JPH0639619B2 - Method for manufacturing thin steel sheet with excellent formability - Google Patents

Method for manufacturing thin steel sheet with excellent formability

Info

Publication number
JPH0639619B2
JPH0639619B2 JP59209923A JP20992384A JPH0639619B2 JP H0639619 B2 JPH0639619 B2 JP H0639619B2 JP 59209923 A JP59209923 A JP 59209923A JP 20992384 A JP20992384 A JP 20992384A JP H0639619 B2 JPH0639619 B2 JP H0639619B2
Authority
JP
Japan
Prior art keywords
less
rolling
steel sheet
casting
thin steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59209923A
Other languages
Japanese (ja)
Other versions
JPS6187819A (en
Inventor
良邦 徳永
正人 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP59209923A priority Critical patent/JPH0639619B2/en
Publication of JPS6187819A publication Critical patent/JPS6187819A/en
Publication of JPH0639619B2 publication Critical patent/JPH0639619B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は成形性の優れた薄鋼板の製造方法に関するもの
である。
The present invention relates to a method for producing a thin steel sheet having excellent formability.

(従来技術) 現行の薄鋼板製造プロセスは、約250mm厚さの鋼鋳片を
鋳造し、熱間圧延により数mm程度の厚さまで薄くした
後、冷間圧延,再結晶焼鈍を施すことから成っている。
甚大なる省エネルギー化による製造コストの著しい低減
という観点からの、今後の革新的製造プロセスを考えた
場合、鋳造工程とそれに続く二回の圧延工程を大幅に簡
略化するか、もしくは、これら工程の一部を省略するこ
とがそれに応えると言えよう。本発明は、従来の熱間圧
延を省略したかかる革新的薄板製造プロセスにて、プレ
ス成形性の優れた薄鋼板を製造する方法を開示するもの
である。
(Prior Art) The current thin steel plate manufacturing process consists of casting a steel slab of about 250 mm thickness, thinning it to a thickness of about several mm by hot rolling, and then performing cold rolling and recrystallization annealing. ing.
Considering the future innovative manufacturing process from the viewpoint of significantly reducing the manufacturing cost due to enormous energy saving, either the casting process and the subsequent two rolling processes should be greatly simplified, or one of these processes should be significantly reduced. It can be said that omitting a part responds to it. The present invention discloses a method for producing a thin steel sheet having excellent press formability by such an innovative thin sheet manufacturing process that omits the conventional hot rolling.

将来の薄板製造プロセスとして、従来の熱間圧延後に得
られていた厚さの薄肉鋼鋳片を鋳造し、熱間圧延を省略
して、鋼鋳片を直接冷間圧延した後、再結晶焼鈍するプ
ロセス,あるいは、溶鋼から圧延工程を全く経ずに直接
薄鋼板を鋳造するプロセスが既に報告されている。かか
る圧延工程を省略あるいは簡略化したプロセスの場合に
最も問題になるのは、鋳造組織が十分破壊されず、鋳造
組織の悪影響が最終製品に持ち越され、プレス成形に供
される用途に対しては加工性、特に伸びが極めて不足す
ることである。かかる観点から、上記の圧延工程を全く
経ずに直接薄鋼板を鋳造するプロセスは、良好な加工性
は得られない。従って、従来のプレス成形用鋼板と同等
の成形性を得るには、鋳造組織を破壊する意味で少なく
とも一回の圧延が必要である。この場合、深絞り性を付
与するためには、再結晶温度以下で圧延して圧延集合組
織を発達させた後、再結晶焼鈍することが有効となる。
かかる観点に基づいて、上記の薄肉鋼鋳片を鋳造し、鋼
鋳片を直接冷間圧延した時、再結晶焼鈍するプロセスが
開示されている(例えば、特開昭59-43823号公報、鋳造
後の900〜700℃における鋼鋳片の平均冷却速度,圧延開
始温度,圧延圧下率を制御することによる方法を開示し
ている)。
As a thin plate manufacturing process in the future, thin-walled steel slabs with the thickness obtained after conventional hot rolling are cast, hot rolling is omitted, and the steel slabs are directly cold-rolled, followed by recrystallization annealing. It has already been reported that the process of casting or the process of casting a thin steel sheet directly from molten steel without going through the rolling process. In the case of a process in which such a rolling step is omitted or simplified, the most serious problem is that the casting structure is not sufficiently destroyed, the adverse effect of the casting structure is carried over to the final product, and it is used for press forming. The workability, especially the elongation, is extremely insufficient. From this point of view, the process of directly casting a thin steel sheet without going through the above rolling process does not provide good workability. Therefore, in order to obtain the formability equivalent to that of the conventional press forming steel sheet, at least one rolling is required in order to destroy the cast structure. In this case, in order to impart deep drawability, it is effective to perform rolling at a temperature not higher than the recrystallization temperature to develop a rolling texture and then perform recrystallization annealing.
Based on this viewpoint, casting the above-mentioned thin-walled steel slab, when directly cold rolling the steel slab, a process of recrystallization annealing is disclosed (for example, JP-A-59-43823, casting. Then, a method is disclosed by controlling the average cooling rate, rolling start temperature, and rolling reduction of the steel slab at 900 to 700 ° C.).

(発明の目的) 本発明者らは、実際にこれら従来技術を検討した結果、
その欠点およびその技術レベルの限界を見出した。そこ
で、薄肉鋼鋳片を冷間圧延,再結晶焼鈍して薄鋼板を製
造する際の材質支配要因について基礎研究を重ねた結
果、素材成分,凝固時の冷却速度,鋳片厚さ,冷間圧延
率の各々を複合して制御することが重要であるとの新規
知見を見出し、これら知見に基づいて、かかる製造プロ
セスによってプレス成形性の優れた薄鋼板の製造技術を
確立した。
(Purpose of the Invention) As a result of actually examining these conventional techniques, the present inventors
We have found its drawbacks and the limits of its technical level. Therefore, as a result of repeated basic research on the factors governing the material properties in the production of thin steel sheets by cold rolling and recrystallizing annealing thin steel slabs, the results show that the material components, the cooling rate during solidification, the slab thickness, and the cold We have found new knowledge that it is important to control each of the rolling ratios in a composite manner, and based on these findings, we have established a manufacturing technology for thin steel sheets with excellent press formability by this manufacturing process.

(発明の構成・作用) 本発明は、 (1)C:0.007%以下(重量%以下同じ) Si:0.8%以下 Mn:1.0%以下 P:0.10%以下 S:0.10%以下 sol.Al:0.01〜0.06% N:0.008%以下 および他の不可避的不純物からなり、さらにNbとTiを複
合して含有し、Tiは(48/14)〔N(%)-0.002%〕<Ti(%)
で、かつTi(%)<(48/14)N(%)を満たす範囲内、Nbは(93
/12)〔C(%)-0.001%〕>Nb(%)>2.00C(%)で、かつ0.00
3%以上0.025%未満の範囲内であり、かつ〔Ti(%)+Nb
(%)〕<0.04%であり、残部Feからなる成分の薄肉鋼鋳片
を連続鋳造し、鋳造時に1550℃から1350℃までの平均冷
却速度を1.0℃/sec以上とし、該鋳片の厚さを50mm以下
とし、再結晶温度以下で圧下率を60%以上とする圧延を
行った後、再結晶焼鈍することを特徴とする成形性の優
れた薄鋼板の製造方法。
(Structure / Operation of the Invention) The present invention is: (1) C: 0.007% or less (weight% or less same) Si: 0.8% or less Mn: 1.0% or less P: 0.10% or less S: 0.10% or less sol.Al: 0.01 〜0.06% N: 0.008% or less and other unavoidable impurities, and contains Nb and Ti in combination, and Ti is (48/14) [N (%)-0.002%] <Ti (%)
And Ti (%) <(48/14) N (%) is satisfied, Nb is (93
/ 12) [C (%)-0.001%]> Nb (%)> 2.00C (%) and 0.00
Within the range of 3% to less than 0.025%, and (Ti (%) + Nb
(%)] <0.04%, and continuously casting thin-walled steel slabs with the composition consisting of the balance Fe, the average cooling rate from 1550 ° C to 1350 ° C during casting was 1.0 ° C / sec or more, and the thickness of the slabs A method for producing a thin steel sheet having excellent formability, which comprises rolling the steel sheet with a thickness of 50 mm or less and a rolling reduction of 60% or more at a recrystallization temperature or less, and then performing recrystallization annealing.

(2)鋳造後の1350℃から900℃までの平均冷速度を3℃/m
in以上とすることを特徴とする上記(1)項記載の成形性
の優れた薄鋼板の製造方法である。
(2) The average cooling rate from 1350 ℃ to 900 ℃ after casting is 3 ℃ / m
The method for producing a thin steel sheet having excellent formability according to the above item (1) is characterized in that it is not less than in.

以下、本発明について詳細に説明する。Hereinafter, the present invention will be described in detail.

本発明は、薄肉の鋼鋳片を熱間圧延を行わずに冷間圧
延,再結晶焼鈍して高加工性の薄鋼板を製造するために
は、薄肉の鋼鋳片を鋳造する際に、凝固組織を微細化
すること、凝固後の冷却時の粒成長を抑制することに
よる組織の微細化、凝固後の冷間圧延による鋳造組織
の破壊、のすべての条件を満足する必要があるとの知見
に基づくものである。本発明を構成する各々の限定理由
は上記〜のいずれかに基づくものであり、これを実
験結果に基づいて説明する。
The present invention, in order to produce a thin steel sheet having high workability by cold rolling and recrystallization annealing without performing hot rolling on a thin steel slab, when casting a thin steel slab, It is necessary to satisfy all the conditions of refining the solidified structure, refining the structure by suppressing grain growth during cooling after solidification, and breaking the cast structure by cold rolling after solidification. It is based on knowledge. Each of the reasons for limitation constituting the present invention is based on any one of the above items 1 to 3, and this will be described based on experimental results.

以下の実験は、C:0.001〜0.10%,Si:0.01〜0.10%,M
n:0.10〜0.15%,P:0.010〜0.15%,S:0.01〜0.20
%,Al:0.001〜0.100%,N:5〜100ppm,Nb:0.001〜
0.060%,Ti:0.001〜0.050%の範囲の成分の溶鋼を、155
0℃〜1350℃間および1350℃〜900℃間の平均冷却速度、
鋳片厚さを種々変化させて鋳造した後、圧延率20〜90%
の冷間圧延を施し、775℃で40secの再結晶焼鈍、1%の調
質圧延を行ったものである。
In the following experiments, C: 0.001 to 0.10%, Si: 0.01 to 0.10%, M
n: 0.10 to 0.15%, P: 0.010 to 0.15%, S: 0.01 to 0.20
%, Al: 0.001 to 0.100%, N: 5 to 100 ppm, Nb: 0.001 to
0.060%, Ti: Molten steel with a composition in the range of 0.001 to 0.050%,
Average cooling rate between 0 ℃ and 1350 ℃ and between 1350 ℃ and 900 ℃,
After casting with various slab thicknesses, the rolling rate is 20 to 90%
Cold rolling, recrystallization annealing at 775 ° C. for 40 seconds, and temper rolling at 1%.

(1)凝固組織の微細化および凝固後の粒成長の抑制 既に述べた如く、本発明の対象とするような圧延工程を
簡略化したプロセスでは、最終製品の材質におよぼす鋳
造組織の影響が極めて大きくなる。材質特性のなかでも
特に、「伸び」が最も劣る傾向が強い。これは先に述べ
た如く、鋳造組織が十分破壊されないために、割れの起
点となり易いことが根本的な理由である。この鋳造組織
の悪影響は、デンドライト(樹枝状晶)の間隔が大きい
場合ほど著しいものになる。
(1) Minimization of solidification structure and suppression of grain growth after solidification As described above, in the process in which the rolling process as the object of the present invention is simplified, the influence of the casting structure on the material of the final product is extremely large. growing. Among the material properties, the "elongation" tends to be the worst. The fundamental reason for this is that, as described above, the cast structure is not sufficiently destroyed, so that it tends to become the starting point of cracking. This adverse effect of the cast structure becomes more remarkable as the spacing between dendrites (dendritic crystals) increases.

鋳造組織の微細化のためには、核発生度数を多くする
ことにより凝固核を微細化することと、凝固核の成長を
抑制することが必要である。前者の観点からは、凝固時
の過冷度を大きくする意味で、凝固時の冷却速度を限定
する必要があり、後者についても冷却速度の影響が大き
い。本発明者らは、発明の第1の構成条件として、鋳造
時に1550℃から1350℃までの平均冷却速度を1.0℃/sec
以上とすればよい(他の条件が、すべて本願発明の特許
請求の範囲の要件を満たす場合)との知見を得た。さら
に望ましくは、5.0℃/sec以上であり、最も望ましく
は、20℃/secである。これを実験データによって第1図
に示す。該条件を満足する場合にのみ良好な材質(r
値,El)が得られているのは明らかである。上記1550〜
1350℃の冷却速度のうち高温部が凝固時の冷却速度に相
当し、低温部は凝固組織の成長(δ相域での成長)、お
よびδ相からγ相への変態に際してγ相の大きさを支配
する冷却速度である。
In order to miniaturize the cast structure, it is necessary to miniaturize the solidification nuclei by increasing the nucleation frequency and to suppress the growth of the solidification nuclei. From the viewpoint of the former, in order to increase the degree of supercooling at the time of solidification, it is necessary to limit the cooling rate at the time of solidification, and the latter also has a large effect on the cooling rate. As a first constitution condition of the present invention, the present inventors set the average cooling rate from 1550 ° C to 1350 ° C at the time of casting to 1.0 ° C / sec.
The above findings have been obtained (when all other conditions satisfy the requirements of the claims of the present invention). More preferably, it is 5.0 ° C./sec or more, and most preferably 20 ° C./sec. This is shown in FIG. 1 by experimental data. Good materials (r
It is clear that the value, El) is obtained. Above 1550 ~
Of the cooling rate of 1350 ° C, the high temperature part corresponds to the cooling speed during solidification, and the low temperature part grows in the solidified structure (growth in the δ phase region) and the size of the γ phase during the transformation from the δ phase to the γ phase. Is the cooling rate that governs.

溶鋼中の合金成分は、概して凝固温度区間を広げるこ
とから、樹枝状晶が発達して好ましくなく、特に、鋼中
Cはかかる傾向が強い。更に、本発明の対象とする製造
プロセスで製造される鋼板は材質特性のうち特に延性が
劣る傾向が強いことから鋼中C量を低くして延性を高め
る必要がある。
The alloying components in the molten steel are generally unfavorable because dendrites develop because they widen the solidification temperature range, and C in steel is particularly prone to this. Further, since the steel sheet manufactured by the manufacturing process which is the subject of the present invention has a particularly strong tendency of being inferior in ductility among the material properties, it is necessary to lower the C content in the steel to enhance the ductility.

ところが、合金元素の低下は凝固後の著しい粒成長を招
き(特に冷却速度の小さい場合)、材質を劣化させる欠
点があり、C量の減少はかかる傾向が極めて強いため、
上記の凝固温度区間の低減,延性の向上を狙って単にC
量を下げることはできない。
However, the reduction of alloying elements causes remarkable grain growth after solidification (especially when the cooling rate is small), and has the drawback of deteriorating the material.
In order to reduce the solidification temperature zone and improve ductility, simply add C
The amount cannot be reduced.

本発明者らは、既述の、凝固時、δ相域、δ相からγ相
への変態時およびγ相高温域の冷却速度(前記1550℃〜
1350℃間の冷却速度)を限定することによる組織の微細
化と、TiNによる特にγ相中での粒成長の抑制およびNbC
によるα相中での粒成長の抑制によって、これらの問題
点を解決できることを知見した。これを実験データによ
って第2図に示す。即ち、Ti,Nbを添加しない場合には
極低炭素成分では組織の粗大化によりr値,Elが劣る。
これに対しTiとNbを複合して添加した場合は前記γ,α
相の微細化により極低炭素鋼成分とする効果が発揮さ
れ、El,r値の良好な鋼板が得られるのである。Tiの添
加量はTiNを微細に析出させるためにN量とのほぼ当量
が望ましい。Nを完全に析出させる量Ti(%)>(48/14)N
(%)ではTiNが高温から析出して粗大化しγ相の粗大化抑
制効果が小さくなる。また、Nb単独ではTiNによる上記
γ相の微細化が得られず材質は劣る。更にこの場合に
は、Nが冷却中のα相域あるいは圧延後の焼鈍時に微細
に析出することによる材質劣化もおこることになる。
The present inventors have already described the cooling rates during solidification, the δ phase region, the transformation from the δ phase to the γ phase, and the γ phase high temperature region (from 1550 ° C to
Refining the microstructure by limiting the cooling rate between 1350 ℃, TiN suppresses grain growth, especially in the γ phase, and NbC
It was found that these problems can be solved by suppressing grain growth in the α phase by. This is shown in FIG. 2 with experimental data. That is, when Ti and Nb are not added, the r value and El are inferior due to the coarsening of the structure in the extremely low carbon component.
On the other hand, when Ti and Nb are added in combination, the above γ and α
The refinement of the phase exerts the effect of making it an extremely low carbon steel component, and a steel sheet having a good El and r value can be obtained. The amount of Ti added is preferably approximately equivalent to the amount of N in order to finely precipitate TiN. Amount to completely precipitate N Ti (%)> (48/14) N
At (%), TiN precipitates from high temperature and becomes coarse, and the effect of suppressing coarsening of the γ phase becomes small. In addition, Nb alone cannot obtain the above-mentioned γ-phase refinement due to TiN, and the material is inferior. Further, in this case, N is finely precipitated during the α phase region during cooling or during annealing after rolling, which causes deterioration of the material.

即ち本発明の第2の構成条件は成分にあり、(1)延性を
高めるとの観点から極低炭素鋼(C:0.007%以下)とす
る、(2)γ相域での粒成長を抑えるためにTiを添加しTiN
を析出させる、(3)α相域での粒成長を抑えるためにNb
を添加しNbCを析出させるとの技術思想である。第2図
に示す如く、γ相域での組織微細化の観点からは、上記
TiNによる効果に加えて1350℃から900℃までの平均冷却
速度を制限することが有効である。この場合、該温度域
の平均冷却速度は3℃/min以上が必要である。さらに
望ましくは10℃/min以上である。該鋳片の厚さは50mm
以下にする必要がある。第3図に示す如く鋳片厚さが厚
くなると、その厚さ方向中心部は冷却速度が小さくなる
ために組織が粗大化して材質が劣化し、厚さ方向の材質
均一性が劣ることになる。従って鋳片の厚さは50mm以下
が必要である。さらに望ましくは20mm以下であり、最も
望ましくは、10mm以下である。
That is, the second constituent condition of the present invention is the composition, and (1) it is an ultra-low carbon steel (C: 0.007% or less) from the viewpoint of enhancing the ductility, (2) suppressing grain growth in the γ phase region. For adding Ti, TiN
(3) Nb in order to suppress grain growth in the α phase region
The technical idea is to add N to precipitate NbC. As shown in FIG. 2, from the viewpoint of microstructure refinement in the γ phase region,
In addition to the effect of TiN, it is effective to limit the average cooling rate from 1350 ℃ to 900 ℃. In this case, the average cooling rate in the temperature range needs to be 3 ° C./min or more. More preferably, it is 10 ° C / min or more. The thickness of the slab is 50 mm
Must be: As shown in FIG. 3, when the thickness of the slab becomes thicker, the cooling rate at the center portion in the thickness direction becomes smaller, the structure becomes coarser, the material deteriorates, and the material uniformity in the thickness direction deteriorates. . Therefore, the thickness of the slab needs to be 50 mm or less. It is more preferably 20 mm or less, and most preferably 10 mm or less.

(2)冷間圧延による鋳造組織の破壊と圧延集合組織の付
与 本発明の対象とする如き製造プロセスで最も問題となる
のは既に述べているように、鋳造組織が十分破壊され
ず、鋳造組織の悪影響が最終製品に持ち越され、プレス
成形に供される用途に対しては加工性,特に伸びが極め
て不足することである。従来のプレス成形用鋼板と同等
の成形性を得るには、鋳造組織を破壊する意味で少なく
とも一回の圧延が必要である。この場合、深絞り性を付
与するためには、再結晶温度以下で圧延して圧延集合組
織を発達させた後、再結晶焼鈍することが有効となる。
本発明では凝固時およびその後の冷却時において組織の
微細化を図っていることから低い圧延率によって鋳造組
織の破壊,圧延集合組織の付与が可能である。第4図は
冷間(再結晶温度以下)圧延率と材質の関係を示すもの
であり、60%以上の圧延を行うことにより、従来のプレ
ス成形用鋼板と同等の成形性を得ることができる。最も
望ましくは75%以上である。本発明においては、圧延温
度は再結晶温度以下であれば特に限定する必要はない。
(2) Destruction of casting structure by cold rolling and imparting of rolling texture As described above, the most problematic point in the manufacturing process as the subject of the present invention is that the casting structure is not sufficiently destroyed and the casting structure is The adverse effect of is carried over to the final product, and the workability, especially the elongation, is extremely insufficient for the applications used for press molding. In order to obtain formability equivalent to that of a conventional steel sheet for press forming, at least one rolling is required to destroy the cast structure. In this case, in order to impart deep drawability, it is effective to perform rolling at a temperature not higher than the recrystallization temperature to develop a rolling texture and then perform recrystallization annealing.
In the present invention, since the structure is refined during solidification and subsequent cooling, it is possible to destroy the cast structure and impart a rolling texture with a low rolling rate. FIG. 4 shows the relationship between the cold rolling rate (below the recrystallization temperature) and the material. By rolling at 60% or more, it is possible to obtain the same formability as that of the conventional steel sheet for press forming. . Most preferably, it is 75% or more. In the present invention, the rolling temperature is not particularly limited as long as it is the recrystallization temperature or lower.

次に成分元素の範囲について記す。Next, the range of component elements will be described.

Cは、先に述べた如く延性を向上させる観点から0.007%
以下とする。
C is 0.007% from the viewpoint of improving the ductility as described above.
Below.

Siは、高強度鋼板を製造する場合添加することがある
が、脆性を助長する元素であり、また化成処理性,亜鉛
めっき性を阻害する元素でもあり、かかる観点から0.8%
以下にすべきである。軟鋼板を製造する場合には0.1%以
下がよい。
Si may be added in the case of producing a high strength steel sheet, but it is an element that promotes brittleness, and also an element that inhibits chemical conversion treatment and galvanizability. From this viewpoint, 0.8%
Should be: When manufacturing a mild steel plate, 0.1% or less is preferable.

Mnも高強度化するに際して使用することができる。しか
しr値を劣化させる働きがあることと、合金鉄のコスト
が高いことから1.0%以下にすべきである。軟鋼板を製造
する場合には0.3%以下がよい。
Mn can also be used for increasing the strength. However, since it has a function of deteriorating the r value and the cost of ferroalloy is high, it should be 1.0% or less. When manufacturing a mild steel sheet, 0.3% or less is preferable.

Pは最も強化能の大きな元素であり高強度化する場合添
加されるが、多量に含まれると粒界偏析量が多くなって
脆化、すなわち二次加工脆性をひきおこすので、上限は
0.10%とする。軟鋼板を製造する場合には0.03%以下がよ
い。
P is an element having the largest strengthening ability and is added in the case of increasing the strength. However, if contained in a large amount, the amount of grain boundary segregation increases and embrittlement occurs, that is, secondary work embrittlement, so the upper limit is
0.10% When manufacturing a mild steel plate, 0.03% or less is preferable.

S量の増加に伴い硫化物を形成する鋼中の合金元素の必
要量は増加する。従ってSの上限は0.10%とする。
As the amount of S increases, the required amount of alloying elements in the sulfide-forming steel increases. Therefore, the upper limit of S is 0.10%.

AlはTi,Nb添加前の溶鋼脱酸剤として加えるが、Ti,Nb
の歩留をよくするためには0.01%以上の添加が必要であ
り、加え過ぎはコストアップになることから上限を0.06
%とする。
Al is added as a molten steel deoxidizer before adding Ti and Nb.
0.01% or more is necessary to improve the yield of the above, and an upper limit of 0.06
%.

Nは、TiNとしてTiに大部分は固定されるがN含有量が
多いとTi量の多く必要になり、この場合、TiNは高温か
ら析出して粗大化し、γ相の微細化効果が小さくなる。
従って、上限を0.008%とする。該効果を発揮せしめるた
めのTiN量を得るには10ppm以上のN量が望ましい。
Most of N is fixed to Ti as TiN, but when the N content is large, a large amount of Ti is required. In this case, TiN precipitates from a high temperature and becomes coarse, and the effect of refining the γ phase becomes small. .
Therefore, the upper limit is made 0.008%. In order to obtain the TiN amount for exerting the effect, the N amount of 10 ppm or more is desirable.

TiはTiNを形成してγ相を微細化する効果と、鋼中NがA
lNとして析出することによる悪影響を排除する役割を果
たす。かかる効果を発揮するには(48/14)〔N(%)-0.002
%〕<Ti(%)で、かつ、Ti(%)<(48/14)N(%)を満たす範囲
内に添加することが必要であある。
Ti has the effect of forming TiN and refining the γ phase, and N in steel is A
It plays a role in eliminating the adverse effects of precipitation as lN. (48/14) (N (%)-0.002)
%] <Ti (%) and Ti (%) <(48/14) N (%) must be added.

NbはCの一部をNbCとして析出させることによりα相を
微細化する効果、および実質的にCによる時効性を無く
す役割を果たす。かかる効果を発揮するには(93/12)
〔C(%)-0.001%〕>Nb(%)>2.00C(%)で、かつ0.003%以
上0.025%未満の範囲内とすることが必要である。0.025%
以上では再結晶温度が高くなってしまう。さらに塗装下
地処理として行われるリン酸塩処理(ボンデ処理)性を
良好なものにするために〔Ti(%)+Nb(%)〕<0.04%とする
ことが必要である。
Nb plays a role of refining the α phase by precipitating a part of C as NbC and substantially eliminating the aging property of C. To exert such effect (93/12)
[C (%)-0.001%]> Nb (%)> 2.00C (%), and it is necessary to be in the range of 0.003% or more and less than 0.025%. 0.025%
In the above case, the recrystallization temperature becomes high. Furthermore, it is necessary to set [Ti (%) + Nb (%)] <0.04% in order to improve the phosphate treatment (bonding treatment) performed as a coating base treatment.

次に製造条件について記す。鋳造条件についてはすでに
述べた。鋳造後、圧延を行うまでの間に脱スケール処理
を行うことは何等本発明の主旨に反するものではなく、
機械的処理,化学的処理を始めとしていかなる方法を適
用することも可能である。圧延条件についてはすでに記
した。圧延温度によっては圧延後にスケールが厚く成長
することがあるが、この場合には脱スケール処理を行う
ことは可能である。焼鈍条件については、次のようであ
る。まず、焼鈍方法は冷間圧延された鋼板の焼鈍方法と
してあるいかなる方法を適用することも可能であり、例
えば、箱型焼鈍方法および連続型亜鉛めっきライン、そ
の他のめっきを行う連続焼鈍型ラインを含む連続焼鈍方
法等である。焼鈍温度については再結晶温度以上であれ
ば特に限定する必要はない。焼鈍後に調質圧延を施すこ
とは何等本発明の主旨に反するものではなく、必要に応
じて実施してよい。
Next, the manufacturing conditions will be described. The casting conditions have already been described. After casting, it is not contrary to the gist of the present invention to perform descaling treatment before rolling.
Any method including mechanical treatment and chemical treatment can be applied. The rolling conditions have already been described. Depending on the rolling temperature, the scale may grow thick after rolling, but in this case, descaling can be performed. The annealing conditions are as follows. First, the annealing method, it is possible to apply any method as an annealing method of the cold rolled steel sheet, for example, a box-type annealing method and continuous galvanizing line, other continuous annealing type line for performing the plating. It is a continuous annealing method including the above. The annealing temperature is not particularly limited as long as it is the recrystallization temperature or higher. Performing temper rolling after annealing does not go against the gist of the present invention, and may be carried out as necessary.

(実施例) 第1表に示す化学成分を有する薄肉鋼鋳片を、表に示す
種々の鋳造条件にて鋳造し、かかる後、表記の冷間圧
延、焼鈍を行って得た薄鋼板を引張試験に供した。その
機械的性質を第2表に示す。
(Example) A thin steel slab having the chemical composition shown in Table 1 was cast under various casting conditions shown in the table, and after that, the thin steel plate obtained by cold rolling and annealing as described above was stretched. It was submitted to the test. Its mechanical properties are shown in Table 2.

本発明例である供試鋼No.1〜5はいずれも良好な材質特
性を示し、本発明の対象とする如き製造プロセスにおい
ても、従来の「鋳造−熱間圧延−冷間圧延−焼鈍」のプ
ロセスで得られていたのとほぼ同等の材質が得られ、プ
レス成形に供される鋼板として十分な加工性を有するこ
とが実証された。これに対し、比較鋼No.6は鋳造後の15
50〜1350℃の冷却速度が小さく、No.7は鋳片厚さが厚
く、No.8は冷間圧延率が小さいために、既述の理由によ
り良好な材質(特にEl,r値)が得られない。また、供
試鋼No.9〜13はいずれも本発明の成分範囲と異なり、同
様に材質は極めて低いものである。
All of the test steel Nos. 1 to 5 which are examples of the present invention show good material characteristics, and even in the manufacturing process as the object of the present invention, the conventional "casting-hot rolling-cold rolling-annealing" was performed. The material obtained was almost the same as that obtained in the above process, and it was proved that the steel plate had sufficient workability as a steel sheet to be subjected to press forming. In contrast, Comparative Steel No. 6 has 15
Due to the low cooling rate of 50 to 1350 ° C, the thick slab of No.7, and the low cold rolling rate of No.8, good materials (especially El and r values) are available for the reasons described above. I can't get it. Further, all of the sample steels Nos. 9 to 13 differ from the composition range of the present invention, and similarly, the materials are extremely low.

(発明の効果) 本発明によれば熱間圧延工程を省略して成形性の優れた
薄鋼板を製造することができ、省エネルギー,製造コス
ト等の著しい低減ができ、その効果は極めて大きいもの
である。
(Effect of the Invention) According to the present invention, a hot rolling step can be omitted to produce a thin steel sheet having excellent formability, energy saving, production cost, etc. can be significantly reduced, and the effect is extremely large. is there.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の平均冷却速度と材質との関係を示す
図、第2図は成分と材質の関係を示す図、第3図は鋳片
の厚さと材質の関係を示す図、第4図は冷間圧延率と材
質の関係を示す図である。
FIG. 1 is a diagram showing the relationship between the average cooling rate and the material of the present invention, FIG. 2 is a diagram showing the relationship between components and materials, and FIG. 3 is a diagram showing the relationship between the thickness of cast slab and the material. The figure shows the relationship between the cold rolling rate and the material.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C22C 38/00 301 S 38/14 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI technical display location C22C 38/00 301 S 38/14

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】C:0.007%以下(重量%以下同じ) Si:0.8%以下 Mn:1.0%以下 P:0.10%以下 S:0.10%以下 sol.Al:0.01〜0.06% N:0.008%以下 および他の不可避的不純物からなり、さらにNbとTiを複
合して含有し、Tiは(48/14)[N(%)-0.002%]<Ti(%)
で、かつTi(%)<(48/14)N(%)を満たす範囲内、Nbは(93
/12)[C(%)-0.001%]>Nb(%)>2.00C(%)で、かつ0.00
3%以上0.025%未満の範囲内であり、かつ[Ti(%)+Nb
(%)]<0.04%であり、残部Feからなる成分の薄肉鋼鋳片
を連続鋳造し、鋳造時に1550℃から1350℃までの平均冷
却速度を1.0℃/sec以上とし該鋳片の厚さを50mm以下と
し、再結晶温度以下で圧下率を60%以上とする圧延を行
った後、再結晶焼鈍することを特徴とする成形性の優れ
た薄鋼板の製造方法。
1. C: 0.007% or less (the same as weight% or less) Si: 0.8% or less Mn: 1.0% or less P: 0.10% or less S: 0.10% or less sol.Al: 0.01 to 0.06% N: 0.008% or less and Consists of other unavoidable impurities, and contains Nb and Ti in combination, with Ti being (48/14) [N (%)-0.002%] <Ti (%)
And Ti (%) <(48/14) N (%) is satisfied, Nb is (93
/12)[C(%)-0.001%]>Nb(%)>2.00C(%) and 0.00
Within the range of 3% to less than 0.025%, and [Ti (%) + Nb
(%)] <0.04%, continuously casting thin-walled steel slabs with the balance being Fe, and setting the average cooling rate from 1550 ° C to 1350 ° C to 1.0 ° C / sec or more during casting. Is 50 mm or less, and rolling is performed at a rolling reduction of 60% or more at a recrystallization temperature or less, and then recrystallization annealing is performed, which is a method for producing a thin steel sheet having excellent formability.
【請求項2】鋳造後の1350℃から900℃までの平均冷却
速度を3℃/min以上とすることを特徴とする特許請求の
範囲第1項記載の成形性の優れた薄鋼板の製造方法。
2. The method for producing a thin steel sheet having excellent formability according to claim 1, wherein the average cooling rate from 1350 ° C. to 900 ° C. after casting is 3 ° C./min or more. .
JP59209923A 1984-10-08 1984-10-08 Method for manufacturing thin steel sheet with excellent formability Expired - Lifetime JPH0639619B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59209923A JPH0639619B2 (en) 1984-10-08 1984-10-08 Method for manufacturing thin steel sheet with excellent formability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59209923A JPH0639619B2 (en) 1984-10-08 1984-10-08 Method for manufacturing thin steel sheet with excellent formability

Publications (2)

Publication Number Publication Date
JPS6187819A JPS6187819A (en) 1986-05-06
JPH0639619B2 true JPH0639619B2 (en) 1994-05-25

Family

ID=16580902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59209923A Expired - Lifetime JPH0639619B2 (en) 1984-10-08 1984-10-08 Method for manufacturing thin steel sheet with excellent formability

Country Status (1)

Country Link
JP (1) JPH0639619B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0639621B2 (en) * 1984-11-30 1994-05-25 新日本製鐵株式会社 Method for manufacturing thin steel sheet with excellent formability

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5725203A (en) * 1980-07-18 1982-02-10 Nippon Steel Corp Production of stainless steel plate and wire
JPS5943825A (en) * 1982-09-07 1984-03-12 Sumitomo Metal Ind Ltd Manufacture of cold rolled steel plate for press forming
JPS59136425A (en) * 1983-01-24 1984-08-06 Sumitomo Metal Ind Ltd Preparation of cold rolled steel plate for press work
JPS6077928A (en) * 1983-10-04 1985-05-02 Kawasaki Steel Corp Production of cold-rolled steel plate for drawing

Also Published As

Publication number Publication date
JPS6187819A (en) 1986-05-06

Similar Documents

Publication Publication Date Title
US4067754A (en) Cold rolled, ductile, high strength steel strip and sheet and method therefor
EP0050356B1 (en) Method for producing ferritic stainless steel sheets or strips containing aluminum
US4040873A (en) Method of making low yield point cold-reduced steel sheet by continuous annealing process
JP3922805B2 (en) Manufacturing method of high-tensile steel with excellent low-temperature toughness
JPH07138637A (en) Production of cast slab having fine sub-boundary and thick steel plate having fine metallic structure
JPS61133322A (en) Production of thin steel sheet having excellent formability
JPH0639620B2 (en) Method for manufacturing thin steel sheet with excellent formability
JPS5937333B2 (en) Manufacturing method of alloyed hot-dip galvanized steel sheet
JPH0756055B2 (en) Highly efficient manufacturing method of cold rolled steel sheet with extremely excellent workability
US4709742A (en) Method for producing a thin casting of Cr-series stainless steel
JPH01262048A (en) Production of high corrosion resistant stainless steel having excellent hot workability and reducing segregation
JPH0639619B2 (en) Method for manufacturing thin steel sheet with excellent formability
CN115948692B (en) Cold-rolled hood-type annealed high-strength steel with tensile strength of 450MPa for automobile and manufacturing method thereof
JP2682691B2 (en) High strength steel sheet manufacturing method
JPH0699760B2 (en) Method for producing steel plate with hot dip zinc for ultra deep drawing
USRE31221E (en) Cold rolled, ductile, high strength steel strip and sheet and method therefor
USRE31306E (en) Cold rolled, ductile, high strength steel strip and sheet and method therefor
JP2631437B2 (en) Cold rolled steel sheet excellent in workability, bake hardenability and aging, and method for producing the same
JPH0639621B2 (en) Method for manufacturing thin steel sheet with excellent formability
JP2514298B2 (en) Method for producing galvannealed steel sheet with excellent press formability
JPS61264136A (en) Manufacture of al killed steel sheet for deep drawing with very low carbon content having reduced in-plane anisotropy
JP2895510B2 (en) Manufacturing method of aluminum alloy material for forming
JP3593728B2 (en) Manufacturing method of ultra low carbon cold rolled steel sheet with excellent formability
JP2549539B2 (en) Method for producing hot dip galvanized steel sheet for ultra deep drawing
JPH05320759A (en) Production of cast slab having fine subboundary and thick steel plate having fine metallic structure