材を送出巻取装置35で巻き取る操作を繰り返し必要回数行うとともに、圧延操作の度に徐々にワークロール31、32間の間隔を調節することにより、アルミニウム合金の板材を目的の板厚まで熱間仕上げ圧延する装置である。   A hot finish rolling mill 30 shown in FIG. 1 is a single reverse hot finish rolling mill, for example, upper and lower work rolls 31 and 32 and backup rolls 33 and 34, and a reel type installed on the entry side of these rolls. And a reel-type delivery take-up device 36 installed on the exit side. The hot finish rolling mill 30 is configured to wind a sheet material that is hot-rolled from the feed winder 35 and passed between the work rolls 31 and 32 by the feed winder 36, and from the feed winder 36. The operation of winding the sheet material hot-rolled by passing between the work rolls 31 and 32 again with the feed winder 35 is repeated as many times as necessary, and the interval between the work rolls 31 and 32 is gradually adjusted for each rolling operation. By doing so, it is an apparatus for hot-finishing and rolling an aluminum alloy plate material to a target plate thickness.

前記均熱処理後、均熱炉から取り出したスラブは通常直ちに熱間粗圧延を開始するが、スラブ温度が500℃未満にならなければ、熱間粗圧延開始を遅延してもよい。熱間粗圧延のパス数は、鋳塊(スラブ)厚さ、仕上げ厚さ、スラブ幅、合金組成などに依存するが、十数パス〜二十数パスの範囲が一般的である。
熱間粗圧延は、圧延材が厚い間は、通常圧延機の前後に搬送テーブルが設置された1スタンド式粗圧延機(図1に示す熱間粗圧延機20)を用いて圧延する。しかし、板が薄くなると、必要な搬送テーブル長が長くなり、板の自重によるたるみも大きくなり、板の冷却も生じ易くなる。
After the soaking process, the slab taken out from the soaking furnace usually starts hot rough rolling immediately, but if the slab temperature does not become less than 500 ° C., the start of hot rough rolling may be delayed. The number of hot rough rolling passes depends on the ingot (slab) thickness, finished thickness, slab width, alloy composition, and the like, but is generally in the range of tens of passes to tens of passes.
In the hot rough rolling, while the rolled material is thick, rolling is usually performed using a one-stand type rough rolling mill (hot rough rolling mill 20 shown in FIG. 1) in which a conveyance table is installed before and after the rolling mill. However, if the plate is thinned, the necessary transfer table length is increased, the slack due to the weight of the plate is increased, and the plate is likely to be cooled.

そのため、搬送テーブルで保持するには、板厚が十数mm以上必要である。したがって、粗圧延機から仕上圧延機に板を送る際の最低板厚は、コイル重量や板幅に依存するが、工業的に用いられている重量・幅の場合、16mm程度以上であることが好ましい。また、粗圧延機から仕上圧延機に送る際の板厚が厚すぎる場合には、仕上圧延機での圧延パス回数の増加を招き、生産性を低下させる。したがって、仕上圧延機に送る際の板厚の上限は20mm以下であることが好ましい。上述の厚さ上限から下限の範囲内までアルミニウム合金の板材が薄くなった場合に、図1に示す構成のシングルミルのリバース式熱間仕上圧延機で熱間仕上圧延を行う。   Therefore, in order to hold on the transfer table, the plate thickness needs to be more than 10 mm. Therefore, the minimum plate thickness when the plate is sent from the roughing mill to the finishing mill depends on the coil weight and the plate width, but in the case of the weight and width used industrially, it is about 16 mm or more. preferable. Moreover, when the plate | board thickness at the time of sending from a rough mill to a finishing mill is too thick, the increase in the number of rolling passes in a finishing mill will be caused, and productivity will be reduced. Therefore, it is preferable that the upper limit of the sheet thickness when feeding to the finishing mill is 20 mm or less. When the aluminum alloy sheet is thinned from the above upper limit to the lower limit, hot finish rolling is performed with a single mill reverse hot finish rolling mill having the configuration shown in FIG.

熱間仕上圧延は、シングルリバース式熱間仕上圧延機を使用して行う。
圧延機の両側に巻取装置があるシングルミルのリバース式熱間仕上圧延機(図1に示す熱間仕上圧延機30)を使用することにより、熱間仕上げ板厚を小さくすることができる。
従って、以降の冷間圧延の圧下率を小さくできるので、冷間圧延のパス回数を削減でき、生産性を向上させることができる。これに対し、例えば、巻取装置が片方にだけ設置された熱間仕上圧延機を用いた場合、搬送テーブル上で保持できる板厚に最小値が存在するために、熱間圧延で圧延可能な最小板厚が増加することになる。このため、熱間圧延後の冷間圧下率が増加する。
Hot finish rolling is performed using a single reverse hot finish rolling mill.
By using a single mill reverse hot finish rolling mill (hot finish rolling mill 30 shown in FIG. 1) having a winding device on both sides of the rolling mill, the hot finish plate thickness can be reduced.
Therefore, since the reduction ratio of the subsequent cold rolling can be reduced, the number of cold rolling passes can be reduced and the productivity can be improved. On the other hand, for example, when a hot finish rolling mill in which the winding device is installed only on one side is used, there is a minimum value for the plate thickness that can be held on the transfer table, so that it can be rolled by hot rolling. The minimum plate thickness will increase. For this reason, the cold rolling reduction after hot rolling increases.

前述の如く、熱間圧延の仕上り板厚の薄肉化は、冷間圧延パス回数の削減による生産性の向上に寄与する。そのため、本実施形態において、熱間仕上圧延の仕上板厚は、2〜4mmの範囲内とすることが好ましい。仕上板厚が2mm未満では第1冷間圧延の圧下率が不足し、低い耳率が得られない。仕上板厚が4mmを超えると第1冷間圧延のパス回数が増加して生産性が低下する。
熱間仕上圧延時の条件として、1パス目の出側温度を380℃以下に設定し、2パス目の出側温度を340℃以下に設定し、3パス目の出側温度(仕上温度)を240〜300℃の範囲とすることが好ましい。
As described above, the reduction in the thickness of the finished sheet of hot rolling contributes to the improvement of productivity by reducing the number of cold rolling passes. Therefore, in this embodiment, it is preferable that the finish plate thickness of hot finish rolling is in the range of 2 to 4 mm. If the finished sheet thickness is less than 2 mm, the reduction ratio of the first cold rolling is insufficient, and a low ear ratio cannot be obtained. If the finished plate thickness exceeds 4 mm, the number of passes of the first cold rolling increases and the productivity decreases.
As conditions for hot finish rolling, the first pass outlet temperature is set to 380 ° C. or lower, the second pass outlet temperature is set to 340 ° C. or lower, and the third pass outlet temperature (finish temperature). Is preferably in the range of 240 to 300 ° C.

1パス目の出側温度について380℃を超える温度に設定すると、圧延加工時の局部歪みが駆動力となって部分的に再結晶が進行し、機械的性質が劣化するとともに、ランダム方位の再結晶粒が多くなり異方性が悪化する恐れがある。
2パス目の出側温度について340℃を超える温度に設定すると、前記1パス目と同様の現象により同様の問題が生じる。
3パス目の出側温度について、300℃を超える温度では前記1パス目と同様の現象により同様の問題が生じ、240℃未満の温度では立方体方位の再結晶粒の核が生じにくく、続くバッチ焼鈍を行っても十分な立方体方位が成長せず、異方性が悪化する。
If the outlet temperature in the first pass is set to a temperature exceeding 380 ° C., the local strain during rolling becomes a driving force, the recrystallization partially proceeds, the mechanical properties deteriorate, and the random orientation is restored. There is a risk that the number of crystal grains increases and the anisotropy deteriorates.
When the outlet temperature in the second pass is set to a temperature exceeding 340 ° C., the same problem occurs due to the same phenomenon as in the first pass.
With regard to the exit temperature in the third pass, the same problem occurs due to the same phenomenon as in the first pass at a temperature exceeding 300 ° C., and at the temperature below 240 ° C., the nucleus of recrystallized grains with a cubic orientation hardly occurs, and the subsequent batch Even if annealing is performed, sufficient cube orientation does not grow and the anisotropy deteriorates.

「第1冷間圧延」
第1冷間圧延工程においては、前記の熱間圧延を施した後に冷却した板材を、圧下率30〜59%の範囲となるように冷間圧延する。第1冷間圧延の圧下率が59%を超えると、冷間圧延パス回数が増加して生産性が低下する問題がある。一方、第1冷間圧延の圧下率が30%未満では十分な圧延加工による局部歪が得られない。
第1冷間圧延の圧下率を30〜59%の範囲内とすることにより、成形性および異方性に優れるアルミニウム合金の板材を、良好な生産性で製造できる。
「連続焼鈍」
連続焼鈍(第1中間焼鈍)は、前記第1冷間圧延後の板材に対し、図2に基本構成を示す連続焼鈍装置を用いて加熱速度10〜200℃/秒の範囲(10℃/秒以上、200℃/秒以下の範囲)で加熱し、保持温度300〜400℃の範囲(300℃以上、400℃以下の範囲)に5〜30秒(5秒以上、30秒以下)保持し、冷却速度10〜200℃/秒の範囲(10℃/秒以上、200℃/秒以下の範囲)で冷却を行う。
この焼鈍工程は、アルミニウム合金の板材を適度な軟化状態にもたらすものであって、焼鈍後の耐力;YS(Yield Strength)を好適な範囲とすることが好ましい。
焼鈍温度が300℃未満では十分な軟化が得られず結果的に耳率が高くなる。焼鈍温度が400℃を越えまたは保持時間が30秒を越えると軟化が過剰となって耳率が高くなる。
"First cold rolling"
In the first cold rolling step, the sheet material cooled after the hot rolling is cold-rolled so as to be in the range of a rolling reduction of 30 to 59%. When the rolling reduction of the first cold rolling exceeds 59%, there is a problem that the number of cold rolling passes increases and productivity is lowered. On the other hand, if the rolling reduction of the first cold rolling is less than 30%, sufficient local strain due to rolling cannot be obtained.
By setting the reduction ratio of the first cold rolling within the range of 30 to 59%, an aluminum alloy plate material excellent in formability and anisotropy can be produced with good productivity.
"Continuous annealing"
Continuous annealing (first intermediate annealing) is a range of heating rate of 10 to 200 ° C./second (10 ° C./second) using the continuous annealing apparatus whose basic configuration is shown in FIG. As mentioned above, it is heated at a range of 200 ° C./second or less, and held at a holding temperature of 300-400 ° C. (300 ° C. or more, 400 ° C. or less) for 5-30 seconds (5 seconds or more, 30 seconds or less) Cooling is performed at a cooling rate of 10 to 200 ° C./second (a range of 10 ° C./second or more and 200 ° C./second or less).
This annealing step brings the aluminum alloy plate material into an appropriate softened state, and it is preferable to set the yield strength after annealing; YS (Yield Strength) within a suitable range.
If the annealing temperature is less than 300 ° C., sufficient softening cannot be obtained, resulting in a high ear rate. When the annealing temperature exceeds 400 ° C. or the holding time exceeds 30 seconds, the softening becomes excessive and the ear rate increases.

図2に連続焼鈍装置(Continuous Annealing Line:略称CAL)の基本構成例を示すが、この例の連続焼鈍装置40は、供給ロール41から長尺のアルミニウム合金の板材42を引き出して緩衝装置43を介して数10m〜100m程度の長い炉本体44に供給し、この炉本体44内で移動中に前記の条件で焼鈍し、焼鈍後に炉本体44から引き出し、緩衝装置46を介して巻取ロール47に巻き取ることができる装置である。この連続焼鈍装置40によれば、炉本体44を通過するアルミニウム合金の板材42を連続単体処理できるために、バッチ式の焼鈍炉よりもより正確な加熱条件と冷却条件で焼鈍処理を行うことができる。
そして、連続焼鈍装置40ならば、アルミニウム合金の板材42を供給ロール41に巻き付けた状態のコイルの幅や径が異なっても、換言するとアルミニウム合金の板材42の幅や厚さ、処理するべき長さが異なっていても、製造したい順番に焼鈍処理できるために、同一の大きさのコイルのみを焼鈍炉に搬入して焼鈍していたバッチ式の焼鈍炉の場合に比べて中間在庫の増加を抑えることができる。
FIG. 2 shows a basic configuration example of a continuous annealing device (Continuous Annealing Line: abbreviated CAL). The continuous annealing device 40 of this example draws a long aluminum alloy plate material 42 from a supply roll 41 to provide a shock absorber 43. Is supplied to a long furnace body 44 of about several tens to 100 m through, annealed under the above-mentioned conditions while moving in the furnace body 44, pulled out from the furnace body 44 after annealing, and taken up by a winding roll 47 through a shock absorber 46. It is a device that can be wound around. According to this continuous annealing apparatus 40, since the aluminum alloy plate material 42 passing through the furnace body 44 can be continuously processed alone, the annealing process can be performed under more accurate heating conditions and cooling conditions than the batch type annealing furnace. it can.
And if it is the continuous annealing apparatus 40, even if the width | variety and diameter of the coil of the state which wound the aluminum alloy board | plate material 42 around the supply roll 41 differ, in other words, the width | variety and thickness of the aluminum alloy board | plate material 42, and the length which should be processed Even if the lengths are different, annealing can be performed in the order in which they are to be manufactured.Therefore, the intermediate stock is increased compared to the case of the batch type annealing furnace in which only coils of the same size are brought into the annealing furnace and annealed. Can be suppressed.

「第2冷間圧延」
次に、連続焼鈍後の板材に対し、圧下率5〜20%の範囲内となるように冷間圧延を施す。第2冷間圧延の圧下率を5〜20%の範囲内とすることにより、第1中間焼鈍で得た適度な軟化状態に加え圧延加工による適正な局部歪を導入することができるので、結果的に、後述する最終冷延工程において、最終冷延率が70%以上の条件でも低耳率の板材を得ることができる。
第2冷間圧延の圧下率が5%未満では板性状の平滑性が得られにくい他、工程全体として圧延パス数が増大して生産効率が低下する可能性があり好ましくない。第2冷間圧延の圧下率が20%を越えると、耳率が高くなる。
"Second cold rolling"
Next, cold rolling is performed on the plate material after the continuous annealing so that the rolling reduction is within a range of 5 to 20%. By setting the reduction ratio of the second cold rolling within the range of 5 to 20%, in addition to the appropriate softened state obtained by the first intermediate annealing, it is possible to introduce appropriate local strain due to the rolling process. In particular, in the final cold rolling step to be described later, a plate material with a low earing rate can be obtained even under a condition where the final cold rolling rate is 70% or more.
If the reduction ratio of the second cold rolling is less than 5%, it is difficult to obtain flatness of the plate property, and the number of rolling passes as a whole process may increase, resulting in a decrease in production efficiency. When the reduction ratio of the second cold rolling exceeds 20%, the ear ratio becomes high.

「バッチ焼鈍」
バッチ焼鈍工程は、前記第2冷間圧延後の板材に対し、焼鈍炉を用いて保持温度320〜380℃の範囲(320℃以上、380℃以下の範囲)に2〜6時間保持した後、冷却することで行う。
バッチ焼鈍工程において、加熱速度20〜150℃/時間の範囲(20℃/時間以上、150℃/時間以下の範囲)で加熱することが好ましく、冷却速度20〜200℃/時間の範囲20℃/時間以上、200℃/時間以下の範囲)で冷却を行うことが好ましい。
バッチ焼鈍の温度が320℃未満であるかバッチ焼鈍の保持時間が2時間未満では十分な再結晶組織が得られず立方体方位の成長が不十分となり異方性が悪化する。バッチ焼鈍温度が380℃を越えるか、または、保持時間が6時間を越えると再結晶粒が粗大化して最終冷間圧延した板をカップ、DI成形した際に肌荒れが生じ、またそれにともなうシワの発生によりネック成形時に割れを生じる問題がある。
"Batch annealing"
In the batch annealing step, the plate material after the second cold rolling is held for 2 to 6 hours in a holding temperature range of 320 to 380 ° C. (a range of 320 ° C. or more and 380 ° C. or less) using an annealing furnace. This is done by cooling.
In the batch annealing step, heating is preferably performed at a heating rate of 20 to 150 ° C./hour (range of 20 ° C./hour or more and 150 ° C./hour or less), and a cooling rate of 20 to 200 ° C./hour is 20 ° C./hour. It is preferable to perform the cooling at a time in the range of 200 ° C./hour or more.
If the temperature of batch annealing is less than 320 ° C. or the holding time of batch annealing is less than 2 hours, sufficient recrystallized structure cannot be obtained, and the growth of cube orientation becomes insufficient and anisotropy deteriorates. When the batch annealing temperature exceeds 380 ° C. or the holding time exceeds 6 hours, the recrystallized grains become coarse and the final cold-rolled plate is roughened when it is formed into a cup or DI, and wrinkles are caused accordingly. Due to the occurrence, there is a problem of causing cracks during neck molding.

「最終冷間圧延」
次に、バッチ焼鈍後の板材に対し、圧下率70〜90%の範囲内となるように最終冷間圧延を施す。最終冷間圧延の圧下率を70〜90%の範囲内とすることにより、必要な機械的性質、特に塗装焼付け処理後の耐力が好適な範囲となるとともに、缶成形において成形性と異方性がバランスよく得られるという効果がある。
最終冷間圧延の圧下率を70%未満にすると、加工率が不足となり、必要な強度が得られず、前述のバッチ焼鈍により得られる立方体方位に比べて圧延集合組織の発達が小さくなり異方性のバランスが悪化する。
冷間圧延の圧下率について90%を超えると、加工率が過剰となって板材の強度が高くなり過ぎてDI成形性が損なわれ、また前述のバッチ焼鈍により得られる立方体方位に比べて圧延集合組織の発達が大きくなり過ぎて異方性のバランスも悪化する。
冷間圧延により、板厚0.200〜0.280mmの薄肉飲料缶用アルミニウム合金板を得る。また、このアルミニウム合金板は、塗装焼付け後の耐力が230〜320N/mmの範囲であることが好ましい。
"Final cold rolling"
Next, the final cold rolling is performed on the plate material after the batch annealing so that the rolling reduction is within a range of 70 to 90%. By setting the reduction ratio of the final cold rolling within the range of 70 to 90%, the required mechanical properties, particularly the proof stress after the coating baking process, are in a suitable range, and the moldability and anisotropy in can molding Can be obtained in a well-balanced manner.
If the rolling reduction of the final cold rolling is less than 70%, the processing rate becomes insufficient, the necessary strength cannot be obtained, and the development of the rolling texture becomes smaller than the cubic orientation obtained by the batch annealing described above, which is anisotropic. Sexual balance gets worse.
If the rolling reduction of cold rolling exceeds 90%, the processing rate becomes excessive, the strength of the plate becomes too high, and the DI formability is impaired. Also, the rolling aggregation compared to the cube orientation obtained by the batch annealing described above. The development of tissue becomes too large and the balance of anisotropy also deteriorates.
By cold rolling, an aluminum alloy plate for a thin beverage can having a thickness of 0.200 to 0.280 mm is obtained. Moreover, it is preferable that this aluminum alloy plate has the yield strength after baking by coating in the range of 230 to 320 N / mm 2 .

「安定化焼鈍」
以上の製造方法によれば、成形性と異方性に優れた飲料缶用アルミニウム合金板を得ることができるが、当該合金板のDI成形において、缶底部の形状および成形条件によっては、底部抜けなどの成形不良やボトムしわなどの問題を生じる場合がある。
このため、当該合金板に対し、保持温度120〜140℃、保持時間2時間〜4時間の条件で安定化焼鈍を行うことによって缶底部などの局部成形性を改善することができ、成形不良および異常を有効に抑制することが可能である。
"Stabilized annealing"
According to the above production method, an aluminum alloy plate for beverage cans excellent in formability and anisotropy can be obtained. In DI molding of the alloy plate, depending on the shape and molding conditions of the bottom of the can, the bottom portion can be removed. May cause problems such as molding defects and bottom wrinkles.
For this reason, it is possible to improve local formability such as the bottom of the can by performing stabilization annealing on the alloy plate under the conditions of a holding temperature of 120 to 140 ° C. and a holding time of 2 hours to 4 hours. Abnormalities can be effectively suppressed.

保持温度を120℃未満にすると、前記の改善効果がほぼ得られないという面で問題があり、140℃を超える保持温度とすると、成形性は改善できるが強度が低下する問題が生じる。
保持時間を2時間未満にすると、上記の改善効果が不足するため好ましくなく、4時間を超える保持時間とすると、生産性が低下するという問題がある。
安定化焼鈍処理を上述の条件で施すことにより、缶成形における異常や生産性低下の問題を生じることなくDI成形できる特徴がある。
When the holding temperature is less than 120 ° C., there is a problem in that the above improvement effect is hardly obtained, and when the holding temperature exceeds 140 ° C., the moldability can be improved but the strength is lowered.
If the holding time is less than 2 hours, the above improvement effect is insufficient, which is not preferable. If the holding time is longer than 4 hours, productivity is lowered.
By performing the stabilization annealing treatment under the above-described conditions, there is a feature that DI molding can be performed without causing problems in can molding and problems of productivity reduction.

以下に、上述のアルミニウム合金板を用いてDI缶を製造する工程とDI缶の概要について説明する。
図3は、DI缶の製造方法の工程図を、図4はDI缶を示す部分断面図であり、これらの図において符号10は、DI缶を示している。
DI缶10は、アルミニウム合金製の有底筒状のDI缶であって、板厚が0.200mm以上0.280mm以下とされるアルミニウム合金の板材に、しごき率が54.2%以上64.8%以下とされる絞りしごき加工を施して成形されており、211径350cc缶で例えれば、缶軸方向の大きさ、すなわち高さが約122.5mm、外径が65mm以上67mm以下とされている。胴部は、肉厚が0.095mm以上0.110mm以下とされるとともに引張り強さが、340MPa以上410MPa以下とされ、かつこの場合の缶体重量が11.6g以下とされる。
Below, the outline | summary of the process and DI can which manufacture a DI can using the above-mentioned aluminum alloy plate are demonstrated.
FIG. 3 is a process diagram of a method for manufacturing a DI can, and FIG. 4 is a partial cross-sectional view showing the DI can. In these drawings, reference numeral 10 indicates the DI can.
The DI can 10 is a bottomed cylindrical DI can made of an aluminum alloy. The DI can 10 is an aluminum alloy plate having a thickness of 0.200 mm or more and 0.280 mm or less. It is formed by squeezing and ironing, which is 8% or less. For example, in the case of a 211 cc 350 cc can, the size in the can axis direction, that is, the height is about 122.5 mm, and the outer diameter is 65 mm or more and 67 mm or less. ing. The body portion has a wall thickness of 0.095 mm to 0.110 mm, a tensile strength of 340 MPa to 410 MPa, and a can body weight of 11.6 g or less.

また、DI缶の底部12は、図4に示すように、胴部11の缶軸方向における内側に向けて凹むドーム部12aを備えるとともに、このドーム部12aの外周縁部が胴部11の缶軸方向における外側に向けて突出する環状凸部12cとされている。この環状凸部12cの缶軸方向における頂部が、DI缶10が正立姿勢となるように、このDI缶10を接地面L上に配置したときに接地面Lに接する接地部12bが形成されている。
また、DI缶10は、塗料を使用して、文字情報等の印刷部分も含め、胴部11の外面を印刷、塗装し、加熱乾燥した後に、DI缶10の内面に塗装し、加熱乾燥することにより塗膜を形成させた外面印刷、外面塗装及び内面塗装がなされている。
Further, as shown in FIG. 4, the bottom portion 12 of the DI can includes a dome portion 12 a that is recessed toward the inside in the can axis direction of the trunk portion 11, and the outer peripheral edge portion of the dome portion 12 a is a can of the trunk portion 11. It is set as the cyclic | annular convex part 12c which protrudes toward the outer side in an axial direction. A grounding portion 12b is formed in contact with the grounding surface L when the DI can 10 is placed on the grounding surface L so that the top of the annular convex portion 12c in the can axis direction is in an upright posture. ing.
In addition, the DI can 10 uses a paint to print, paint, and heat-dry the outer surface of the body portion 11 including the printed portion of character information and the like, and then coat and heat-dry the inner surface of the DI can 10. Thus, outer surface printing, outer surface coating, and inner surface coating in which a coating film is formed are performed.

このDI缶は、例えば、以下の工程により製造される。
前述の工程で得られたアルミニウム合金板を打ち抜いて直径が約150mmとされた図3に示す円板状の板材(ブランク)Wを成形する。
次に、この板材Wをカッピングプレスによって絞り加工することによりカップ状体W1に成形する。
次いで、DI加工装置によって、カップ状体W1に再絞りしごき加工を施して有底筒状体W2を形成する。この際の、しごき率は、例えば、60.4%で胴部11の最薄部における肉厚が0.100mmになるまで絞りしごき加工が施される。
This DI can is manufactured by the following processes, for example.
A disk-shaped plate material (blank) W shown in FIG. 3 having a diameter of about 150 mm is formed by punching out the aluminum alloy plate obtained in the above-described process.
Next, the plate material W is drawn into a cup-shaped body W1 by drawing with a cupping press.
Subsequently, the DI processing apparatus performs redrawing and ironing on the cup-shaped body W1 to form a bottomed cylindrical body W2. In this case, the ironing rate is, for example, 60.4%, and the ironing process is performed until the thickness of the thinnest portion of the body portion 11 becomes 0.100 mm.

再絞りしごき加工に用いるDI加工装置は、再絞り加工するための円形の貫通孔を有する一枚の再絞りダイと、この再絞りダイと同軸に配列される円形の貫通孔を有する複数枚(例えば、3枚)のアイアニング・ダイ(しごきダイ)と、アイアニング・ダイと同軸とされ、上記それぞれのアイアニング・ダイの各貫通孔の内部に嵌合可能とされ、軸方向に移動自在とされる円筒状のパンチスリーブと、このパンチスリーブの外側に嵌合された円筒状のカップホルダースリーブとを備えている。   The DI processing apparatus used for the redrawing ironing process includes a single redrawing die having a circular through hole for redrawing processing, and a plurality of sheets having circular through holes arranged coaxially with the redrawing die ( For example, three ironing dies (ironing dies) are coaxial with the ironing die, and can be fitted into the through holes of the respective ironing dies, and are movable in the axial direction. A cylindrical punch sleeve and a cylindrical cup holder sleeve fitted to the outside of the punch sleeve are provided.

DI加工装置による再絞り加工は、カップ状体W1をパンチスリーブと再絞りダイとの間に配置して、カップホルダースリーブ及びパンチスリーブを前進させてカップホルダースリーブが、再絞りダイの端面にカップ状体W1の底面を押し付けてカップ押し付け動作を行ないながら、パンチスリーブがカップ状体W1を再絞りダイの貫通孔内に押し込むことにより行われる。その結果、所定の内径を有する再絞り加工されたカップが成形される。引き続き、再絞り加工されたカップを複数のアイアニング・ダイを順次通過させて徐々にしごき加工をして、カップ状体の側壁をしごいて側壁を延伸させて側壁高さを高くするとともに壁厚を薄くして有底筒状体W2を形成する。 In the redrawing process by the DI processing apparatus, the cup- shaped body W1 is disposed between the punch sleeve and the redrawing die, the cup holder sleeve and the punch sleeve are advanced, and the cup holder sleeve is cupped on the end face of the redrawing die. The punch sleeve presses the cup- shaped body W1 into the through-hole of the redraw die while pressing the bottom surface of the shaped body W1 to perform the cup pressing operation. As a result, a redrawn cup having a predetermined inner diameter is formed. Subsequently, the redrawn cup is passed through a plurality of ironing dies one after another and gradually ironed, and the side wall of the cup-shaped body is squeezed to extend the side wall to increase the side wall height and wall thickness. To form a bottomed cylindrical body W2.

しごき加工が終了した有底筒状体W2は、パンチスリーブをさらに前方に押し出して底部をボトム成形金型に押圧することにより、底部が、例えばドーム形状に形成される。その後、成形された缶はDI加工装置より取り出される。
この有底筒状体W2は、側壁がしごかれることで冷間加工硬化されて強度が高くなる。
The bottomed cylindrical body W <b> 2 that has been subjected to the ironing process has its bottom formed in a dome shape, for example, by pushing the punch sleeve further forward and pressing the bottom against the bottom molding die. Thereafter, the molded can is taken out from the DI processing apparatus.
The bottomed cylindrical body W2 is cold-worked and hardened by the side walls being squeezed to increase the strength.

次に、有底筒状体W2の開口端部W2aをトリミングする。
DI加工装置によって形成された有底筒状体W2の開口端部W2aは、その缶軸方向に波打つような凹凸形状とされ不均一であるため、有底筒状体W2の開口端部W2aを切断してトリミングすることにより缶軸方向における側壁の高さを全周に亙って均一にする。
このようにして、図3に示すように胴部11と底部12とを有する横断面円形のDI缶10を形成することができる。
Next, the open end W2a of the bottomed cylindrical body W2 is trimmed.
Since the opening end W2a of the bottomed cylindrical body W2 formed by the DI processing apparatus is uneven and has a concavo-convex shape that undulates in the can axis direction, the opening end W2a of the bottomed cylindrical body W2 is By cutting and trimming, the height of the side wall in the can axis direction is made uniform over the entire circumference.
In this way, a DI can 10 having a circular cross section having a body portion 11 and a bottom portion 12 as shown in FIG. 3 can be formed.

前述の製造方法により得られたアルミニウム合金板であるならば、上述のDI缶の製造方法においてしごき加工を受けた場合であってもネック成形性に優れさせることができ、傷や成形不良などの問題を生じないアルミニウム缶を得ることができる。
また、前述の製造方法により得られたアルミニウム合金板であるならば、飲料ボトル缶ボディ用のアルミニウム合金板として異方性とボトルネック成形性に優れさせることができ、傷や成形不良などの問題を生じないアルミニウム合金製ボトル缶を得ることができる。
If it is the aluminum alloy plate obtained by the above-mentioned manufacturing method, even when it is subjected to ironing in the above-mentioned DI can manufacturing method, it can be made excellent in neck formability, such as scratches and molding defects. An aluminum can that does not cause problems can be obtained.
Moreover, if it is the aluminum alloy plate obtained by the above-mentioned manufacturing method, it can be made excellent in anisotropy and bottleneck formability as an aluminum alloy plate for a beverage bottle can body, and problems such as scratches and molding defects Can be obtained.

以下、実施例を示して、本発明に係る薄肉飲料缶用アルミニウム合金板の製造方法について更に詳しく説明するが、本発明は以下の実施例に限定されるものでは無い。
表1に示す組成のアルミニウム合金を溶解し、脱ガスおよび溶湯ろ過後、半連続鋳造により厚さ600mm、幅1100mm、長さ4.5mのスラブに鋳造した。なお、Cr、Zn、Tiについて各0.01と表記した試料はいずれもCr、Zn、Tiをそれぞれ0.01質量%含む試料である。
EXAMPLES Hereinafter, although an Example is shown and it demonstrates further in detail about the manufacturing method of the aluminum alloy plate for thin-walled beverage cans which concerns on this invention, this invention is not limited to a following example.
An aluminum alloy having the composition shown in Table 1 was melted, degassed and filtered with a molten metal, and then cast into a slab having a thickness of 600 mm, a width of 1100 mm, and a length of 4.5 m by semi-continuous casting. In addition, all the samples described as 0.01 about Cr, Zn, and Ti are samples containing 0.01 mass% of Cr, Zn, and Ti, respectively.

次に、前記スラブを面削後、均質化・均熱兼用炉を用いて、保持温度565℃かつ保持時間8時間の均質化処理を施した後、保持温度520℃まで炉中で冷却し、当該保持温度にて保持時間1時間以上の均熱処理を施した。
続いて、図1に示す構成の熱間粗圧延機20を使用して出側材料温度430℃として熱間粗圧延した後、図1に示すシングルリバース式熱間仕上圧延機30を使用して、熱間仕上げ圧延により仕上板厚2mmの板材を得た。
熱間仕上げ圧延の1パス目の出側温度は、表1、表2に示すように375℃、385℃に調節し、2パス目の出側温度は、330℃、345℃に調節し、3パス目の出側温度は、表3、表4に示すように240〜305℃に調節した。
Next, after chamfering the slab, using a homogenization / soaking furnace, a homogenization treatment with a holding temperature of 565 ° C. and a holding time of 8 hours, and then cooled in the furnace to a holding temperature of 520 ° C., Soaking was performed at the holding temperature for a holding time of 1 hour or longer.
Subsequently, hot rough rolling is performed at a delivery-side material temperature of 430 ° C. using the hot rough rolling mill 20 having the configuration shown in FIG. 1, and then using the single reverse hot finish rolling mill 30 shown in FIG. A plate material having a finished plate thickness of 2 mm was obtained by hot finish rolling.
The exit temperature of the first pass of hot finish rolling is adjusted to 375 ° C. and 385 ° C. as shown in Tables 1 and 2, and the exit temperature of the second pass is adjusted to 330 ° C. and 345 ° C. The delivery temperature in the third pass was adjusted to 240 to 305 ° C. as shown in Tables 3 and 4.

次に、熱間圧延後の板材に表3、表4に示すように28〜62%の圧下率で第1冷間圧延し、次いで図2に示す構成の連続焼鈍装置を用いて表3、表4に示す条件で第1焼鈍処理(CALと略記)を施し、続いて表3、表4に示すように5〜25%の圧下率で第2冷間圧延した。
次いで、バッチ式焼鈍炉を用いて表3、表4に記載の保持温度で、常温から保持温度までの平均加熱速度20℃/時間、保持した時間を2時間〜6時間に調整し、最高到達温度から100℃までの平均冷却速度10℃/時間の条件で冷却し、バッチ焼鈍を行った。
次いで、バッチ焼鈍後の板材に表3、表4に示す圧下率で第3冷間圧延(最終冷間圧延)を施し、表3、表4に示す板厚(0.23mm)の飲料缶用アルミニウム合金板を得た。
また、得られた飲料缶用アルミニウム合金板の一部について、更に、バッチ式焼鈍炉を用いて、表3、表4記載の保持温度で、保持した時間、3時間の条件で安定化焼鈍を行った。
Next, as shown in Table 3 and Table 4, first cold rolling is performed on the plate material after hot rolling at 28 to 62%, and then using a continuous annealing apparatus having a configuration shown in FIG. The first annealing treatment (abbreviated as CAL) was performed under the conditions shown in Table 4, followed by second cold rolling at a rolling reduction of 5 to 25% as shown in Tables 3 and 4.
Next, using a batch annealing furnace, the average heating rate of 20 ° C./hour from room temperature to the holding temperature at the holding temperatures shown in Tables 3 and 4 was adjusted to 2 to 6 hours, and the maximum reached. The sample was cooled under the condition of an average cooling rate of 10 ° C./hour from the temperature to 100 ° C., and batch annealing was performed.
Next, the plate material after batch annealing was subjected to third cold rolling (final cold rolling) at the rolling reductions shown in Tables 3 and 4, and for beverage cans having the plate thicknesses (0.23 mm) shown in Tables 3 and 4 An aluminum alloy plate was obtained.
In addition, about a part of the obtained aluminum alloy plate for beverage cans, further using a batch annealing furnace, at the holding temperatures shown in Tables 3 and 4, the stabilization annealing was performed under the conditions of holding time and 3 hours. went.

得られた飲料缶用アルミニウム合金板に210℃×10分の条件で塗装焼き付け相当の熱処理を行い、ベーキング後の耐力(ABYS(AB耐力)、0.2%耐力)を測定した。
なお、上記物性値は、コイルの幅方向及び長手方向各3点以上の位置から採取したサンプルについて計測した。
The obtained aluminum alloy plate for beverage cans was subjected to a heat treatment equivalent to baking by coating at 210 ° C. for 10 minutes, and the yield strength after baking (ABYS (AB yield strength), 0.2% yield strength) was measured.
In addition, the said physical-property value was measured about the sample extract | collected from the position of three or more each in the width direction and longitudinal direction of a coil.

「耳率」
得られた薄肉飲料缶用アルミニウム合金板の異方性評価として、カップ成形における耳率を測定した。
耳率は、素材をエリクセン試験機で深絞り加工したカップの側壁高さから計算した。加工条件はポンチ径;33mm(平頭ポンチ)、絞り比;1.75、しわ押さえ力;3kNとした。このカップの側壁高さをデジタルマイクロメーターで測定し、次式により耳率を算出した。
(山平均高さ−谷平均高さ)÷谷平均高さ×100=耳率(%)
なお、0°および180°の山の平均高さと45°、135°、225°、315°の山の平均高さをそれぞれ求め、いずれか高い方の山を上式の山平均高さとした。また、90°および270°の谷平均高さを求め、上式の谷平均高さとした。
「異方性の評価」
耳率による異方性の評価としてはn=3の平均値で、1.5%未満を「◎」、1.5%以上2.5%未満を「○」、2.5%以上3.5%未満を「△」、3.5%以上を「×」とした。「◎」および「○」を合格レベルと判断した。
"Ear rate"
As anisotropy evaluation of the obtained aluminum alloy plate for thin-walled beverage cans, the ear rate in cup molding was measured.
The ear rate was calculated from the height of the side wall of the cup that was deep-drawn from the Eriksen testing machine. The processing conditions were punch diameter: 33 mm (flat head punch), drawing ratio: 1.75, wrinkle holding force: 3 kN. The side wall height of this cup was measured with a digital micrometer, and the ear rate was calculated by the following formula.
(Mountain average height-average valley height) ÷ average valley height x 100 = ear rate (%)
The average height of the 0 ° and 180 ° peaks and the average height of the 45 °, 135 °, 225 °, and 315 ° peaks were determined, and the higher one was defined as the average height of the above equation. In addition, the average valley heights of 90 ° and 270 ° were obtained and used as the average valley height of the above formula.
"Evaluation of Anisotropy"
As an evaluation of anisotropy by the ear ratio, the average value of n = 3 is less than 1.5% “「 ”, 1.5% or more and less than 2.5%“ ◯ ”, 2.5% or more. Less than 5% was designated as “Δ”, and 3.5% or more was designated as “x”. “◎” and “○” were judged to be acceptable levels.

得られた薄肉飲料缶用アルミニウム合金板のブランク材を用いて、容量350cc飲料缶に成形してネック成形性の評価を実施した。DI成形後の缶の口端部をトリムにより除去し、洗浄乾燥後、缶内外面に塗装印刷を施し、ダイネック成形およびスピンフロー成形を行い、内径およそ55mmの350cc飲料缶のネック形状とした。なお、DI成形の際に、ネック成形加工を受ける部位の肉厚を薄くすることにより、ネック成形加工におけるフランジ先端のしわ発生を促進評価した。24缶の製缶を行い、フランジ先端のしわの程度を目視評価し、しわが認められないものを◎、極軽微なしわが認められるものを○、極軽微なしわが複数認められるものを△、しわが明瞭に認められるものを×とした。また、ネック部で割れが発生した場合も×とした。
各試料におけるベーキング後の耐力、異方性の評価、ネック成形性の評価について以下の表2にまとめて示す。
Using the obtained aluminum alloy plate blank material for thin-walled beverage cans, it was molded into a 350 cc beverage can and evaluated for neck formability. After the DI molding, the mouth end of the can was removed by trim, washed and dried, and coated and printed on the inner and outer surfaces of the can, followed by die neck molding and spin flow molding to form a neck shape of a 350 cc beverage can having an inner diameter of approximately 55 mm. In addition, during the DI molding, the thickness of the portion subjected to the neck molding process was thinned to evaluate the generation of wrinkles at the flange tip in the neck molding process. Make 24 cans, visually evaluate the degree of wrinkles at the flange tip, ◎ for those with no wrinkles, ◯ for those with very slight wrinkles, △ with multiple minor wrinkles What was clearly recognized by me was set as x. Moreover, it was set as x also when the crack generate | occur | produced in the neck part.
Table 2 below summarizes the proof stress after baking, the evaluation of anisotropy, and the evaluation of neck formability in each sample.

Figure 0006611338
Figure 0006611338

Figure 0006611338
Figure 0006611338

Figure 0006611338
Figure 0006611338

Figure 0006611338
Figure 0006611338

表1に示すNo.1〜18の試料は本願で望ましい組成範囲のアルミニウム合金を用い、均質化処理条件(温度、時間)、均熱条件(温度、時間)、熱間粗圧延温度、熱間圧延(HOT仕上)の1パス、2パス、3パスの温度条件、仕上板厚、第1冷間圧延加工率(%)、連続焼鈍(CAL)条件(温度、時間)、第2冷間圧延加工率(%)、バッチ焼鈍(バッチIA)条件(温度、時間)、第3冷間圧延加工率(%)、最終板厚をいずれも望ましい範囲とした試料であるが、望ましいAB耐力(240〜315MPa)、良好な耳率(異方性)と良好なネック成形性を有するアルミニウム合金板であることがわかった。   Samples Nos. 1 to 18 shown in Table 1 use aluminum alloys having a desirable composition range in the present application, homogenization treatment conditions (temperature, time), soaking conditions (temperature, time), hot rough rolling temperature, hot Rolling (HOT finishing) 1 pass, 2 pass, 3 pass temperature conditions, finishing plate thickness, first cold rolling process rate (%), continuous annealing (CAL) conditions (temperature, time), second cold rolling Although it is a sample in which the processing rate (%), the batch annealing (batch IA) conditions (temperature, time), the third cold rolling processing rate (%), and the final sheet thickness are all in desired ranges, the desired AB proof stress (240 It was found to be an aluminum alloy plate having a good ear rate (anisotropy) and a good neck formability.

表1、表3に示すNo.19の試料は熱間仕上圧延の1パス目の出側温度を高くしすぎた試料、No.20の試料は2パス目の出側温度を高くしすぎた試料であり、いずれの試料もネック成形性に問題を生じた。No.21の試料は3パス目の出側温度を高くしすぎた試料であり、異方性とネック成形性の両方に問題を生じた。No.22の試料は3パス目の出側温度を低くしすぎた試料であり、ネック成形性には問題を生じなかったが、異方性の悪化と第1冷間圧延時の生産性に問題が生じた。
No.23の試料は第1冷間圧延の圧下率を低くしすぎた試料、No.24の試料は第1冷間圧延の圧下率を高くしすぎるとともに第3冷間圧延の圧下率を低くしすぎた試料であるが、いずれも異方性とネック成形性の両方に問題を生じた。
No.25の試料は第2冷間圧延の圧下率を高くしすぎた試料、No.26の試料は連続焼鈍の温度を低くしすぎた試料、No.27の試料は連続焼鈍の温度を高くしすぎた試料であるが、いずれも異方性とネック成形性の両方に問題を生じた。
No.28の試料はバッチ焼鈍の温度を低くしすぎた試料であるが、異方性とネック成形性の両方に問題を生じ、No.29の試料はバッチ焼鈍の温度を高くしすぎた試料であるが、異方性に問題は生じなかったが、ネック成形性に問題を生じた。
The samples of No. 19 shown in Tables 1 and 3 were samples in which the exit temperature of the first pass of hot finish rolling was excessively high, and the samples of No. 20 were excessively increased in the exit temperature of the second pass. Each sample had a problem in neck formability. The sample of No. 21 was a sample in which the outlet temperature in the third pass was excessively raised, causing problems in both anisotropy and neck formability. The sample of No. 22 was a sample in which the outlet temperature in the third pass was made too low and did not cause a problem in neck formability, but the anisotropy deteriorated and the productivity during the first cold rolling was reduced. There was a problem.
The No. 23 sample was a sample in which the first cold rolling reduction ratio was too low, and the No. 24 sample was a first cold rolling reduction ratio that was too high and the third cold rolling reduction ratio was low. All of these samples were problematic in both anisotropy and neck formability.
The sample No. 25 was a sample in which the reduction ratio of the second cold rolling was made too high, the sample No. 26 was a sample in which the temperature of continuous annealing was made too low, and the sample of No. 27 was made high in the temperature of continuous annealing. All of these samples were problematic in both anisotropy and neck formability.
The sample No. 28 is a sample in which the batch annealing temperature is set too low, but both the anisotropy and neck formability are problematic, and the sample No. 29 is a sample in which the batch annealing temperature is set too high. However, there was no problem with anisotropy, but there was a problem with neck formability.

No.30の試料はSi含有量が多すぎる試料、No.31の試料はFe含有量が少なすぎる試料、No.32の試料はFe含有量が多すぎる試料であるが、いずれの試料もネック成形性に問題を生じた。また、No.31の試料はネック成形時にダイスに対し焼き付きを生じた。
No.33の試料はCu含有量が少なすぎる試料、No.34の試料はCu含有量が多すぎる試料、No.35の試料はMn含有量が少なすぎる試料であるがネック成形性に問題が生じ、No.36の試料はMn含有量が多すぎる試料であるが、異方性、ネック成形性に問題を生じた。
No.37の試料はMg含有量が少なすぎる試料であるが、ネック成形性に問題を生じ、No.38の試料はMg含有量が多すぎる試料であるが、異方性とネック成形性の両方に問題を生じた。
No.39の試料は安定化焼鈍の温度を高くしすぎた試料であるが各種合金成分が範囲内であっても低い場合、AB耐力が下限以下となった。
The sample No. 30 is a sample with too much Si content, the sample No. 31 is a sample with too little Fe content, and the sample No. 32 is a sample with too much Fe content. There was a problem with moldability. The No. 31 sample was seized against the die during neck molding.
The sample No. 33 is a sample with too little Cu content, the sample No. 34 is a sample with too much Cu content, and the sample No. 35 is a sample with too little Mn content, but there is a problem in neck formability. As a result, the sample No. 36 has a too high Mn content, but has a problem in anisotropy and neck formability.
The sample of No. 37 is a sample with too little Mg content, but it causes a problem in neck formability, and the sample of No. 38 is a sample with too much Mg content. Both caused problems.
The sample of No. 39 was a sample in which the temperature of the stabilization annealing was increased too much, but when the various alloy components were within the range, the AB yield strength was below the lower limit.

4、6…搬送路、5、7…板材、10…DI缶、11…胴部、12…底部、12a…ドーム部、12b…接地部、12c…環状凸部、13…頸部、14…フランジ部、20…熱間粗圧延機、21、22…ワークロール、23、24…バックアップロール、30…熱間仕上圧延機、31、32…ワークロール、33、34…バックアップロール、35、36…送出巻取装置、40…連続焼鈍装置、41…供給ロール、42…アルミニウム合金の板材、43、46…緩衝装置、44…炉本体、47…巻取ロール、W…板材(ブランク)、W1…カップ状体、W2…有底筒状体


4, 6 ... conveying path, 5, 7 ... plate material, 10 ... DI can, 11 ... trunk, 12 ... bottom part , 12a ... dome part, 12b ... grounding part, 12c ... annular convex part, 13 ... neck part, 14 ... Flange part, 20 ... hot rough rolling mill, 21, 22 ... work roll, 23, 24 ... backup roll, 30 ... hot finish rolling mill, 31, 32 ... work roll, 33, 34 ... backup roll, 35, 36 DESCRIPTION OF REFERENCE SYMBOLS : Delivery winding device , 40 ... Continuous annealing device, 41 ... Supply roll, 42 ... Aluminum alloy plate material, 43, 46 ... Shock absorber, 44 ... Furnace body, 47 ... Winding roll, W ... Plate material (blank), W1 ... cup-like body, W2 ... bottomed tubular body .


Claims (4)

質量%で、Si:0.35%以下、Fe:0.35〜0.55%、Cu:0.15〜0.48%、Mn:0.8〜1.15%、Mg:0.60〜1.60%を含有し、残部がAl及び不可避不純物からなる組成のアルミニウム合金を溶製し、半連続鋳造して得た鋳塊を均質化処理および均熱処理を経て出側材料温度を400〜460℃とする熱間粗圧延により熱間粗圧延板とした後、1パス目出側温度を380℃以下、2パス目出側温度を340℃以下、3パス目出側仕上げ温度を240〜300℃とする熱間仕上げ圧延により板厚2〜4mmの熱間仕上げ圧延板を得た後、
圧下率30〜59%で第1冷間圧延を行い、次いで連続焼鈍装置を用いて保持温度300〜400℃、保持時間5〜30秒の条件で第1中間焼鈍を行い、次いで圧下率5〜20%の第2冷間圧延を行い、その後、保持温度320〜380℃、保持時間2〜6時間のバッチ焼鈍を行い、続いて圧下率70〜90%で板厚0.200〜0.280mmとなるまで最終冷間圧延を行って塗装焼付け後の耐力230〜320N/mmのアルミニウム合金板を得ることを特徴とする成形性および異方性に優れる薄肉飲料缶用アルミニウム合金板の製造方法。
In mass%, Si: 0.35% or less, Fe: 0.35-0.55%, Cu: 0.15-0.48%, Mn: 0.8-1.15%, Mg: 0.60 An ingot obtained by melting an aluminum alloy containing ˜1.60%, the balance consisting of Al and inevitable impurities, and semi-continuously casting is subjected to homogenization treatment and soaking treatment, and the material temperature on the delivery side is set to 400 After forming a hot rough rolled sheet by hot rough rolling at ˜460 ° C., the first pass outlet side temperature is 380 ° C. or lower, the second pass outlet side temperature is 340 ° C. or lower, and the third pass outlet side finish temperature is 240 ° C. After obtaining a hot finish rolled sheet having a thickness of 2 to 4 mm by hot finish rolling to ~ 300 ° C,
The first cold rolling is performed at a rolling reduction of 30 to 59%, and then the first intermediate annealing is performed using a continuous annealing apparatus under the conditions of a holding temperature of 300 to 400 ° C. and a holding time of 5 to 30 seconds, and then a rolling reduction of 5 to 5%. Second cold rolling of 20% is performed, and then batch annealing is performed at a holding temperature of 320 to 380 ° C. and a holding time of 2 to 6 hours, followed by a reduction ratio of 70 to 90% and a plate thickness of 0.200 to 0.280 mm. A method for producing an aluminum alloy plate for a thin-walled beverage can excellent in formability and anisotropy, characterized in that an aluminum alloy plate having a proof stress of 230 to 320 N / mm 2 after final baking is performed until final cold rolling .
前記均質化処理を555〜605℃の温度範囲で4〜10時間行い、前記均熱処理を500〜555℃の温度範囲で1時間以上行うことを特徴とする請求項1に記載の成形性および異方性に優れる薄肉飲料缶用アルミニウム合金板の製造方法。   The formability and the difference according to claim 1, wherein the homogenization treatment is performed at a temperature range of 555 to 605 ° C for 4 to 10 hours, and the soaking is performed at a temperature range of 500 to 555 ° C for 1 hour or more. A method for producing an aluminum alloy plate for thin-walled beverage cans with excellent directivity. 前記組成に対し、更に、Cr:0.05%以下、Zn:0.25%以下、Ti:0.10%以下のうち、少なくとも1種または2種以上を含有してなるアルミニウム合金を用いることを特徴とする請求項1または請求項2に記載の成形性および異方性に優れる薄肉飲料缶用アルミニウム合金板の製造方法。   In addition to the above composition, an aluminum alloy containing at least one or more of Cr: 0.05% or less, Zn: 0.25% or less, Ti: 0.10% or less is used. The manufacturing method of the aluminum alloy plate for thin-walled beverage cans excellent in the moldability and anisotropy of Claim 1 or Claim 2 characterized by these. 最終冷間圧延後、保持温度120〜140℃、保持時間2〜4時間の条件で安定化焼鈍を行うことを特徴とする請求項1〜請求項3のいずれか一項に記載の成形性および異方性に優れる薄肉飲料缶用アルミニウム合金板の製造方法。   The formability according to any one of claims 1 to 3, wherein after the final cold rolling, stabilization annealing is performed under conditions of a holding temperature of 120 to 140 ° C and a holding time of 2 to 4 hours. A method for producing an aluminum alloy plate for thin-walled beverage cans having excellent anisotropy.
JP2016064167A 2016-03-28 2016-03-28 Method for producing aluminum alloy plate for thin-walled beverage can excellent in formability and anisotropy Expired - Fee Related JP6611338B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016064167A JP6611338B2 (en) 2016-03-28 2016-03-28 Method for producing aluminum alloy plate for thin-walled beverage can excellent in formability and anisotropy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016064167A JP6611338B2 (en) 2016-03-28 2016-03-28 Method for producing aluminum alloy plate for thin-walled beverage can excellent in formability and anisotropy

Publications (2)

Publication Number Publication Date
JP2017179402A JP2017179402A (en) 2017-10-05
JP6611338B2 true JP6611338B2 (en) 2019-11-27

Family

ID=60006652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016064167A Expired - Fee Related JP6611338B2 (en) 2016-03-28 2016-03-28 Method for producing aluminum alloy plate for thin-walled beverage can excellent in formability and anisotropy

Country Status (1)

Country Link
JP (1) JP6611338B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107794470B (en) * 2017-11-18 2019-04-05 中铝瑞闽股份有限公司 After a kind of anodization without heterochromatic defect 5 be aluminium plate cold rolling process
CN113088731A (en) * 2021-04-13 2021-07-09 内蒙古联晟新能源材料有限公司 Production process of aluminum alloy brazing foil blank

Also Published As

Publication number Publication date
JP2017179402A (en) 2017-10-05

Similar Documents

Publication Publication Date Title
JP5818457B2 (en) Method for producing aluminum alloy plate for can body with low ear rate and method for producing aluminum alloy plate for bottle-type beverage can with low ear rate
JP6850635B2 (en) A method for manufacturing an aluminum alloy plate for beverage cans, which has excellent bottom moldability and bottom strength.
JP6336434B2 (en) Aluminum alloy plate for can body and manufacturing method thereof
JP6718701B2 (en) Method for producing aluminum alloy sheet for beverage can body excellent in anisotropy and neck formability, and for bottle can body excellent in anisotropy and bottle neck formability
JPH11181558A (en) Production of aluminum alloy sheet for low and positive pressure can body
JP2009235477A (en) Aluminum alloy sheet for drink can barrel, and method for producing the same
JP6611338B2 (en) Method for producing aluminum alloy plate for thin-walled beverage can excellent in formability and anisotropy
JP2006291326A (en) Aluminum alloy sheet for drink can barrel, and method for producing the same
CN111108223B (en) Aluminum alloy plate for bottle and can and method for producing same
JP3600022B2 (en) Manufacturing method of aluminum base alloy sheet for deep drawing
JP6684568B2 (en) Method for producing aluminum alloy plate for beverage can body or beverage bottle can body excellent in anisotropy and neck formability
JP2016020531A (en) Method for manufacturing aluminum alloy sheet for can body excellent in di moldability, neck moldability and ear ratio
JP4011293B2 (en) Method for producing aluminum alloy sheet material for can body having excellent resistance to torsion
JP3868839B2 (en) Method for producing aluminum alloy plate for bottle-type beverage can
JP6912886B2 (en) Aluminum alloy plate for beverage can body and its manufacturing method
JP3550259B2 (en) Aluminum alloy plate for DI can body excellent in high-speed ironing formability and method for producing the same
JP4460406B2 (en) Aluminum alloy plate for bottle can and manufacturing method thereof
EP3875629A1 (en) Method and installation for producing aluminum can sheet
JP6435268B2 (en) Aluminum alloy plate for can end and manufacturing method thereof
JP6678431B2 (en) Aluminum alloy plate for cap and its manufacturing method
JP3682683B2 (en) Method for producing steel plate for two-piece can with excellent in-plane anisotropic uniformity in coil
JP5882034B2 (en) Aluminum alloy plate for cap and method for producing the same
JP2007051307A (en) Aluminum alloy sheet for can body having excellent bottom wrinkle property, and its manufacturing method
JP2003306750A (en) Method for manufacturing aluminum alloy sheet for bottle-shaped beverage can
JP2024085402A (en) Aluminum alloy sheet for aluminum bottle can bodies and method for producing the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170324

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181116

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191028

R150 Certificate of patent or registration of utility model

Ref document number: 6611338

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees