JPH06272000A - Production of al alloy sheet excellent in formability and baking hardenability - Google Patents

Production of al alloy sheet excellent in formability and baking hardenability

Info

Publication number
JPH06272000A
JPH06272000A JP5081298A JP8129893A JPH06272000A JP H06272000 A JPH06272000 A JP H06272000A JP 5081298 A JP5081298 A JP 5081298A JP 8129893 A JP8129893 A JP 8129893A JP H06272000 A JPH06272000 A JP H06272000A
Authority
JP
Japan
Prior art keywords
temperature
treatment
range
cooling
formability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5081298A
Other languages
Japanese (ja)
Other versions
JP2626958B2 (en
Inventor
Iwao Shu
岩 朱
Mamoru Matsuo
守 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sky Aluminium Co Ltd
Original Assignee
Sky Aluminium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sky Aluminium Co Ltd filed Critical Sky Aluminium Co Ltd
Priority to JP5081298A priority Critical patent/JP2626958B2/en
Publication of JPH06272000A publication Critical patent/JPH06272000A/en
Application granted granted Critical
Publication of JP2626958B2 publication Critical patent/JP2626958B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PURPOSE:To provide a method for producing an Al alloy sheet for forming used as body sheet of automobile, etc., excellent in formability, baking hardenability and having low secular change at room temp. CONSTITUTION:After the Al alloy ingot which contains 0.3-1.5% Mg and 0.5-2.5% Si as essential components, also containing a small amount of Cu, Zn, Mn, Zr, V, Fe, and Ti as required is subjected to homogenizing treatment, hot rolling and cold rolling, the ingot is subjected to solution treatment at >=480 deg.C, cooling to 150-300 deg.C by >=100 deg.C/min, holding treatment at the same temp. for 1-600sec and cooling to <=140 deg.C by 100 deg.C/min. Otherwise, after the same solution heat treatment, it is cooled to <=150 deg.C by 100 deg.C/min and, within 72hr, is reheated to 150-300 deg.C within 600sec, and then cooled to <=140 deg.C by >=100 deg.C/min, successively subjecting to the stabilizing heat treatment of 50-140 deg.C for 0.5-50hr within 72hr as the final heat treatment.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、自動車のボディシー
トや部品、各種機械器具、家電部品等の素材として、成
形加工および塗装焼付を施して使用されるアルミニウム
合金板の製造方法に関するものであり、特に成形性が良
好であるとともに、塗装焼付後の強度が高く、かつ室温
での経時変化が少ない成形加工用アルミニウム合金板の
製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an aluminum alloy sheet which is used as a raw material for automobile body sheets and parts, various machines and appliances, home electric appliances, etc. after being subjected to forming processing and paint baking. The present invention relates to a method for producing an aluminum alloy sheet for forming, which has particularly good formability, has high strength after coating baking, and has little change with time at room temperature.

【0002】[0002]

【従来の技術】自動車のボディシートには、従来は主と
して冷延鋼板を使用することが多かったが、最近では車
体軽量化の観点から、アルミニウム合金圧延板を使用す
ることが進められている。自動車のボディシートはプレ
ス加工を施して使用するところから、成形加工性が優れ
ていること、また成形加工時におけるリューダースマー
クが発生しないことが要求され、また高強度を有するこ
とも必須であって、特に塗装焼付を施すことから、塗装
焼付後に高強度が得られることが要求される。
2. Description of the Related Art In the past, cold-rolled steel sheets were mainly used for automobile body sheets, but recently, from the viewpoint of weight reduction of vehicle bodies, use of rolled aluminum alloy sheets has been promoted. Since automobile body sheets are used after being pressed, it is required that they have excellent formability, that Luders marks do not occur during forming, and that they also have high strength. In particular, since coating baking is performed, it is required that high strength can be obtained after coating baking.

【0003】従来このような自動車用ボディシート向け
のアルミニウム合金としては、時効性を有するJIS
6000番系合金、すなわちAl−Mg−Si系合金が
主として使用されている。この時効性Al−Mg−Si
系合金では、塗装焼付前の成形加工時においては比較的
強度が低く、成形性が優れており、一方塗装焼付時の加
熱によって時効されて塗装焼付後の強度が高くなる利点
を有するほか、リューダースマークが発生しない等の利
点を有する。
Conventionally, as an aluminum alloy for such an automobile body sheet, JIS having aging property is used.
The 6000 series alloy, that is, the Al-Mg-Si alloy is mainly used. This aging Al-Mg-Si
The type alloys have relatively low strength during forming before coating baking and have excellent formability, while they have the advantage of being aged by heating during coating baking and increasing strength after coating baking. It has the advantage that no dozen marks are generated.

【0004】ところで塗装焼付時における時効硬化を期
待したAl−Mg−Si合金板の製造方法としては、鋳
塊を均質化熱処理した後、熱間圧延および冷間圧延を行
なって所定の板厚とし、かつ必要に応じて熱間圧延と冷
間圧延との間あるいは冷間圧延の中途において中間焼鈍
を行ない、冷間圧延後に溶体化処理を行なって焼入れる
のが通常である。しかしながらこのような従来の一般的
な製造方法では、最近の自動車用ボディシートに要求さ
れる特性を充分に満足させることは困難である。
By the way, as a method for producing an Al-Mg-Si alloy sheet, which is expected to age harden during baking, the ingot is homogenized and heat-treated, and then hot-rolled and cold-rolled to a predetermined sheet thickness. Further, if necessary, intermediate annealing is performed between hot rolling and cold rolling or in the middle of cold rolling, and it is usual to perform solution treatment after cold rolling and quench. However, it is difficult for such a conventional general manufacturing method to sufficiently satisfy the characteristics required for a recent automobile body sheet.

【0005】すなわち、最近ではコストの一層の低減の
ためにさらに薄肉化することが強く要求されており、そ
のため薄肉でも充分な強度が得られるように、一層の高
強度化が求められているが、この点で従来の一般的な製
造方法によって得られたAl−Mg−Si系合金板では
不充分であった。
That is, in recent years, there has been a strong demand for further thinning in order to further reduce the cost, and therefore higher strength is required so that sufficient strength can be obtained even with thin thickness. However, in this respect, the Al-Mg-Si alloy plate obtained by the conventional general manufacturing method is insufficient.

【0006】また塗装焼付については、省エネルギおよ
び生産性の向上、さらには高温に曝されることが好まし
くない樹脂等の材料との併用などの点から、従来よりも
焼付温度を低温化し、また焼付時間も短時間化する傾向
が強まっている。そのため従来の一般的な製法により得
られたAl−Mg−Si系合金板では、塗装焼付時の硬
化(焼付硬化)が不足し、塗装焼付後に充分な高強度が
得難くなる問題が生じていた。
Regarding coating baking, in order to save energy and improve productivity, and in combination with a material such as a resin which is not preferably exposed to a high temperature, the baking temperature is made lower than before, and There is an increasing tendency to shorten the baking time. Therefore, in the Al-Mg-Si alloy plate obtained by the conventional general manufacturing method, the curing at the time of baking the coating (baking hardening) is insufficient, and there is a problem that it becomes difficult to obtain sufficient high strength after baking the coating. .

【0007】そこで最近ではAl−Mg−Si系合金に
ついて、板の製造方法に検討を加えて、前述のような問
題を解決することが試みられており、その代表的な例と
して、特開平4−210456号公報で提案されている
方法がある。この提案の方法は、溶体化処理後の焼入れ
のための冷却過程中途において50〜130℃の温度域
で1〜48時間の保持を行ない、さらにその後改めて1
40〜180℃の範囲内の温度で3〜10分間の低温加
熱処理を行なうものである。
Therefore, recently, with respect to Al-Mg-Si alloys, it has been attempted to solve the above-mentioned problems by studying a method of manufacturing a plate. There is a method proposed in JP-A-210456. This proposed method holds the material in the temperature range of 50 to 130 ° C. for 1 to 48 hours in the middle of the cooling process for quenching after the solution treatment, and then again 1
The low temperature heat treatment is performed for 3 to 10 minutes at a temperature in the range of 40 to 180 ° C.

【0008】[0008]

【課題を解決するための手段】前述の特開平4−210
456号の提案の方法によれば、従来の一般的なAl−
Mg−Si系合金板製造方法と比較すれば、素材の高強
度化および塗装焼付後の高強度化についてある程度有効
と考えられるが、満足できる程度には至っていないのが
実情である。
[Means for Solving the Problems] Japanese Patent Laid-Open No. 4-210 mentioned above.
According to the method proposed by No. 456, conventional general Al-
Compared with the Mg-Si alloy plate manufacturing method, it is considered to be effective to some extent in increasing the strength of the raw material and the strength after baking, but in reality, it has not reached a satisfactory level.

【0009】また塗装焼付時において大きな強度上昇を
図るべく、時効硬化性を強めれば、板の製造後、長期間
放置してから成形加工、塗装焼付に供した場合、成形加
工前の放置期間中に自然時効(室温時効)が進行して板
が硬化し、成形性が悪化してしまう問題がある。前述の
提案の方法ではその点について充分な考慮がなされてい
ないのが実情である。
In addition, if age hardening is strengthened in order to achieve a large increase in strength during coating baking, if the plate is left for a long period of time after being manufactured and then subjected to molding and coating baking, it is left for a period before molding. There is a problem that natural aging (room temperature aging) progresses and the plate hardens and the formability deteriorates. In fact, the above-mentioned proposed method does not sufficiently consider this point.

【0010】さらに前述の提案の方法では、最終低温加
熱処理を140〜180℃×3〜10分としており、こ
の場合バッチ式の焼鈍を適用しようとすれば保持時間が
短過ぎ、一方連続方式の焼鈍を適用しようとすれば逆に
保持時間が長過ぎ、いずれの場合も生産しにくいという
問題もある。
Further, in the method proposed above, the final low-temperature heat treatment is carried out at 140 to 180 ° C. for 3 to 10 minutes. In this case, if a batch type annealing is applied, the holding time is too short, while the continuous type is used. On the contrary, if annealing is applied, the holding time is too long, and in either case, there is a problem that production is difficult.

【0011】この発明は以上の事情を背景としてなされ
たもので、良好な成形加工性を有すると同時に、焼付硬
化性が優れていて、塗装焼付時における強度上昇が高
く、しかも板製造後の室温での経時的な変化が少なく、
長期間放置した場合でも自然時効による硬化に起因する
成形性の低下が少ない成形加工用アルミニウム合金板の
製造方法を提供することを目的とするもてのある。
The present invention has been made in view of the above circumstances, and it has good moldability and at the same time has excellent bake hardenability, resulting in a high increase in strength during coating baking, and at room temperature after plate production. Little change over time in
It is an object of the present invention to provide a method for producing an aluminum alloy plate for forming, in which there is little deterioration in formability due to hardening due to natural aging even when left for a long period of time.

【0012】[0012]

【課題を解決するための手段】前述のような課題を解決
するべく本発明者等が実験・検討を重ねた結果、Al−
Mg−Si系合金についてその成分組成を適切に選択す
ると同時に、板製造プロセス中において、溶体化処理後
に適切な熱処理を行なうことによって、前述の課題を解
決し得ることを見出し、この発明をなすに至った。
Means for Solving the Problems As a result of repeated experiments and studies by the present inventors in order to solve the above problems, Al-
It has been found that the above-mentioned problems can be solved by appropriately selecting the component composition of the Mg-Si alloy and at the same time performing an appropriate heat treatment after the solution treatment during the plate manufacturing process. I arrived.

【0013】具体的には、請求項1の発明の成形加工用
アルミニウム合金板の製造方法は、Mg0.3〜1.5
%、Si0.5〜2.5%を含有し、さらに必要に応じ
てCu0.03〜1.2%、Zn0.03〜1.5%、
Mn0.03〜0.4%、Cr0.03〜0.4%、Z
r0.03〜0.4%、V0.03〜0.4%、Fe
0.03〜0.5%、Ti0.005〜0.2%のうち
から選ばれた1種または2種以上を含有し、残部がAl
および不可避的不純物よりなる合金を素材とし、鋳塊に
均質化処理を施した後、熱間圧延および冷間圧延を行な
って所要の板厚の圧延板とし、その圧延板に対し、48
0℃以上の温度で溶体化処理を行なってから100℃/
min 以上の冷却速度で150〜300℃の範囲内の温度
まで冷却し、続いてその150〜300℃の範囲内の温
度で1〜600秒保持する熱処理を行なった後、100
℃/min 以上の冷却速度で140℃以下の温度まで冷却
し、その後72時間以内に、50〜140℃の範囲内の
温度で0.5〜50時間保持する安定化処理を行なうこ
とを特徴とするものである。
Specifically, the method for producing an aluminum alloy sheet for forming according to the first aspect of the present invention provides Mg0.3 to 1.5.
%, Si 0.5 to 2.5%, and if necessary, Cu 0.03 to 1.2%, Zn 0.03 to 1.5%,
Mn 0.03-0.4%, Cr 0.03-0.4%, Z
r0.03-0.4%, V0.03-0.4%, Fe
0.03 to 0.5%, Ti 0.005 to 0.2%, and one or more selected from the rest, with the balance being Al.
And an alloy consisting of unavoidable impurities as a raw material, the ingot is homogenized, and then hot-rolled and cold-rolled to a rolled plate having a required thickness.
100 ℃ / after solution treatment at a temperature of 0 ℃ or higher
After cooling at a cooling rate of min or more to a temperature in the range of 150 to 300 ° C. and then performing a heat treatment of holding the temperature in the range of 150 to 300 ° C. for 1 to 600 seconds, 100
It is characterized by performing a stabilization treatment of cooling to a temperature of 140 ° C. or lower at a cooling rate of not less than C / min and holding the temperature within a range of 50 to 140 ° C. for 0.5 to 50 hours within 72 hours after that. To do.

【0014】また請求項2の発明の成形加工用アルミニ
ウム合金板の製造方法は、請求項1と同様な成分組成の
合金を素材とし、480℃以上の温度での溶体化処理ま
でを請求項1と同様なプロセスで行ない、溶体化処理後
100℃/min 以上の冷却速度で150℃以下の温度域
まで冷却し、続いて72時間以内に、150〜300℃
の範囲内の温度に加熱して保持なしもしくは600秒以
内の保持の熱処理を行なった後、100℃/min 以上の
冷却速度で140℃以下の温度まで冷却し、その後72
時間以内に、請求項1の発明と同様な安定化処理を行な
うものである。
The method of manufacturing an aluminum alloy sheet for forming according to the second aspect of the present invention uses the alloy having the same composition as that of the first aspect as a raw material, and performs the solution treatment at a temperature of 480 ° C. or higher. After the solution heat treatment, the solution is cooled to a temperature range of 150 ° C. or lower at a cooling rate of 100 ° C./min or higher, and then within 72 hours, 150 to 300 ° C.
After heating to a temperature within the range of no holding or a heat treatment of holding for 600 seconds or less, it is cooled to a temperature of 140 ° C or less at a cooling rate of 100 ° C / min or more, and then 72
The stabilization treatment similar to that of the invention of claim 1 is performed within the time.

【0015】[0015]

【作用】先ずこの発明の製造方法で用いる合金の成分組
成限定理由について説明する。
First, the reasons for limiting the component composition of the alloy used in the manufacturing method of the present invention will be described.

【0016】Mg:Mgはこの発明で対象としている系
の合金で基本となる合金元素であって、Siと共同して
強度向上に寄与する。Mg量が0.3%未満では塗装焼
付時に析出硬化によって強度向上に寄与するMg2 Si
の生成量が少なくなるため、充分な強度が得られず、一
方1.5%を越えれば成形性が低下するから、Mg量は
0.3〜1.5%の範囲内とした。
Mg: Mg is a basic alloying element in the alloy of the system of the present invention, and contributes to the strength improvement in cooperation with Si. When the amount of Mg is less than 0.3%, Mg 2 Si contributes to the improvement of strength by precipitation hardening during coating baking.
Since the amount of Mg produced is small, sufficient strength cannot be obtained. On the other hand, if it exceeds 1.5%, the formability deteriorates. Therefore, the amount of Mg is set within the range of 0.3 to 1.5%.

【0017】Si:Siもこの発明の系の合金で基本と
なる合金元素であって、Mgと共同して強度向上に寄与
する。またSiは、鋳造時に金属Siの晶出物として生
成され、その金属Si粒子の周囲が加工によって変形さ
れて、溶体化処理の際に再結晶核の生成サイトとなるた
め、結晶粒の微細化にも寄与する。Siが0.5%未満
では上記の効果が充分に得られず、一方2.5%を越え
れば粗大Siが生じて合金の靭性低下を招く。したがっ
てSiは0.5〜2.5%の範囲内とした。
Si: Si is also an alloying element which is a basic component of the alloy of the present invention, and contributes to the strength improvement together with Mg. Further, Si is generated as a crystallized product of metallic Si during casting, and the periphery of the metallic Si particles is deformed by processing to become a recrystallization nucleus generation site during solution treatment. Also contribute to. If Si is less than 0.5%, the above effect cannot be sufficiently obtained, while if it exceeds 2.5%, coarse Si is generated and the toughness of the alloy is deteriorated. Therefore, Si is set within the range of 0.5 to 2.5%.

【0018】Cu,Zn,Mn,Cr,Zr,V,T
i,Fe:これらは絶対的な必須元素ではないが、強度
向上や結晶粒微細化のために必要に応じて1種または2
種以上添加される。これらのうち、Cuは強度向上に有
効な元素であるが、Cu量が0.03%未満ではその効
果が充分に得られず、一方1.2%を越えれば耐食性が
低下するから、Cuを添加する場合のCu量は0.03
〜1.2%の範囲内とした。またZnは合金の時効性の
向上を通じて強度向上に寄与する元素であり、その含有
量が0.03%未満では上記の効果が不充分であり、一
方1.5%を越えれば成形性および耐食性が低下するか
ら、Znを添加する場合のZn量は0.03〜1.5%
の範囲内とした。さらにMn,Cr,Zr,Vはいずれ
も強度向上と結晶粒の微細化および組織の安定化に効果
がある元素であり、いずれも含有量が0.03%未満で
は上記の効果が充分に得られず、一方それぞれ0.4%
を越えれば、上記の効果が飽和するばかりでなく、巨大
金属間化合物が生成されて成形性に悪影響を及ぼすおそ
れがあり、したがってMn,Cr,Zr,Vはいずれも
0.03〜0.4%の範囲内とした。またTiも強度向
上と鋳塊組織の微細化に有効な元素であり、その含有量
が0.005%未満では充分な効果が得られず、一方
0.2%を越えればTi添加の効果が飽和するばかりで
なく、巨大晶出物が生じるおそれがあるから、Tiは
0.005〜0.2%の範囲内とした。そしてまたFe
も強度向上と結晶粒微細化に有効な元素であり、その含
有量が0.03%未満では充分な効果が得られず、一方
0.5%を越えれば成形性が低下するおそれがあり、し
たがってFeは0.03〜0.5%の範囲内とした。な
お0.03%未満のFeは、通常のアルミ地金を用いれ
ば不可避的に含有される。なおこれらのCu,Zn,M
n,Cr,Zr,V,Ti,Feの範囲は、積極的な添
加元素としてこれらの元素を含む場合について示したも
のであり、いずれもその下限値よりも少ない量を不純物
として含有していることは特に支障ない。
Cu, Zn, Mn, Cr, Zr, V, T
i, Fe: These are not absolutely essential elements, but one or two, if necessary, for improving strength and refining crystal grains.
More than one seed is added. Of these, Cu is an element effective for improving strength, but if the Cu content is less than 0.03%, its effect is not sufficiently obtained, while if it exceeds 1.2%, the corrosion resistance decreases, so Cu is not added. Cu amount when added is 0.03
Within the range of 1.2%. Zn is an element that contributes to the strength improvement by improving the aging property of the alloy. If the content is less than 0.03%, the above effect is insufficient, while if it exceeds 1.5%, the formability and corrosion resistance are increased. , The Zn content in the case of adding Zn is 0.03 to 1.5%.
Within the range of. Further, Mn, Cr, Zr, and V are all elements effective in improving strength, refining crystal grains, and stabilizing the structure. If the content is less than 0.03%, the above effect is sufficiently obtained. Not available, while 0.4% each
If it exceeds, not only the above effect is saturated, but also a huge intermetallic compound may be generated to adversely affect the formability, so that Mn, Cr, Zr, and V are all 0.03 to 0.4. Within the range of%. Further, Ti is also an element effective for improving strength and refining the ingot structure, and if the content is less than 0.005%, a sufficient effect cannot be obtained, while if it exceeds 0.2%, the effect of Ti addition is Not only is it saturated, but giant crystallized substances may occur, so the Ti content was made 0.005 to 0.2%. And again Fe
Is an element effective for improving strength and refining crystal grains, and if its content is less than 0.03%, a sufficient effect cannot be obtained, while if it exceeds 0.5%, the formability may deteriorate. Therefore, Fe is set within the range of 0.03 to 0.5%. Fe of less than 0.03% is inevitably contained by using an ordinary aluminum base metal. These Cu, Zn, M
The ranges of n, Cr, Zr, V, Ti and Fe are shown for the case where these elements are included as positive additive elements, and all contain less than the lower limit value as impurities. There is no particular problem.

【0019】以上の各元素のほかは、基本的にはAlお
よび不可避的不純物とすれば良い。但し、一般にMgを
含有する系の合金においては溶湯の酸化防止のために微
量のBeを添加することがあり、この発明の合金の場合
も0.0001〜0.01%程度のBeの添加は許容さ
れる。また一般に結晶粒微細化のために前述のTiと同
時にBを添加することもあり、この発明の場合もTiと
ともに500ppm 以下のBを添加することは許容され
る。
In addition to the above elements, basically Al and inevitable impurities may be used. However, in general, a small amount of Be may be added to the alloy containing Mg to prevent the oxidation of the molten metal. In the case of the alloy of the present invention, addition of Be of about 0.0001 to 0.01% is not recommended. Permissible. In general, B may be added at the same time as the above-mentioned Ti for grain refinement. In the case of the present invention as well, it is permissible to add B in an amount of 500 ppm or less together with Ti.

【0020】次にこの発明の方法における製造プロセス
について説明する。
Next, the manufacturing process in the method of the present invention will be described.

【0021】溶体化処理前までの工程すなわち所要の製
品板厚の圧延板とするまでの工程は、従来の一般的なJ
IS 6000番系のAl−Mg−Si系合金と同様で
あれば良い。すなわち、DC鋳造法等によって鋳造した
後、常法に従って均質化処理(均熱処理)を施し、さら
に熱間圧延および冷間圧延を行なって所要の板厚とすれ
ば良く、また熱間圧延と冷間圧延との間、あるいは冷間
圧延の中途において必要に応じて中間焼鈍を行なっても
良い。
The process up to the solution treatment, that is, the process until a rolled plate having a required product plate thickness is carried out by the conventional J
It may be the same as the IS 6000 series Al-Mg-Si series alloy. That is, after casting by a DC casting method or the like, homogenization treatment (soaking treatment) is performed according to a conventional method, and then hot rolling and cold rolling are performed to obtain a required sheet thickness. Intermediate annealing may be performed as necessary during hot rolling or in the middle of cold rolling.

【0022】溶体化処理は、Mg2 Si等をマトリック
スに固溶させ、これにより焼付硬化性を付与して塗装焼
付後の強度向上を図るために必要な工程であり、また再
結晶させて良好な成形性を得るための工程でもある。溶
体化処理温度が480℃未満ではMg2 Siの固溶量が
少なく、充分な焼付硬化性が得られない。溶体化処理温
度の上限は特に規定しないが、共晶融解の発生のおそれ
や再結晶粒粗大化等を考慮して、通常は580℃以下と
することが望ましい。また溶体化処理の時間も特に限定
しないが、通常は120分以内とする。 溶体化処理後
には、100℃/min 以上の冷却速度で、請求項1の発
明方法の場合は150〜300℃の範囲内の温度まで、
請求項2の発明の方法場合は150℃以下の温度域まで
冷却(焼入れ)する。ここで、溶体化処理後の冷却速度
が100℃/min 未満では、冷却中にMg2 Siが多量
に析出してしまい、成形性が低下すると同時に、焼付硬
化性が低下して塗装焼付時の充分な強度向上が望めなく
なる。
The solution treatment is a step necessary for solid solution of Mg 2 Si or the like in the matrix, thereby imparting bake hardenability to improve the strength after baking for coating, and good recrystallization is also preferable. It is also a process for obtaining excellent moldability. If the solution treatment temperature is lower than 480 ° C., the solid solution amount of Mg 2 Si is small and sufficient bake hardenability cannot be obtained. Although the upper limit of the solution treatment temperature is not particularly specified, it is usually desirable to set it to 580 ° C. or lower in consideration of the possibility of eutectic melting and coarsening of recrystallized grains. The solution treatment time is not particularly limited, but usually 120 minutes or less. After the solution treatment, at a cooling rate of 100 ° C./min or more, in the case of the method of the invention of claim 1, up to a temperature in the range of 150 to 300 ° C.,
In the case of the method of the second aspect of the invention, the material is cooled (quenched) to a temperature range of 150 ° C or lower. Here, if the cooling rate after the solution treatment is less than 100 ° C./min, a large amount of Mg 2 Si precipitates during cooling, and the formability decreases, and at the same time, the bake hardenability decreases and the coating baking It is impossible to expect sufficient strength improvement.

【0023】溶体化処理後、最終の安定化処理までのプ
ロセスは、請求項1の発明の方法と請求項2の発明の方
法とで異なる。
The process from the solution treatment to the final stabilization treatment differs between the method of the invention of claim 1 and the method of the invention of claim 2.

【0024】すなわち請求項1の発明の方法の場合は、
図1に示すように、480℃以上の温度での溶体化処理
の後、100℃/min 以上の冷却速度で150〜300
℃の範囲内の温度に冷却し、続いてその150〜300
℃の範囲内の温度で1〜600秒保持する熱処理(以下
この熱処理を便宜上、保持処理と記す)を行ない、その
後100℃/min 以上の冷却速度で140℃以下の温度
まで冷却する。
That is, in the case of the method of the invention of claim 1,
As shown in FIG. 1, after solution treatment at a temperature of 480 ° C. or higher, 150 to 300 at a cooling rate of 100 ° C./min or higher.
Cooled to a temperature in the range of ℃, followed by 150-300
A heat treatment for holding at a temperature in the range of 0 ° C. for 1 to 600 seconds (hereinafter, this heat treatment is referred to as a holding treatment for convenience) is performed, and then cooled to a temperature of 140 ° C. or less at a cooling rate of 100 ° C./min or more.

【0025】一方請求項2の発明の方法の場合は、図2
に示すように、480℃以上の温度での溶体化処理の
後、100℃/min 以上の冷却速度で150℃以下の温
度まで冷却し、続いて72時間以内に改めて150〜3
00℃の範囲内の温度に加熱して保持なしもしくは60
0秒以内で保持する熱処理(以下この熱処理を便宜上、
再加熱処理と記す)を施し、その後100℃/min 以上
の冷却速度で140℃以下の温度まで冷却する。
On the other hand, in the case of the method according to the second aspect of the invention, FIG.
As shown in, after solution treatment at a temperature of 480 ° C. or higher, the solution is cooled to a temperature of 150 ° C. or lower at a cooling rate of 100 ° C./min or higher, and then reheated to 150 to 3 within 72 hours.
No holding or 60 by heating to a temperature in the range of 00 ℃
Heat treatment for holding within 0 seconds
A reheating treatment) is performed, and then cooling is performed to a temperature of 140 ° C. or less at a cooling rate of 100 ° C./min or more.

【0026】上述のような請求項1の発明の方法におけ
る保持処理あるいは請求項2の発明の方法における再加
熱処理は、その後の安定化処理とともに、板製造後の自
然時効による経時変化を少なくすると同時に焼付硬化性
を良好にするために必要な処理である。すなわち、保持
処理もしくは再加熱処理によって安定なクラスターが形
成されやすくなり、そのため板製造後の室温での経時変
化が少なくなるとともに、塗装焼付でのG.P.ゾーン
が細かくなり、焼付硬化性が向上する。
The holding treatment in the method of the invention of claim 1 or the reheating treatment in the method of the invention of claim 2 as described above, together with the subsequent stabilization treatment, reduces the change with time due to natural aging after plate production. At the same time, it is a process necessary for improving the bake hardenability. That is, stable clusters are likely to be formed by the holding treatment or the reheating treatment, so that the change over time at room temperature after the plate production is reduced and the G.D. P. The zones become finer and the bake hardenability improves.

【0027】ここで、請求項1の発明の方法における保
持処理もしくは請求項2の発明の方法における再加熱処
理の温度が150℃より低ければ上述の効果が得られ
ず、一方300℃を越えればクラスターの安定性が低下
し、逆に板製造後の室温での経時変化が生じやすくなる
とともに、焼付硬化性が低下する。また請求項1の発明
の方法における保持処理の時間が1秒未満では上述の効
果が充分に得られず、一方600秒を越えれば時効によ
って成形性が低下してしまう。一方請求項2の発明の方
法における再加熱処理は、150〜300℃の範囲内の
温度に到達すれば保持なしで直ちに冷却しても前述の効
果が得られるが、600秒を越えれば前記同様に時効に
よって成形性が低下してしまう。さらに上記の保持処理
もしくは再加熱処理後の140℃以下の温度への冷却速
度が100℃/min 未満では、冷却中に時効によって成
形性が低下してしまう。
Here, if the temperature of the holding treatment in the method of the invention of claim 1 or the reheating treatment in the method of the invention of claim 2 is lower than 150 ° C, the above effect cannot be obtained, while if it exceeds 300 ° C. The stability of the clusters deteriorates, and conversely, the temperature tends to change at room temperature after plate production, and the bake hardenability decreases. Further, if the holding treatment time in the method of the invention of claim 1 is less than 1 second, the above effect cannot be sufficiently obtained, while if it exceeds 600 seconds, the aging deteriorates the formability. On the other hand, in the reheating treatment in the method of the invention of claim 2, if the temperature in the range of 150 to 300 ° C. is reached, the above effect can be obtained by immediately cooling without holding, but if it exceeds 600 seconds, it is the same as above. The aging deteriorates the formability. Further, if the cooling rate to a temperature of 140 ° C. or less after the above holding treatment or reheating treatment is less than 100 ° C./min, the aging during the cooling reduces the formability.

【0028】また請求項2の発明の方法においては、溶
体化処理後150℃以下の温度に冷却してから再加熱処
理を行なうまでの時間は72時間以内とする必要があ
り、この時間(放置時間)が72時間を越えれば、自然
時効により成形加工前の素材の強度が高くなり、成形性
が低下してしまう。
In the method of the second aspect of the present invention, the time from the solution treatment to cooling to a temperature of 150 ° C. or lower to the reheating treatment must be 72 hours or less. If the (time) exceeds 72 hours, the strength of the material before the forming process becomes high due to natural aging, and the formability is deteriorated.

【0029】以上のように保持処理もしくは再加熱処理
を行なって100℃/min 以上の冷却速度で140℃以
下に冷却した後には、請求項1の発明の方法、請求項2
の発明の方法のいずれの場合も、72時間以内に安定化
処理を行なう。このような安定化処理までの時間(放置
時間)が72時間を越えれば、自然時効により成形加工
前の素材の強度が高くなり、成形性が低下してしまう。
After carrying out the holding treatment or the reheating treatment as described above and cooling to 140 ° C. or less at a cooling rate of 100 ° C./min or more, the method of the invention of claim 1,
In each case of the method of the invention, the stabilization treatment is carried out within 72 hours. If the time until such stabilization treatment (leaving time) exceeds 72 hours, the strength of the material before the molding process will increase due to natural aging, and the moldability will decrease.

【0030】安定化処理は、最終的にクラスターの安定
性を向上させ、板製造後の経時変化を抑制して、良好な
成形加工性を確保するとともに充分な焼付硬化性を得る
ために必要な工程であり、この安定化処理は、50〜1
40℃の範囲内の温度に0.5〜50時間保持の条件と
する必要がある。安定化処理の温度が50℃未満では上
記の効果が充分に得られず、一方140℃を越えれば時
効によって素材強度が高くなり、成形性が低下してしま
う。また安定化処理における50〜140℃の範囲内の
温度での保持時間が0.5時間未満では、その後の室温
での経時変化が速くなって成形性と焼付硬化性が悪くな
り、一方50時間を越えれば、時効によって素材強度が
高くなり、成形性が低下してしまうとともに、生産性も
阻害される。
The stabilization treatment is necessary for finally improving the stability of the clusters, suppressing the aging after the plate production, ensuring good moldability and obtaining sufficient bake hardenability. It is a process, and this stabilization treatment is 50 to 1
It is necessary to keep the temperature within the range of 40 ° C. for 0.5 to 50 hours. If the stabilization treatment temperature is lower than 50 ° C, the above-mentioned effects cannot be sufficiently obtained, while if it exceeds 140 ° C, the material strength becomes high due to aging and the moldability is deteriorated. Further, when the holding time at a temperature within the range of 50 to 140 ° C. in the stabilization treatment is less than 0.5 hours, the change with time at room temperature thereafter becomes rapid and the moldability and the bake hardenability deteriorate, while 50 hours If it exceeds, the material strength will increase due to aging, the moldability will decrease, and the productivity will be impaired.

【0031】以上のようにこの発明の製造方法では、合
金の成分組成を適切に調整するとともに、製造プロセス
中において、480℃以上の温度での溶体化処理後の冷
却(焼入れ)過程で特定の条件での保持処理を行なう
(請求項1の発明の方法)か、または溶体化処理後の冷
却の後に改めて特定の条件での再加熱処理を施し(請求
項2の発明の方法)、その後72時間以内に特定の条件
の安定化処理を施すことにより、板製造後の室温での経
時変化、すなわち室温での自然時効の進行を阻止するこ
とが可能となり、その結果、板製造後に長期間放置され
てから成形加工、塗装焼付を施す場合でも、良好な成形
性、優れた焼付硬化性を充分に確保することが可能とな
ったのである。
As described above, in the production method of the present invention, the composition of the alloy components is appropriately adjusted, and the alloy composition is specified during the cooling (quenching) process after the solution treatment at a temperature of 480 ° C. or higher during the production process. The holding treatment under the conditions (the method of the invention of claim 1) is performed, or the cooling after the solution treatment is performed, and then the reheating treatment under the specific conditions is performed again (the method of the invention of claim 2), and then 72 By subjecting the plate to stabilization treatment under specific conditions within a period of time, it becomes possible to prevent the change over time at room temperature after plate production, that is, the progress of natural aging at room temperature. Even if molding and coating baking are performed after that, it is possible to sufficiently secure good moldability and excellent bake hardenability.

【0032】[0032]

【実施例】表1に示す本発明成分組成範囲内のA1〜A
6の合金、および本発明成分範囲外のB1〜B3の合金
について、それぞれ常法に従ってDC鋳造法により鋳造
し、得られた鋳塊に530℃×10hrの均質化処理を施
してから、常法に従って熱間圧延および冷間圧延を行な
って厚さ1mmの圧延板とした。次いで各圧延板に対し、
540℃×10sec の溶体化処理を行なってから、10
0℃/min 以上の冷却速度で冷却し、請求項1の発明の
方法にしたがって冷却途中で保持処理を行なうか、また
は請求項2の発明の方法にしたがって150℃以下に冷
却してから再加熱処理を行ない、さらに安定化処理を行
なった。詳細な条件を表2中に示す。なお表2におい
て、製造番号1〜3および10はいずれも請求項1の発
明の方法にしたがって冷却途中で保持処理を行なった
例、また製造番号4〜6および11,12はいずれも請
求項2の発明の方法にしたがって再加熱処理を行なった
例を示す。一方製造番号7,9は、請求項1の発明の方
法に対する比較例、製造番号8は請求項2の発明の方法
に対する比較例である。なおまた、保持処理もしくは再
加熱処理後の冷却は、いずれも100℃/min 以上の冷
却速度で室温まで行ない、また安定化処理までの放置も
室温とした。
EXAMPLES A1 to A within the composition range of the components of the present invention shown in Table 1
The alloy No. 6 and the alloys B1 to B3 outside the composition range of the present invention were cast by the DC casting method according to the ordinary method, and the obtained ingot was subjected to a homogenizing treatment at 530 ° C. for 10 hours, and then the ordinary method. Then, hot rolling and cold rolling were performed according to the above procedure to obtain a rolled plate having a thickness of 1 mm. Then for each rolled plate,
After performing solution treatment at 540 ° C for 10 seconds, 10
Cooling is performed at a cooling rate of 0 ° C./min or more, and a holding treatment is performed during cooling according to the method of the invention of claim 1, or it is reheated after cooling to 150 ° C. or less according to the method of the invention of claim 2. The treatment was performed, and the stabilization treatment was further performed. Detailed conditions are shown in Table 2. In Table 2, the production numbers 1 to 3 and 10 are all examples in which the holding treatment is performed during cooling in accordance with the method of the invention of claim 1, and the production numbers 4 to 6 and 11, 12 are all claims. An example in which reheating treatment is performed according to the method of the invention will be described. On the other hand, manufacturing numbers 7 and 9 are comparative examples for the method of the invention of claim 1, and manufacturing numbers 8 are comparative examples for the method of the invention of claim 2. In addition, the cooling after the holding treatment or the reheating treatment was performed at room temperature at a cooling rate of 100 ° C./min or more, and the room temperature was set until the stabilization treatment.

【0033】以上のようにして最終熱処理を行なって得
られた板を、さらに室温に1日もしくは60日放置した
各板について、それぞれ175℃×30分の加熱の塗装
焼付処理を施し、かつその焼付前の機械的特性および成
形性と、焼付後の機械的特性を調べた。その結果を表3
に示す。
The plate obtained by the final heat treatment as described above is further left to stand at room temperature for 1 day or 60 days, and each plate is subjected to coating baking treatment by heating at 175 ° C. for 30 minutes, and The mechanical properties and formability before baking and the mechanical properties after baking were examined. The results are shown in Table 3.
Shown in.

【0034】[0034]

【表1】 [Table 1]

【0035】[0035]

【表2】 [Table 2]

【0036】[0036]

【表3】 [Table 3]

【0037】製造番号1〜6は、いずれも合金の成分組
成がこの発明で規定する範囲内でかつ製造条件もこの発
明で規定する条件を満たしたものであるが、これらの場
合は、いずれも塗装焼付前の伸びおよびエリクセン値が
充分に高くて成形性が優れ、かつ焼付硬化性が高くて塗
装焼付時に大きな強度上昇が生じており、特に板製造後
60日室温に放置した場合においても、伸びおよびエリ
クセン値の低下が少なくて成形性が低下せず、かつ充分
な焼付硬化性を示した。
Production Nos. 1 to 6 are those in which the composition of the alloy is within the range specified by the present invention and the manufacturing conditions also satisfy the conditions specified by the present invention. The elongation before coating baking and the Erichsen value are sufficiently high, the moldability is excellent, and the bake hardenability is high, and a large increase in strength occurs during baking, and even when left at room temperature for 60 days after plate production, The elongation and Erichsen value did not decrease so much that the moldability did not decrease, and sufficient bake hardenability was exhibited.

【0038】これに対し製造番号7〜9は、合金の成分
組成はこの発明で規定する範囲内であるが、製造条件が
この発明で規定する条件を満たさなかったものである。
そして特に製造番号7(合金記号A2)は、最終の安定
化処理の時間がこの発明で規定する時間より短かったも
のであるが、この場合には同じ合金(A2)を用いた本
発明例(製造番号2)と比較して、焼付硬化性が劣り、
特に60日放置後の成形性、焼付硬化性が劣っていた。
また製造番号8(合金記号A3)は、溶体化処理−冷却
後の再加熱処理における温度が高過ぎ、かつ再加熱処理
後の放置時間が長過ぎたものであるが、この場合には同
じ合金(A3)を用いた本発明例(製造番号3)と比較
して、素材強度が高過ぎて成形性に劣り、特に60日放
置後において成形性が劣るとともに焼付硬化性も充分で
はなかった。さらに製造番号9(合金記号A4)は、溶
体化処理後冷却途中での保持処理における保持温度が低
過ぎるとともに保持時間が長過ぎたものであり、この場
合には同じ合金(A4)を用いた本発明例(製造番号
4)と比較して、充分な焼付硬化性が得られなかった。
On the other hand, in Production Nos. 7 to 9, the alloy composition was within the range specified by the present invention, but the production conditions did not satisfy the conditions specified by the present invention.
In particular, the production number 7 (alloy symbol A2) had a final stabilization treatment time shorter than the time specified in the present invention, but in this case, an example of the present invention using the same alloy (A2) ( Bake hardenability is inferior to that of production number 2),
In particular, the moldability and bake hardenability after being left for 60 days were poor.
Manufacturing No. 8 (alloy symbol A3) is one in which the temperature in the solution treatment-reheating treatment after cooling is too high, and the standing time after the reheating treatment is too long. In this case, the same alloy is used. Compared with the example of the present invention (Production No. 3) using (A3), the material strength was too high and the moldability was poor, and the moldability was poor and the bake hardenability was not sufficient especially after standing for 60 days. Further, the production number 9 (alloy symbol A4) was one in which the holding temperature was too low and the holding time was too long in the holding treatment during the cooling after the solution treatment, and in this case, the same alloy (A4) was used. Sufficient bake hardenability was not obtained as compared with the inventive example (Production No. 4).

【0039】一方製造番号10〜12はいずれも成分組
成がこの発明で規定する範囲を外れた合金について、こ
の発明で規定する範囲内の条件のプロセスを適用したも
のであるが、この場合にはいずれも素材強度が低いばか
りでなく、焼付硬化性も低く、塗装焼付後の強度も充分
に得られなかった。
On the other hand, all of the production numbers 10 to 12 are alloys whose component compositions are out of the range specified by the present invention, and the processes under the conditions defined by the present invention are applied. In this case, Not only was the material strength low in all cases, but also the bake hardenability was low, and the strength after baking was not sufficiently obtained.

【0040】[0040]

【発明の効果】この発明の成形加工用アルミニウム合金
板の製造方法によれば、成形性が優れるとともに素材強
度が高いばかりでなく、焼付硬化性が優れていて、塗装
焼付後の強度が著しく高く、しかも室温での経時変化が
少なくて、板製造後に室温で長期間放置した場合にも成
形性の低下が少ないとともに焼付硬化性の低下も少な
い、安定な成形加工用アルミニウム合金板を得ることが
でき、したがって自動車用ボディシート、家電部品、各
種機械器具部品、そのほか成形加工および塗装焼付を施
して用いる用途のアルミニウム合金板の製造に最適であ
る。
EFFECTS OF THE INVENTION According to the method for producing an aluminum alloy sheet for forming of the present invention, not only excellent formability and high material strength, but also excellent bake hardenability, the strength after coating baking is extremely high. In addition, it is possible to obtain a stable aluminum alloy plate for forming, which has little change with time at room temperature and has little decrease in formability and little decrease in bake hardenability even after being left at room temperature for a long time after plate production. Therefore, it is optimal for the production of automobile body sheets, home electric appliances parts, various machine / equipment parts, and other aluminum alloy sheets for use in forming and baking.

【図面の簡単な説明】[Brief description of drawings]

【図1】請求項1の発明の方法における溶体化処理後の
プロセスを説明するための線図である。
FIG. 1 is a diagram for explaining a process after solution treatment in the method of the invention of claim 1;

【図2】請求項2の発明の方法における溶体化処理後の
プロセスを説明するための線図である。
FIG. 2 is a diagram for explaining the process after the solution treatment in the method of the invention of claim 2;

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 Mg0.3〜1.5%(重量%、以下同
じ)、Si0.5〜2.5%を含有し、さらに必要に応
じてCu0.03〜1.2%、Zn0.03〜1.5
%、Mn0.03〜0.4%、Cr0.03〜0.4
%、Zr0.03〜0.4%、V0.03〜0.4%、
Fe0.03〜0.5%、Ti0.005〜0.2%の
うちから選ばれた1種または2種以上を含有し、残部が
Alおよび不可避的不純物よりなる合金を素材とし、鋳
塊に均質化処理を施した後、熱間圧延および冷間圧延を
行なって所要の板厚の圧延板とし、その圧延板に対し、
480℃以上の温度で溶体化処理を行なってから100
℃/min 以上の冷却速度で150〜300℃の範囲内の
温度まで冷却し、続いてその150〜300℃の範囲内
の温度で1〜600秒保持する熱処理を行なった後、1
00℃/min 以上の冷却速度で140℃以下の温度まで
冷却し、その後72時間以内に、50〜140℃の範囲
内の温度で0.5〜50時間保持する安定化処理を行な
うことを特徴とする、室温での経時変化が少なくかつ成
形性および焼付硬化性に優れたアルミニウム合金板の製
造方法。
1. A glass containing Mg 0.3 to 1.5% (weight%, the same hereinafter), Si 0.5 to 2.5%, and if necessary, Cu 0.03 to 1.2% and Zn 0.03. ~ 1.5
%, Mn 0.03 to 0.4%, Cr 0.03 to 0.4
%, Zr 0.03 to 0.4%, V 0.03 to 0.4%,
An alloy containing 1 or 2 or more selected from 0.03 to 0.5% of Fe and 0.005 to 0.2% of Ti, with the balance being Al and unavoidable impurities as a raw material After performing homogenization treatment, hot rolling and cold rolling are performed to obtain a rolled plate having a required plate thickness, and for the rolled plate,
100 after performing solution treatment at a temperature of 480 ° C or higher
After cooling to a temperature in the range of 150 to 300 ° C at a cooling rate of ℃ / min or more, and subsequently performing a heat treatment of holding the temperature in the range of 150 to 300 ° C for 1 to 600 seconds, 1
It is characterized by performing a stabilization treatment of cooling to a temperature of 140 ° C. or lower at a cooling rate of 00 ° C./min or more, and then maintaining the temperature within a range of 50 to 140 ° C. for 0.5 to 50 hours within 72 hours. A method for producing an aluminum alloy sheet, which has little change with time at room temperature and is excellent in formability and bake hardenability.
【請求項2】 Mg0.3〜1.5%、Si0.5〜
2.5%を含有し、さらに必要に応じてCu0.03〜
1.2%、Zn0.03〜1.5%、Mn0.03〜
0.4%、Cr0.03〜0.4%、Zr0.03〜
0.4%、V0.03〜0.4%、Fe0.03〜0.
5%、Ti0.005〜0.2%のうちから選ばれた1
種または2種以上を含有し、残部がAlおよび不可避的
不純物よりなる合金を素材とし、鋳塊に均質化処理を施
した後、熱間圧延および冷間圧延を行なって所要の板厚
の圧延板とし、その圧延板に対し、480℃以上の温度
で溶体化処理を行なってから100℃/min 以上の冷却
速度で150℃以下の温度域まで冷却し、続いて72時
間以内に、150〜300℃の範囲内の温度に加熱して
保持なしもしくは600秒以内の保持の熱処理を行なっ
た後、100℃/min 以上の冷却速度で140℃以下の
温度まで冷却し、その後72時間以内に、50〜140
℃の範囲内の温度で0.5〜50時間保持する安定化処
理を行なうことを特徴とする、室温での経時変化が少な
くかつ成形性および焼付硬化性に優れたアルミニウム合
金板の製造方法。
2. Mg 0.3-1.5%, Si 0.5-
2.5%, and if necessary, Cu0.03 ~
1.2%, Zn 0.03 to 1.5%, Mn 0.03 to
0.4%, Cr 0.03 to 0.4%, Zr 0.03 to
0.4%, V0.03 to 0.4%, Fe0.03 to 0.
1 selected from 5% and Ti 0.005 to 0.2%
, Or two or more, with the balance being Al and unavoidable impurities as the raw material, and subjecting the ingot to homogenization treatment, followed by hot rolling and cold rolling to achieve the required sheet thickness rolling. The plate is subjected to solution treatment at a temperature of 480 ° C. or higher, and then cooled to a temperature range of 150 ° C. or lower at a cooling rate of 100 ° C./min or higher, and subsequently, within 72 hours, 150 to After heating to a temperature in the range of 300 ° C. and performing heat treatment without holding or holding for 600 seconds or less, cool to a temperature of 140 ° C. or less at a cooling rate of 100 ° C./min or more, and then within 72 hours, 50-140
A method for producing an aluminum alloy sheet having a small change with time at room temperature and excellent in formability and bake hardenability, which is characterized by performing a stabilizing treatment in which the temperature is kept at a temperature in the range of 0 ° C for 0.5 to 50 hours.
JP5081298A 1993-03-16 1993-03-16 Method for producing aluminum alloy sheet excellent in formability and bake hardenability Expired - Fee Related JP2626958B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5081298A JP2626958B2 (en) 1993-03-16 1993-03-16 Method for producing aluminum alloy sheet excellent in formability and bake hardenability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5081298A JP2626958B2 (en) 1993-03-16 1993-03-16 Method for producing aluminum alloy sheet excellent in formability and bake hardenability

Publications (2)

Publication Number Publication Date
JPH06272000A true JPH06272000A (en) 1994-09-27
JP2626958B2 JP2626958B2 (en) 1997-07-02

Family

ID=13742491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5081298A Expired - Fee Related JP2626958B2 (en) 1993-03-16 1993-03-16 Method for producing aluminum alloy sheet excellent in formability and bake hardenability

Country Status (1)

Country Link
JP (1) JP2626958B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0881744A (en) * 1994-09-13 1996-03-26 Sky Alum Co Ltd Method and equipment for manufacturing aluminum alloy sheet excellent in formability and baking hardenability
EP0811700A1 (en) * 1996-06-04 1997-12-10 Alusuisse Technology &amp; Management AG Deep drawable and weldable AlMgSi type aluminium alloy
WO2000052216A1 (en) * 1999-03-03 2000-09-08 Alusuisse Technology & Management Ag STRUCTURAL COMPONENT MADE OF AN ALUMINUM ALLOY OF THE AlMgSi TYPE
US6685782B1 (en) * 1996-05-22 2004-02-03 Alcan Technology & Management Ltd. Component
CN100453671C (en) * 2006-12-12 2009-01-21 苏州有色金属加工研究院 Al-Mg-Si-Cu alloy for automobile and its production process
WO2015127805A1 (en) * 2014-02-25 2015-09-03 北京科技大学 High temperature baking hardened aluminum alloy material used for automobile body and preparation method thereof
JP2020537039A (en) * 2017-10-23 2020-12-17 ノベリス・インコーポレイテッドNovelis Inc. High-strength and highly moldable aluminum alloy and its manufacturing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57108251A (en) * 1980-11-05 1982-07-06 Pechiney Aluminium Intermittent tempering method of alloy based on aluminum
JPH0382745A (en) * 1989-08-25 1991-04-08 Sumitomo Light Metal Ind Ltd Production of hard aluminum alloy sheet excellent in corrosion resistance
JPH04259358A (en) * 1991-02-07 1992-09-14 Sky Alum Co Ltd Manufacture of aluminum alloy sheet for forming
JPH04318144A (en) * 1991-04-17 1992-11-09 Kobe Steel Ltd Al alloy sheet excellent in strength, baking hardening property and molding property, and its manufacture
JPH0570908A (en) * 1991-05-01 1993-03-23 Sumitomo Light Metal Ind Ltd Production of aluminum alloy material for forming

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57108251A (en) * 1980-11-05 1982-07-06 Pechiney Aluminium Intermittent tempering method of alloy based on aluminum
JPH0382745A (en) * 1989-08-25 1991-04-08 Sumitomo Light Metal Ind Ltd Production of hard aluminum alloy sheet excellent in corrosion resistance
JPH04259358A (en) * 1991-02-07 1992-09-14 Sky Alum Co Ltd Manufacture of aluminum alloy sheet for forming
JPH04318144A (en) * 1991-04-17 1992-11-09 Kobe Steel Ltd Al alloy sheet excellent in strength, baking hardening property and molding property, and its manufacture
JPH0570908A (en) * 1991-05-01 1993-03-23 Sumitomo Light Metal Ind Ltd Production of aluminum alloy material for forming

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0881744A (en) * 1994-09-13 1996-03-26 Sky Alum Co Ltd Method and equipment for manufacturing aluminum alloy sheet excellent in formability and baking hardenability
US6685782B1 (en) * 1996-05-22 2004-02-03 Alcan Technology & Management Ltd. Component
EP0811700A1 (en) * 1996-06-04 1997-12-10 Alusuisse Technology &amp; Management AG Deep drawable and weldable AlMgSi type aluminium alloy
CH690916A5 (en) * 1996-06-04 2001-02-28 Alusuisse Tech & Man Ag Thermaformed and weldable aluminum alloy of the AlMgSi type.
WO2000052216A1 (en) * 1999-03-03 2000-09-08 Alusuisse Technology & Management Ag STRUCTURAL COMPONENT MADE OF AN ALUMINUM ALLOY OF THE AlMgSi TYPE
CH693673A5 (en) * 1999-03-03 2003-12-15 Alcan Tech & Man Ag Use of an aluminum alloy of the AlMgSi type for the production of structural components.
CN100453671C (en) * 2006-12-12 2009-01-21 苏州有色金属加工研究院 Al-Mg-Si-Cu alloy for automobile and its production process
WO2015127805A1 (en) * 2014-02-25 2015-09-03 北京科技大学 High temperature baking hardened aluminum alloy material used for automobile body and preparation method thereof
JP2020537039A (en) * 2017-10-23 2020-12-17 ノベリス・インコーポレイテッドNovelis Inc. High-strength and highly moldable aluminum alloy and its manufacturing method
JP2022172234A (en) * 2017-10-23 2022-11-15 ノベリス・インコーポレイテッド High-strength, highly formable aluminum alloys and methods of making the same

Also Published As

Publication number Publication date
JP2626958B2 (en) 1997-07-02

Similar Documents

Publication Publication Date Title
JPH0617208A (en) Manufacture of aluminum alloy for forming excellent in shape freezability and coating/baking hardenability
JPS62177143A (en) Aluminum alloy sheet excellent in formability and baking hardening and its production
US5441582A (en) Method of manufacturing natural aging-retardated aluminum alloy sheet exhibiting excellent formability and excellent bake hardenability
JPH07197219A (en) Production of aluminum alloy sheet for forming
JPH06240424A (en) Production of aluminum alloy sheet excellent in formability and baking hardenability
JP4086350B2 (en) Method for producing aluminum alloy sheet for forming
JPH083702A (en) Production of aluminum alloy sheet material excellent in formability and heating hardenability
JP2626958B2 (en) Method for producing aluminum alloy sheet excellent in formability and bake hardenability
JPH08176764A (en) Production of aluminum alloy sheet for forming
JP2003221637A (en) Aluminum alloy plate for fabrication and its manufacturing process
JPH0874014A (en) Production of aluminum alloy sheet having high formability and good baking hardenability
JP2000160310A (en) Production of aluminum alloy sheet suppressed in cold aging property
JPS60258454A (en) Manufacture of aluminum alloy rigid plate for molding
JPH06340940A (en) Aluminum alloy sheet excellent in press formability and baking hardenability and its production
JPH07228957A (en) Production of aluminum alloy sheet having excellent formability and quench-hardenability
JP3686146B2 (en) Method for producing aluminum alloy sheet for forming
JP2004124175A (en) Method for manufacturing 6000 system alloy plate for forming excellent in formability, baking hardenability, and springback characteristic
JPH0547615B2 (en)
JPH04365834A (en) Aluminum alloy sheet for press forming excellent in hardenability by low temperature baking and its production
JP3359428B2 (en) Manufacturing method of aluminum alloy sheet for forming
JPH05279822A (en) Production of aluminum alloy material for forming excellent in hardenability of coating/baking, formability, and shape freezability
JP2007239005A (en) Method for producing 6000 series aluminum alloy sheet having excellent room temperature non-aging property, formability and coating/baking hardenability
JPH04263034A (en) Aluminum alloy sheet for press forming excellent in baking hardenability and its production
JPH0860314A (en) Production of aluminum alloy sheet for forming
JPH062092A (en) Method for heat-treating high strength and high formability aluminum alloy

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970107

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080418

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090418

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090418

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100418

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees