JPH0639620B2 - Method for manufacturing thin steel sheet with excellent formability - Google Patents

Method for manufacturing thin steel sheet with excellent formability

Info

Publication number
JPH0639620B2
JPH0639620B2 JP59253767A JP25376784A JPH0639620B2 JP H0639620 B2 JPH0639620 B2 JP H0639620B2 JP 59253767 A JP59253767 A JP 59253767A JP 25376784 A JP25376784 A JP 25376784A JP H0639620 B2 JPH0639620 B2 JP H0639620B2
Authority
JP
Japan
Prior art keywords
less
temperature
casting
rolling
slab
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59253767A
Other languages
Japanese (ja)
Other versions
JPS61133323A (en
Inventor
良邦 徳永
正人 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP59253767A priority Critical patent/JPH0639620B2/en
Publication of JPS61133323A publication Critical patent/JPS61133323A/en
Publication of JPH0639620B2 publication Critical patent/JPH0639620B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は成形性の優れた薄鋼板の製造方法に関するもの
である。
The present invention relates to a method for producing a thin steel sheet having excellent formability.

(従来の技術およびその問題点) 現行の薄鋼板製造プロセスは、約250mm厚さの鋼鋳片
を鋳造し、熱間圧延により数mm程度の厚さまで薄くした
後、冷間圧延,再結晶焼鈍を施すことから成つている。
甚大なる省エネルギー化による製造コストの著しい低減
という観点から今後の革新的製造プロセスを考えた場
合、鋳造工程とそれに続く二回の圧延工程を大幅に簡略
化するか、もしくは、これら工程の一部を省略すること
がそれに応えると言えよう。本発明は、従来の熱間圧延
を省略あるいは極めて大幅に簡略化した革新的薄板製造
プロセスにて、プレス成形性の優れた薄鋼板を製造する
方法を提供するものである。
(Prior art and its problems) In the current thin steel plate manufacturing process, a steel slab having a thickness of about 250 mm is cast, thinned to a thickness of about several mm by hot rolling, and then cold rolling and recrystallization annealing. It consists of applying.
If we consider future innovative manufacturing processes from the viewpoint of significantly reducing manufacturing costs due to enormous energy savings, we will greatly simplify the casting process and the subsequent two rolling processes, or we will omit some of these processes. It can be said that omission omits it. The present invention provides a method for producing a thin steel sheet having excellent press formability by an innovative thin sheet manufacturing process in which conventional hot rolling is omitted or extremely simplified.

将来の薄板製造プロセスとして、従来の熱間圧延後に得
られていた厚さの薄肉鋼鋳片を鋳造し、熱間圧延を省略
して鋼鋳片を直接冷間圧延した後、再結晶焼鈍するプロ
セス,あるいは溶鋼から圧延工程を全く経ずに直接薄鋼
板を鋳造するプロセスが既に報告されている。かかる熱
間または冷間の圧延工程を省略あるいは簡略化したプロ
セスの場合に最も問題になるのは、鋳造組織が十分破壊
されず、鋳造組織の悪影響が最終製品に持ち越され、プ
レス成形に供される用途に対しては加工性,特に伸びが
極めて不足することである。かかる原因により、上記の
圧延工程を全く経ずに直接薄鋼板を鋳造するプロセスで
は良好な加工性は得られない。従つて、従来のプレス成
形用鋼板と同等の成形性を得るには、鋳造組織を破壊す
る意味で少なくとも一回の圧延が必要である。この場
合、深絞り性を付与するためには、再結晶温度以下で圧
延して圧延集合組織を発達させた後、再結晶焼鈍するこ
とが有効となる。かかる観点に基づいて、上記の薄肉鋼
鋳片を鋳造し、鋼鋳片を直接冷間圧延した後、再結晶焼
鈍するプロセスが開示されている(例えば、特開昭59
−43823号公報は、鋳造後の900〜700℃にお
ける鋼鋳片の平均冷却速度,圧延開始温度,圧延圧下率
を制御することによる方法を開示している)。
As a thin plate manufacturing process in the future, cast thin-walled steel slabs of the thickness obtained after conventional hot rolling, omit hot rolling and directly cold-roll steel slabs, followed by recrystallization annealing. A process has already been reported, or a process of directly casting a thin steel sheet from molten steel without going through the rolling process. In the case of a process in which the hot or cold rolling step is omitted or simplified, the most serious problem is that the cast structure is not sufficiently destroyed, and the adverse effect of the cast structure is carried over to the final product, which is used for press forming. For some applications, workability, especially elongation, is extremely insufficient. Due to such a cause, good workability cannot be obtained in the process of directly casting a thin steel sheet without going through the above rolling step. Therefore, in order to obtain the formability equivalent to that of the conventional steel sheet for press forming, at least one rolling is required to destroy the cast structure. In this case, in order to impart deep drawability, it is effective to perform rolling at a temperature not higher than the recrystallization temperature to develop a rolling texture and then perform recrystallization annealing. Based on this point of view, a process of casting the above-mentioned thin-walled steel slab, directly cold rolling the steel slab, and then performing recrystallization annealing has been disclosed (for example, JP-A-59).
-43823 gazette discloses the method by controlling the average cooling rate, rolling start temperature, and rolling reduction of the steel slab at 900-700 degreeC after casting).

本発明者らは、実際にこれら従来技術を検討した結果、
その欠点およびその技術レベルの限界を見出した。そこ
で、薄肉鋼鋳片を冷間圧延,再結晶焼鈍して薄鋼板を製
造するプロセス,あるいは薄肉鋼鋳片を極めて簡略化し
た熱間圧延,冷間圧延,再結晶焼鈍して薄鋼板を製造す
るプロセスにおける材質支配要因について基礎研究を重
ねた。その結果、素材成分,凝固時の冷却速度,鋳片厚
さ,冷間圧延率の各々を複合して制御することが重要で
あるとの新規知見を見出し、これら知見に基づいて、か
かる製造プロセスによつてプレス成形性の優れた薄鋼板
の製造技術を確立したものである。
The present inventors, as a result of actually studying these conventional techniques,
We have found its drawbacks and the limits of its technical level. Therefore, a process of cold rolling and recrystallizing annealing a thin-walled steel slab to produce a thin steel plate, or a very simple hot-rolling, cold-rolling and recrystallization annealing of a thin-walled steel slab to produce a thin steel plate The basic research was repeated about the material control factor in the process. As a result, we have found a new finding that it is important to control the material composition, the cooling rate during solidification, the thickness of the slab, and the cold rolling rate in a composite manner. Therefore, the manufacturing technology of the thin steel sheet excellent in press formability was established.

(問題点を解決するための手段,作用) 本発明の要旨は、 C:0.007%以下、Si:0.8%以下、Mn:
1.0%以下、P:0.10%以下、S:0.10%以
下、Sol.Al:0.01〜0.06%、N:0.0
08%以下、および他の不可避的不純物からなり、さら
にNbとTiとBを複合して含有し、Tiは(48/1
4)〔N(%)−0.002%〕<Ti(%)で、かつ
Ti(%)<(48/14)N(%)を満たす範囲内、
Nbは(93/12)[C(%)−0.001%]>N
b(%)>2.00C(%)で、かつ0.003%以上
0.025%未満の範囲内であり、かつ〔Ti(%)+
Nb(%)〕<0.04%であり、Bは2ppm以上3
0ppm以下であり、残部Feよりなる薄肉鋼鋳片を連
続鋳造し、鋳造時に1550℃から1350℃までの平
均冷却速度を1.0℃/sec以上とし、該鋳片の厚さ
を50mm以下とし、再結晶温度以下で圧下率を60%以
上とする圧延を行つた後、再結晶焼鈍することを特徴と
する成形性に優れた薄鋼板の製造方法である。
(Means and Actions for Solving Problems) The gist of the present invention is C: 0.007% or less, Si: 0.8% or less, Mn:
1.0% or less, P: 0.10% or less, S: 0.10% or less, Sol. Al: 0.01 to 0.06%, N: 0.0
08% or less, and other unavoidable impurities, and further contains Nb, Ti, and B in combination, and Ti is (48/1
4) within the range of [N (%)-0.002%] <Ti (%) and Ti (%) <(48/14) N (%),
Nb is (93/12) [C (%)-0.001%]> N
b (%)> 2.00C (%), 0.003% or more and less than 0.025%, and [Ti (%) +
Nb (%)] <0.04%, B is 2 ppm or more 3
0ppm or less, continuously cast thin steel slab composed of the balance Fe, the average cooling rate from 1550 ° C to 1350 ° C is 1.0 ° C / sec or more, and the thickness of the slab is 50mm or less. A method of manufacturing a thin steel sheet having excellent formability, which comprises performing rolling at a rolling reduction of 60% or more at a recrystallization temperature or lower and then performing recrystallization annealing.

また、上記方法につき、1350℃から900℃までの
平均冷却速度は3℃/min以上とする製造方法、同じ
く鋳造後に該鋼鋳片を600℃以上850℃以下の温度
で巻き取るか、あるいは、鋳造後に該鋳片を加熱して6
00℃以上850℃以下の温度域に5分間以上保持した
後圧延を行う製造方法、また、鋳造後、冷間圧延前、ま
たは巻き取り前あるいは熱処理前に、再結晶温度以上の
温度で20%以上の圧下率で圧延する製造方法も提供さ
れる。
Further, according to the above method, a manufacturing method in which the average cooling rate from 1350 ° C. to 900 ° C. is 3 ° C./min or more, similarly, the steel slab is wound at a temperature of 600 ° C. or more and 850 ° C. or less after casting, or Heating the slab after casting 6
A manufacturing method in which the material is held in a temperature range of 00 ° C. or higher and 850 ° C. or lower for 5 minutes or more and then rolled, and after casting, before cold rolling, or before winding or before heat treatment, the recrystallization temperature is 20% or more. A manufacturing method of rolling at the above reduction rate is also provided.

以下、本発明について詳細に説明する。Hereinafter, the present invention will be described in detail.

本発明は、薄肉の鋼鋳片を熱間圧延を省略あるいは極め
て簡略化して、冷間圧延,再結晶焼鈍を行い、高加工性
の薄鋼板を製造するためには、(1)薄肉の鋼鋳片を鋳
造する際に凝固組織を微細化すること、(2)凝固後の
冷却時の粒成長を抑制することによる組織の微細化,
(3)凝固後の冷間圧延による鋳造組織の破壊,のすべ
ての条件を満足する必要があるとの知見に基づくもので
ある。本発明を構成する各々の限定理由は主に上記
(1)〜(3)のいずれかに基づくものであり、これを
実施結果に基づいて説明する。
According to the present invention, in order to manufacture a thin steel sheet with high workability by performing cold rolling and recrystallization annealing by omitting or extremely simplifying hot rolling of a thin steel slab, (1) thin steel Refining the solidification structure when casting a slab, (2) refining the structure by suppressing grain growth during cooling after solidification,
(3) It is based on the knowledge that it is necessary to satisfy all of the conditions of the fracture of the cast structure by cold rolling after solidification. Each of the reasons for limitation constituting the present invention is mainly based on any of the above (1) to (3), and this will be described based on the results of implementation.

以下の実験は、C:0.001〜0.10%,Si:
0.1%以下、Mn:0.10〜0.15%,P:0.
01〜0.15%,S:0.2以下,Al:0.01〜
0.1%,N:5〜100ppm,Nb:0.025%
未満,Ti:0.05未満,B:100ppm以下の範
囲の成分の溶鋼を、1550〜1350℃間及び135
0〜900℃間の平均冷却速度,鋳片厚さを変化させて
鋳造した後、一部には熱間圧延を施し、種々の巻き取り
相当又は鋳片の加熱相当処理を行つて、冷間圧延(20
〜90%)を施し、775℃で40secの再結晶焼
鈍,1%の調質圧延を行つた。
The following experiments were performed with C: 0.001 to 0.10%, Si:
0.1% or less, Mn: 0.10 to 0.15%, P: 0.
01-0.15%, S: 0.2 or less, Al: 0.01-
0.1%, N: 5-100 ppm, Nb: 0.025%
Less than, Ti: less than 0.05, B: 100ppm or less of the molten steel in the range of 1550 ~ 1350 ℃ and 135
After casting while changing the average cooling rate between 0 to 900 ° C and the thickness of the slab, hot rolling is applied to a part of the slab, and various types of winding or slab heating are performed to cool the slab. Rolling (20
˜90%), recrystallization annealing was performed at 775 ° C. for 40 seconds, and temper rolling was performed at 1%.

(1)凝固組織の微細化および凝固後の粒成長の抑制 既に述べた如く、本発明の対象とするような圧延工程を
簡略化したプロセスでは、最終製品の材質におよぼす鋳
造組織の影響が極めて大きくなる。材質特性のなかでも
特に「伸び」が最も劣る傾向が強い。これは先に述べた
如く、鋳造組織が十分破壊されないために、割れの起点
となり易いことが根本的な理由である。この鋳造組織の
悪影響は、デンドライト(樹枝状晶)の間隔が大きい場
合ほど著しいものになる。
(1) Refining of solidification structure and suppression of grain growth after solidification As described above, in the process of simplifying the rolling process as the object of the present invention, the influence of the casting structure on the material of the final product is extremely large. growing. Among the material properties, "elongation" tends to be the worst. The fundamental reason for this is that, as described above, the cast structure is not sufficiently destroyed, so that it tends to become the starting point of cracking. This adverse effect of the cast structure becomes more remarkable as the spacing between dendrites (dendritic crystals) increases.

鋳造組織の微細化のためには、核発生度数を多くする
ことにより凝固核を微細化することと、凝固核の成長を
抑制することが必要である。前者の観点からは、凝固時
の過冷度を大きくする意味で、凝固時の冷却速度を限定
する必要があり、後者についても冷却速度の影響が大き
い。本発明者らは、発明の第1の構成条件として、鋳造
時に1550℃から1350℃までの平均冷却速度を
1.0℃/sec以上とする必要があるとの知見を得
た。さらに望ましくは5.0℃/sec以上であり、最
も望ましくは20℃/sec以上である。これを実験デ
ータによつて第1図に示す。該条件を満足する場合にの
み良好な材質(r値,El)が得られているのは明らか
である。上記1550〜1350℃の冷却速度のうち高
温部が凝固時の冷却速度に相当し、低温部は凝固組織の
成長(δ相域での成長)、およびδ相からγ相への変態
に際してγ相の大きさを支配する冷却速度がある。
In order to miniaturize the cast structure, it is necessary to miniaturize the solidification nuclei by increasing the nucleation frequency and to suppress the growth of the solidification nuclei. From the viewpoint of the former, in order to increase the degree of supercooling at the time of solidification, it is necessary to limit the cooling rate at the time of solidification, and the latter also has a large effect on the cooling rate. The present inventors have found that, as the first configuration condition of the invention, the average cooling rate from 1550 ° C. to 1350 ° C. at the time of casting needs to be 1.0 ° C./sec or more. More preferably, it is 5.0 ° C./sec or more, and most preferably 20 ° C./sec or more. This is shown in FIG. 1 based on experimental data. It is clear that a good material (r value, El) is obtained only when the condition is satisfied. Among the cooling rates of 1550 to 1350 ° C., the high temperature portion corresponds to the cooling rate during solidification, and the low temperature portion is the growth of the solidification structure (growth in the δ phase region) and the γ phase during the transformation from the δ phase to the γ phase. There is a cooling rate that governs the size of.

鋼中の合金成分は、概して凝固温度区間を広げること
から、樹枝状晶が発達して好ましくなく、特に鋼中Cは
かかる傾向が強い。更に、本発明の対象とする製造プロ
セスで製造される鋼板は材質特性のうち特に延性が劣る
傾向が強いことから、鋼中C量を低くして延性を高める
必要がある。
The alloying components in steel generally widen the solidification temperature range, so that dendrites develop, which is not preferable, and C in steel is particularly prone to this. Further, since the steel sheet manufactured by the manufacturing process which is the subject of the present invention tends to be inferior in ductility among the material properties, it is necessary to lower the C content in the steel to enhance the ductility.

ところが、合金元素の低下は凝固後の著しい粒成長を招
き(特に冷却速度の小さい場合)、材質を劣化させる欠
点があり、C量の減少はかかる傾向が極めて強いため、
上記の凝固温度区間を狭めることや延性の向上を狙つて
単にC量を下げることはできない。
However, the reduction of alloying elements causes remarkable grain growth after solidification (especially when the cooling rate is small), and has the drawback of deteriorating the material.
It is not possible to simply reduce the amount of C in order to narrow the solidification temperature zone and improve the ductility.

本発明者らは、既述の凝固時,δ相域,δ相からγ相へ
の変態時およびγ相高温域の冷却速度(前記1550℃
〜1350℃間の冷却速度)を限定することによる組織
の微細化とTiNによる特にγ相中での粒成長の抑制お
よびNbCによるα相中での粒成長の抑制によつてこれ
らの問題点を解決できることを知見した。これを実験デ
ータによつて第2図に示す。即ち、Ti,Nbを添加し
ない場合には極低炭素成分では組織の粗大化によりr
値,Elが劣る。これに対しTiとNbを複合して添加
した場合は、前記γ,α相の微細化により極低炭素鋼成
分とする効果が発揮され、El.r値の良好な鋼板が得
られるのである。Tiの添加量はTiNを微細に析出さ
せるためにN量とのほぼ当量が望ましい。Nを完全に析
出させる量Ti(%)>(48/14)N(%)ではT
iNが高温から析出して粗大化し、γ相の粗大化抑制効
果が小さくなる。また、Nb単独ではTiNによる上記
γ相の微細化が得られず、材質は劣る。更にこの場合に
は、Nが冷却中のα相域あるいは圧延後の焼鈍時に微細
に析出することによる材質劣化もおこることになる。
The inventors of the present invention have described the cooling rates (1550 ° C. above) at the time of solidification, the δ phase region, the transformation from the δ phase to the γ phase and the γ phase high temperature region as described above.
These problems are caused by the refinement of the structure by limiting the cooling rate between ˜1350 ° C.) and the inhibition of grain growth by TiN, particularly in the γ phase, and the inhibition of grain growth in the α phase by NbC. I found that I could solve it. This is shown in FIG. 2 based on experimental data. That is, when Ti and Nb are not added, the composition of the extremely low carbon component becomes r due to the coarsening of the structure.
Value, El is inferior. On the other hand, when Ti and Nb are added in a combined manner, the effect of forming an extremely low carbon steel component is exhibited due to the refinement of the γ and α phases. A steel sheet with a good r value can be obtained. The amount of Ti added is preferably about the same as the amount of N in order to finely precipitate TiN. When Ti (%)> (48/14) N (%) is the amount that completely precipitates N, T
iN precipitates from a high temperature and becomes coarse, and the effect of suppressing coarsening of the γ phase becomes small. In addition, Nb alone does not provide the fineness of the γ phase due to TiN, and the material is inferior. Further, in this case, N is finely precipitated during the α phase region during cooling or during annealing after rolling, which causes deterioration of the material.

即ち本発明の第2の構成条件は成分にあり、(1)延性
を高めるとの観点から極低炭素鋼(C:0.007%以
下)とする、(2)γ相域での粒成長を抑えるためにT
iを添加しTiNを析出させる、(3)α相域での粒成
長を抑えるためにNbを添加しNbCを析出させるので
ある。第2図に示す如く、γ相域での組織微細化の観点
からは、上記TiNによる効果に加えて1350℃から
900℃までの平均冷却速度を制限することが有効であ
る。この場合、該温度域の平均冷却速度は3℃/min
以上が好ましい。さらに望ましくは10℃/min以上
である。
That is, the second constitutional condition of the present invention is the composition, and (1) it is an ultra-low carbon steel (C: 0.007% or less) from the viewpoint of enhancing ductility, (2) grain growth in the γ phase region. T to suppress
i is added to precipitate TiN. (3) Nb is added to precipitate grain growth in the α phase region to precipitate NbC. As shown in FIG. 2, from the viewpoint of microstructure refinement in the γ phase region, it is effective to limit the average cooling rate from 1350 ° C. to 900 ° C. in addition to the effect of TiN. In this case, the average cooling rate in the temperature range is 3 ° C / min
The above is preferable. More preferably, it is 10 ° C./min or more.

該鋳片の厚さは50mm以下にする必要がある。第3図
に示す如く鋳片厚さが厚くなると、その厚さ方向中心部
は冷却速度が小さくなるために組織が粗大化して材質が
劣化し、厚さ方向の材質均一性が劣ることになる。従つ
て鋳片の厚さは50mm以下とすることが必要である。さ
らに望ましくは20mm以下であり最も望ましくは、10
mm以下である。
The thickness of the slab needs to be 50 mm or less. As shown in FIG. 3, when the thickness of the slab becomes thicker, the cooling rate at the center portion in the thickness direction becomes smaller, the structure becomes coarser, the material deteriorates, and the material uniformity in the thickness direction deteriorates. . Therefore, the thickness of the slab needs to be 50 mm or less. More preferably 20 mm or less, and most preferably 10 mm.
mm or less.

(2)冷間圧延による鋳造組織の破壊と圧延集合組織の
付与 本発明の対象とする如き製造プロセスで最も問題となる
のは、既に述べているように、鋳造組織が十分破壊され
ず、鋳造組織の悪影響が最終製品に持ち越され、プレス
成形に供される用途に対しては加工性,特に伸びが極め
て不足することである。従来のプレス成形用鋼板と同等
の成形性を得るには、鋳造組織を破壊する意味で少なく
とも一回の圧延が必要である。この場合、深絞り性を付
与するためには、再結晶温度以下で圧延して圧延集合組
織を発達させた後、再結晶焼鈍することが有効となる。
本発明では、凝固時およびその後の冷却時において組織
の微細化を図つていることから低い圧延率によつて鋳造
組織の破壊,圧延集合組織の付与が可能である。第4図
は冷間(再結晶温度以下)圧延率と材質の関係を示すも
のであり、60%以上の圧延を行うことにより、従来の
プレス成形用鋼板と同等の成形性を得ることができる。
最も望ましくは75%以上である。本発明においては、
圧延温度は再結晶温度以下であれば特に限定する必要は
ない。
(2) Destruction of casting structure and provision of rolling texture by cold rolling The most problematic point in the manufacturing process as the object of the present invention is, as already mentioned, that the casting structure is not sufficiently destroyed and The adverse effect of the structure is carried over to the final product, and the workability, especially the elongation, is extremely insufficient for the application used for press molding. In order to obtain formability equivalent to that of a conventional steel sheet for press forming, at least one rolling is required to destroy the cast structure. In this case, in order to impart deep drawability, it is effective to perform rolling at a temperature not higher than the recrystallization temperature to develop a rolling texture and then perform recrystallization annealing.
In the present invention, since the structure is refined during solidification and subsequent cooling, it is possible to break the cast structure and impart a rolling texture with a low rolling rate. FIG. 4 shows the relationship between the cold rolling rate (below the recrystallization temperature) and the material. By performing rolling at 60% or more, it is possible to obtain the same formability as that of the conventional press forming steel sheet. .
Most preferably, it is 75% or more. In the present invention,
The rolling temperature is not particularly limited as long as it is lower than the recrystallization temperature.

(3)巻き取り温度あるいは鋳造後熱処理の効果 本発明の対象とする如き製造プロセスで良好な成形性の
有する薄鋼板を製造するには、既に述べた如く凝固時を
中心とした冷却速度の制御を必要とする。鋼中のC,N
は既述の如くNbC,TiNとして析出し顕著な効果を
発揮するが、上記冷却速度が大きいために析出物の凝集
度は比較的小さい。鋼板の延性を高め、降状強度,再結
晶温度を下げる観点からは析出物の凝集度を上げること
が望ましい。この意味で鋳造後の巻き取り温度を高める
か又は鋳造後の鋳片を加熱することが有効で、具体的に
は、鋳造後に該鋼鋳片を500℃以上、好ましくは60
0℃以上850℃以下の温度で巻き取るか、あるいは、
鋳造後圧延前に該鋳片を加熱して600℃以上850℃
以下の温度域に5min以上保持した後該圧延を行うこ
とである。後者の場合の加熱後の冷却速度は特に限定す
る必要はない(冷却速度の小さい程若干良好となる傾向
にはある)。巻き取り温度あるいは上記加熱温度は、最
も望ましくは650℃以上850℃以下の温度がよい。
これを実験データによつて第5図に示す。
(3) Effect of winding temperature or post-casting heat treatment In order to manufacture a thin steel sheet having good formability by the manufacturing process as the object of the present invention, as described above, the cooling rate is controlled mainly at the time of solidification. Need. C and N in steel
As described above, NbC or TiN precipitates and exerts a remarkable effect, but since the cooling rate is high, the degree of agglomeration of the precipitate is relatively small. From the viewpoint of increasing the ductility of the steel sheet and lowering the yield strength and recrystallization temperature, it is desirable to increase the degree of coagulation of precipitates. In this sense, it is effective to raise the winding temperature after casting or to heat the cast slab after casting. Specifically, the cast slab is cast at 500 ° C. or higher, preferably 60
Rewind at a temperature of 0 ° C to 850 ° C, or
After casting, the slab is heated to 600 ° C or more and 850 ° C or more before rolling.
The rolling is performed after the temperature is kept in the following temperature range for 5 minutes or more. In the latter case, the cooling rate after heating is not particularly limited (the smaller the cooling rate, the better the tendency). The winding temperature or the heating temperature is most preferably 650 ° C. or higher and 850 ° C. or lower.
This is shown in FIG. 5 based on experimental data.

650℃以上の巻き取り温度で巻き取る場合には、巻き
取る前でのコイル長さ方向前、後端部の注水を抑えて該
位置の巻き取り温度をコイル長さ方向中心部の巻き取り
温度より高くすることが、コイル前、後端部の材質を向
上できるために、コイル長さ方向の材質均一性の点で有
効である。こういつた類の処理は何等本発明の効果を減
ずるものではなく、本発明と併用することは可能であ
る。
When winding at a coiling temperature of 650 ° C. or higher, the coiling temperature before and after coiling in the coil length direction is suppressed, and the coiling temperature at that position is adjusted to the coiling temperature at the center of the coil length direction. A higher height is effective in terms of material uniformity in the coil length direction because the material at the front and rear ends of the coil can be improved. This kind of treatment does not impair the effects of the present invention and can be used in combination with the present invention.

(4)鋳造後の軽熱間圧延の効果 著しい製造コストの低減という点から今後の革新的製造
プロセスを考えた場合、鋳造工程に続く二回の圧延工程
を大幅に簡略化すること重要であり、本明細書では以上
に熱間圧延を省略したプロセスでの製造方法を示した。
しかしながら、粗圧延,仕上げ圧延より成る従来の熱間
圧延プロセスの粗圧延を省略し、かつ仕上げ圧延を簡略
化するだけでも製造コストの低減は著しい。即ち、鋳造
後に従来の熱間圧延よりは極めて低い圧下率の熱間圧延
を行うプロセスである。この場合には、熱間圧延によつ
て鋳造組織が破壊されるために材質特性は向上する。従
つて、軽度の熱間圧延と以上の技術思想を組み合わせる
ことで、製造コストはわずかに上昇するものの材質特性
は向上した製造方法が可能であり、極めて有効である。
第6図に必要な圧延率(再結晶温度以上)を実験データ
によつて示す。本発明においては20%以上の圧延によ
つて十分良好な材質が得られているのは明らかで、従来
の熱間圧延(圧下率:約95%以上)と比較して十分に
熱間圧延を簡略化できることが明白である。熱間圧延時
の仕上げ温度は、γ→α変態前のγ結晶粒度を小さくす
る意味からAr点直上が最も望ましいが、特に規定す
る必要はない。鋳造後に熱間圧延可能温度以下に鋳片温
度が低下した場合には、加熱した後熱間圧延を施すこと
が可能である。この場合、加熱温度は析出物(主として
炭化物)を溶解させない意味で低いほど好ましいが、特
に限定する必要はない。
(4) Effect of light hot rolling after casting Considering the future innovative manufacturing process from the viewpoint of significant reduction in manufacturing cost, it is important to greatly simplify the two rolling processes following the casting process. In the present specification, the manufacturing method in the process in which hot rolling is omitted has been described above.
However, even if the rough rolling of the conventional hot rolling process consisting of rough rolling and finish rolling is omitted and the finish rolling is simplified, the manufacturing cost is significantly reduced. That is, it is a process of performing hot rolling with a much lower rolling reduction than conventional hot rolling after casting. In this case, the material structure is improved because the casting structure is destroyed by the hot rolling. Therefore, by combining a light hot rolling with the above technical idea, a manufacturing method in which the material characteristics are improved, although the manufacturing cost is slightly increased, is extremely effective.
FIG. 6 shows the required rolling ratio (above the recrystallization temperature) based on experimental data. In the present invention, it is clear that a sufficiently good material is obtained by rolling at 20% or more, and hot rolling is sufficiently performed as compared with conventional hot rolling (reduction rate: about 95% or more). It is clear that it can be simplified. The finishing temperature at the time of hot rolling is most preferably right above the Ar 3 point in order to reduce the γ crystal grain size before the γ → α transformation, but it is not particularly required. When the slab temperature drops below the hot-rollable temperature after casting, it is possible to perform hot rolling after heating. In this case, the heating temperature is preferably as low as possible so as not to dissolve the precipitate (mainly carbide), but it is not particularly limited.

次に成分元素の範囲について記す。Next, the range of component elements will be described.

Cは、先に述べた如く延性を向上させる観点から0.0
07%以下とする。
C is 0.0 from the viewpoint of improving the ductility as described above.
It should be 07% or less.

Siは、高強度鋼板を製造する場合添加することがある
が、脆性を助長する元素であり、また化成処理性,亜鉛
めつき性を阻害する元素でもあり、かかる観点から0.
8%以下にすべきである。軟鋼板を製造する場合には
0.1%以下がよい。
Although Si may be added when producing a high-strength steel sheet, it is an element that promotes brittleness, and is also an element that inhibits chemical conversion treatment and zinc sticking property.
Should be 8% or less. When manufacturing a mild steel sheet, 0.1% or less is preferable.

Mnも高強度化するに際して使用することができる。し
かしr値を劣化させる働きがあることと、合金鉄のコス
トが高いことから1.0%以下にすべきである。軟鋼板
を製造する場合には0.3%以下がよい。
Mn can also be used for increasing the strength. However, it should be 1.0% or less because it has a function of deteriorating the r value and the cost of ferroalloy is high. When manufacturing a mild steel plate, 0.3% or less is preferable.

Pは最も強化能の大きな元素であり高強度化する場合添
加されるが、多量に含まれると粒界偏析量が多くなつて
脆化すなわち二次加工脆性をひきおこすので上限は0.
10%とする。軟鋼板を製造する場合には0.03%以
下がよい。
P is an element having the largest strengthening ability and is added in the case of increasing the strength. However, if it is contained in a large amount, the amount of segregation at the grain boundaries increases, causing embrittlement, that is, secondary work embrittlement.
10%. When manufacturing a mild steel sheet, 0.03% or less is preferable.

S量の増加に伴い硫化物を形成する鋼中の合金元素の必
要量は増加する。従つてSの上限は0.10%とする。
As the amount of S increases, the required amount of alloying elements in the sulfide-forming steel increases. Therefore, the upper limit of S is 0.10%.

AlはTi,Nb添加前の溶鋼脱酸剤として加えるが、
Ti,Nbの歩留をよくするためには0.01%以上の
添加が必要であり、加え過ぎはコストアツプになること
から上限を0.06%とする。
Al is added as a molten steel deoxidizer before adding Ti and Nb,
In order to improve the yield of Ti and Nb, it is necessary to add 0.01% or more, and excessive addition causes cost up, so the upper limit is made 0.06%.

NはTiNとしてTiに大部分は固定されるが、N含有
量が多いとTi量も多く必要になり、この場合TiNは
高温から析出して粗大化し、γ相の微細化効果が小さく
なる。従つて上限を0.008%とする。微細化効果を
発揮せしめるためのTiN量を得るには10ppm以上
のN量が望ましい。
Most of N is fixed to Ti as TiN, but when the N content is large, a large amount of Ti is required. In this case, TiN precipitates from a high temperature and becomes coarse, and the effect of refining the γ phase becomes small. Therefore, the upper limit is set to 0.008%. In order to obtain the TiN amount for exerting the miniaturization effect, the N amount of 10 ppm or more is desirable.

TiはTiNを形成してγ相を微細化する効果と、鋼中
NがAlNとして析出することによる亜影響を排除する
役割を果たす。かかる効果を発揮するには(48/1
4)〔N(%)−0.002%〕<Ti(%)で、かつ
Ti(%)<(48/14)N(%)を満たす範囲内に
添加することが必要である。
Ti plays a role of forming TiN and refining the γ phase and eliminating a sub-effect of precipitation of N in the steel as AlN. To achieve this effect (48/1
4) It is necessary to add it within the range of [N (%)-0.002%] <Ti (%) and Ti (%) <(48/14) N (%).

NbはCの一部をNbCとして析出させることによりα
相を微細化する効果、および実質的にCによる時効性を
無くす役割を果たす。かかる効果を発揮するには(93
/12)[C(%)−0.001%]>Nb(%)>
2.00C(%)で、かつ0.003%以上0.025
%未満の範囲内とすることが必要である。0.025%
以上では再結晶温度が高くなつてしまう。さらに塗装下
地処理として行われるリン酸塩処理(ボンデ処理)性を
良好なものにするために〔Ti(%)+Nb(%)〕<
0.04%とすることが必要である。
Nb is α by precipitating a part of C as NbC.
It plays a role of refining the phase and substantially eliminating the aging property of C. To achieve this effect (93
/ 12) [C (%)-0.001%]> Nb (%)>
2.00 C (%) and 0.003% or more 0.025
It is necessary to be within the range of less than%. 0.025%
In the above case, the recrystallization temperature becomes high. Furthermore, in order to improve the phosphate treatment (bonding treatment) performed as a coating base treatment, [Ti (%) + Nb (%)] <
It is necessary to set it to 0.04%.

Bは二次加工性の向上と、BH性鋼板を製造する場合に
常温時効性を劣化させずにBH量を高める目的で添加す
る。かかるB添加の効果は鋼中に固溶状態で存在するB
によるものである。一方、Bは析出物,固溶状態いずれ
として存在しても鋼板の延性を劣化させ、再結晶温度を
高めてしまう大きな欠点を有する。そこで、微量の添加
量でも上記Bの効果を発揮せしめかつ該欠点の生じない
ことが必要である。これを実現するには、鋼中成分とし
てNb,Tiを複合して含有することが必須条件であ
る。即ち、鋼中のTiは鋼中Nを前述のようにTiNと
して析出せしめているため、添加したBを固溶状態で存
在させる役割を果たし、極微量のB添加量でも上記効果
を発揮できることになる。Nbは鋼中Cの一部を析出固
定し、一部のCを固溶状態で存在させる。かかる状態で
Bが共存した場合にのみBのBH性向上効果が発揮され
ることになる。これに対してTiでC,Nとも析出固定
した場合にはBのBH性にかんする効果は発揮されず、
また、TiでCの一部を析出させ残部を固溶Cとして存
在させた場合には、常温時効性が大きくなつて好ましく
ない。Bの添加量下限はかかる効果を発揮する固溶B量
で決まり、上限は固溶B量が増大して該欠点が出現する
量で決まる。具体的には、適正なBの添加量は2ppm
以上30ppm以下である。
B is added for the purpose of improving the secondary workability and increasing the amount of BH without deteriorating the room temperature aging when manufacturing a BH steel sheet. The effect of the addition of B is that B existing in a solid solution state in the steel.
It is due to. On the other hand, B has a major drawback that it deteriorates the ductility of the steel sheet and raises the recrystallization temperature regardless of whether it exists as a precipitate or a solid solution state. Therefore, it is necessary that the effect of B is exhibited even with a small amount of addition, and that the defect does not occur. In order to realize this, it is an essential condition that Nb and Ti are contained in a composite form as a component in the steel. That is, since Ti in the steel precipitates N in the steel as TiN as described above, it plays a role of allowing the added B to exist in a solid solution state, and the above effect can be exhibited even with an extremely small amount of B added. Become. Nb precipitates and fixes a part of C in the steel and makes a part of the C exist in a solid solution state. Only when B coexists in such a state, the BH property improving effect of B is exhibited. On the other hand, when both C and N are precipitated and fixed by Ti, the effect of B on the BH property is not exhibited,
Further, when a part of C is precipitated by Ti and the rest is present as solid solution C, the room temperature aging property becomes large, which is not preferable. The lower limit of the amount of B added is determined by the amount of solid solution B that exerts such an effect, and the upper limit is determined by the amount of the amount of solid solution B that increases and the defects appear. Specifically, the proper amount of B added is 2 ppm
It is above 30 ppm.

次に製造条件について記す。鋳造条件についてはすでに
述べた。鋳造後、圧延を行うまでの間に脱スケール処理
を行うことは何等本発明の主旨に反するものではなく、
機械的処理,化学的処理を始めとしていかなる方法を適
用することも可能である。圧延条件についてはすでに記
した。圧延温度によつては圧延後にスケールが厚く成長
することがあるが、この場合にも脱スケール処理を行う
ことは可能である。焼鈍条件については、次のようであ
る。まず、焼鈍方法は冷間圧延された鋼板の焼鈍方法と
してあるいかなる方法を適用することも可能であり、例
えば、箱型焼鈍方法および連続型亜鉛めつきライン、そ
の他のめつきを行う連続焼鈍型ラインを含む連続焼鈍方
法等である。焼鈍温度については再結晶温度以上であれ
ば特に限定する必要はない。焼鈍後に調質圧延を施すこ
とは何等本発明の主旨に反するものではなく、必要に応
じて実施してよい。
Next, the manufacturing conditions will be described. The casting conditions have already been described. After casting, it is not contrary to the gist of the present invention to perform descaling treatment before rolling.
Any method including mechanical treatment and chemical treatment can be applied. The rolling conditions have already been described. Depending on the rolling temperature, the scale may grow thick after rolling, and in this case as well, the descaling treatment can be performed. The annealing conditions are as follows. First, as the annealing method, it is possible to apply any method as an annealing method of a cold rolled steel sheet, for example, a box type annealing method and a continuous type zinc plating line, other continuous annealing type for performing plating. It is a continuous annealing method including a line. The annealing temperature is not particularly limited as long as it is the recrystallization temperature or higher. Performing temper rolling after annealing does not go against the gist of the present invention, and may be carried out as necessary.

以下に実施例を示す。Examples will be shown below.

(実施例1) 第1表に示す化学成分を有する薄肉鋼鋳片を、表に示す
種々の鋳造条件にて鋳造し、かかる後、表記の冷間圧
延,焼鈍を行つて得た薄鋼板を引張試験に供した。その
機械的性質を第2表に示す。
(Example 1) A thin steel slab having the chemical composition shown in Table 1 was cast under various casting conditions shown in the table, and after that, a thin steel sheet obtained by cold rolling and annealing as described above was obtained. It was subjected to a tensile test. Its mechanical properties are shown in Table 2.

本発明例である供試鋼No.1〜5はいずれも良好な材
質特性を示し、本発明のの対象とする如き製造プロセス
においても、従来の「鋳造一熱間圧延一冷間圧延一焼
鈍」のプロセスで得られていたのとほぼ同等の材質が得
られ、プレス成形に供される鋼板として十分な加工性を
有することが実証された。これに対し、比較鋼No.6
は鋳造後の1550〜1350℃の冷却速度が小さく、
No.7は鋳片厚さが厚く、No.8は冷間圧延率が小
さいために、既述の理由により良好な材質(特にEl,
r値)が得られない。また、供試鋼No.9〜14はい
ずれも本発明の成分範囲と異なり、同様に材質は極めて
低いものである。
Sample steel No. 1 to 5 all show good material characteristics, and even in the manufacturing process as the object of the present invention, it was obtained by the conventional "casting-hot rolling-cold rolling-annealing" process. It was proved that almost the same material was obtained and that it had sufficient workability as a steel sheet used for press forming. On the other hand, comparative steel No. 6
Has a low cooling rate of 1550 to 1350 ° C. after casting,
No. No. 7 has a thick cast piece, No. 8 has a small cold rolling rate, and therefore is made of a good material (especially El,
r value) cannot be obtained. In addition, the sample steel No. All of 9 to 14 are different from the component range of the present invention, and similarly, the material is extremely low.

(実施例2) 第1表に示す供試鋼No.1の化学成分,鋳造条件によ
る薄肉鋼鋳片を鋳造した後、第3図に示す種種の条件の
処理を行つた後、第1表に示す供試鋼No.1と同一条
件の冷間圧延,焼鈍を行つて得た薄鋼板を引張試験に供
した。その機械的性質を第4表に示す。
(Example 2) Sample steel Nos. Shown in Table 1 After casting a thin-walled steel slab according to the chemical composition and casting conditions of No. 1 and after performing various kinds of conditions shown in FIG. 3, the test steel No. 1 shown in Table 1 was obtained. The thin steel sheet obtained by performing cold rolling and annealing under the same conditions as in 1 was subjected to a tensile test. Its mechanical properties are shown in Table 4.

本発明の方法によつて製造された薄鋼板はいずれも良好
な材質特性を示し、本発明の対象とする如き製造プロセ
スにおいても、従来の「鋳造一熱間圧延一冷間圧延一焼
鈍」のプロセスで得られていたのとほぼ同等の材質が得
られ、プレス成形に供される鋼板として十分な加工性を
有することが実証された。
The thin steel sheets produced by the method of the present invention all show good material characteristics, and even in the production process as the object of the present invention, the conventional "casting-hot rolling-cold rolling-annealing" It was proved that a material almost equivalent to that obtained in the process was obtained, and that it had sufficient workability as a steel sheet used for press forming.

(発明の効果) 本発明によれば熱間圧延工程を省略するかもしくは簡略
化した熱間圧延工程にて成形性の優れた薄鋼板を製造す
ることができ、省エネルギー,製造コスト等の著しい低
減となり、その効果は極めて大きいものである。
(Effects of the Invention) According to the present invention, a thin steel sheet having excellent formability can be manufactured by a hot rolling process in which the hot rolling process is omitted or simplified, and energy saving and manufacturing cost are significantly reduced. Therefore, the effect is extremely large.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の平均冷却速度と材質との関係を示す
図、第2図は本発明の成分と材質の関係を示す図、第3
図は本発明の鋳片の厚さと材質の関係を示す図、第4図
は本発明の冷間圧延率と材質の関係を示す図、第5図は
本発明の鋳造後の巻取り温度及び鋳片を再加熱した際の
材質との関係を示す図、第6図は本発明の熱間圧延率と
材質の関係を示す図である。
FIG. 1 is a diagram showing the relationship between the average cooling rate and the material of the present invention, FIG. 2 is a diagram showing the relationship between the components and the material of the present invention, and FIG.
FIG. 4 is a diagram showing the relationship between the thickness and material of the slab of the present invention, FIG. 4 is a diagram showing the relationship between the cold rolling rate and the material of the present invention, and FIG. 5 is the winding temperature after casting of the present invention and The figure which shows the relationship with the material at the time of reheating a cast, FIG. 6 is a figure which shows the relationship between the hot rolling rate of this invention, and a material.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C22C 38/00 301 S 38/14 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI technical display location C22C 38/00 301 S 38/14

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】C:0.007%以下、 Si:0.8%以下、 Mn:1.0%以下、 P:0.10%以下、 S:0.10%以下、 SOl.Al:0.01〜0.06%、 N:0.008%以下、 及び他の不可避的不純物からなり、さらにNbとTiと
Bを複合して含有し、Tiは(48/14)〔N(%)
−0.002%〕<Ti(%)で、かつTi(%)<
(48/14)N(%)を満たす範囲内、Nbは(93
/12)〔C(%)−0.001%〕>Nb(%)>
2.00C(%)で、かつ0.003%以上0.025
%未満の範囲であり、かつ〔Ti(%)+Nb(%)〕
<0.004%であり、Bは2ppm以上30ppm以
上であり、残部Feよりなる薄肉鋼鋳片を連続鋳造し、
鋳造時に1550℃から1350℃までの平均冷却速度
を1.0℃/Sec以上とし、該鋳片の厚さを50mm
以下とし、再結晶温度以下で圧下率を60%以上とする
圧延を行った後、再結晶焼鈍することを特徴とする成形
性に優れた薄鋼板の製造方法。
1. C: 0.007% or less, Si: 0.8% or less, Mn: 1.0% or less, P: 0.10% or less, S: 0.10% or less, SOl. Al: 0.01 to 0.06%, N: 0.008% or less, and other unavoidable impurities, and further contains Nb, Ti, and B in combination, and Ti is (48/14) [N (%)
-0.002%] <Ti (%) and Ti (%) <
Within the range satisfying (48/14) N (%), Nb is (93
/ 12) [C (%)-0.001%]> Nb (%)>
2.00 C (%) and 0.003% or more 0.025
%, And [Ti (%) + Nb (%)]
<0.004%, B is 2 ppm or more and 30 ppm or more, and a thin steel slab composed of the balance Fe is continuously cast,
During casting, the average cooling rate from 1550 ° C to 1350 ° C was 1.0 ° C / Sec or more, and the thickness of the slab was 50 mm.
A method for producing a thin steel sheet excellent in formability, which comprises the following steps: rolling at a rolling reduction of 60% or more at a recrystallization temperature or lower and then recrystallization annealing.
【請求項2】C:0.007%以下、 Si:0.8%以下、 Mn:1.0%以下、 P:0.10%以下、 S:0.10%以下、 SOl.Al:0.01〜0.06%、 N:0.008%以下、 及び他の不可避的不純物からなり、さらにNbとTiと
Bを複合して含有し、Tiは(48/14)〔N(%)
−0.002%〕<Ti(%)で、かつTi(%)<
(48/14)N(%)を満たす範囲内、Nbは(93
/12)〔C(%)−0.001%〕>Nb(%)>
2.00C(%)で、かつ0.003%以上0.025
%未満の範囲内であり、かつ〔Ti(%)+Nb
(%)〕<0.04%であり、Bは2ppm以上30p
pm以下であり、残部Feよりなる薄肉鋼鋳片を連続鋳
造し、鋳造時に1550℃から1350℃までの平均冷
却速度を1.0℃/sec以上とし、1350℃から9
00℃までの平均冷却速度を3℃/min以上とし、該
鋳片の厚さを50mm以下とし、再結晶温度以下で圧下
率を60%以上とする圧延を行った後、再結晶焼鈍する
ことを特徴とする成形性に優れた薄鋼板の製造方法。
2. C: 0.007% or less, Si: 0.8% or less, Mn: 1.0% or less, P: 0.10% or less, S: 0.10% or less, SOl. Al: 0.01 to 0.06%, N: 0.008% or less, and other unavoidable impurities, and further contains Nb, Ti, and B in combination, and Ti is (48/14) [N (%)
-0.002%] <Ti (%) and Ti (%) <
Within the range satisfying (48/14) N (%), Nb is (93
/ 12) [C (%)-0.001%]> Nb (%)>
2.00 C (%) and 0.003% or more 0.025
%, And [Ti (%) + Nb
(%)] <0.04%, and B is 2 ppm or more and 30 p
pm or less and continuously casting a thin steel slab composed of the balance Fe, and setting the average cooling rate from 1550 ° C to 1350 ° C to 1.0 ° C / sec or more during casting, from 1350 ° C to 9 ° C.
An average cooling rate up to 00 ° C. is 3 ° C./min or more, a thickness of the slab is 50 mm or less, and rolling is performed at a recrystallization temperature or less and a reduction rate of 60% or more, followed by recrystallization annealing. And a method for producing a thin steel sheet having excellent formability.
【請求項3】C:0.007%以下、 Si:0.8%以下、 Mn:1.0%以下、 P:0.10%以下、 S:0.10%以下、 SOl.Al:0.01〜0.06%、 N:0.008%以下、 及び他の不可避的不純物からなり、さらにNbとTiと
Bを複合して含有し、Tiは(48/14)〔N(%)
−0.002%〕<Ti(%)で、かつTi(%)<
(48/14)N(%)を満たす範囲内、Nbは(93
/12)〔C(%)−0.001%〕>Nb(%)>
2.00C(%)で、かつ0.003%以上0.025
%未満の範囲内であり、かつ(Ti(%)+Nb
(%)〕<0.04%であり、Bは2ppm以上30p
pm以下であり、残部Feよりなる薄肉鋼鋳片を連続鋳
造し、鋳造時に1550℃から1350℃までの平均冷
却速度を1.0℃/sec以上とし、該鋳片の厚さを5
0mm以下とし、かつ、鋳造後に該鋼鋳片を600℃以
上850℃以下の温度で巻き取るか、あるいは、鋳造後
該鋳片を加熱して600℃以上850℃以下の温度域に
5分間以上保持した後、再結晶温度以下で圧下率を60
%以上とする圧延を行った後、再結晶焼鈍することを特
徴とする成形性に優れた薄鋼板の製造方法。
3. C: 0.007% or less, Si: 0.8% or less, Mn: 1.0% or less, P: 0.10% or less, S: 0.10% or less, SOl. Al: 0.01 to 0.06%, N: 0.008% or less, and other unavoidable impurities, and further contains Nb, Ti, and B in combination, and Ti is (48/14) [N (%)
-0.002%] <Ti (%) and Ti (%) <
Within the range satisfying (48/14) N (%), Nb is (93
/ 12) [C (%)-0.001%]> Nb (%)>
2.00 C (%) and 0.003% or more 0.025
Is less than%, and (Ti (%) + Nb
(%)] <0.04%, and B is 2 ppm or more and 30 p
pm or less and continuously casting thin-walled steel slab composed of the balance Fe, the average cooling rate from 1550 ° C. to 1350 ° C. at the time of casting was 1.0 ° C./sec or more, and the thickness of the slab was 5
0 mm or less, and after casting, the steel slab is wound up at a temperature of 600 ° C. or higher and 850 ° C. or lower, or the cast slab is heated after casting to a temperature range of 600 ° C. or higher and 850 ° C. or lower for 5 minutes or longer. After the temperature is maintained, the rolling reduction rate is 60 below the recrystallization temperature.
%, Or more, and then recrystallization annealing is performed, followed by a method for producing a thin steel sheet having excellent formability.
【請求項4】C:0.007%以下、 Si:0.8%以下、 Mn:1.0%以下、 P:0.10%以下、 S:0.10%以下、 SOl.Al:0.01〜0.06%、 N:0.008%以下、 及び他の不可避的不純物からなり、さらにNbとTiと
Bを複合して含有し、Tiは(48/14)〔N(%)
−0.002%〕<Ti(%)で、かつTi(%)<
(48/14)N(%)を満たす範囲内、Nbは(93
/12)〔C(%)−0.001%〕>Nb(%)>
2.00C(%)で、かつ0.003%以上0.025
%未満の範囲内であり、かつ〔Ti(%)+Nb
(%)〕<0.04%であり、Bは2ppm以上30p
pm以下であり、残部Feよりなる薄肉鋼鋳片を連続鋳
造し、鋳造時に1550℃から1350℃までの平均冷
却速度を1.0℃/sec以上とし、1350℃から9
00℃までの平均冷却速度を3℃/min以上とし、該
鋳片の厚さを50mm以下とし、かつ、鋳造後に該鋼鋳
片を600℃以上850℃以下の温度で巻き取るか、あ
るいは、鋳造後該鋳片を加熱して600℃以上850℃
以下の温度域に5分間以上保持した後、再結晶温度以下
で圧下率を60%以上とする圧延を行った後、再結晶焼
鈍することを特徴とする成形性に優れた薄鋼板の製造方
法。
4. C: 0.007% or less, Si: 0.8% or less, Mn: 1.0% or less, P: 0.10% or less, S: 0.10% or less, SOl. Al: 0.01 to 0.06%, N: 0.008% or less, and other unavoidable impurities, and further contains Nb, Ti, and B in combination, and Ti is (48/14) [N (%)
-0.002%] <Ti (%) and Ti (%) <
Within the range satisfying (48/14) N (%), Nb is (93
/ 12) [C (%)-0.001%]> Nb (%)>
2.00 C (%) and 0.003% or more 0.025
%, And [Ti (%) + Nb
(%)] <0.04%, and B is 2 ppm or more and 30 p
pm or less and continuously casting a thin steel slab composed of the balance Fe, and setting the average cooling rate from 1550 ° C to 1350 ° C to 1.0 ° C / sec or more during casting, from 1350 ° C to 9 ° C.
The average cooling rate up to 00 ° C is 3 ° C / min or more, the thickness of the slab is 50 mm or less, and the steel slab is wound at a temperature of 600 ° C or more and 850 ° C or less after casting, or After casting, the slab is heated to 600 ° C or higher and 850 ° C
After maintaining in the following temperature range for 5 minutes or more, rolling at a recrystallization temperature of 60% or more at a recrystallization temperature or less, and then recrystallization annealing, which is a method for producing a thin steel sheet having excellent formability. .
【請求項5】C:0.007%以下、 Si:0.8%以下、 Mn:1.0%以下、 P:0.10%以下、 S:0.10%以下、 SOl.Al:0.01〜0.06%、 N:0.008%以下、 及び他の不可避的不純物からなり、さらにNbとTiと
Bを複合して含有し、Tiは(48/14)〔N(%)
−0.002%〕<Ti(%)で、かつTi(%)<
(48/14)N(%)を満たす範囲内、Nbは(93
/12)〔C(%)−0.001%〕>Nb(%)>
2.00C(%)で、かつ0.003%以上0.025
%未満の範囲内であり、かつ〔Ti(%)+Nb
(%)〕<0.04%であり、Bは2ppm以上30p
pm以下であり、残部Feよりなる薄肉鋼鋳片を連続鋳
造し、鋳造時に1550℃から1350℃までの平均冷
却速度を1.0℃/sec以上とし、該鋳片の厚さを5
0mm以下とし、かつ、鋳造後に該鋼鋳片を600℃以
上850℃以下の温度で巻き取るか、あるいは、鋳造後
該鋳片を加熱して600℃以上850℃以下の温度域に
5分間以上保持し、さらに、鋳造後、冷間圧延前に再結
晶温度以上の温度で20%以上の圧下率で圧延した後、
再結晶温度以下で圧下率を60%以上とする圧延を行っ
た後、再結晶焼鈍することを特徴とする成形性に優れた
薄鋼板の製造方法。
5. C: 0.007% or less, Si: 0.8% or less, Mn: 1.0% or less, P: 0.10% or less, S: 0.10% or less, SOl. Al: 0.01 to 0.06%, N: 0.008% or less, and other unavoidable impurities, and further contains Nb, Ti, and B in combination, and Ti is (48/14) [N (%)
-0.002%] <Ti (%) and Ti (%) <
Within the range satisfying (48/14) N (%), Nb is (93
/ 12) [C (%)-0.001%]> Nb (%)>
2.00 C (%) and 0.003% or more 0.025
%, And [Ti (%) + Nb
(%)] <0.04%, and B is 2 ppm or more and 30 p
pm or less and a thin steel slab composed of the balance Fe is continuously cast, the average cooling rate from 1550 ° C to 1350 ° C is 1.0 ° C / sec or more, and the thickness of the slab is 5
0 mm or less, and after casting, the steel slab is wound up at a temperature of 600 ° C. or more and 850 ° C. or less, or after casting, the slab is heated to a temperature range of 600 ° C. or more and 850 ° C. or less for 5 minutes or more. After holding and further rolling at a temperature of the recrystallization temperature or higher and a rolling reduction of 20% or higher after casting and before cold rolling,
A method for producing a thin steel sheet excellent in formability, which comprises performing recrystallization annealing after rolling at a reduction rate of 60% or more at a recrystallization temperature or lower.
【請求項6】C:0.007%以下、 Si:0.8%以下、 Mn:1.0%以下、 P:0.10%以下、 S:0.10%以下、 SOl.Al:0.01〜0.06%、 N:0.008%以下、 及び他の不可避的不純物からなり、さらにNbとTiと
Bを複合して含有し、Tiは(48/14)〔N(%)
−0.002%〕<Ti(%)で、かつTi(%)<
(48/14)N(%)を満たす範囲内、Nbは(93
/12)〔C(%)−0.001%〕>Nb(%)>
2.00C(%)で、かつ0.003%以上0.025
%未満の範囲内であり、かつ〔Ti(%)+Nb
(%)〕<0.04%であり、Bは2ppm以上30p
pm以下であり、残部Feよりなる薄肉鋼鋳片を連続鋳
造し、鋳造時に1550℃から1350℃までの平均冷
却速度を1.0℃/sec以上とし、1350℃から9
00℃までの平均冷却速度を3℃/min以上とし、該
鋳片の厚さを50mm以下とし、かつ、鋳造後に該鋼鋳
片を600℃以上850℃以下の温度で巻き取るか、あ
るいは鋳造後該鋳片を加熱して600℃以上850℃以
下の温度域に5分間以上保持し、さらに、鋳造後、冷間
圧延前に再結晶温度以上の温度で20%以上の圧下率で
圧延し、かつ再結晶温度以下で圧下率を60%以上とす
る圧延を行った後、再結晶焼鈍することを特徴とする成
形性に優れた薄鋼板の製造方法。
6. C: 0.007% or less, Si: 0.8% or less, Mn: 1.0% or less, P: 0.10% or less, S: 0.10% or less, SOl. Al: 0.01 to 0.06%, N: 0.008% or less, and other unavoidable impurities, and further contains Nb, Ti, and B in combination, and Ti is (48/14) [N (%)
-0.002%] <Ti (%) and Ti (%) <
Within the range satisfying (48/14) N (%), Nb is (93
/ 12) [C (%)-0.001%]> Nb (%)>
2.00 C (%) and 0.003% or more 0.025
%, And [Ti (%) + Nb
(%)] <0.04%, and B is 2 ppm or more and 30 p
pm or less and continuously casting a thin steel slab composed of the balance Fe, and setting the average cooling rate from 1550 ° C to 1350 ° C to 1.0 ° C / sec or more during casting, from 1350 ° C to 9 ° C.
The average cooling rate up to 00 ° C is 3 ° C / min or more, the thickness of the slab is 50 mm or less, and the steel slab is wound at a temperature of 600 ° C or more and 850 ° C or less after casting, or cast. After that, the slab is heated and kept in a temperature range of 600 ° C. or more and 850 ° C. or less for 5 minutes or more, and further, after casting, rolled at a temperature of a recrystallization temperature or more and a rolling reduction of 20% or more before cold rolling. A method for producing a thin steel sheet having excellent formability, which comprises performing recrystallization annealing after rolling at a rolling reduction of 60% or more at a temperature equal to or lower than the recrystallization temperature.
【請求項7】C:0.007%以下、 Si:0.8%以下、 Mn:1.0%以下、 P:0.10%以下、 S:0.10%以下、 SOl.Al:0.01〜0.06%、 N:0.008%以下、 及び他の不可避的不純物からなり、さらにNbとTiと
Bを複合して含有し、Tiは(48/14)〔N(%)
−0.002%〕<Ti(%)で、かつTi(%)<
(48/14)N(%)を満たす範囲内、Nbは(93
/12)〔C(%)−0.001%〕>Nb(%)>
2.00C(%)で、かつ0.003%以上0.025
%未満の範囲内であり、かつ〔Ti(%)+Nb
(%)〕<0.04%であり、Bは2ppm以上30p
pm以下であり、残部Feよりなる薄肉鋼鋳片を連続鋳
造し、鋳造時に1550℃から1350℃までの平均冷
却速度を1.0℃/sec以上とし、該鋳片の厚さを5
0mm以下とし、かつ鋳造後、再結晶温度以上の温度で
20%以上の圧下率で圧延した後、該鋼鋳片を600℃
以上850℃以下の温度で巻き取るか、あるいは、鋳造
後該鋳片を加熱して600℃以上850℃以下の温度域
に5分間以上保持し、その後、再結晶温度以下で圧下率
を60%以上とする圧延を行った後、再結晶焼鈍するこ
とを特徴とする成形性に優れた薄鋼板の製造方法。
7. C: 0.007% or less, Si: 0.8% or less, Mn: 1.0% or less, P: 0.10% or less, S: 0.10% or less, SOl. Al: 0.01 to 0.06%, N: 0.008% or less, and other unavoidable impurities, and further contains Nb, Ti, and B in combination, and Ti is (48/14) [N (%)
-0.002%] <Ti (%) and Ti (%) <
Within the range satisfying (48/14) N (%), Nb is (93
/ 12) [C (%)-0.001%]> Nb (%)>
2.00 C (%) and 0.003% or more 0.025
%, And [Ti (%) + Nb
(%)] <0.04%, and B is 2 ppm or more and 30 p
pm or less and a thin steel slab composed of the balance Fe is continuously cast, the average cooling rate from 1550 ° C to 1350 ° C is 1.0 ° C / sec or more, and the thickness of the slab is 5
After being cast to 0 mm or less and rolled at a recrystallization temperature or higher and a rolling reduction of 20% or higher, the steel slab is heated to 600 ° C.
It is wound up at a temperature of 850 ° C. or lower, or the cast slab is heated after casting and held in a temperature range of 600 ° C. or higher and 850 ° C. or lower for 5 minutes or longer, and then the rolling reduction is 60% or lower at a recrystallization temperature or lower. A method for producing a thin steel sheet having excellent formability, which comprises performing recrystallization annealing after performing the above rolling.
【請求項8】C:0.007%以下、 Si:0.8%以下、 Mn:1.0%以下、 P:0.10%以下、 S:0.10%以下、 SOl.Al:0.01〜0.06%、 N:0.008%以下、 及び他の不可避的不純物からなり、さらにNbとTiと
Bを複合して含有し、Tiは(48/14)〔N(%)
−0.002%〕<Ti(%)で、かつTi(%)<
(48/14)N(%)を満たす範囲内、Nbは(93
/12)〔C(%)−0.001%〕>Nb(%)>
2.00C(%)で、かつ0.003%以上0.025
%未満の範囲内であり、かつ〔Ti(%)+Nb(%)
<0.04%であり、Bは2ppm以上30ppm以下
であり、残部Feよりなる薄肉鋼鋳片を連続鋳造し、鋳
造時に1550℃から1350℃までの平均冷却速度を
1.0℃/sec以上とし、1350℃から900℃ま
での平均冷却速度を3℃/min以上とし、該鋳片の厚
さを50mm以下とし、かつ鋳造後、再結晶温度以上の
温度で20%以上の圧下率で圧延した後、該鋼鋳片を6
00℃以上850℃以下の温度で巻き取るか、あるい
は、鋳造後該鋳片を加熱して600℃以上850℃以下
の温度域に5分間以上保持し、その後、再結晶温度以下
で圧下率を60%以上とする圧延を行った後、再結晶焼
鈍することを特徴とする成形性に優れた薄鋼板の製造方
法。
8. C: 0.007% or less, Si: 0.8% or less, Mn: 1.0% or less, P: 0.10% or less, S: 0.10% or less, SOl. Al: 0.01 to 0.06%, N: 0.008% or less, and other unavoidable impurities, and further contains Nb, Ti, and B in combination, and Ti is (48/14) [N (%)
-0.002%] <Ti (%) and Ti (%) <
Within the range satisfying (48/14) N (%), Nb is (93
/ 12) [C (%)-0.001%]> Nb (%)>
2.00 C (%) and 0.003% or more 0.025
Is less than%, and [Ti (%) + Nb (%)
<0.04%, B is 2 ppm or more and 30 ppm or less, thin-walled steel slab composed of the balance Fe is continuously cast, and the average cooling rate from 1550 ° C to 1350 ° C is 1.0 ° C / sec or more during casting. The average cooling rate from 1350 ° C. to 900 ° C. is 3 ° C./min or more, the thickness of the slab is 50 mm or less, and after casting, rolling is performed at a temperature of the recrystallization temperature or more and a rolling reduction of 20% or more. After that, the steel slab is 6
It is wound at a temperature of 00 ° C. or higher and 850 ° C. or lower, or the cast slab is heated after casting and held in a temperature range of 600 ° C. or higher and 850 ° C. or lower for 5 minutes or longer, and then the rolling reduction is performed at a temperature of recrystallization temperature or lower. A method for producing a thin steel sheet having excellent formability, which comprises performing recrystallization annealing after rolling to 60% or more.
JP59253767A 1984-11-30 1984-11-30 Method for manufacturing thin steel sheet with excellent formability Expired - Lifetime JPH0639620B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59253767A JPH0639620B2 (en) 1984-11-30 1984-11-30 Method for manufacturing thin steel sheet with excellent formability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59253767A JPH0639620B2 (en) 1984-11-30 1984-11-30 Method for manufacturing thin steel sheet with excellent formability

Publications (2)

Publication Number Publication Date
JPS61133323A JPS61133323A (en) 1986-06-20
JPH0639620B2 true JPH0639620B2 (en) 1994-05-25

Family

ID=17255855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59253767A Expired - Lifetime JPH0639620B2 (en) 1984-11-30 1984-11-30 Method for manufacturing thin steel sheet with excellent formability

Country Status (1)

Country Link
JP (1) JPH0639620B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6280251A (en) * 1985-10-04 1987-04-13 Kawasaki Steel Corp Low-carbon steel sheet for working excellent in ridging resistance
JPS6376848A (en) * 1986-09-19 1988-04-07 Kawasaki Steel Corp Cold rolled steel sheet for extra deep drawing and its manufacture
JPS63121636A (en) * 1986-11-11 1988-05-25 Kawasaki Steel Corp Cold rolled steel sheet for press forming which is resistant to surface roughening
US4889566A (en) * 1987-06-18 1989-12-26 Kawasaki Steel Corporation Method for producing cold rolled steel sheets having improved spot weldability
JPH0699779B2 (en) * 1987-09-14 1994-12-07 川崎製鉄株式会社 Hot-rolled steel sheet for ultra deep drawing with good resistance to secondary processing brittleness
JP4240590B2 (en) * 1998-07-27 2009-03-18 三菱重工業株式会社 Low carbon steel cold rolled sheet manufacturing method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5725203A (en) * 1980-07-18 1982-02-10 Nippon Steel Corp Production of stainless steel plate and wire
JPS5943825A (en) * 1982-09-07 1984-03-12 Sumitomo Metal Ind Ltd Manufacture of cold rolled steel plate for press forming
JPS59117327A (en) * 1982-12-23 1984-07-06 Toshiba Corp Logical circuit
JPS59136425A (en) * 1983-01-24 1984-08-06 Sumitomo Metal Ind Ltd Preparation of cold rolled steel plate for press work
JPS6077928A (en) * 1983-10-04 1985-05-02 Kawasaki Steel Corp Production of cold-rolled steel plate for drawing

Also Published As

Publication number Publication date
JPS61133323A (en) 1986-06-20

Similar Documents

Publication Publication Date Title
US4040873A (en) Method of making low yield point cold-reduced steel sheet by continuous annealing process
JPS5827933A (en) Production of t-3 mild blackplate having excellent corrosion resistance by continuous annealing
JPH06136478A (en) Baking hardening type al alloy sheet excellent in formability and its production
JPH0639620B2 (en) Method for manufacturing thin steel sheet with excellent formability
JPS61133322A (en) Production of thin steel sheet having excellent formability
JPH0365409B2 (en)
JPH0639621B2 (en) Method for manufacturing thin steel sheet with excellent formability
JP2682691B2 (en) High strength steel sheet manufacturing method
EP0247264A2 (en) Method for producing a thin casting of Cr-series stainless steel
JPH0699760B2 (en) Method for producing steel plate with hot dip zinc for ultra deep drawing
JPH0639619B2 (en) Method for manufacturing thin steel sheet with excellent formability
JP3506023B2 (en) Method for producing high-strength hot-rolled steel sheet with excellent formability
JPS6283426A (en) Manufacture of cold rolled steel sheet for deep drawing
JPH0452229A (en) Highly efficient production of cold rolled steel sheet extremely excellent in workability
KR930002739B1 (en) Method for making aluminium-killed cold-rolled steel having a good forming property
JPS6043432A (en) Manufacture of cold rolled aluminum killed steel sheet
JP3849310B2 (en) Method for producing grain-oriented electrical steel sheet without ear cracks
JPS61124533A (en) Manufacture of nonaging cold rolled steel sheet having good workability by continuous annealing
JP4332960B2 (en) Manufacturing method of high workability soft cold-rolled steel sheet
KR950004709B1 (en) Making method of cold rolling steel plate
JPH01177322A (en) Manufacture of cold rolled steel sheet extremely excellent in deep drawability
JPH05345918A (en) Production of high strength hot rolled steel plate
JPH0217614B2 (en)
JPH01177321A (en) Manufacture of cold rolled steel sheet excellent in deep drawability
JPH05320759A (en) Production of cast slab having fine subboundary and thick steel plate having fine metallic structure