JPH04259358A - Manufacture of aluminum alloy sheet for forming - Google Patents
Manufacture of aluminum alloy sheet for formingInfo
- Publication number
- JPH04259358A JPH04259358A JP3799991A JP3799991A JPH04259358A JP H04259358 A JPH04259358 A JP H04259358A JP 3799991 A JP3799991 A JP 3799991A JP 3799991 A JP3799991 A JP 3799991A JP H04259358 A JPH04259358 A JP H04259358A
- Authority
- JP
- Japan
- Prior art keywords
- heat treatment
- treatment
- temperature
- point
- aluminum alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910000838 Al alloy Inorganic materials 0.000 title claims abstract description 22
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 13
- 238000010438 heat treatment Methods 0.000 claims abstract description 86
- 238000011282 treatment Methods 0.000 claims abstract description 62
- 239000003973 paint Substances 0.000 claims description 28
- 230000006641 stabilisation Effects 0.000 claims description 15
- 238000011105 stabilization Methods 0.000 claims description 15
- 238000001816 cooling Methods 0.000 claims description 12
- 229910019064 Mg-Si Inorganic materials 0.000 claims description 4
- 229910019406 Mg—Si Inorganic materials 0.000 claims description 4
- 229910018134 Al-Mg Inorganic materials 0.000 abstract description 3
- 229910018467 Al—Mg Inorganic materials 0.000 abstract description 3
- 239000011248 coating agent Substances 0.000 abstract description 3
- 238000000576 coating method Methods 0.000 abstract description 3
- 230000000087 stabilizing effect Effects 0.000 abstract 1
- 238000000034 method Methods 0.000 description 39
- 239000000243 solution Substances 0.000 description 31
- 229910045601 alloy Inorganic materials 0.000 description 27
- 239000000956 alloy Substances 0.000 description 27
- 239000000463 material Substances 0.000 description 24
- 239000002244 precipitate Substances 0.000 description 17
- 230000007423 decrease Effects 0.000 description 14
- 230000000694 effects Effects 0.000 description 12
- 238000001556 precipitation Methods 0.000 description 12
- 238000012545 processing Methods 0.000 description 10
- 230000032683 aging Effects 0.000 description 9
- 238000000137 annealing Methods 0.000 description 9
- 238000005260 corrosion Methods 0.000 description 8
- 230000007797 corrosion Effects 0.000 description 8
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 7
- 238000005096 rolling process Methods 0.000 description 7
- 229910018464 Al—Mg—Si Inorganic materials 0.000 description 6
- 238000000265 homogenisation Methods 0.000 description 6
- 238000005097 cold rolling Methods 0.000 description 5
- 239000006104 solid solution Substances 0.000 description 5
- 230000003679 aging effect Effects 0.000 description 4
- 238000005266 casting Methods 0.000 description 4
- 238000009749 continuous casting Methods 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 238000000465 moulding Methods 0.000 description 4
- 238000004881 precipitation hardening Methods 0.000 description 4
- 238000010301 surface-oxidation reaction Methods 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 229910019752 Mg2Si Inorganic materials 0.000 description 3
- 238000003483 aging Methods 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 230000005496 eutectics Effects 0.000 description 3
- 238000005098 hot rolling Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 238000010422 painting Methods 0.000 description 3
- 238000010791 quenching Methods 0.000 description 3
- 230000000171 quenching effect Effects 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 229910052725 zinc Inorganic materials 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 229910000765 intermetallic Inorganic materials 0.000 description 2
- 238000005461 lubrication Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 239000007779 soft material Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 238000005482 strain hardening Methods 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 239000004519 grease Substances 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 239000011856 silicon-based particle Substances 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
Landscapes
- Application Of Or Painting With Fluid Materials (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】この発明は各種陸運車両や電気機
械器具、部品等に使用される成形加工用のアルミニウム
合金板の製造方法に関し、特に成形加工性に優れるとと
もに塗装焼付後の強度が高く、しかも室温での経時変化
の少ない成形加工用アルミニウム合金板の製造方法に関
するものである。[Industrial Application Field] This invention relates to a method for manufacturing aluminum alloy plates for forming processing used in various land transportation vehicles, electrical machinery appliances, parts, etc., which has particularly excellent formability and high strength after painting and baking. Moreover, the present invention relates to a method for producing an aluminum alloy plate for forming and processing that exhibits little change over time at room temperature.
【0002】0002
【従来の技術】自動車等の各種陸運車両の部品や電気機
械器具の部品に使用される高強度成形素材としては、最
近では軽量性や耐食性の点からアルミニウム合金板が使
用されることが多くなっている。[Prior Art] Aluminum alloy sheets have recently been increasingly used as high-strength molded materials for parts of various land transportation vehicles such as automobiles and parts of electrical machinery and equipment due to their light weight and corrosion resistance. ing.
【0003】ところで従来の成形加工用のアルミニウム
合金としては、Al−Mg系のJIS 5182合金
O材や5052合金O材、あるいはAl−Mg−Si(
−Cu)系のAA6009合金T4材、6010合金T
4材などが広く使用されている。By the way, conventional aluminum alloys for forming processing include Al-Mg based JIS 5182 alloy O material, 5052 alloy O material, or Al-Mg-Si (
-Cu) based AA6009 alloy T4 material, 6010 alloy T
4 materials are widely used.
【0004】0004
【発明が解決しようとする課題】前述のような各種の成
形加工の用途のうち、自動車のパネル類等においては外
観特性が良好であること、また耐デント性(耐へこみ性
)が良好であることが要求されるが、従来の5182合
金O材や5082合金O材などのAl−Mg系合金軟質
材は、リューダースマークが発生しやすいため外観品質
を損ないやすく、また焼付塗装後の強度が低くて耐デン
ト性にも劣る問題があり、したがってこれらのAl−M
g系合金軟質材は自動車のパネル類等には好ましくない
とされている。[Problems to be Solved by the Invention] Among the various molding applications mentioned above, automotive panels, etc. must have good appearance characteristics and good dent resistance. However, conventional Al-Mg alloy soft materials such as 5182 Alloy O material and 5082 Alloy O material are prone to Lüders marks, which easily impairs the appearance quality, and the strength after baking coating is low. These Al-M
G-based alloy soft materials are considered unfavorable for automobile panels and the like.
【0005】一方、6009合金T4材、6010合金
T4材などの従来のAl−Mg−Si(−Cu)系合金
はリューダースマークの発生はなく、また鋼板と同等の
強度を得ることは可能であるが、塗装焼付後の強度とし
て鋼板と同等の強度を得ようとすれば、必然的に素材強
度が高くなるため成形性が劣り、とりわけ成形加工によ
る形状凍結性が悪くなる問題がある。しかもこれらのA
l−Mg−Si(−Cu)系合金のT4材では、溶体化
処理後の室温時効性が強いため、溶体化処理後の時間の
経過に伴なって材料強度が次第に上昇し、成形性は逆に
次第に劣化する傾向がある。ところが、一般に素材メー
カーで材料を製造した後に別のプレスメーカーで成形す
る場合には、材料を製造してからプレス加工に至るまで
の期間が種々異なるのが通常であり、そのため上述のよ
うな経時変化によって成形時の強度、成形性がばらつい
てしまうという大きな問題がある。On the other hand, conventional Al-Mg-Si(-Cu) alloys such as 6009 alloy T4 material and 6010 alloy T4 material do not generate Lüders marks, and it is possible to obtain strength equivalent to steel plates. However, if an attempt is made to obtain a strength equivalent to that of a steel plate after baking the paint, the strength of the material will inevitably increase, resulting in poor formability and, in particular, poor shape fixability during forming. Moreover, these A
The l-Mg-Si(-Cu) alloy T4 material has strong room temperature aging properties after solution treatment, so the material strength gradually increases as time passes after solution treatment, and formability decreases. On the contrary, it tends to gradually deteriorate. However, in general, when a material is manufactured by a material manufacturer and then molded by another press manufacturer, the period from manufacturing the material to pressing is usually different, so There is a major problem in that strength and moldability during molding vary due to changes.
【0006】この発明は以上の事情を背景としてなされ
たもので、陸運車両や電気機械部品等の用途に供される
成形加工用アルミニウム合金板として、従来合金板と比
較し、成形加工時は低強度で成形性、特に形状凍結性が
優れ、かつ塗装焼付処理後は高強度を有して耐デント性
が優れ、しかも材料製造後、プレス加工が施されるまで
の期間における材料特性の経時変化が少ないアルミニウ
ム合金板を提供することを目的とするものである。The present invention was made against the background of the above-mentioned circumstances, and is an aluminum alloy sheet for forming processing used for land transportation vehicles, electromechanical parts, etc., which has a lower cost during forming processing than conventional alloy sheets. It has excellent strength and formability, especially shape fixability, and has high strength and excellent dent resistance after paint baking treatment, and changes in material properties over time during the period from material manufacturing to press processing. The purpose of this invention is to provide an aluminum alloy plate with less
【0007】[0007]
【課題を解決するための手段】前述のような課題を解決
するため、本発明者等が鋭意実験・検討を重ねた結果、
合金としては6000番系のAl−Mg−Si(−Cu
)系合金を用い、その圧延後の溶体化処理の条件を適切
に設定するだけではなく、溶体化処理後に1段または2
段以上の適切な加熱処理を施すことによって、室温経時
変化が少なくかつ成形性(特に形状凍結性)および塗装
焼付後の強度が高い(したがって耐デント性が優れた)
アルミニウム合金板が得られることを見出し、この発明
をなすに至った。[Means for Solving the Problems] In order to solve the above-mentioned problems, as a result of extensive experiments and studies by the present inventors,
The alloy is 6000 series Al-Mg-Si(-Cu
) system alloy, and not only appropriately set the conditions for the solution treatment after rolling, but also one or two stages after the solution treatment.
By applying an appropriate heat treatment at a stage or higher, there is little change over time at room temperature, and the moldability (especially shape freezing ability) and strength after paint baking are high (therefore, excellent dent resistance).
It was discovered that an aluminum alloy plate can be obtained, and the present invention was completed.
【0008】具体的には、請求項1の発明の方法は、J
IS 6000番系に属するAl−Mg−Si系のア
ルミニウム合金圧延板に対して、450〜580℃の範
囲内の温度で溶体化処理して5℃/sec 以上の冷却
速度で冷却し、その後150〜320℃の範囲内の温度
での1分以内の加熱処理を1回もしくは2回以上行なっ
て、最終の加熱処理後の導電率を1回目の加熱処理直前
の導電率よりも1%IACS以上低下させることを特徴
とするものである。Specifically, the method of the invention of claim 1
A rolled Al-Mg-Si aluminum alloy sheet belonging to the IS 6000 series is solution-treated at a temperature within the range of 450 to 580°C, cooled at a cooling rate of 5°C/sec or more, and then Heat treatment at a temperature within the range of ~320°C for 1 minute or more is performed once or twice, and the conductivity after the final heat treatment is 1% IACS or more than the conductivity immediately before the first heat treatment. It is characterized by lowering.
【0009】また請求項2の発明の方法は、JIS
6000番系に属するAl−Mg−Si系のアルミニウ
ム合金圧延板に対して、450〜580℃の範囲内の温
度で溶体化処理して5℃/sec 以上の冷却速度で冷
却し、その後、横軸の時間軸を対数目盛とし縦軸の温度
軸を等間隔目盛とした図1に示す時間−温度座標上にお
けるA点( 0.5時間、180℃)、B点( 0.5
時間、100℃)、C点(4時間、60℃)、D点(2
4時間、60℃)、E点(24時間、100℃)、F点
(4時間、180℃)の各点を順次結ぶ各線分AB,B
C,CD,DE,EF,FAによって取囲まれる領域内
(但し各線分上の点を含む)の時間−温度条件で安定化
処理を行ない、さらにその後150〜320℃の範囲内
の温度での1分以内の加熱処理を1回もしくは2回以上
行なって、最終の加熱処理後の導電率を1回目の加熱処
理直前の導電率よりも1%IACS以上低下させること
を特徴とするものである。[0009] Furthermore, the method of the invention of claim 2 is based on the JIS
A rolled Al-Mg-Si aluminum alloy sheet belonging to No. 6000 series is solution-treated at a temperature within the range of 450 to 580°C, cooled at a cooling rate of 5°C/sec or more, and then horizontally cooled. Point A (0.5 hours, 180°C), point B (0.5
time, 100℃), point C (4 hours, 60℃), point D (2 hours, 60℃),
Each line segment AB, B sequentially connects point E (24 hours, 100℃), point F (4 hours, 180℃)
Stabilization treatment is performed under the time-temperature conditions within the region surrounded by C, CD, DE, EF, and FA (including points on each line segment), and then at a temperature within the range of 150 to 320 °C. It is characterized in that the conductivity after the final heat treatment is lowered by 1% IACS or more than the conductivity immediately before the first heat treatment by performing heat treatment for less than 1 minute once or twice or more. .
【0010】0010
【作用】この発明の製造方法で用いられる合金は、要は
JIS 6000番系に属するAl−Mg−Si(−
Cu)系のアルミニウム合金であればよく、その具体的
成分量は特に限定しないが、一般にはMg 0.1〜
2.0wt%、Si 0.5〜 2.5wt%を必須合
金成分として含有し、その他必要に応じてCu 1.5
wt%以下、Zn 2.0wt%以下のうち1種または
2種を含有し、さらに必要に応じてMn 0.6wt%
以下、Cr 0.3wt%以下、Zr 0.3wt%以
下を含有し、残部Alおよび不可避的不純物とすれば良
い。[Operation] The alloy used in the manufacturing method of the present invention is basically Al-Mg-Si (-
Any Cu)-based aluminum alloy may be used, and its specific content is not particularly limited, but generally Mg 0.1~
2.0 wt%, Si 0.5 to 2.5 wt% as essential alloy components, and Cu 1.5 as required.
wt% or less, Zn 2.0wt% or less, and further contains Mn 0.6wt% as necessary.
Hereinafter, it is sufficient to contain 0.3 wt% or less of Cr, 0.3 wt% or less of Zr, and the remainder is Al and unavoidable impurities.
【0011】このような望ましい成分について以下に説
明する。[0011] Such desirable components will be explained below.
【0012】Mg:MgはJIS 6000番系のア
ルミニウム合金において基本となる合金成分であり、S
iと共存してMg2 Siを生成して、析出硬化により
強度の向上に寄与する。Mgが 0.1wt%未満では
強度向上効果が不充分であり、一方 2.0wt%を越
えれば伸び、成形性が低下する。したがってMgは 0
.1〜 2.0wt%の範囲内とすることが望ましい。Mg: Mg is a basic alloy component in JIS 6000 series aluminum alloys, and S
It coexists with i to produce Mg2Si, which contributes to improving strength through precipitation hardening. If the Mg content is less than 0.1 wt%, the strength improvement effect is insufficient, while if it exceeds 2.0 wt%, elongation occurs and formability decreases. Therefore, Mg is 0
.. It is desirable that it be within the range of 1 to 2.0 wt%.
【0013】Si:Siも6000番系のアルミニウム
合金において基本となる合金成分であり、Mgと共存し
てMg2 Siを生成し、析出硬化により強度の向上に
寄与する。また添加されたSiの一部を金属Si粒子と
してAl合金マトリックス中に存在させれば、成形加工
性、特に伸びおよび曲げ性を向上させることができる。
ここで、Si添加量は、Mg2 Si化学量論組成より
Siが充分に過剰となり、さらには金属Siを生成する
状態となることが強度向上のために望ましく、そこで、
Si(wt%)> 0.6×Mg(wt%)+ 0.4
(wt%)を満たすことが望ましい。。なおSiの絶対
量が 0.5wt%未満では、強度向上、成形加工性向
上の効果が充分に得られず、一方Si量が 2.5wt
%を越えれば伸びおよび成形性が劣化するから、Siの
絶対量は 0.5〜 2.5wt%の範囲内とすること
が好ましい。Si: Si is also a basic alloy component in No. 6000 series aluminum alloys, and coexists with Mg to form Mg2Si, which contributes to improving strength through precipitation hardening. Further, if a part of the added Si is present in the Al alloy matrix in the form of metal Si particles, moldability, particularly elongation and bendability, can be improved. Here, it is desirable for the amount of Si added to be in a sufficient excess of the Mg2Si stoichiometric composition and to be in a state where metallic Si is generated, in order to improve the strength.
Si (wt%) > 0.6 x Mg (wt%) + 0.4
(wt%) is desirable. . Note that if the absolute amount of Si is less than 0.5 wt%, the effects of improving strength and moldability cannot be sufficiently obtained;
%, elongation and formability will deteriorate, so the absolute amount of Si is preferably within the range of 0.5 to 2.5 wt %.
【0014】Cu,Zn:Cu,Znはいずれも強度向
上に寄与する元素であり、必要に応じていずれか一方ま
たは双方が添加される。なおこれらのうちZnは耐食性
向上にも効果があり、マトリックスの電位を下げること
によって孔食を防止するのに寄与する。但しCuが 1
.5wt%を越えれば成形性および耐食性が劣化し、ま
たZnが 2.0wt%を越えれば耐食性が劣化すると
ともに、室温での経時変化により成形性を低下させる。
したがってCuは 1.5wt%以下、Znは 2.0
wt%以下の範囲内とすることが好ましい。Cu, Zn: Both Cu and Zn are elements that contribute to improving strength, and one or both of them may be added as necessary. Of these, Zn is also effective in improving corrosion resistance, and contributes to preventing pitting corrosion by lowering the potential of the matrix. However, Cu is 1
.. If Zn exceeds 5 wt%, moldability and corrosion resistance will deteriorate, and if Zn exceeds 2.0 wt%, corrosion resistance will deteriorate and moldability will decrease due to changes over time at room temperature. Therefore, Cu is 1.5wt% or less, and Zn is 2.0%.
It is preferable to set it within the range of wt% or less.
【0015】Mn,Cr,Zr:これらの元素はいずれ
も結晶粒を微細化し、成形加工時のフローラインの発生
を低減するに寄与する元素であって、必要に応じて1種
または2種以上が添加される。但しMnが 0.6wt
%、Crが0.3wt%、Zrが 0.3wt%を越え
れば粗大な金属間化合物が生成されて成形性が劣化する
。したがってMnは 0.6wt%以下、Crは 0.
3wt%以下、Zrは 0.3wt%以下とすることが
好ましい。[0015] Mn, Cr, Zr: All of these elements contribute to making crystal grains finer and reducing the occurrence of flow lines during molding, and one or more of these elements may be used as necessary. is added. However, Mn is 0.6wt
%, Cr exceeds 0.3 wt%, and Zr exceeds 0.3 wt%, coarse intermetallic compounds are formed and formability deteriorates. Therefore, Mn is 0.6wt% or less, and Cr is 0.6wt% or less.
The content of Zr is preferably 3 wt% or less, and Zr is preferably 0.3 wt% or less.
【0016】以上の各成分の残部は、基本的にはAlお
よび不可避的不純物とすれば良いが、そのほか微量のB
eを添加したり、微量のTi、もしくはTiおよびBを
添加しても良い。Beは緻密な酸化皮膜を形成して、素
材アルミニウム表面でのAlやMgの酸化を防止し、ひ
いては耐糸錆性の著しい向上に寄与する。但しBe添加
量が0.01wt%を越えればその効果は飽和し、コス
ト上昇を招くだけであるから、Beの添加量は0.01
wt%以下とすることが望ましい。またTiは従来から
鋳塊組織の結晶粒微細化剤としてBとともに添加される
ことがあったが、Tiの添加は結晶粒微細化のみならず
、耐食性の向上にも有効である。但しTiの添加量が1
.0wt%を越えれば粗大な金属間化合物を生成して、
圧延性、成形性を劣化させるから、Tiの添加量は 1
.0wt%以下とすることが好ましい。またTiととも
に添加されることのあるBは、0.01wt%を越えれ
ば逆に耐食性が損なわれてしまうから、0.01wt%
未満とすることが好ましい。[0016] The remainder of each of the above components may basically be Al and unavoidable impurities, but in addition, a trace amount of B may be used.
e, a trace amount of Ti, or Ti and B may be added. Be forms a dense oxide film to prevent Al and Mg from oxidizing on the surface of the aluminum material, which in turn contributes to a significant improvement in thread rust resistance. However, if the amount of Be added exceeds 0.01 wt%, the effect will be saturated and the cost will only increase, so the amount of Be added should be 0.01 wt%.
It is desirable that it be less than wt%. Furthermore, Ti has traditionally been added together with B as a grain refiner for the ingot structure, but addition of Ti is effective not only for grain refinement but also for improving corrosion resistance. However, the amount of Ti added is 1
.. If it exceeds 0wt%, coarse intermetallic compounds will be generated,
Since it deteriorates rolling properties and formability, the amount of Ti added is 1
.. The content is preferably 0 wt% or less. In addition, if B, which is sometimes added together with Ti, exceeds 0.01wt%, the corrosion resistance will be adversely affected, so 0.01wt%
It is preferable to make it less than.
【0017】次にこの発明の製造方法における各プロセ
スについて説明する。Next, each process in the manufacturing method of the present invention will be explained.
【0018】この発明の製造方法においては、溶体化処
理前までの工程については特に限定されるものではない
が、一般的には次のようなプセスが適用される。In the manufacturing method of the present invention, the steps before solution treatment are not particularly limited, but the following processes are generally applied.
【0019】先ず前述のような成分組成の合金溶湯を鋳
造する。ここで鋳造方法としては、DC鋳造法(半連続
鋳造法)を適用しても、連続鋳造圧延法(薄板連続鋳造
法)を適用しても良い。First, a molten alloy having the above-mentioned composition is cast. As the casting method here, a DC casting method (semi-continuous casting method) or a continuous casting rolling method (thin plate continuous casting method) may be applied.
【0020】DC鋳造によって得られたアルミニウム合
金鋳塊に対しては 450℃〜 570℃の範囲内の温
度で均質化処理を施す。このような均質化処理を行なう
ことによって、成形加工性を向上させるとともに再結晶
粒の安定化を図ることができる。均質化処理の温度が
450℃未満では上述の効果が得られず、一方 570
℃を越えれば共晶融解が生じるおそれがある。なお均質
化処理の時間は1〜48時間が望ましい。1時間未満で
は上述の効果が充分に得られず、一方48時間を越える
長時間の処理は経済的でない。このような均質化処理後
には、常法に従って熱間圧延を施して、所要の板厚の熱
間圧延板とする。
その後、必要に応じて冷間圧延を施して最終板厚とする
。[0020] The aluminum alloy ingot obtained by DC casting is subjected to homogenization treatment at a temperature within the range of 450°C to 570°C. By performing such homogenization treatment, it is possible to improve moldability and stabilize recrystallized grains. The homogenization temperature is
Below 450°C, the above effects cannot be obtained; on the other hand, 570
If the temperature exceeds .degree. C., eutectic melting may occur. Note that the time for the homogenization treatment is preferably 1 to 48 hours. If the treatment time is less than 1 hour, the above-mentioned effects cannot be sufficiently obtained, while treatment for a long time exceeding 48 hours is not economical. After such homogenization treatment, hot rolling is performed according to a conventional method to obtain a hot rolled plate having a desired thickness. Thereafter, if necessary, cold rolling is performed to obtain the final thickness.
【0021】一方連続鋳造圧延法によって得た連続鋳造
薄板の場合は、特に熱間圧延を行なう必要はないが、前
述のDC鋳造による鋳塊の場合と同様な均質化処理を施
しても良い。またこの場合も必要に応じて冷間圧延を施
して最終板厚とすれば良い。On the other hand, in the case of a continuously cast thin plate obtained by the continuous casting and rolling method, it is not necessary to particularly perform hot rolling, but it may be subjected to the same homogenization treatment as in the case of the DC casting ingot described above. Also in this case, if necessary, cold rolling may be performed to obtain the final plate thickness.
【0022】また前述のように冷間圧延を行なう場合、
冷間圧延前または冷間圧延中途において必要に応じて中
間焼鈍を施しても良い。この中間焼鈍は、圧延性改善お
よび組織制御を目的として行なわれるものであって、バ
ッチ焼鈍、連続焼鈍のいずれを適用しても良く、その条
件は特に限定しないが、一般にはバッチ焼鈍では250
〜450℃の範囲内の温度に 0.5〜24時間加熱す
れば良く、また連続焼鈍では300〜580℃の範囲内
の温度に加熱して保持なしもしくは5分以下の保持の条
件を適用すれば良い。[0022] Furthermore, when cold rolling is carried out as described above,
If necessary, intermediate annealing may be performed before cold rolling or during cold rolling. This intermediate annealing is performed for the purpose of improving rollability and controlling the structure, and either batch annealing or continuous annealing may be applied, and the conditions are not particularly limited.
It is sufficient to heat the material to a temperature within the range of ~450°C for 0.5 to 24 hours, and for continuous annealing, heat to a temperature within the range of 300°C to 580°C and apply conditions of no holding or holding for 5 minutes or less. Good.
【0023】ここで、中間焼鈍としてバッチ焼鈍を適用
する場合、その温度が250℃未満では圧延性が改善さ
れず、無意味であり、一方450℃を越えれば再結晶粒
が粗大化するとともに、表面酸化層の厚さが増大し、耐
糸錆性が低下する。また保持時間が 0.5時間未満で
も圧延性が充分に改善されず、一方24時間を越えれば
不経済となるばかりでなく、表面酸化層の厚みが増し、
耐糸錆性が低下する。[0023] When batch annealing is applied as intermediate annealing, if the temperature is less than 250°C, the rolling properties will not be improved and it is meaningless, while if it exceeds 450°C, the recrystallized grains will become coarse, The thickness of the surface oxidation layer increases, and thread rust resistance decreases. Furthermore, if the holding time is less than 0.5 hours, the rolling properties will not be sufficiently improved, while if it exceeds 24 hours, it will not only become uneconomical but also increase the thickness of the surface oxidation layer.
Thread rust resistance decreases.
【0024】また中間焼鈍として連続焼鈍を適用する場
合、その加熱温度が300℃未満では圧延性が改善され
ず、無意味であり、一方580℃を越えれば共晶融解の
おそれがあり、また再結晶粒が粗大化するとともに、表
面酸化層の厚みが増大して耐糸錆性が低下する。また保
持時間が5分を越えれば再結晶粒が粗大化するとともに
、表面酸化層の厚みが増大して耐糸錆性が低下する。In addition, when continuous annealing is applied as intermediate annealing, if the heating temperature is less than 300°C, the rolling properties will not be improved and it is meaningless, whereas if it exceeds 580°C, there is a risk of eutectic melting and As the crystal grains become coarser, the thickness of the surface oxidized layer increases, and the thread rust resistance decreases. Furthermore, if the holding time exceeds 5 minutes, the recrystallized grains become coarse and the thickness of the surface oxidized layer increases, resulting in a decrease in thread rust resistance.
【0025】前述のようにして最終板厚とした圧延板に
対しては、溶体化処理を施す。この溶体化処理は、60
00番系合金における強化元素であるMg,Si,Cu
,Znをマトリックス中に固溶させ、その後の塗装焼付
処理後に充分な強度が得られるようにすると同時に、再
結晶させて結晶粒を微細化、安定化させ、成形性を向上
させるために必要な工程である。The rolled plate having the final thickness as described above is subjected to solution treatment. This solution treatment is performed at 60%
Mg, Si, Cu, which are strengthening elements in 00 series alloys
, Zn is dissolved in the matrix to obtain sufficient strength after the subsequent paint baking treatment, and at the same time, it is recrystallized to refine and stabilize the crystal grains and to improve formability. It is a process.
【0026】この溶体化処理の条件としては、450〜
580℃の範囲内の温度に120分以下保持することが
必要である。溶体化処理の温度が450℃未満では溶体
化の効果が不充分であり、また完全には再結晶されず、
成形性が低下してしまう。一方580℃を越えれば共晶
融解発生のおそれがあり、また再結晶粒が粗大化して肌
荒れが発生し、外観不良を招くとともに成形性も低下し
、さらには表面酸化層の厚さが増大して耐糸錆性が低下
するおそれがある。なおここで再結晶粒粗大化防止の目
安としては、再結晶粒径が150μm以下となる程度を
目安にすれば良い。さらに溶体化処理の時間が120分
を越えれば、溶体化効果が飽和するばかりでなく、表面
酸化層の厚さが増大して、耐食性、耐糸錆性が低下する
おそれがある。なおこの溶体化処理としては、バッチ式
、連続式のいずれの熱処理炉を適用しても良い。また溶
体化処理後は急速冷却するが、この冷却速度は強制空冷
以上の冷却速度であれば充分である。具体的には、5℃
/sec 以上の冷却速度が適当である。[0026] The conditions for this solution treatment are 450~
It is necessary to hold the temperature within the range of 580° C. for no more than 120 minutes. If the temperature of solution treatment is less than 450°C, the effect of solution treatment is insufficient, and recrystallization is not completed.
Moldability deteriorates. On the other hand, if the temperature exceeds 580°C, there is a risk of eutectic melting, and the recrystallized grains will become coarser, resulting in rough skin, resulting in poor appearance and reduced formability, and furthermore, the thickness of the surface oxidation layer will increase. There is a risk that thread rust resistance may decrease. Here, as a guideline for preventing coarsening of recrystallized grains, it is sufficient to set the recrystallized grain size to 150 μm or less. Furthermore, if the solution treatment time exceeds 120 minutes, not only the solution treatment effect will be saturated, but also the thickness of the surface oxidation layer will increase, leading to a risk that corrosion resistance and thread rust resistance will deteriorate. Note that for this solution treatment, either a batch type heat treatment furnace or a continuous type heat treatment furnace may be applied. Further, rapid cooling is performed after the solution treatment, and it is sufficient if the cooling rate is higher than forced air cooling. Specifically, 5℃
A cooling rate of /sec or more is appropriate.
【0027】なお溶体化処理後に強制空冷あるいは水焼
入を行なえば板に反りが発生しやすい。これを除去する
ために、冷却後に歪強制加工としてスキンパス、レベリ
ング、ストレッチ等の軽い冷間加工を行なっても良い。Note that if forced air cooling or water quenching is performed after solution treatment, the plate is likely to warp. In order to remove this, light cold working such as skin pass, leveling, stretching, etc. may be performed as strain forced working after cooling.
【0028】以上のようにして溶体化処理を施した圧延
板、あるいは溶体化処理後、矯正のための軽い冷間加工
を施した圧延板に対しては、この発明の方法では次のよ
うな熱処理を施す。すなわち、その圧延板に対して15
0〜320℃の範囲内の温度で1分以内の加熱処理を1
回または2回以上施す(請求項1の発明)か、または図
1に示す範囲内の条件での安定化処理を施した後、前記
同様に150〜320℃の範囲内の温度での1分以内の
加熱処理を1回または2回以上施す。[0028] The method of the present invention applies the following method to a rolled plate that has been subjected to solution treatment as described above, or to a rolled plate that has been subjected to light cold working for straightening after solution treatment. Apply heat treatment. That is, 15 for the rolled plate.
Heat treatment for less than 1 minute at a temperature within the range of 0 to 320℃
After applying the stabilization treatment once or twice or more (the invention of claim 1), or after performing the stabilization treatment under the conditions within the range shown in FIG. The following heat treatment is performed once or twice or more.
【0029】このような溶体化処理後の熱処理は、この
発明の方法で基本的に重要な部分であり、従来の通常の
熱処理型合金では一般に溶体化処理後の熱処理は特に行
なわないのが通常であった。このような溶体化処理後の
熱処理のプロセスパターンの4つの代表例を図2に示す
。図2において、A,Bは請求項1の発明による熱処理
のプロセスパターン、C,Dは請求項2の発明による熱
処理のプロセスパターンである。図2のA,Bのプロセ
スパターンが図2のC,Dのプロセスパターンと異なる
点は、安定化処理12を行なっていない点であるが、A
,Bのプロセスパターンの場合も、工業的な製造ライン
では溶体化処理後、次の加熱処理21が行なわれるまで
の間に室温で放置されてある程度の時間が経過するから
、図2中に括弧書きで記したように、室温時効11が行
なわれていると言うことができる。Such heat treatment after solution treatment is a fundamentally important part of the method of the present invention, and conventional heat treatment type alloys are generally not particularly subjected to heat treatment after solution treatment. Met. FIG. 2 shows four typical examples of process patterns of such heat treatment after solution treatment. In FIG. 2, A and B are process patterns of heat treatment according to the invention of claim 1, and C and D are process patterns of heat treatment according to the invention of claim 2. The difference between the process patterns A and B in FIG. 2 from the process patterns C and D in FIG. 2 is that the stabilization process 12 is not performed.
, B. In the case of the process pattern B, in an industrial production line, after the solution treatment, a certain amount of time passes after being left at room temperature before the next heat treatment 21 is performed, so the numbers in parentheses in FIG. As mentioned above, it can be said that room temperature aging 11 has been carried out.
【0030】ここで、上述のような溶体化処理後の熱処
理の全体的な作用について説明する。[0030] Here, the overall effect of the heat treatment after the solution treatment as described above will be explained.
【0031】溶体化処理後の室温時効11もしくは安定
化処理12によって、その後の塗装焼付時の析出サイト
として有効な析出物が生成される。すなわち、この室温
時効11もしくは安定化処理12によって生じた析出物
は、その一部が後の塗装焼付時に形成される強度への寄
与の大きい析出物の析出サイトとなる。ところがこのよ
うな室温時効11もしくは安定化処理12においては、
同時に不要な微細析出物、すなわち塗装焼付時の析出サ
イトとならないような微細な析出物も生じてしまい、こ
のような微細析出物によって材料強度も上昇して成形性
が低下してしまう。そこで室温時効11もしくは安定化
処理12の後、加熱処理21を行なって不要な微細析出
物を再固溶させ、低強度化すなわち成形性向上を図る。
そしてB,Dのプロセスパターンの場合には、1回目の
加熱処理21の後、さらに2回目の加熱処理22を行な
って、その後の室温時効性をより低減させる。すなわち
、単に1回目の加熱処理21で不要な微細析出物を再固
溶させるだけではなく、2回目の加熱処理22よって、
溶体化処理時における焼入れ(急速冷却)により導入さ
れた見掛け上の過剰空孔を減らし、Mg,Si,Cuな
どの添加元素の拡散速度を低下させ、室温時効性をより
低下させるのである。[0031] By room temperature aging 11 or stabilization treatment 12 after the solution treatment, precipitates are generated which are effective as precipitation sites during subsequent coating baking. That is, a part of the precipitates generated by the room temperature aging 11 or the stabilization treatment 12 becomes a precipitation site for the precipitates that are formed during the subsequent baking of the paint and greatly contribute to the strength. However, in such room temperature aging 11 or stabilization treatment 12,
At the same time, unnecessary fine precipitates, ie, fine precipitates that do not serve as precipitation sites during paint baking, are also generated, and such fine precipitates increase material strength and reduce formability. Therefore, after room temperature aging 11 or stabilization treatment 12, heat treatment 21 is performed to dissolve unnecessary fine precipitates again into solid solution, thereby lowering the strength, that is, improving formability. In the case of process patterns B and D, after the first heat treatment 21, a second heat treatment 22 is further performed to further reduce the subsequent room temperature aging property. That is, in addition to simply redissolving unnecessary fine precipitates in the first heat treatment 21, the second heat treatment 22
This reduces the apparent excess pores introduced by quenching (rapid cooling) during solution treatment, reduces the diffusion rate of additive elements such as Mg, Si, and Cu, and further reduces room temperature aging properties.
【0032】以上のような溶体化処理後の熱処理におけ
る各条件について次に説明する。[0032] Each condition in the heat treatment after the solution treatment as described above will be explained next.
【0033】図2のA,Bのプロセスパターンでは単に
室温に放置させて室温時効させ、これにより後の塗装焼
付時における析出核生成サイトとして有効な析出物を生
成させているが、この塗装焼付時における析出サイトを
より安定化するため、C,Dのプロセスパターンでは、
図1の各線分AB,BC,CD,DE,EF,FAによ
って囲まれる領域内(但し各線分上の点を含む)の時間
−温度条件で積極的に安定化処理12を行なっている。In the process patterns A and B in FIG. 2, the product is simply left at room temperature and aged at room temperature, thereby generating precipitates that are effective as precipitation nucleation sites during the subsequent paint baking process. In order to further stabilize the precipitation site during the process, in process patterns C and D,
The stabilization process 12 is actively performed under the time-temperature conditions within the area surrounded by the line segments AB, BC, CD, DE, EF, and FA in FIG. 1 (including points on each line segment).
【0034】この安定化処理12における温度が60℃
未満(線分CDの下側)では析出速度が遅く、充分に析
出物が得られない。また180℃を越え(線分FAの上
側)れば析出硬化が大き過ぎ、強度が高くなって成形性
が低下してしまい、また粗大な析出物が形成されるため
に塗装焼付性も劣化する。一方、処理時間が図1におけ
る線分AB,BCの左側では、処理時間が短か過ぎて、
塗装焼付時に必要な析出サイトが充分に生成されず、ま
た処理時間が図1の線分DE,EFの右側では、処理時
間が長過ぎて、析出硬化が大き過ぎ、強度が高くなって
成形性が低下するとともに、粗大な析出物が形成されて
塗装焼付性も劣化してしまう。したがって安定化処理の
条件は、図2の線分AB,BC,CD,DE,EF,F
Aによって囲まれる領域内(但し各線分上の点を含む)
の時間−温度条件とする必要がある。[0034] The temperature in this stabilization treatment 12 is 60°C.
If it is less than (below the line segment CD), the precipitation rate is slow and a sufficient amount of precipitate cannot be obtained. Furthermore, if the temperature exceeds 180°C (above line segment FA), precipitation hardening will be too large, strength will increase and formability will decrease, and paint baking properties will also deteriorate due to the formation of coarse precipitates. . On the other hand, the processing time is too short on the left side of the line segments AB and BC in FIG.
The precipitation sites required during paint baking are not sufficiently generated, and on the right side of the lines DE and EF in Figure 1, the processing time is too long, precipitation hardening is too large, and the strength is high, resulting in poor formability. At the same time, coarse precipitates are formed and paint baking properties are also deteriorated. Therefore, the conditions for stabilization processing are line segments AB, BC, CD, DE, EF, F in Fig. 2.
Within the area surrounded by A (including points on each line segment)
time-temperature conditions.
【0035】上述のような室温時効11もしくは安定化
処理12は、一種の予備時効と言うことができる。この
ような予備時効の後、固溶、析出を適切にコントロール
するために加熱処理を1回または2回以上行なう。The above-described room temperature aging 11 or stabilization treatment 12 can be said to be a kind of preliminary aging. After such preliminary aging, heat treatment is performed once or twice or more in order to appropriately control solid solution and precipitation.
【0036】1回目の加熱処理21は、既に述べたよう
に予備時効中に形成された析出物のうち、塗装焼付時の
析出サイトとならないような微細な析出物をマトリック
ス中に再固溶させるためのものであるが、その温度が1
50℃未満では再固溶させる効果が充分に得られず、一
方320℃を越えれば過時効により粗大析出物が形成さ
れ、塗装焼付後の強度が低下する。また熱処理時間が1
分を越えれば時効硬化により材料強度が高くなって成形
性が低下する。したがってこの1回目の加熱処理21の
条件は、150〜320℃の範囲内の温度に1分以下の
保持とする必要がある。なおこの加熱処理には、本質的
には急速加熱が必要であり、1℃/sec 以上の加熱
速度とすることが望ましい。また塗装焼付時の析出サイ
トとならないような小さな析出物は溶解速度が極めて速
いから、保持時間は零でも良い。[0036] As already mentioned, the first heat treatment 21 is to re-dissolve into the matrix fine precipitates that do not become precipitation sites during paint baking, among the precipitates formed during pre-aging. The temperature is 1
If the temperature is lower than 50°C, the effect of solid solution cannot be sufficiently obtained, while if the temperature exceeds 320°C, coarse precipitates are formed due to over-aging, and the strength after baking of the paint is reduced. Also, the heat treatment time is 1
If the temperature exceeds 10 minutes, the strength of the material increases due to age hardening and the formability decreases. Therefore, the conditions for this first heat treatment 21 need to be such that the temperature is maintained within the range of 150 to 320° C. for 1 minute or less. Note that this heat treatment essentially requires rapid heating, and a heating rate of 1° C./sec or more is desirable. Furthermore, since the dissolution rate of small precipitates that do not become precipitation sites during paint baking is extremely fast, the holding time may be zero.
【0037】図2のプロセスパターンB,Dにおいては
、上述のような1回目の加熱処理21の後、さらに室温
時効性を低下させるために2回目の加熱処理22を行な
う。この2回目の加熱処理22の条件も1回目の加熱処
理21と同様に150〜320℃の範囲内の温度で1分
以内とすれば良い。この温度が150℃未満では室温時
効硬化を少なくする効果が得られず、320℃を越えれ
ば過時効により粗大析出物が生成され、成形性が低下す
るとともに、塗装焼付後の強度が低下する。また処理時
間が1分を越えても、時効硬化により材料強度が高くな
り、成形性が低下する。In process patterns B and D in FIG. 2, after the first heat treatment 21 as described above, a second heat treatment 22 is performed to further reduce the room temperature aging property. The conditions for this second heat treatment 22 may be the same as those for the first heat treatment 21, at a temperature within the range of 150 to 320° C. for less than 1 minute. If this temperature is less than 150°C, the effect of reducing room temperature age hardening cannot be obtained, and if it exceeds 320°C, coarse precipitates are generated due to over-aging, which reduces formability and reduces the strength after painting baking. Moreover, even if the treatment time exceeds 1 minute, the material strength increases due to age hardening, and the formability decreases.
【0038】なお図2には示していないが、以上のよう
な加熱処理を3回以上行なっても良いことは勿論である
。また、2回以上の加熱処理を行なう場合、1回目の加
熱処理と2回目以降の加熱処理には、2回目以降の加熱
処理の温度が1回目の加熱処理の温度よりも20℃以上
低くなるような温度差を与えることが望ましい。Although not shown in FIG. 2, it goes without saying that the above heat treatment may be performed three or more times. In addition, when heat treatment is performed two or more times, the temperature of the first heat treatment and the second and subsequent heat treatments must be at least 20°C lower than the temperature of the first heat treatment. It is desirable to provide such a temperature difference.
【0039】さらにこの発明の方法においては、前述の
ような加熱処理21,22における有効性を判定するた
め、最終の加熱処理後の導電率(すなわち1回のみ加熱
処理を行なう場合はその1回目の加熱処理の後の導電率
、2回以上加熱処理を行なう場合は最終の加熱処理後の
導電率)が、1回目の加熱処理の直前の導電率よりも1
%IACS以上低下することと規定した。すなわち、材
料の導電率は、合金元素の固溶量、析出量を判断する上
で有効な指標となり、特にこの発明で対象としているA
l−Mg−Si(−Cu)系合金のような熱処理型合金
では、熱処理の前後の導電率の変化がその熱処理工程で
の固溶・析出の評価を行なう上で有効な指標となる。そ
してこの発明の方法では、前述のように最終の加熱処理
の後の導電率が1回目の加熱処理直前の導電率よりも1
%IACS以上低下していなければ、加熱処理の効果が
充分に得られず、塗装焼付後の強度が低くなるとともに
、加熱処理後の室温経時変化が大きくなる。Furthermore, in the method of the present invention, in order to judge the effectiveness of the heat treatments 21 and 22 as described above, the electrical conductivity after the final heat treatment (that is, if the heat treatment is performed only once, the conductivity of the first heat treatment is determined) The conductivity after the heat treatment (or the conductivity after the final heat treatment if heat treatment is performed two or more times) is 1 higher than the conductivity immediately before the first heat treatment.
It was defined as a decrease of %IACS or more. In other words, the electrical conductivity of a material is an effective index for determining the amount of solid solution and precipitation of alloying elements, and is particularly useful for A, which is the target of this invention.
In heat treatable alloys such as l-Mg-Si(-Cu) alloys, the change in electrical conductivity before and after heat treatment is an effective index for evaluating solid solution/precipitation during the heat treatment process. In the method of the present invention, as mentioned above, the conductivity after the final heat treatment is 1 greater than the conductivity immediately before the first heat treatment.
%IACS or more, the effect of the heat treatment will not be sufficiently obtained, the strength after baking of the paint will decrease, and the change in room temperature over time after the heat treatment will increase.
【0040】[0040]
【実施例】表1に示すように、JIS 6061合金
に相当する符号Aの合金およびAA6010合金に相当
するBの合金について、常法に従ってDC鋳造し、得ら
れた鋳塊を500℃で均質化処理した後、常法に従って
熱間圧延して厚さ4mmの熱延板とし、さらに板厚1m
mまで冷間圧延した。その後、535℃で40分溶体化
処理して水焼入れした。その後、表2の熱処理番号1〜
7に示すような種々の条件で熱処理を行なった。ここで
、溶体化処理は電気炉で行ない、また表2に示す各熱処
理には赤外線ヒータを用いて急速加熱し、水焼入れした
。[Example] As shown in Table 1, an alloy with code A corresponding to JIS 6061 alloy and an alloy with code B corresponding to AA6010 alloy were DC cast according to the conventional method, and the obtained ingots were homogenized at 500°C. After the treatment, hot rolling was carried out according to a conventional method to obtain a hot rolled sheet with a thickness of 4 mm, and then a sheet with a thickness of 1 m.
It was cold rolled to m. Thereafter, it was subjected to solution treatment at 535° C. for 40 minutes and water quenched. After that, heat treatment number 1~ in Table 2
Heat treatment was performed under various conditions as shown in 7. Here, the solution treatment was performed in an electric furnace, and in each heat treatment shown in Table 2, rapid heating was performed using an infrared heater, and water quenching was performed.
【0041】表2に示す各熱処理を行なった後、1週間
室温に放置した後の機械的性質および成形性を調べた。
また同じく1週間室温に放置した後、塗装焼付相当処理
として177℃×1hrの加熱を行ない、塗装焼付後強
度を調べた。さらに表2中に示す1回目の加熱処理直前
の導電率に対する最終の加熱処理後の導電率の低下量を
調べた。これらの結果を表3に示す。After each heat treatment shown in Table 2 was carried out, the mechanical properties and moldability were examined after being left at room temperature for one week. Similarly, after being left at room temperature for one week, it was heated at 177° C. for 1 hr as a treatment equivalent to paint baking, and the strength after paint baking was examined. Furthermore, the amount of decrease in conductivity after the final heat treatment with respect to the conductivity immediately before the first heat treatment shown in Table 2 was investigated. These results are shown in Table 3.
【0042】なおここで、成形性評価のうち、エリクセ
ン試験はグラファイトグリース潤滑によりJIS−B法
にて行なった。また張出試験はφ100mmの球頭ポン
チを用い、塩ビフィルムを貼った状態で行なった。さら
にLDR(限界絞り比)は、600kgのしわ抑えを加
えた状態でジョンソンワックス潤滑にてφ50mmのポ
ンチで絞り試験を行なって調べた。また曲げ性は、18
0°曲げ試験における最小曲げ半径で評価した。さらに
、加熱処理前後の導電率測定は、渦電流式のシグマテス
ターを用いた。また表3中の塗装焼付後の強度の欄中の
ΔYSは、塗装焼付相当処理前の母材のYSに対する塗
装焼付相当処理後のYS上昇量を示した。[0042] In the moldability evaluation, the Erichsen test was carried out using graphite grease lubrication according to the JIS-B method. Further, the stretching test was conducted using a ball-head punch with a diameter of 100 mm, with the PVC film attached. Furthermore, the LDR (limit drawing ratio) was investigated by conducting a drawing test with a φ50 mm punch under Johnson wax lubrication with 600 kg of wrinkle suppression added. In addition, the bendability is 18
Evaluation was made using the minimum bending radius in the 0° bending test. Furthermore, an eddy current type sigma tester was used to measure the conductivity before and after the heat treatment. Further, ΔYS in the column of strength after paint baking in Table 3 indicates the amount of increase in YS after the paint baking equivalent treatment with respect to the YS of the base material before the paint baking equivalent treatment.
【0043】一方、表2に示した加熱処理の後の室温で
の経時変化、特に機械的性質(TS,YS,EL)およ
び成形性(エリクセン値)の経時変化を調べた結果を表
4に示す。ここで経時変化は、加熱処理後、1日、1週
間、1ケ月、および3ケ月の各経過時点での特性を調べ
た。On the other hand, Table 4 shows the results of examining changes over time at room temperature after the heat treatment shown in Table 2, especially changes over time in mechanical properties (TS, YS, EL) and formability (Erichsen value). show. Here, regarding changes over time, characteristics were examined at each time point of 1 day, 1 week, 1 month, and 3 months after the heat treatment.
【0044】[0044]
【表1】[Table 1]
【0045】[0045]
【表2】[Table 2]
【0046】[0046]
【表3】[Table 3]
【0047】[0047]
【表4】[Table 4]
【0048】表2に示した各熱処理のうち熱処理番号4
は安定化処理の時間が長過ぎた比較例、熱処理番号5は
1回目の加熱処理の温度が高過ぎた比較例、熱処理番号
6は1回目の加熱処理の時間が長過ぎた比較例であり、
これらの場合は塗装焼付前の強度が高過ぎて成形性が劣
り、また塗装焼付による強度向上も充分ではなかった。
また熱処理番号7は溶体化処理後に熱処理を行なわなか
った従来例であり、この場合、塗装焼付前(最終熱処理
後1週間経過時)の強度が高過ぎて成形性が劣るばかり
でなく、最終熱処理後の機械的性質、成形性の経時変化
が著しかった。Heat treatment number 4 among the heat treatments shown in Table 2
Heat treatment number 5 is a comparative example in which the stabilization treatment time was too long, heat treatment number 5 is a comparative example in which the first heat treatment temperature was too high, and heat treatment number 6 is a comparative example in which the first heat treatment time was too long. ,
In these cases, the strength before paint baking was too high, resulting in poor formability, and the strength improvement by paint baking was not sufficient. In addition, heat treatment number 7 is a conventional example in which heat treatment was not performed after solution treatment. There were significant changes in mechanical properties and formability over time.
【0049】これに対しこの発明の方法による熱処理番
号1〜3の場合は、いずれも塗装焼付前の強度が低くて
成形性に優れると同時に、塗装焼付による強度向上が充
分で塗装焼付後に高強度が得られ、しかも最終熱処理後
の機械的性質、成形性の室温経時変化が極めて少ないこ
とが確認された。On the other hand, in the case of heat treatment numbers 1 to 3 according to the method of the present invention, the strength before paint baking is low and the formability is excellent, and at the same time, the strength improvement due to paint baking is sufficient and high strength is achieved after painting baking. was obtained, and furthermore, it was confirmed that changes in mechanical properties and formability over time at room temperature after the final heat treatment were extremely small.
【0050】[0050]
【発明の効果】前述の実施例からも明らかなように、こ
の発明の方法によれば、JIS 6000番系の合金
からなるアルミニウム合金板を製造するにあたって、塗
装焼付前の成形加工時においては低強度で成形性に優れ
ると同時に、塗装焼付後においては充分な高強度を有し
、しかも最終熱処理後の室温での放置による機械的性質
、成形性の経時変化の少ない板を得ることができ、特に
成形加工時の形状凍結性および塗装焼付後の耐デント性
が優れている室温経時変化の少ない板を実際に量産的規
模で製造することができる。したがってこの発明の方法
は、自動車車体などの陸運車両の部品や電気機械用部品
等、成形加工および塗装焼付を施して使用される用途の
アルミニウム合金板の製造に最適である。Effects of the Invention As is clear from the above embodiments, according to the method of the present invention, when manufacturing an aluminum alloy plate made of JIS 6000 series alloy, low At the same time, it is possible to obtain a board that has excellent strength and formability, has sufficient strength after baking the paint, and has little change in mechanical properties and formability over time when left at room temperature after final heat treatment. In particular, it is possible to actually produce on a mass production scale a board that has excellent shape fixability during molding and dent resistance after paint baking, and has little change over time at room temperature. Therefore, the method of the present invention is most suitable for producing aluminum alloy plates for applications such as parts for land transportation vehicles such as automobile bodies, parts for electric machines, etc., which are subjected to forming processing and paint baking.
【図1】この発明の方法における安定化処理の時間−温
度条件を規定する時間−温度座標を示す座標図である。FIG. 1 is a coordinate diagram showing time-temperature coordinates defining time-temperature conditions for stabilization treatment in the method of the present invention.
【図2】この発明の方法における溶体化処理後の熱処理
の代表的な4種のプロセスパターンを示すフローチャー
トである。FIG. 2 is a flowchart showing four typical process patterns of heat treatment after solution treatment in the method of the present invention.
Claims (2)
−Mg−Si系のアルミニウム合金圧延板に対して、4
50〜580℃の範囲内の温度で溶体化処理して5℃/
sec 以上の冷却速度で冷却し、その後150〜32
0℃の範囲内の温度での1分以内の加熱処理を1回もし
くは2回以上行なって、最終の加熱処理後の導電率を1
回目の加熱処理直前の導電率よりも1%IACS以上低
下させることを特徴とする、室温経時変化が少なくかつ
成形性と塗装焼付後の強度の優れた成形加工用アルミニ
ウム合金板の製造方法。[Claim 1] Al belonging to JIS 6000 series
-4 for Mg-Si based aluminum alloy rolled plate
Solution treatment at a temperature within the range of 50-580℃
Cool at a cooling rate of 150 to 32
Heat treatment for less than 1 minute at a temperature within the range of 0°C is performed once or twice, and the conductivity after the final heat treatment is reduced to 1.
A method for producing an aluminum alloy plate for forming, which exhibits little change over time at room temperature and has excellent formability and strength after paint baking, characterized by reducing the conductivity by 1% or more IACS compared to the conductivity immediately before the second heat treatment.
−Mg−Si系のアルミニウム合金圧延板に対して、4
50〜580℃の範囲内の温度で溶体化処理して5℃/
sec 以上の冷却速度で冷却し、その後、横軸の時間
軸を対数目盛とし縦軸の温度軸を等間隔目盛とした図1
に示す時間−温度座標上におけるA点(0.5時間、1
80℃)、B点( 0.5時間、100℃)、C点(4
時間、60℃)、D点(24時間、60℃)、E点(2
4時間、100℃)、F点(4時間、180℃)の各点
を順次結ぶ各線分AB,BC,CD,DE,EF,FA
によって取囲まれる領域内(但し各線分上の点を含む)
の時間−温度条件で安定化処理を行ない、さらにその後
150〜320℃の範囲内の温度での1分以内の加熱処
理を1回もしくは2回以上行なって、最終の加熱処理後
の導電率を1回目の加熱処理直前の導電率よりも1%I
ACS以上低下させることを特徴とする、室温経時変化
が少なくかつ成形性と塗装焼付後の強度の優れた成形加
工用アルミニウム合金板の製造方法。[Claim 2] Al belonging to JIS 6000 series
-4 for Mg-Si based aluminum alloy rolled plate
Solution treatment at a temperature within the range of 50-580℃
Figure 1: After cooling at a cooling rate of sec or more, the horizontal time axis is on a logarithmic scale and the vertical temperature axis is on an evenly spaced scale.
Point A (0.5 hours, 1
80°C), point B (0.5 hours, 100°C), point C (4
time, 60℃), point D (24 hours, 60℃), point E (24 hours, 60℃),
Each line segment AB, BC, CD, DE, EF, FA sequentially connects each point of point F (4 hours, 180℃)
Within the area surrounded by (including points on each line segment)
Stabilization treatment is performed under the time-temperature conditions of 1%I higher than the conductivity immediately before the first heat treatment
A method for producing an aluminum alloy plate for forming, which exhibits little change over time at room temperature and has excellent formability and strength after paint baking, which is characterized by reducing the ACS or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3799991A JP2678404B2 (en) | 1991-02-07 | 1991-02-07 | Manufacturing method of aluminum alloy sheet for forming |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3799991A JP2678404B2 (en) | 1991-02-07 | 1991-02-07 | Manufacturing method of aluminum alloy sheet for forming |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04259358A true JPH04259358A (en) | 1992-09-14 |
JP2678404B2 JP2678404B2 (en) | 1997-11-17 |
Family
ID=12513278
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3799991A Expired - Fee Related JP2678404B2 (en) | 1991-02-07 | 1991-02-07 | Manufacturing method of aluminum alloy sheet for forming |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2678404B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05279822A (en) * | 1992-04-01 | 1993-10-26 | Sumitomo Light Metal Ind Ltd | Production of aluminum alloy material for forming excellent in hardenability of coating/baking, formability, and shape freezability |
JPH06272000A (en) * | 1993-03-16 | 1994-09-27 | Sky Alum Co Ltd | Production of al alloy sheet excellent in formability and baking hardenability |
JPH0881744A (en) * | 1994-09-13 | 1996-03-26 | Sky Alum Co Ltd | Method and equipment for manufacturing aluminum alloy sheet excellent in formability and baking hardenability |
JPH08232052A (en) * | 1994-12-27 | 1996-09-10 | Honda Motor Co Ltd | Production of aluminum alloy sheet for automobile outer sheet |
JP2008106370A (en) * | 1994-09-06 | 2008-05-08 | Novelis Inc | Heat treatment process for aluminum alloy sheet |
JP2009007617A (en) * | 2007-06-27 | 2009-01-15 | Kobe Steel Ltd | Aluminum alloy sheet for warm forming and manufacturing method therefor |
-
1991
- 1991-02-07 JP JP3799991A patent/JP2678404B2/en not_active Expired - Fee Related
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05279822A (en) * | 1992-04-01 | 1993-10-26 | Sumitomo Light Metal Ind Ltd | Production of aluminum alloy material for forming excellent in hardenability of coating/baking, formability, and shape freezability |
JPH06272000A (en) * | 1993-03-16 | 1994-09-27 | Sky Alum Co Ltd | Production of al alloy sheet excellent in formability and baking hardenability |
JP2008106370A (en) * | 1994-09-06 | 2008-05-08 | Novelis Inc | Heat treatment process for aluminum alloy sheet |
JPH0881744A (en) * | 1994-09-13 | 1996-03-26 | Sky Alum Co Ltd | Method and equipment for manufacturing aluminum alloy sheet excellent in formability and baking hardenability |
JPH08232052A (en) * | 1994-12-27 | 1996-09-10 | Honda Motor Co Ltd | Production of aluminum alloy sheet for automobile outer sheet |
JP2009007617A (en) * | 2007-06-27 | 2009-01-15 | Kobe Steel Ltd | Aluminum alloy sheet for warm forming and manufacturing method therefor |
Also Published As
Publication number | Publication date |
---|---|
JP2678404B2 (en) | 1997-11-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0747807B2 (en) | Method for producing rolled aluminum alloy plate for forming | |
US20200216938A1 (en) | 6xxxx-series rolled sheet product with improved formability | |
JP3845312B2 (en) | Aluminum alloy plate for forming and method for producing the same | |
US20190330716A1 (en) | Aluminum alloy sheet having excellent ridging resistance and hem bendability and production method for same | |
JPH083702A (en) | Production of aluminum alloy sheet material excellent in formability and heating hardenability | |
JP2678404B2 (en) | Manufacturing method of aluminum alloy sheet for forming | |
JPH04341546A (en) | Production of high strength aluminum alloy-extruded shape material | |
JP6768568B2 (en) | Aluminum alloy plate with excellent press formability, rigging mark property, and BH property | |
JP2626958B2 (en) | Method for producing aluminum alloy sheet excellent in formability and bake hardenability | |
JPH0257655A (en) | Foamable aluminum alloy having excellent surface treating characteristics and its manufacture | |
JPH08176764A (en) | Production of aluminum alloy sheet for forming | |
JP3210419B2 (en) | Aluminum alloy sheet for DI can excellent in flange formability and method for producing the same | |
JP2003277869A (en) | Aluminum alloy sheet having excellent bending workability and hardenability in coating/baking, and production method thereof | |
JP2004124213A (en) | Aluminum alloy sheet for panel forming, and its manufacturing method | |
JPH0547615B2 (en) | ||
JP3066091B2 (en) | Aluminum alloy rolled plate for hole enlarging and method for producing the same | |
JPS61201748A (en) | Rolled aluminum alloy sheet for forming and its manufacture | |
JPH0247234A (en) | High strength aluminum alloy for forming having suppressed age hardenability at room temperature and its manufacture | |
JP2005139494A (en) | Aluminum alloy sheet for forming, and its production method | |
JP2005139495A (en) | Aluminum alloy sheet for forming, and its production method | |
JP3686146B2 (en) | Method for producing aluminum alloy sheet for forming | |
JPS61201749A (en) | Rolled aluminum alloy sheet for forming and its manufacture | |
JPH0547616B2 (en) | ||
JP3359428B2 (en) | Manufacturing method of aluminum alloy sheet for forming | |
JP2003328095A (en) | Production method for aluminum alloy plate for forming |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19970617 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070801 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080801 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080801 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090801 Year of fee payment: 12 |
|
LAPS | Cancellation because of no payment of annual fees |