JPH07252616A - Production of aluminum-magnesium-silicon alloy sheet - Google Patents

Production of aluminum-magnesium-silicon alloy sheet

Info

Publication number
JPH07252616A
JPH07252616A JP4726394A JP4726394A JPH07252616A JP H07252616 A JPH07252616 A JP H07252616A JP 4726394 A JP4726394 A JP 4726394A JP 4726394 A JP4726394 A JP 4726394A JP H07252616 A JPH07252616 A JP H07252616A
Authority
JP
Japan
Prior art keywords
alloy
hot rolling
rolling
continuous casting
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4726394A
Other languages
Japanese (ja)
Other versions
JP3351087B2 (en
Inventor
Katsushi Matsumoto
克史 松本
Masahiro Yanagawa
政洋 柳川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP04726394A priority Critical patent/JP3351087B2/en
Publication of JPH07252616A publication Critical patent/JPH07252616A/en
Application granted granted Critical
Publication of JP3351087B2 publication Critical patent/JP3351087B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To increase strength and to provide superior press workability and curing performance for baking by using an alloy of specific composition, controlling cooling velocity at the time of continuous casting and after hot rolling by means of continuous casting and direct rolling, cold-rolling the alloy to prescribed sheet thickness, and then applying solution treatment and aging treatment to the resulting sheet. CONSTITUTION:This Al alloy has a composition which contains, by weight ratio, 0.3-1.0% Mg, 0.7-1.5% Si, 0.1-0.7% Mn, 0-1.0% Cu, 0-1.2% Fe, and 0.1-0.3% Cr and/or 0.1-0.3% Zr and in which the contents of Mg and Si satisfy the relaion in inequality I. A molten metal of this alloy is cast continuously at >=5 deg.C/sec cooling rate R at the time of solidification, under the condition satisfying inequality II. After casting, the resulting cast slab is held at a temp. not lower than hot rolling temp., followed by hot rolling. After rolling, the resulting plate is cooled at a rate of >=100 deg.C/min and further cold-rolled to prescribed sheet thickness. The sheet is subjected to solution treatment at 540-570 deg.C, to hardening, and then to aging treatment.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、Al−Mg−Si系合
金板の製法に関し、特にMg,Mn,Siの様な合金元
素含有量の特定されたAl合金溶湯を使用し、これを連
続鋳造した後熱間圧延し、更に冷間圧延をなってAl−
Mg−Si系合金板を製造する際において、連続鋳造時
および熱間圧延後の冷却速度を規定すると共に、その後
に行なわれる冷間圧延後の熱処理条件を工夫することに
よって、プレス成形性や焼き付け塗装硬化性等の改善さ
れたAl−Mg−Si系合金板を製造する方法に関する
ものである。そして本発明によって得られるAl−Mg
−Si系合金板は、その優れた特性を生かして、自動車
等の車両用、家庭電化製品用等の外板材あるいは建築材
料等として幅広く活用することができる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an Al--Mg--Si alloy plate, and in particular, it uses an Al alloy molten metal having a specified content of alloying elements such as Mg, Mn, and Si, which is continuously processed. After casting, it is hot-rolled and then cold-rolled to form Al-
In forming an Mg-Si alloy plate, press forming property and baking are performed by defining cooling rates during continuous casting and after hot rolling, and devising heat treatment conditions after cold rolling performed thereafter. The present invention relates to a method for producing an Al-Mg-Si alloy plate having improved paint curability. And Al-Mg obtained by the present invention
The Si-based alloy plate can be widely used as an outer plate material for vehicles such as automobiles and home electric appliances, a building material, etc. by utilizing its excellent characteristics.

【0002】[0002]

【従来の技術】たとえば自動車用パネル材としては従来
から冷延鋼板が使用されてきたが、最近、燃費節減、排
ガス低減などを目的とする車体の軽量化対策として、軽
量で比強度が高く且つ成形加工性にも優れたAl合金材
を使用する傾向が急速に高まっている。それらの中で
も、美観向上のため塗装処理して用いられることの多い
自動車用Al系合金板としては、焼き付け塗装硬化性に
優れたAl−Mg−Si系合金が注目を集めており、一
部で実用化が進められている。
2. Description of the Related Art For example, cold-rolled steel sheets have been used as a panel material for automobiles, but recently, as a measure to reduce the weight of a vehicle body for the purpose of reducing fuel consumption and exhaust gas, it is lightweight and has high specific strength. The tendency to use an Al alloy material which is also excellent in formability is rapidly increasing. Among them, as an Al-based alloy plate for automobiles, which is often used after being subjected to a coating treatment for improving the aesthetic appearance, an Al-Mg-Si-based alloy excellent in baking coating hardenability is drawing attention, and in some cases, Practical application is in progress.

【0003】ところで、Al合金板の製法として従来か
ら一般的に実施されているのは、半連続鋳造法等によっ
て製造した鋳塊に面削処理や均質化熱処理を施した後、
熱間圧延、冷間圧延、焼鈍等を順次行なう方法であり、
この様な工程を経て製造される従来のAl合金板はプレ
ス成形性が良好であると共に、焼き付け塗装硬化性も良
好であり、需要者の要求を一応満足している。
By the way, what has been generally practiced as a conventional method for producing an Al alloy sheet is that an ingot produced by a semi-continuous casting method or the like is subjected to chamfering treatment or homogenization heat treatment,
It is a method of sequentially performing hot rolling, cold rolling, annealing, etc.,
The conventional Al alloy plate manufactured through such steps has good press formability and good baking coating hardenability, which satisfies the demands of consumers.

【0004】ところが近年における需要者の要求は一段
と厳しくなってきており、軽量化を増進するため更に高
い強度を求める傾向があるばかりでなく、成形性や焼き
付け塗装硬化性においても一層の向上が望まれており、
更には生産性向上によるコストダウンの要求も次第に高
まってきている。
However, in recent years, the demands of consumers have become more severe, and there is a tendency for higher strength to be demanded in order to promote weight reduction, and further improvement in moldability and baking coating curing property is desired. Is covered,
Furthermore, demands for cost reduction due to improved productivity are also increasing.

【0005】こうした要望に沿う比較的新しいAl合金
板の製造技術として、連続鋳造により移動帯板とした後
直ちに圧延工程に送って熱間圧延および冷間圧延を行な
う手法(以下、連鋳・直送圧延法ということがある)を
採用し、面削や均質化熱処理を省略する方法が検討され
ている(特開昭55−27497号、特公昭62−54
182号等)。この方法によれば、面削や均質化熱処理
の省略によるコストダウンが図れると共に、鋳造工程で
過飽和に固溶した固溶元素が均質化熱処理時に析出する
といったことも起こらなくなるため、固溶強化による高
強度化も増進されるといった利点を得ることができる。
As a relatively new Al alloy sheet manufacturing technique that meets such demands, a method of performing hot rolling and cold rolling by immediately sending to a rolling step after forming a moving strip by continuous casting (hereinafter referred to as continuous casting / direct sending A rolling method is sometimes used) and a method of omitting chamfering and homogenizing heat treatment is being studied (Japanese Patent Laid-Open No. 55-27497 and Japanese Patent Publication No. 62-54).
No. 182). According to this method, it is possible to reduce costs by omitting chamfering and homogenization heat treatment, and to prevent solid-solution elements that are solid-soluted in supersaturation during the casting process from precipitating during homogenization heat treatment. It is possible to obtain an advantage that the strength is enhanced.

【0006】こうした連鋳・直送圧延法を行なうときに
採用される連続鋳造法として現在実用化されているの
は、水冷式連続鋳造法(固定式の水冷式連鋳鋳型から板
状に成形されて出てくる連鋳片を冷却水で直接冷却固化
し、連続的に鋳造する方法)、ハンターエンジニアリン
グ社で開発された双ロール鋳造法(回転する一対の冷却
ロール間に溶湯を供給し、該ロール間で冷却固化するこ
とにより連続的に鋳造する方法)、ハザレー社で開発さ
れたベルト式連続鋳造法(可動式の2つのベルト状冷却
部材の間に溶湯を供給し、該ベルト間で冷却固化させな
がら連続的に板状に鋳造する方法)、スイス・アルミニ
ウム社で開発されたブロック式連続鋳造法(可動式の2
つのブロック状冷却部材の間に溶湯を供給し、該ブロッ
ク間で冷却固化させながら連続的に板状に鋳造する方
法)などである。
The continuous casting method adopted at the time of performing such continuous casting and direct rolling is currently put into practical use is a water-cooled continuous casting method (formed from a fixed water-cooled continuous casting mold into a plate shape). The continuous cast piece that comes out is directly cooled and solidified with cooling water and continuously cast), a twin roll casting method developed by Hunter Engineering Co., Ltd. (the molten metal is supplied between a pair of rotating cooling rolls, Continuous casting method by cooling and solidifying between rolls), belt-type continuous casting method developed by Hatherley Co., Ltd. (supplying molten metal between two movable belt-shaped cooling members and cooling between the belts) Continuous solid plate casting while solidifying), Block type continuous casting method (movable type 2) developed by Swiss Aluminum Co.
A method of supplying a molten metal between two block-shaped cooling members and continuously casting in a plate shape while cooling and solidifying between the blocks).

【0007】[0007]

【発明が解決しようとする課題】ところが現在実用化さ
れている連鋳・直送圧延法では、連続鋳造および熱間圧
延後に行なわれる冷間圧延工程で、加工割れなどを防止
するために350〜500℃程度の比較的低温で中間焼
鈍が行なわれるが、この中間焼鈍工程で、過飽和固溶元
素の析出が起こり、最終冷間圧延製品の高強度化を阻害
するという問題が生じてくる。しかも、得られるAl合
金板には、プレス成形時における耐割れ性や焼き付け塗
装硬化性において尚改善の余地が残されている。
However, in the continuous casting / direct rolling method which has been put into practical use at present, in the cold rolling step performed after continuous casting and hot rolling, 350 to 500 is used in order to prevent work cracking or the like in the cold rolling step. Although intermediate annealing is performed at a relatively low temperature of about C, precipitation of supersaturated solid solution elements occurs in this intermediate annealing step, which causes a problem of hindering the strengthening of the final cold rolled product. Moreover, the obtained Al alloy sheet still has room for improvement in crack resistance during press forming and baking coating hardenability.

【0008】本発明は、上記の様な従来技術の問題点に
着目してなされたものであって、その目的は、Al合金
溶湯を用いて連続鋳造した後熱間圧延し、更に冷間圧延
を行なってAl合金板を製造する際において、特に連続
鋳造、熱間圧延、冷間圧延および中間焼鈍の一連の工程
における過飽和固溶元素の析出を可及的に抑制し、最終
冷間圧延製品の強度を高めると共に、焼き付け塗装硬化
性やプレス成形性においても一層改善することのできる
方法を確立しようとするものである。
The present invention has been made by paying attention to the problems of the prior art as described above, and its purpose is to continuously cast an Al alloy melt, hot-roll it, and then cold-roll it. When producing an Al alloy sheet by performing the above, particularly, the precipitation of the supersaturated solid solution element in the series of steps of continuous casting, hot rolling, cold rolling and intermediate annealing is suppressed as much as possible, and the final cold rolled product is obtained. Therefore, it is intended to establish a method capable of increasing the strength of the coating composition and further improving the curing property by baking and the press moldability.

【0009】[0009]

【課題を解決するための手段】上記課題を解決すること
のできた本発明に係るAl−Mg−Si系合金板の製法
の構成は、 Mg:0.3〜1.0% Si:0.7〜1.5% Mn:0.1〜0.7% Cu:1.0%以下(0%を含む) Fe:1.2%以下(0%を含む) を含有すると共に、 Cr:0.1〜0.3%および/またはZr:0.1〜
0.3%を含み、且つMgとSiの含有量が下記(1)
式の関係を満たし、 Si≧(4/7)Mg+0.5……(1) 残部がAlおよび不可避不純物からなるAl合金溶湯
を、凝固時の冷却速度が R≧5で、且つR≧6([Fe]+[Si])+3 但し、R:凝固時の冷却速度(℃/sec) [Fe],[Si]:Al合金中のFe、Siの含有率
(%) を満足する条件で連続鋳造した後、該鋳片温度を熱間圧
延温度以上に保って熱間圧延し、熱間圧延後100℃/
分以上の速度で冷却し、さらに冷間圧延により所定の板
厚とした後、540〜570℃で溶体化処理を行ない、
次いで温水もしくは水で焼入を行なってから時効処理す
るところに要旨を有するものである。
[Means for Solving the Problems] The composition of the method for producing an Al--Mg--Si alloy plate according to the present invention, which was able to solve the above problems, is Mg: 0.3 to 1.0% Si: 0.7 .About.1.5% Mn: 0.1 to 0.7% Cu: 1.0% or less (including 0%) Fe: 1.2% or less (including 0%), and Cr: 0. 1-0.3% and / or Zr: 0.1
It contains 0.3% and the content of Mg and Si is the following (1).
Satisfying the relation of the formula, Si ≧ (4/7) Mg + 0.5 (1) A molten Al alloy containing the balance of Al and unavoidable impurities has a cooling rate during solidification of R ≧ 5 and R ≧ 6 ( [Fe] + [Si]) + 3 where R: cooling rate during solidification (° C./sec) [Fe], [Si]: continuous under the condition that the Fe and Si contents (%) in the Al alloy are satisfied After casting, the slab temperature is hot-rolled at a temperature equal to or higher than the hot-rolling temperature, and hot-rolled at 100 ° C. /
After cooling at a speed of not less than a minute, and further cold rolling to a predetermined plate thickness, solution treatment is performed at 540 to 570 ° C.
The essential point is that it is then quenched with warm water or water and then subjected to an aging treatment.

【0010】本発明は上記構成を基本思想とするが、こ
の発明の実施について好ましい態様あるいは変形態様を
更に具体化して示すと、下記の通りである。 1.連続鋳造法としては、水冷式連続鋳造法、双ロール
式連続鋳造法、ベルト式連続鋳造法、ブロック式連続鋳
造法などを採用することができるが、連続鋳造から熱間
圧延工程への移行時期は、鋳片内部が固相線温度以下に
まで低下して完全に凝固した後にタイミングを合わせる
のが好ましい。 2.連続鋳造後に行なわれる熱間圧延の開始温度は35
0〜550℃の範囲が好ましい。 3.連続鋳造では、通常4〜30mm程度の肉厚の板状
鋳片が連続的に製造され、これを熱間圧延によって1〜
5mm程度に圧延した後、冷間圧延によって0.1〜1
mm程度の肉厚のAl合金板に圧延される。 4.本発明は、連続鋳造して得られる移動帯板を熱間圧
延温度以上に保って直ちに熱間圧延し、引き続いて、若
しくは一旦巻き取ってから冷間圧延工程へ送る所謂連鋳
・直送圧延方法に有利に適用されるが、この他連続鋳造
の後、一旦熱間圧延温度以上に保持し、鋳片温度が実質
的に降下しないうちに熱間圧延へ送って熱間圧延を行な
い、更に冷間圧延を行なう方法にも適用することができ
る。
The present invention is based on the above-described basic concept, and the preferred embodiment or modified embodiment of the present invention will be described in more detail below. 1. As the continuous casting method, a water-cooled continuous casting method, a twin roll type continuous casting method, a belt type continuous casting method, a block type continuous casting method, etc. can be adopted, but the transition time from the continuous casting to the hot rolling step It is preferable to adjust the timing after the inside of the slab has fallen below the solidus temperature and has completely solidified. 2. The starting temperature of hot rolling performed after continuous casting is 35
The range of 0-550 degreeC is preferable. 3. In continuous casting, a plate-shaped slab with a wall thickness of about 4 to 30 mm is usually continuously produced, and 1 to 1 is obtained by hot rolling.
After rolling to about 5 mm, 0.1 to 1 by cold rolling
It is rolled into an Al alloy plate having a thickness of about mm. 4. The present invention is a so-called continuous casting / direct feed rolling method in which a moving strip obtained by continuous casting is immediately hot-rolled while being kept at a hot rolling temperature or higher, and subsequently or once wound and then sent to a cold rolling step. In addition to this, after continuous casting, the temperature is once maintained above the hot rolling temperature and sent to hot rolling before the slab temperature substantially drops, and hot rolling is performed, and further cold cooling is performed. It can also be applied to a method of performing hot rolling.

【0011】[0011]

【作用】上記の様に本発明では、使用するAl−Mg−
Si系合金の成分組成を規定すると共に、連続鋳造を行
なう際における凝固時の冷却速度を規定し、その後直ち
に、あるいは一旦保持し鋳片温度が実質的に降下しない
うちに熱間圧延を行なってから所定の速度で冷却し、次
いで冷間圧延後適正な温度条件で溶体化処理を行ない、
次いで焼入れ及び時効処理を行なうものであり、こうし
た条件設定を行なうことにより、Al−Mg−Si系合
金の成分組成を適正に調整したこととも相まって、冷間
圧延製品の高強度化を達成すると共に、その後に行なわ
れる焼き付け塗装熱処理後の耐力を高め、更にはプレス
成形性時の耐割れ性等においても一段と優れたAl−M
g−Si系合金板を得ることに成功したものである。以
下、本発明で定めるAl−Mg−Si系合金の成分組成
および連続鋳造時や熱間圧延後の冷却条件などを含めた
製造条件について詳細に説明する。まず、本発明で使用
するAl−Mg−Si系合金の成分組成を定めた理由を
説明する。
As described above, in the present invention, the Al--Mg-- used
In addition to defining the component composition of the Si-based alloy, it defines the cooling rate during solidification during continuous casting, and immediately after that, or after holding once, hot rolling is performed while the slab temperature does not drop substantially. To a predetermined rate, and then cold-rolled and solution-treated under appropriate temperature conditions,
Then, quenching and aging treatment are performed, and by setting such conditions, together with the fact that the component composition of the Al-Mg-Si alloy is appropriately adjusted, the strength of the cold-rolled product is increased and , Al-M, which is more excellent in the yield strength after the baking and heat treatment that is carried out after that, and also in the crack resistance during press formability.
It has succeeded in obtaining a g-Si alloy plate. The composition of the Al—Mg—Si alloy defined in the present invention and the manufacturing conditions including the cooling conditions during continuous casting and after hot rolling will be described in detail below. First, the reason for defining the component composition of the Al-Mg-Si alloy used in the present invention will be described.

【0012】Mg:0.3〜1.0%以下 Mgは、Mg2 Siを形成して高強度化に寄与する元素
であり、前述の様な外板材等として必要な強度を確保す
るには0.3%以上含有させなければならない。しかし
ながら含有量が多過ぎると、固溶しきれないMg量の増
大によって成形性を悪化させるので、1.0%以下に抑
えなければならない。Mgのより好ましい下限値は0.
6%、より好ましい上限値は0.9%である。
Mg: 0.3 to 1.0% or less Mg is an element that forms Mg 2 Si and contributes to the increase in strength. In order to secure the strength required as the outer plate material as described above. It must be contained by 0.3% or more. However, if the content is too large, the formability deteriorates due to an increase in the amount of Mg that cannot be completely dissolved, so it must be suppressed to 1.0% or less. The more preferable lower limit value of Mg is 0.
6%, and a more preferable upper limit value is 0.9%.

【0013】Si:0.7〜1.5% 上記MgとMg2 Siを形成して高強度化に寄与する元
素であり、その添加効果を有効に発揮させるには0.7
%以上含有させなければならない。しかし含有量が多く
なり過ぎると、Si単晶の析出によってプレス成形性に
悪影響が表われるので、1.5%以下に抑えなければな
らない。Siのより好ましい下限値は0.9%、より好
ましい上限値は1.3%である。 Si≧(4/7)Mg+0.5……(1) 上記の様に本発明においてMgとSiは、Al合金中に
G.Pゾーンと称されるMg2 Si組成の集合体(クラ
スター)若しくは中間層を形成し、ベーキング処理によ
る硬化に寄与する重要な元素である。Mg2 Siは、M
gとSiの含有量が重量比で7:4の比率で結合したも
のであり、Al合金中に当該理論量のMgとSiが含有
されていれば、当該Al合金は硬質化すると考えられ
る。
Si: 0.7 to 1.5% It is an element that forms the above Mg and Mg 2 Si and contributes to the strengthening.
% Must be contained. However, if the content is too large, the press-formability is adversely affected by the precipitation of Si single crystals, so the content must be suppressed to 1.5% or less. The more preferable lower limit value of Si is 0.9%, and the more preferable upper limit value thereof is 1.3%. Si ≧ (4/7) Mg + 0.5 (1) As described above, in the present invention, Mg and Si are added to G. It is an important element that forms an aggregate (cluster) of Mg 2 Si composition called P zone or an intermediate layer and contributes to hardening by baking treatment. Mg 2 Si is M
The g and Si contents are combined at a weight ratio of 7: 4, and if the Al alloy contains the theoretical amounts of Mg and Si, the Al alloy is considered to be hardened.

【0014】ところが本発明者等が種々研究を行なった
ところによると、たとえ理論量のMgとSiが含まれて
いるからといって必ずしも十分な硬化が起こるとは限ら
ず、硬質化に十分な量のMg2 Siを生成させるために
は、理論量のMgとSi、即ちMg:Si=7:4に対
してSiを0.5重量%以上過剰に含有させなければな
らないことをつきとめた。これは、過剰に存在するSi
がG.P.ゾーンもしくは中間層の核として作用しMg
2 Siの析出を促進するためと考えられ、過剰Si量が
0.5重量%未満ではこうした効果が有効に発揮されな
い。Mg2 Siの生成による上記効果をより確実に達成
する上でより好ましいSiの過剰量は0.7重量%以上
である。
However, according to various researches conducted by the present inventors, even if the theoretical amounts of Mg and Si are contained, sufficient hardening does not necessarily occur, and sufficient hardening is achieved. It was found that, in order to generate the amount of Mg 2 Si, 0.5% by weight or more of Si should be contained in excess with respect to the theoretical amount of Mg and Si, that is, Mg: Si = 7: 4. This is due to excess Si
Is G. P. Acts as the nucleus of the zone or intermediate layer and Mg
It is considered that this is to promote the precipitation of 2 Si, and if the amount of excess Si is less than 0.5% by weight, such an effect cannot be effectively exhibited. A more preferable excess amount of Si is 0.7% by weight or more in order to more surely achieve the above effect due to the formation of Mg 2 Si.

【0015】Mn:0.1〜0.7% Mnは固溶強化元素および結晶粒微細化元素として欠く
ことのできない元素であるばかりでなく、Al−Mn系
もしくはAl−Fe−Mn系晶出物を生成して加工性を
高める作用も有しており、これらの作用を有効に発揮さ
せるには少なくとも0.1%以上含有させなければなら
ない。しかしながら多くなり過ぎると、固溶しきれない
Mn量の増大により成形性を却って悪化させる傾向が現
れてくるので、0.7%以下に抑えなければならない。
Mn: 0.1 to 0.7% Mn is not only an element indispensable as a solid solution strengthening element and a crystal grain refining element, but also Al-Mn-based or Al-Fe-Mn-based crystallization. It also has a function of forming a product to enhance workability, and in order to effectively exhibit these functions, it must be contained at least 0.1% or more. However, if the amount becomes too large, the formability tends to deteriorate rather than increase due to the increase in the amount of Mn that cannot be completely dissolved. Therefore, it must be suppressed to 0.7% or less.

【0016】Cu:1.0%以下 Cuは必ずしも必須というわけではないが、Al−Mg
−Cu系晶出物の生成によって強度を高める作用を有し
ているので、強度に対する要求度が高い場合には積極的
に含有させることが望ましい。しかし、多過ぎると成形
性に悪影響が現れてくるので1.0%以下に抑えなけれ
ばならない。強度と成形性のバランスを考えてより好ま
しいCuの含有率は0.4〜0.9%の範囲である。
Cu: 1.0% or less Cu is not always essential, but Al--Mg
Since it has the effect of increasing the strength by the formation of the Cu-based crystallized substance, it is desirable to positively add it when the demand for the strength is high. However, if it is too large, the formability is adversely affected, so it must be suppressed to 1.0% or less. Considering the balance between strength and formability, the more preferable Cu content is in the range of 0.4 to 0.9%.

【0017】Fe:1.2%以下 Feも必ずしも必須というわけではないが、Cuと同様
に強度を高める作用を有しているので、強度に対する要
求度が高い場合には積極的に含有させることが望まし
い。しかし、多過ぎると成形性に悪影響が現れてくるの
で1.2%以下に抑えなければならない。強度と成形性
のバランスを考えてより好ましいFeの含有率は0.1
〜0.5%の範囲である。
Fe: 1.2% or less Fe is not always essential, but since it has a function of enhancing strength like Cu, it should be positively contained when the demand for strength is high. Is desirable. However, if it is too large, the formability is adversely affected, so it must be suppressed to 1.2% or less. Considering the balance between strength and formability, the more preferable Fe content is 0.1.
Is in the range of 0.5%.

【0018】Cr:0.1〜0.3%および/またはZ
r:0.1〜0.3% CrおよびZrは、何れも結晶粒微細化元素としての作
用を有しており、それらの効果を有効に発揮させるに
は、何れか一方もしくは両方を下限値以上含有させなけ
らばならない。しかし、それらの含有量が上記上限値を
超えると、不溶性金属化合物が生成して成形性に悪影響
が表われてくる。
Cr: 0.1 to 0.3% and / or Z
r: 0.1 to 0.3% Cr and Zr each have an action as a grain refinement element, and one or both of them have a lower limit value in order to effectively exert their effects. The above must be contained. However, if their content exceeds the above upper limit, an insoluble metal compound is produced, and the formability is adversely affected.

【0019】本発明におけるAl合金の残部成分はAl
と不可避不純物からなるものであり、不可避不純物とし
てはNi,Zn,V,Ti,Li等が例示されるが、そ
れらは不可避不純物量である限り、本発明で意図する性
能を確保する上で格別の障害になることはない。次に、
上記Al−Mg−Si系合金を用いた連続鋳造、熱間圧
延、冷間圧延などの各条件について説明する。
The balance component of the Al alloy in the present invention is Al
Examples of the inevitable impurities include Ni, Zn, V, Ti, and Li. However, as long as the amounts of the inevitable impurities are inevitable impurities, they are exceptional in ensuring the performance intended in the present invention. Will not be an obstacle. next,
Each condition of continuous casting, hot rolling, cold rolling, etc. using the Al-Mg-Si alloy will be described.

【0020】本発明では、上記成分組成の要件を満足す
るAl−Mg−Si系合金溶湯を使用し、凝固時の冷却
速度が下記(2),(3)式 R≧6([Fe]+[Si])+3……(2) R≧5……(3) 但し、R:凝固時の冷却速度(℃/sec) [Fe],[Si]:Al合金中のFe、Siの含有率
(%) を同時に満足する条件で連続鋳造された移動帯板を直ち
に熱間圧延工程へ送り、あるいは連続鋳造された鋳片
を、熱間圧延温度以上に調整して熱間圧延工程へ送って
熱間圧延し、熱間圧延後100℃/分以上の速度で冷却
し、更に冷間圧延により所定の板厚とした後、540〜
570℃で溶体化処理を行ない、次いで温水もしくは水
で焼入を行なってから時効処理するところに製法として
の特徴を有している。
In the present invention, an Al-Mg-Si alloy melt satisfying the above-mentioned compositional requirements is used, and the cooling rate during solidification is expressed by the following formulas (2) and (3) R ≧ 6 ([Fe] + [Si]) + 3 (2) R ≧ 5 (3) where R: cooling rate during solidification (° C./sec) [Fe], [Si]: Fe and Si content in Al alloy The moving strip that is continuously cast under the condition that (%) is simultaneously sent to the hot rolling process, or the continuously cast slab is adjusted to the hot rolling temperature or higher and sent to the hot rolling process. After hot rolling, cooling at a rate of 100 ° C./min or more after hot rolling, and further cold rolling to a predetermined plate thickness, 540 to 540
A characteristic of the manufacturing method is that the solution treatment is performed at 570 ° C., then the aging treatment is performed after quenching with warm water or water.

【0021】まず本発明者等が確認したところによる
と、最終圧延製品の強度や絞り加工性は、Al合金中に
含まれるFeおよびSiの含有率をパラメータとして連
続鋳造時における凝固時の冷却速度をうまくコントロー
ルすることによって著しく高められ、該凝固時の冷却速
度が前記(2)式と(3)式を同時に満たす様に設定す
ることが重要であることを知った。
First, the inventors of the present invention have confirmed that the strength and drawability of the final rolled product are the cooling rate during solidification during continuous casting with the content ratio of Fe and Si contained in the Al alloy as a parameter. It was found that it is important to set the cooling rate at the time of solidification so as to satisfy the above equations (2) and (3) at the same time.

【0022】しかして最終圧延製品の前記特性には、連
続鋳造工程とその後の圧延並びに溶体化処理条件が影響
するが、特にAl合金中のFeおよびSiは連続鋳造時
に粗大晶出物を生じる原因となり、それらは最終圧延製
品の前述の様な特性に悪影響を及ぼす。ところが、連続
鋳造における凝固時の冷却速度を前記(2)式と(3)
式の条件を満たす様に設定してやれば、FeやSiに由
来する粗大晶出物の生成が阻止され、その後の熱間圧延
後の冷却速度や冷間圧延時の溶体化処理条件の設定とも
相まって、最終圧延製品の前記特性を著しく高めること
ができるのである。
However, the above-mentioned characteristics of the final rolled product are affected by the continuous casting step and the subsequent rolling and solution treatment conditions. Particularly, Fe and Si in the Al alloy cause coarse crystallized substances during continuous casting. , Which adversely affect the above-mentioned properties of the final rolled product. However, the cooling rate at the time of solidification in continuous casting was
If it is set so as to satisfy the condition of the formula, the formation of coarse crystallized substances derived from Fe and Si is prevented, and this is combined with the setting of the cooling rate after the hot rolling and the solution treatment condition during the cold rolling. The properties of the final rolled product can be remarkably enhanced.

【0023】尚、上記条件式(2),(3)で示される
推奨範囲は、図1に示される如く、[Fe]+[Si]
の値が0.33%以下のときは式(3)によって、また
[Fe]+[Si]の値が0.33%超のときは式
(2)によって規定されることを意味する。
The recommended range represented by the conditional expressions (2) and (3) is [Fe] + [Si] as shown in FIG.
When the value of is 0.33% or less, it is defined by the formula (3), and when the value of [Fe] + [Si] is more than 0.33%, it is defined by the formula (2).

【0024】ちなみに、連続鋳造における凝固時の冷却
速度を上記の様に規定すると、強制固溶によって連続鋳
造組織中のFeやSiに由来する晶出物量が減少すると
共に、該晶出物サイズは平均サイズで2μm程度以下に
微細化され、プレス成形性が著しく高められる。しか
し、連続鋳造時における凝固時の冷却速度が上記速度条
件未満の低速になると、不溶性化合物の析出量が増大す
ると共にそのサイズも粗大となって満足の行くプレス成
形性が得られなくなるばかりでなく、FeやSiによっ
てもたらされる固溶強化効果も不十分になって満足の行
く強度も達成できなくなる。
By the way, when the cooling rate during solidification in continuous casting is specified as described above, the amount of crystallized substances derived from Fe and Si in the continuously cast structure is decreased by the forced solid solution, and the crystallized substance size is The average size is reduced to about 2 μm or less, and the press moldability is remarkably enhanced. However, if the cooling rate during solidification during continuous casting becomes lower than the above rate condition, not only the amount of insoluble compound precipitated increases and the size also becomes coarse, but satisfactory press formability cannot be obtained. However, the solid solution strengthening effect provided by Fe, Si and Si becomes insufficient, and satisfactory strength cannot be achieved.

【0025】また、上記連続鋳造後に引き続いて行なわ
れる熱間圧延では、100℃/分以上の速度で冷却する
ことが必要であり、こうした急速冷却を採用することに
よって、熱間圧延後の冷却中の過飽和固溶成分の析出が
抑えられて過飽和固溶量が保たれ、結果として固溶強化
により高強度化を達成することが可能となる。ちなみに
熱間圧延後の冷却速度が100℃/分未満の低速になる
と、過飽和固溶成分の析出が起こって固溶強化による高
強度化の目的が達成できなくなる。
Further, in the hot rolling subsequently performed after the continuous casting, it is necessary to cool at a rate of 100 ° C./min or more. By adopting such rapid cooling, during the cooling after the hot rolling. The precipitation of the supersaturated solid solution component is suppressed and the supersaturated solid solution amount is maintained, and as a result, it is possible to achieve high strength by solid solution strengthening. By the way, when the cooling rate after hot rolling becomes a low rate of less than 100 ° C./minute, precipitation of a supersaturated solid solution component occurs and the purpose of strengthening by solid solution strengthening cannot be achieved.

【0026】熱間圧延後は、冷間圧延により所定の板厚
とした後、540〜570℃で溶体化処理を行ない、次
いで温水もしくは水で焼入を行なってから時効処理が行
なわれる。このときの溶体化処理温度を上記の様に定め
たのは、溶体化処理時における固溶元素の析出を抑えて
十分な過飽和固溶量を保ち、強度を高めると共に、固溶
元素量の増大によって焼き付け塗装硬化性を高めるため
である。ちなみに溶体化処理温度が540℃未満では、
溶体化処理中に析出が起こって強度低下を生じるばかり
でなく、焼き付け塗装硬化性向上効果も不十分となり、
一方、570℃を超える高温になると、結晶粒が粗大化
すると共に共晶溶融によるバーニングを起こし、プレス
成形性が悪化する。
After hot rolling, after cold rolling to a predetermined plate thickness, solution treatment is performed at 540 to 570 ° C., followed by quenching with warm water or water and then aging treatment. The solution treatment temperature at this time is determined as described above because the precipitation of the solid solution element during the solution treatment is suppressed to maintain a sufficient supersaturated solid solution amount, the strength is increased, and the solid solution element amount is increased. This is for improving the baking paint curing property. By the way, if the solution treatment temperature is less than 540 ° C,
Not only does precipitation occur during the solution heat treatment to cause a decrease in strength, but also the effect of improving the baking coating curability becomes insufficient,
On the other hand, when the temperature exceeds 570 ° C., the crystal grains become coarse and the eutectic melting causes burning, which deteriorates the press formability.

【0027】尚上記溶体化処理後は、温水あるいは冷水
を用いた焼入れの後時効処理を行なうことにより、高強
度で且つプレス成形性および焼き付け塗装硬化性の非常
に優れたAl−Mg−Si系合金板を得ることができ
る。このときの焼入条件や時効熱処理条件は特に限定さ
れないが、好ましい条件として示すならば、焼入れ条件
としては水冷焼入を、また好ましい時効熱処理条件は1
50〜200℃で10分〜8時間程度である。
After the solution treatment, an aging treatment is performed after quenching with warm water or cold water to obtain an Al-Mg-Si system having high strength and excellent press moldability and baking coating curability. An alloy plate can be obtained. Quenching conditions and aging heat treatment conditions at this time are not particularly limited, but if shown as preferable conditions, water-quenching as quenching conditions, and preferable aging heat treatment conditions are 1
It is about 10 minutes to 8 hours at 50 to 200 ° C.

【0028】本発明では、上記の様にAl−Mg−Si
系合金の成分組成を特定すると共に、該合金溶湯を用い
た連続鋳造における凝固時の冷却速度およびその後の熱
間圧延時の冷却速度、更にはその後の冷間圧延後の溶体
化処理条件を設定したところに特徴を有するものであ
り、その他の条件には格別の制限はないが、その他の好
ましい条件等について説明すると下記の通りである。
In the present invention, as described above, Al-Mg-Si is used.
In addition to specifying the component composition of the system alloy, the cooling rate during solidification and the cooling rate during subsequent hot rolling in continuous casting using the molten alloy, and further the solution treatment conditions after subsequent cold rolling are set. However, the other conditions are not particularly limited, but other preferable conditions and the like will be described below.

【0029】本発明は、連続鋳造された移動帯板を直ち
に熱間圧延工程へ送り、或は連続鋳造された鋳片を、熱
間圧延温度以上に調整してから熱間圧延工程へ送って熱
間圧延し、引き続いて、若しくは一旦巻き取ってから冷
間圧延工程へ送る方法を採用し、連鋳片の保有熱を有効
に活用して熱間圧延を行なうものであり、それにより、
連続鋳造後一旦巻き取り、冷却してから熱間圧延を行な
う方法に比べて熱ロスが少なく、且つ生産性を高める上
でも効果的である。尚、ここで採用される連続鋳造法と
しては、前記した様な水冷式連続鋳造法、双ロール式連
続鋳造法、ベルト式連続鋳造法、ブロック式連続鋳造法
などを適宜選択して採用することができる。
In the present invention, the continuously cast moving strip is immediately sent to the hot rolling step, or the continuously cast slab is adjusted to a temperature higher than the hot rolling temperature and then sent to the hot rolling step. A method of hot rolling and subsequently or temporarily winding and then sending to a cold rolling step is adopted, and hot rolling is performed by effectively utilizing the retained heat of a continuous cast piece.
Compared with the method of performing continuous casting, winding once, cooling and then hot rolling, there is less heat loss, and it is also effective in improving productivity. As the continuous casting method adopted here, a water-cooled continuous casting method, a twin roll continuous casting method, a belt continuous casting method, a block continuous casting method or the like as described above may be appropriately selected and used. You can

【0030】連続鋳造後に行なわれる熱間圧延の開始温
度は350〜550℃、より好ましくは400〜500
℃の範囲であり、また熱間圧延終了温度は150〜28
0℃、より好ましくは210〜260℃の範囲である。
また本発明を実施するに当たっては、連続鋳造によって
通常4〜30mm程度の肉厚の板状鋳片を連続的に製造
し、これを直ちに熱間圧延することにより肉厚を1〜5
mmとし、更に冷間圧延することによって0.1〜1m
m程度の肉厚のAl合金製品板が製造される。
The starting temperature of hot rolling performed after continuous casting is 350 to 550 ° C., more preferably 400 to 500.
And the hot rolling finish temperature is 150 to 28
It is 0 ° C., and more preferably 210 to 260 ° C.
Further, in carrying out the present invention, a plate-shaped slab having a wall thickness of about 4 to 30 mm is usually continuously produced by continuous casting, and immediately hot-rolled to obtain a wall thickness of 1 to 5
mm to 0.1 to 1 m by cold rolling.
An Al alloy product plate having a wall thickness of about m is manufactured.

【0031】[0031]

【実施例】次に本発明の実施例を示すが、本発明はもと
より下記実施例によって制限を受けるものではなく、前
後記の趣旨に適合し得る範囲で適当に変更を加えて実施
することも勿論可能であり、それらはいずれも本発明の
技術的範囲に含まれる。
EXAMPLES Next, examples of the present invention will be shown, but the present invention is not limited by the following examples, and may be carried out with appropriate modifications within a range compatible with the gist of the preceding and following description. Of course, it is possible, and all of them are included in the technical scope of the present invention.

【0032】実施例 表1に示す化学組成のAl合金を溶解した後、凝固時の
冷却速度が18℃/secの速度で20mmの板厚に連
続鋳造し、その後直ちに圧延開始温度を450℃、終了
温度を270℃として直送熱間圧延を行ない、5mm厚
の熱延板を作製した。尚、熱間圧延後の冷却には水ミス
ト噴霧を採用し、200℃/分の冷却速度を確保した。
その後、1mmまで冷間圧延し、急速加熱により560
℃で1分の溶体化処理を行なった後、水焼入れを行なっ
た。尚、表1におけるNo.17,18は、従来法によ
って製造したものである。
Example After melting an Al alloy having the chemical composition shown in Table 1, continuous casting was performed to a plate thickness of 20 mm at a cooling rate of 18 ° C./sec at the time of solidification, and immediately thereafter, a rolling start temperature was 450 ° C. Direct-feed hot rolling was performed at a finishing temperature of 270 ° C. to prepare a hot-rolled sheet having a thickness of 5 mm. Incidentally, water mist spraying was adopted for cooling after hot rolling to secure a cooling rate of 200 ° C./min.
After that, cold-roll to 1 mm and 560 by rapid heating
After carrying out a solution heat treatment at 1 ° C. for 1 minute, water quenching was performed. In addition, in Table 1, No. 17, 18 are manufactured by the conventional method.

【0033】得られた各焼入れ材についてエリクセン試
験を行なった。また上記水焼入れの直後に170℃×2
0分の時効処理を行ない、得られた時効処理材の引張り
試験を行なって0.2%耐力を測定した。結果は表2に
示す通りであり、本発明の規定要件を全て満足する実施
例では、エリクセン値および0.2%耐力のいずれにお
いても高い値が得られており、プレス成形性が良好で且
つ時効熱処理後の強度も高く、焼入れ塗装硬化性に優れ
たものであることが分かる。
An Erichsen test was conducted on each of the obtained hardened materials. Immediately after the above water quenching, 170 ° C x 2
The aging treatment was performed for 0 minutes, and the obtained aging treated material was subjected to a tensile test to measure 0.2% proof stress. The results are shown in Table 2, and in Examples satisfying all the requirements of the present invention, high Erichsen value and 0.2% proof stress were obtained, and press moldability was good and It can be seen that the strength after aging heat treatment is also high, and that it has excellent quenching paint curability.

【0034】[0034]

【表1】 [Table 1]

【0035】[0035]

【表2】 [Table 2]

【0036】次に、表3に示す化学組成のAl合金を溶
解した後、同表に示す凝固時の冷却速度で20mmの板
厚に連続鋳造した後、これを直ちに圧延開始温度を50
0℃、終了温度を320℃に設定して直送熱間圧延を行
ない、200℃/分の速度で冷却して5mm厚の熱延板
を作製した。その後1mmまで冷間圧延し、急速加熱し
て560℃で1分間の溶体化処理を行なってから水焼入
れを行ない、該焼入れ材のエリクセン試験を行なった。
Next, after melting the Al alloy having the chemical composition shown in Table 3, continuous casting was performed to a plate thickness of 20 mm at the cooling rate at the time of solidification shown in the same table, and this was immediately rolled at a rolling start temperature of 50.
Direct hot rolling was performed with 0 ° C. and the end temperature set to 320 ° C., and cooled at a rate of 200 ° C./min to produce a hot-rolled sheet having a thickness of 5 mm. Then, it was cold-rolled to 1 mm, rapidly heated and subjected to a solution treatment at 560 ° C. for 1 minute, and then water-quenched, and an Erichsen test was conducted on the quenched material.

【0037】また、水焼入れの直後に170℃×20分
の時効熱処理を行ない、該時効熱処理材の引張り試験を
行なって0.2%耐力を測定した。結果は表4に示す通
りであり、実施例で得たものは比較例で得たものに比べ
てエリクセン値が高く、プレス成形性に優れており、ま
た時効熱処理後の0.2%耐力も高く焼付け塗装硬化性
にも非常に優れたものであることが分かる。
Immediately after water quenching, aging heat treatment was carried out at 170 ° C. for 20 minutes, and a tensile test was conducted on the aging heat treated material to measure 0.2% proof stress. The results are shown in Table 4, and the ones obtained in the examples have higher Erichsen values than the ones obtained in the comparative examples, are excellent in press formability, and have 0.2% proof stress after aging heat treatment. It can be seen that the composition has a high baking finish and is very excellent in curability.

【0038】[0038]

【表3】 [Table 3]

【0039】[0039]

【表4】 [Table 4]

【0040】次に、表3に示したのと同じ化学組成のA
l合金を溶解した後、凝固時の冷却速度を15℃/se
cで20mmの板厚に連続鋳造した後、これを直ちに熱
間圧延開始温度を500℃、終了温度を320℃に設定
して直送熱間圧延を行ない、熱間圧延後直ちに表5に示
す速度で冷却して5mm厚の熱延板を作製した。その後
1mmまで冷間圧延し、急速加熱して表5に示す条件で
溶体化処理を行なってから水焼入れを行ない、該焼入れ
材のエリクセン試験を行なった。
Next, A having the same chemical composition as shown in Table 3 was used.
After melting the alloy, the cooling rate during solidification was 15 ° C / se
After continuous casting to a plate thickness of 20 mm in c, the hot rolling start temperature was immediately set to 500 ° C. and the end temperature was set to 320 ° C. to perform direct hot rolling, and immediately after hot rolling, the speeds shown in Table 5 were obtained. Then, a hot-rolled sheet having a thickness of 5 mm was produced. After that, it was cold-rolled to 1 mm, rapidly heated, solution-treated under the conditions shown in Table 5, water-quenched, and subjected to Erichsen test of the quenched material.

【0041】また、水焼入れの直後に170℃×20分
の時効熱処理を行ない、該時効熱処理材の引張り試験を
行なって0.2%耐力を測定した。結果は表6に示す通
りであり、実施例で得たものは比較例で得たものに比べ
てエリクセン値が高く、プレス成形性に優れており、ま
た時効熱処理後の0.2%耐力も高く焼付け塗装硬化性
にも非常に優れたものであることが分かる。
Immediately after water quenching, aging heat treatment was carried out at 170 ° C. for 20 minutes, and a tensile test was conducted on the aging heat treated material to measure 0.2% proof stress. The results are shown in Table 6, and those obtained in the examples have a higher Erichsen value and excellent press formability than those obtained in the comparative examples, and also have 0.2% proof stress after aging heat treatment. It can be seen that the composition has a high baking finish and is very excellent in curability.

【0042】[0042]

【表5】 [Table 5]

【0043】[0043]

【表6】 [Table 6]

【0044】[0044]

【発明の効果】本発明は以上の様に構成されており、成
分組成の特定されたAl−Mg−Si系合金を使用し、
連続鋳造された移動帯板を直ちに熱間圧延工程へ送り、
あるいは連続鋳造された鋳片を、熱間圧延温度以上に調
整してから熱間圧延工程へ送って熱間圧延し、更に冷間
圧延を行なってAl合金板を製造するに際し、特に連続
鋳造時および熱間圧延後の冷却速度を規定すると共に、
冷間圧延工程で所定条件の溶体化熱処理を加えることに
よって過飽和固溶元素の析出を可及的に抑制し、最終冷
間圧延製品の強度を高めると共に、プレス加工性や焼付
け塗装硬化性の非常に優れたAl−Mg−Si系合金板
を製造し得ることになった。
The present invention is configured as described above, and uses an Al-Mg-Si alloy having a specified composition.
Immediately send the continuously cast moving strip to the hot rolling process,
Alternatively, the continuously cast slab is adjusted to a hot rolling temperature or higher and then sent to the hot rolling step to be hot rolled, and further cold rolled to produce an Al alloy sheet, particularly during continuous casting. And specify the cooling rate after hot rolling,
Precipitation of supersaturated solid solution elements is suppressed as much as possible by applying solution heat treatment under the specified conditions in the cold rolling process to enhance the strength of the final cold rolled product and to improve the press workability and baking coating hardenability. It has become possible to manufacture an excellent Al-Mg-Si alloy plate.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明で実施される連続鋳造時の好ましい冷却
速度条件を示すグラフである。
FIG. 1 is a graph showing preferable cooling rate conditions during continuous casting carried out in the present invention.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】Mg:0.3〜1.0%(重量%を意味す
る、以下同じ) Si:0.7〜1.5% Mn:0.1〜0.7% Cu:1.0%以下(0%を含む) Fe:1.2%以下(0%を含む) を含有すると共に、 Cr:0.1〜0.3%および/またはZr:0.1〜
0.3%を含み、且つMgとSiの含有量が下記(1)
式の関係を満たし、 Si≧(4/7)Mg+0.5……(1) 残部がAlおよび不可避不純物からなるAl合金溶湯
を、凝固時の冷却速度が R≧5で、且つR≧6([Fe]+[Si])+3 但し、R:凝固時の冷却速度(℃/sec) [Fe],[Si]:Al合金中のFe、Siの含有率
(%) を満足する条件で連続鋳造した後、該鋳片温度を熱間圧
延温度以上に保って熱間圧延し、熱間圧延後100℃/
分以上の速度で冷却し、さらに冷間圧延により所定の板
厚とした後、540〜570℃で溶体化処理を行ない、
次いで温水もしくは水で焼入を行なってから時効処理す
ることを特徴とするAl−Mg−Si系合金板の製法。
1. Mg: 0.3 to 1.0% (meaning weight%; the same applies hereinafter) Si: 0.7 to 1.5% Mn: 0.1 to 0.7% Cu: 1.0 % Or less (including 0%) Fe: 1.2% or less (including 0%) and Cr: 0.1 to 0.3% and / or Zr: 0.1
It contains 0.3% and the content of Mg and Si is the following (1).
Satisfying the relation of the formula, Si ≧ (4/7) Mg + 0.5 (1) A molten Al alloy containing the balance of Al and unavoidable impurities has a cooling rate during solidification of R ≧ 5 and R ≧ 6 ( [Fe] + [Si]) + 3 where R: cooling rate during solidification (° C./sec) [Fe], [Si]: continuous under the condition that the Fe and Si contents (%) in the Al alloy are satisfied After casting, the slab temperature is hot-rolled at a temperature equal to or higher than the hot-rolling temperature, and hot-rolled at 100 ° C. /
After cooling at a speed of not less than a minute, and further cold rolling to a predetermined plate thickness, solution treatment is performed at 540 to 570 ° C.
Then, a method for producing an Al-Mg-Si alloy plate is characterized by quenching with warm water or water and then aging treatment.
【請求項2】 連続鋳造された移動帯板を直ちに熱間圧
延工程へ送る請求項1記載の製造方法。
2. The manufacturing method according to claim 1, wherein the continuously cast moving strip is immediately sent to the hot rolling step.
【請求項3】 連続鋳造された鋳片を、熱間圧延温度以
上に調整して熱間圧延工程へ送る請求項1に記載の製造
方法。
3. The manufacturing method according to claim 1, wherein the continuously cast slab is adjusted to a hot rolling temperature or higher and sent to a hot rolling step.
JP04726394A 1994-03-17 1994-03-17 Manufacturing method of Al-Mg-Si alloy plate Expired - Fee Related JP3351087B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04726394A JP3351087B2 (en) 1994-03-17 1994-03-17 Manufacturing method of Al-Mg-Si alloy plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04726394A JP3351087B2 (en) 1994-03-17 1994-03-17 Manufacturing method of Al-Mg-Si alloy plate

Publications (2)

Publication Number Publication Date
JPH07252616A true JPH07252616A (en) 1995-10-03
JP3351087B2 JP3351087B2 (en) 2002-11-25

Family

ID=12770412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04726394A Expired - Fee Related JP3351087B2 (en) 1994-03-17 1994-03-17 Manufacturing method of Al-Mg-Si alloy plate

Country Status (1)

Country Link
JP (1) JP3351087B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5925314A (en) * 1996-03-29 1999-07-20 Mazda Motor Corporation High ductility aluminum alloy and method for manufacturing the high ductility aluminum alloy
JP2000319741A (en) * 1998-09-10 2000-11-21 Kobe Steel Ltd Al-Mg-Si BASED ALLOY SHEET
US10646914B2 (en) 2018-01-12 2020-05-12 Accuride Corporation Aluminum alloys for applications such as wheels and methods of manufacture
JP2020537039A (en) * 2017-10-23 2020-12-17 ノベリス・インコーポレイテッドNovelis Inc. High-strength and highly moldable aluminum alloy and its manufacturing method
CN113373354A (en) * 2021-03-26 2021-09-10 沈阳工业大学 Ultrahigh-strength Al-Zn-Mg-Cu-Sc-Zr alloy plate and preparation process thereof
JP2022513644A (en) * 2018-12-03 2022-02-09 リオ ティント アルカン インターナショナル リミテッド Aluminum extruded alloy

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5925314A (en) * 1996-03-29 1999-07-20 Mazda Motor Corporation High ductility aluminum alloy and method for manufacturing the high ductility aluminum alloy
JP2000319741A (en) * 1998-09-10 2000-11-21 Kobe Steel Ltd Al-Mg-Si BASED ALLOY SHEET
JP2020537039A (en) * 2017-10-23 2020-12-17 ノベリス・インコーポレイテッドNovelis Inc. High-strength and highly moldable aluminum alloy and its manufacturing method
JP2022172234A (en) * 2017-10-23 2022-11-15 ノベリス・インコーポレイテッド High-strength, highly formable aluminum alloys and methods of making the same
US10646914B2 (en) 2018-01-12 2020-05-12 Accuride Corporation Aluminum alloys for applications such as wheels and methods of manufacture
US11420249B2 (en) 2018-01-12 2022-08-23 Accuride Corporation Aluminum wheels and methods of manufacture
JP2022513644A (en) * 2018-12-03 2022-02-09 リオ ティント アルカン インターナショナル リミテッド Aluminum extruded alloy
CN113373354A (en) * 2021-03-26 2021-09-10 沈阳工业大学 Ultrahigh-strength Al-Zn-Mg-Cu-Sc-Zr alloy plate and preparation process thereof

Also Published As

Publication number Publication date
JP3351087B2 (en) 2002-11-25

Similar Documents

Publication Publication Date Title
JP4901757B2 (en) Aluminum alloy plate and manufacturing method thereof
JP4577218B2 (en) Method for producing Al-Mg-Si alloy sheet excellent in bake hardness and hemmability
KR101950595B1 (en) Aluminium alloy and methods of fabricating the same
US20070144630A1 (en) Manufacturing method for al-mg-si aluminum alloy sheets with excellent bake hardenability
CN103842550A (en) Method for producing almgsi aluminum strip
JPH07252571A (en) Automobile aluminum alloy sheet and its production
JPS62207851A (en) Rolled aluminum alloy sheet for forming and its production
US20070062618A1 (en) Aluminum alloy plate excellent in press formability and continuous resistance spot weldability and method for production thereof
JP3734317B2 (en) Method for producing Al-Mg-Si alloy plate
JP3351087B2 (en) Manufacturing method of Al-Mg-Si alloy plate
JP4001059B2 (en) Method for producing aluminum alloy sheet with excellent bake resistance
WO2008078399A1 (en) Method of producing aluminum alloy sheet
JP3703919B2 (en) Method for producing directly cast and rolled sheet of Al-Mg-Si alloy
JP3749627B2 (en) Al alloy plate with excellent press formability
JPH07310153A (en) Production of aluminum alloy sheet excellent in strength ductility and stability
JPH03294456A (en) Production of aluminum alloy sheet excellent in formability and baking hardenability
JPH05345963A (en) Manufacture of high formability aluminum alloy sheet
JPH07278716A (en) Aluminum alloy sheet for forming excellent in mechanical property and its production
JPH07256416A (en) Production of al alloy sheet for deep drawing
JPH0565586A (en) Aluminum alloy rooled sheet for forming and its production
JPH0565587A (en) Aluminum alloy rolled sheet for forming and its production
JPH0387329A (en) Aluminum alloy material for baking finish and its manufacture
JPH07252615A (en) Production of aluminum alloy sheet for drawing
JPH07252610A (en) Production of aluminum alloy sheet for drawing
JPH07252614A (en) Production of aluminum alloy sheet for drawing

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020820

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070920

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080920

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080920

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090920

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090920

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100920

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100920

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110920

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110920

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120920

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120920

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130920

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees