JPS59136425A - Preparation of cold rolled steel plate for press work - Google Patents

Preparation of cold rolled steel plate for press work

Info

Publication number
JPS59136425A
JPS59136425A JP964983A JP964983A JPS59136425A JP S59136425 A JPS59136425 A JP S59136425A JP 964983 A JP964983 A JP 964983A JP 964983 A JP964983 A JP 964983A JP S59136425 A JPS59136425 A JP S59136425A
Authority
JP
Japan
Prior art keywords
less
above formula
equivalent
cold
rolled steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP964983A
Other languages
Japanese (ja)
Other versions
JPH027374B2 (en
Inventor
Atsuki Okamoto
篤樹 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP964983A priority Critical patent/JPS59136425A/en
Publication of JPS59136425A publication Critical patent/JPS59136425A/en
Publication of JPH027374B2 publication Critical patent/JPH027374B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Metal Rolling (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PURPOSE:To inexpensively prepare steel having good press workability, by forming steel respectively containing C, Si, Mn, N and one or more of Ti, Nb and Zr in a predetermined ratio under a specific condition into a plate shaped cast piece by continuous casting while applying hot rolling and re-crystallization annealing to the cast piece. CONSTITUTION:Steel containing 0.001-0.020% C, 2.0% or less Si, 1.20% or less Mn, and 0.0080% or less N and further containing one or more of 0.20% or less Ti, 0.20% or less Nb and 0.20% or less Zr and satisfing the next condition is prepared. That is, it is necessary that the relation of the Ti-equivalent (a) of the formula I and the C-equivalent (b) of the formula II satisfies the formula III. In the next step, steel is formed into a plate shaped piece by continuous casting and hot rolling at 100-450 deg.C and recrystallization annealing are applied to said cast piece. As a result, a cold rolled steel plate excellent in press workability can be prepared in good efficiency and low cost without applying the conventionally performed hot rolling of the cast piece.

Description

【発明の詳細な説明】 この発明は、良好なプレス成形性を備えた鋼板をコスト
安く、製造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a steel plate with good press formability at low cost.

従来、プレス成形用冷延鋼板を製造するには、完全凝固
した連続鋳造鋳片を切断し冷却後に、表面検査、疵除去
の処理を施し、ついで1100〜1300℃に保持され
た加熱炉に装入して30分〜1時間の均熱の後、熱間圧
延し、得られた熱延コイルを、さらに冷間圧延して、焼
鈍を施すという工程をとるのが普通であった。
Conventionally, to produce cold-rolled steel sheets for press forming, completely solidified continuously cast slabs are cut, cooled, subjected to surface inspection and flaw removal, and then placed in a heating furnace maintained at 1100 to 1300°C. It was common practice to hot-roll the coil after soaking it for 30 minutes to 1 hour, and then cold-roll the resulting hot-rolled coil and annealing it.

ところが、近年に至って、鋳片表面性状の極めて良好な
連続鋳造方法が開発されるようになってきたのに相前後
して、省エネルギー思想が増々浸透し定着してきている
中で、連続鋳造鋳片を、熱間圧延することなくそのまま
冷間圧延し、所望の板厚となし、次いで再結晶焼鈍を施
すという方法が検討されるようになってきた。
However, in recent years, continuous casting methods with extremely good slab surface properties have been developed, but at the same time energy-saving ideas have become increasingly widespread and established, continuous casting slabs have become increasingly popular. A method of cold-rolling a steel sheet as it is without hot rolling to obtain a desired thickness, and then recrystallization annealing has been considered.

ところで、この場合5省エネルギーの観点からは、連続
鋳造鋳片を冷間圧延のために常温まで冷却する工程や、
さらに冷間圧延した鋼板を再結晶のために加熱する工程
でのエネルギーをできるだけ節減し、鋳片の熱いうちに
圧延することが、最も望ましいものである。
By the way, in this case, from the viewpoint of energy saving, the process of cooling the continuously cast slab to room temperature for cold rolling,
Furthermore, it is most desirable to save as much energy as possible in the step of heating the cold-rolled steel sheet for recrystallization, and to roll the slab while it is still hot.

しかし、このような方法を試みようとしても、通常の成
分鋼の場合、圧延に供する鋳片は、凝固組織を呈してい
る上に、多くの固溶C,N原子を含んでいるため、熱間
圧延による集合組織の発達が不十分で、この結果再結晶
焼鈍後の集合組織も望ましいものではなく、製品として
の絞り性が従来の熱延コイルを冷間圧延する方法による
鋼板より著しく劣ってしまうという問題点があった。
However, even if such a method is attempted, in the case of steel with normal composition, the slab used for rolling has a solidified structure and contains many solid solution C and N atoms, so it is difficult to heat the slab. The texture developed by inter-rolling is insufficient, and as a result, the texture after recrystallization annealing is not desirable, and the drawability of the product is significantly inferior to that of steel sheets produced by conventional cold rolling of hot-rolled coils. There was a problem with it being put away.

本発明者等は、上述のような観点から、鋳片の均熱や熱
間圧延を実施することなく、連続鋳造板状鋳片をそのま
ま温間圧延することによって、従来法によるものと同等
の良好なプレス成形性を有する冷延鋼板を製造し得る方
法を見出すべく研究を行った結果以下の知見を得た。
From the above-mentioned viewpoint, the inventors of the present invention have realized that by warm rolling continuously cast plate slabs as they are without soaking or hot rolling the slabs, the present inventors have achieved the same results as those achieved by conventional methods. As a result of conducting research to find a method for manufacturing cold-rolled steel sheets with good press formability, the following findings were obtained.

(a)  一般に、鋳造組織の鋼板中には、板面の法線
方向に(100)軸を有した結晶粒が多いが、従来の冷
延鋼板の製造の場合のように、冷間圧延前に熱間圧延工
程があることによって、この(100)集合組織が破壊
され、熱延後の鋼板においてはほとんど集合組織を示さ
ないランダムな結晶方位を備えた鋼板となる。したがっ
てこれを冷間圧延して板面法線方向に(111)軸を備
えた結晶を増し、ついで、再結晶の際に、AQ、Hの析
出を利用してこのような(11,1)集合組織をさらに
増せば、焼鈍板のr値で示される深絞り性が良好となっ
て、プレス成形性が向上するのであるが、熱間圧延工程
を省略してしまうと、(100)集合組織を有した鋼を
冷間または温間圧延することになるため、圧延時におい
て深絞り性に好ましくない(100)集合組織がかなり
強く残るために、(111)集合組織の発達が不十分で
、焼鈍板においても(111)集合組織か弱< (10
0)集合組織が強くなって、深絞り性が劣ったものしか
得られなくなる。
(a) In general, steel sheets with a cast structure have many crystal grains with (100) axes in the normal direction of the sheet surface, but as in the case of manufacturing conventional cold-rolled steel sheets, As a result of the hot rolling step, this (100) texture is destroyed, and the steel plate after hot rolling has a random crystal orientation with almost no texture. Therefore, this is cold-rolled to increase the number of crystals with (111) axes in the normal direction of the sheet surface, and then during recrystallization, the precipitation of AQ and H is used to create such (11,1) crystals. If the texture is further increased, the deep drawability shown by the r value of the annealed sheet will be good and the press formability will be improved, but if the hot rolling process is omitted, the (100) texture will be increased. When steel with a . Even in annealed plates, the (111) texture is weak < (10
0) The texture becomes strong and only products with poor deep drawability can be obtained.

(bl  熱延工程を省略すると温間圧延前にAU、H
の適当な溶体化処理ができないこと、およびCの析出処
理ができないこと等により焼鈍時の再結晶の際に(l 
1 ’1 )集合組織の発達を促進しないので、さらに
(111’)集合組織が減少する。
(bl If the hot rolling process is omitted, AU, H
Due to the inability to perform appropriate solution treatment for C and the inability to perform C precipitation treatment, (
Since 1'1) does not promote the development of texture, the (111') texture further decreases.

(C)  ところが、鋼材が前記(3)式を満足してい
ると、温間圧延時に塑性変形が極めて容易となり、温間
圧延前の鋼板において(100)集合組織が強かったと
しても、その圧延時に(111)集合組織が発達し、さ
らに、焼鈍時においてもAAN析出物や炭化物の助けを
借りずに(111)集合組織が十分に発達する。
(C) However, if the steel material satisfies the above formula (3), plastic deformation will be extremely easy during warm rolling, and even if the (100) texture is strong in the steel sheet before warm rolling, the rolling At times, the (111) texture develops, and even during annealing, the (111) texture develops sufficiently without the aid of AAN precipitates or carbides.

この発明は、上記(a)〜(C)の知見に基づいて、な
されたものであって5 C:0.001〜0.020%。
This invention was made based on the findings (a) to (C) above, and 5C: 0.001 to 0.020%.

Si:2.0%以下。Si: 2.0% or less.

Mn:1.20%以下。Mn: 1.20% or less.

N:0.0080%以下。N: 0.0080% or less.

を含むとともに、 Ti:0.20%以下。including, Ti: 0.20% or less.

Nb:0.20%以下。Nb: 0.20% or less.

Zr:0.20%以下。Zr: 0.20% or less.

のうちの1種以上を含有し、かつ、 上記(1)式で計算されるT1当量と、上記(2)式で
計算されるC当量との関係が、上記(3)式を満足し、
さらに必要に応じて、 REM:0.03〜0.20%。
contains one or more of the following, and the relationship between the T1 equivalent calculated by the above formula (1) and the C equivalent calculated by the above formula (2) satisfies the above formula (3),
Furthermore, if necessary, REM: 0.03 to 0.20%.

B:0.0003〜O,OO50%。B: 0.0003 to O, OO50%.

のうちの1種以上と、 P:0.12%以下。one or more of the following: P: 0.12% or less.

5o4Ap、: 0.01〜0.10%。5o4Ap: 0.01-0.10%.

の1種および2種を含有し、残りが、 Fe及び不可避
不純物からなる組成の鋼を、連続鋳造によって、板状鋳
片とし、ついでこれに100〜450℃での温間圧延と
、再結晶焼鈍とを施すことにより、従来から行われてい
るような鋳片の熱間圧延を施すことなく、プレス成形性
に優れた冷延鋼板を、能率良く低コストで製造すること
に特徴を有するものである。
A steel containing one or two of the following, with the remainder consisting of Fe and unavoidable impurities, is made into a plate slab by continuous casting, which is then warm rolled at 100 to 450°C and recrystallized. It is characterized by the ability to efficiently produce cold-rolled steel sheets with excellent press formability at low cost by applying annealing, without the conventional hot rolling of slabs. It is.

ついで、この発明の方法において、鋼の化学成分組成を
上記のとおりに限定した理由を説明する。
Next, the reason why the chemical composition of the steel is limited as described above in the method of the present invention will be explained.

■ C C成分は、少なければ少ないほど冷延鋼板製品のプレス
成形性が向上するので好ましいけれども、その含有量が
0001%未満では溶製が、極めて困難とな9、一方0
.020%を越えて含有させると多くの炭窒化物形成元
素を必要とするばかりでなく、炭窒化物の析出量が多く
なって、最終製品のプレス成形性が劣化するようになる
ことから、その含有量を0.001〜0.020%とし
た。
■ C The smaller the C component is, the better the press formability of the cold-rolled steel sheet product will be, so it is preferable; however, if the C content is less than 0.0001%, it will be extremely difficult to melt.
.. If the content exceeds 0.020%, not only will a large amount of carbonitride-forming elements be required, but also the amount of carbonitride precipitation will increase, deteriorating the press formability of the final product. The content was set to 0.001 to 0.020%.

■ 5I S1成分は、鋼を強化させる作用がアリ、所望される強
度に応じて必要量添加されるが、その添加量が2.0%
を越えると、鋼が脆化し、温間圧延性が悪くなるため、
その含有量を2.0%以下とした。
■ 5I S1 component has the effect of strengthening steel, and is added in the required amount depending on the desired strength, but the amount added is 2.0%.
If the
Its content was set to 2.0% or less.

■ Mn Mn成分には、鋼板の靭性を改善する作用があるが、1
.20%を越えて含有させると、溶製が困難となシ、か
つコストアップの原因となることから、その含有量を1
.20%以下とした。
■ Mn The Mn component has the effect of improving the toughness of steel sheets, but 1
.. If the content exceeds 20%, melting becomes difficult and costs increase, so the content should be reduced to 1.
.. It was set to 20% or less.

■ P P成分は、鋼を強化する作用があるため、必要に応じて
添加されるが、0.12%を越えて添加すると、再結晶
が困難となり、良好な延性が得られないので、その含有
量を0.12%以下とした。
■ P The P component has the effect of strengthening steel, so it is added as necessary, but if it is added in excess of 0.12%, recrystallization becomes difficult and good ductility cannot be obtained. The content was set to 0.12% or less.

■  sot、AQ sot−Aεは、脱酸を十分に行って、炭窒化物形成元
素の歩留向」二のために必要に応じて添加されるが、0
.10%を越えて添加させても、より一層の脱酸効果は
得られずコスト高となることがら、その含有量を0.1
0%以下とした。
■ sot, AQ sot-Aε is added as necessary to perform sufficient deoxidation and improve the yield of carbonitride-forming elements.
.. Even if it is added in excess of 10%, no further deoxidizing effect can be obtained and the cost will be high, so the content should be reduced to 0.1%.
It was set to 0% or less.

■ N N分は、少なければ少ないほどTi当量、すなわち炭窒
化物形成元素の添加含有量が少なくてすむので好ましい
(2) N The smaller the N content, the less the Ti equivalent, ie, the added content of carbonitride-forming elements, is preferable.

N含有量が、O,OO80%を越えると、特に最終製品
におけるプレス成形性が低下することから、その含有量
をo、 o o s o%以下とした。
If the N content exceeds 80% of O, OO, the press formability of the final product will deteriorate, so the content is set to 0% or less.

■ Ti、Nb、及びZr これらの成分には、板状鋳片において微細な炭窒化物を
形成して、板状鋳片における可動転位密度を増加させ、
温間圧延板の最終製品における(111)集合組織を形
成してr値で代表される深絞り性を改善し、プレス成形
性を向上させる作用があるが、それが0.20%を越え
て含有されてもより一層の向上効果が見られず、コスト
高となることから、それぞれの含有量を、Ti:0.2
0%以下、Nb二0.20%以下およびZr:0.20
%以下とした。
■ Ti, Nb, and Zr These components form fine carbonitrides in the plate slab to increase the mobile dislocation density in the plate slab.
It has the effect of forming a (111) texture in the final warm-rolled plate product, improving the deep drawability represented by the r value, and improving the press formability, but if it exceeds 0.20% Even if Ti is contained, no further improvement effect can be seen and the cost will be high, so the content of each Ti: 0.2
0% or less, Nb2: 0.20% or less and Zr: 0.20
% or less.

また、上記(1)〜(3)式は、固溶(C十N)の量を
0.0010(%)以下とし、残りのC十Nを炭窒化物
として析出させるための関係式を示すものである。
In addition, the above equations (1) to (3) show the relational expressions for setting the amount of solid solution (C0N) to 0.0010 (%) or less and precipitating the remaining C0N as carbonitrides. It is something.

なお、(C当量)−7(Tl当量)の上限値を0.00
ユO(%)としたのは、この上限値を越えると、固溶[
C+N)が多くなって、板状鋳片の温間圧延後の製品冷
延鋼板のプレス成形性が劣化するようになるからである
In addition, the upper limit of (C equivalent) - 7 (Tl equivalent) is 0.00
The reason why we chose UO (%) is that when this upper limit is exceeded, solid solution [
This is because the amount of carbon (C+N) increases and the press formability of the product cold-rolled steel sheet after warm rolling of the plate slab deteriorates.

さらに上記成分は均一に分布させる必要があるが、これ
は偏析の少ない連続鋳造急速凝固法を適用することによ
って可能となる。
Furthermore, it is necessary to uniformly distribute the above-mentioned components, which can be achieved by applying a continuous casting rapid solidification method with less segregation.

■ B、及びREM これらの成分には、鋼板の2次加工脆性を改善させる作
用があるので、必要に応じて添加されるが、各成分がそ
れぞれ、REM:0.03%未満。
(2) B and REM These components have the effect of improving the secondary processing brittleness of the steel sheet, so they are added as necessary, but each component is REM: less than 0.03%.

B二O,0O03%未満、の含有では、所望の改善効果
が得られず、一方、それぞれREM:0.20%。
If the content of B2O, 0O0 is less than 3%, the desired improvement effect cannot be obtained; on the other hand, REM: 0.20%.

B:0.0050%を越えて含有させると、鋼板の溶接
性および表面性状が劣化するように々ることがら、それ
ぞれの含有量を、REM:0.03〜0.20係、B 
:0.0O03〜0.0050%とした。
B: If the content exceeds 0.0050%, the weldability and surface quality of the steel plate will deteriorate.
:0.0O03 to 0.0050%.

この発明の方法は、上記のような成分組成の鋼を連続的
に板状に鋳造した後、温間圧延と再結晶焼鈍とを施すも
のであるが、連続的に凝固させられた鋼板またはコイル
は当然のことながら必要に応じて表面疵の除去あるいは
スケール除去等の表面状態調整を施した後に温間圧延す
るか、温間圧延後あるいは再結晶焼鈍後に表面状態調整
を施すものである。
The method of this invention involves continuously casting steel having the above-mentioned composition into a plate shape, and then subjecting it to warm rolling and recrystallization annealing. Naturally, the surface condition is adjusted as necessary by removing surface flaws or scale, and then warm rolling is performed, or the surface condition is adjusted after warm rolling or recrystallization annealing.

表面粗度および平坦度の調整は焼鈍後に行うのが最も有
効である。
It is most effective to adjust the surface roughness and flatness after annealing.

温間圧延の温度は、100〜450℃が望ましい。すな
わち、100℃未満では加工熱を再結晶焼鈍に使用でき
ないので熱エネルギー上の利点が小さく、また温間圧延
の荷重が大きくなるため後述する高い圧下率の温間圧延
がやりにくくなる。
The temperature of warm rolling is preferably 100 to 450°C. That is, at temperatures below 100° C., processing heat cannot be used for recrystallization annealing, so the advantage in terms of thermal energy is small, and the load for warm rolling becomes large, making it difficult to perform warm rolling at a high rolling reduction rate, which will be described later.

また450℃を越えると温間圧延時に良好な集合組織が
形成されず鋼板の絞り性が低下(第1表)することから
温間圧延温度を]00〜4501Cとした。
Further, if the temperature exceeds 450°C, a good texture is not formed during warm rolling and the drawability of the steel sheet decreases (Table 1), so the warm rolling temperature was set to 00 to 4501°C.

さらに温間圧延の圧下率は50%以上が良く、圧下率が
大きければ大きいほどえられる製品冷延鋼板のプレス成
形性が向上する。
Further, the reduction ratio in warm rolling is preferably 50% or more, and the larger the reduction ratio, the better the press formability of the product cold-rolled steel sheet.

また、引続き行なう再結晶焼鈍は660℃以、1の温度
での箱焼鈍、連続焼鈍あるいは連続溶融メッキなどによ
って行うのが好ましい。
Further, the subsequent recrystallization annealing is preferably performed by box annealing, continuous annealing, continuous hot-dip plating, etc. at a temperature of 660° C. or higher.

なお連続鋳造の能率向上や鋳片の形状修正のために凝固
中必るいは凝固直後の鋳片に軽度の熱間加工あるいは圧
延を行うことが可能であり、特に温間圧延と連続焼鈍を
1つのラインに結合すると。
In order to improve the efficiency of continuous casting and modify the shape of the slab, it is possible to perform light hot working or rolling on the slab during solidification or immediately after solidification. When combined into two lines.

温間圧延の熱を再結晶焼鈍に利用できるため、省エネル
ギー効果が一層向上する。
Since the heat from warm rolling can be used for recrystallization annealing, the energy saving effect is further improved.

ついで、この発明の方法を実施例により比較例と対比し
ながら説明する。
Next, the method of the present invention will be explained using examples and comparing with comparative examples.

実施例 1 C二  0.006  % 、   Si:   0.
0 1  %、  Mn:   0.0 8  %。
Example 1 C2 0.006%, Si: 0.
0.01%, Mn: 0.08%.

P:0.010  %、  S  :  0.0 0 
1  %+  5ol−AQ  :0.05俸、N:0
.004%を含有し、Tiを0〜0.20%の範囲で変
化させ、Fe二残り、から成る種々の鋼を真空溶解し、
厚さ:lOm/m、幅:110m1m、長さ:工00m
/mの板状鋳片とした後、直ちに室温まで急冷した。
P: 0.010%, S: 0.0 0
1% + 5ol-AQ: 0.05 salary, N: 0
.. Vacuum melting various steels containing 0.004%, varying Ti in the range of 0 to 0.20%, and the remainder Fe,
Thickness: lOm/m, Width: 110m/m, Length: 00m
/m, and immediately cooled to room temperature.

ついで、この板状鋳片に酸洗を施した後300℃まで加
熱し、圧下率:92%にて温間圧延を施して、0.8置
屋の冷延板とし、引続いて、温度:800℃に90秒保
持の条件で連続焼鈍を施した。
Next, this plate-shaped slab was pickled, heated to 300°C, and warm-rolled at a reduction rate of 92% to form a cold-rolled plate of 0.8 mm. Continuous annealing was performed under conditions of holding the temperature at 800°C for 90 seconds.

そして、焼鈍した冷延鋼板から採取したJI65号引張
試験片において、r値および伸びを求め、この結果を前
記冷延鋼板の固溶C量、すなわち前記(3)式として示
したところの、C当量−、(Ti当量)との関係におい
て第1図に示した。
Then, the r value and elongation were determined for the JI No. 65 tensile test piece taken from the annealed cold-rolled steel sheet, and the results were used as the amount of solid solute C in the cold-rolled steel sheet, that is, the C The relationship between the equivalent weight and (Ti equivalent weight) is shown in FIG.

第1図からも明白なように前記(3)式の値が0.00
10%以下の場合に高いr値を示すとともに良好な伸び
をも示す冷延鋼板を製造できることがわかる。
As is clear from Figure 1, the value of equation (3) above is 0.00.
It can be seen that when the content is 10% or less, it is possible to produce a cold-rolled steel sheet that exhibits a high r value and also exhibits good elongation.

実施例 2 C:0.0040 %、  Si:  0.0 1 0
 %、  Mn:  0.28%、P:0.012%、
S:O,OO’7 %、soA、AA:0.08%、N
  :0.0030%、  Nb :  0.055 
% + Fe:残シ、からなるA鋼と、C:0.045
%、Si:0、010%、  Mn:  0.22%、
P:0.011%、S:O,OO’i’  % 、  
 so t、 M  :   0. 0 5 1  %
 、  N 二 0.0032%、Fe:残りからなる
B鋼とを溶解後、連続的に急冷凝固させて、厚さ:8m
/m、幅;220m / mの板状鋳片となし、直ちに
400℃まで急冷した。
Example 2 C: 0.0040%, Si: 0.0 1 0
%, Mn: 0.28%, P: 0.012%,
S: O, OO'7%, soA, AA: 0.08%, N
: 0.0030%, Nb: 0.055
A steel consisting of % + Fe: remainder, C: 0.045
%, Si: 0.010%, Mn: 0.22%,
P: 0.011%, S: O,OO'i'%,
sot, M: 0. 0 5 1%
, N2 0.0032%, Fe: After melting B steel consisting of the remainder, it was continuously rapidly cooled and solidified to a thickness of 8 m.
A plate-shaped slab with a width of 220 m/m and a width of 220 m/m was immediately cooled to 400°C.

鋼AのTi当量は0.028%、C当量はO,OO66
饅であり、前記(3)式を満足するものであるが、鋼B
はこの範囲から外れた比較従来鋼である。
Steel A has a Ti equivalent of 0.028% and a C equivalent of O, OO66.
Although it is a steamed rice cake and satisfies the above formula (3), steel B
is a comparative conventional steel that falls outside this range.

これら2種類の板状鋳片をそのまま300〜400℃の
温度範囲にて1.Qm/ya厚にまで圧下車重87%に
て温間圧延し、ついで850℃の温度にて230秒の連
続焼鈍を行った。
These two types of plate slabs were heated as they were in the temperature range of 300 to 400°C for 1. It was warm rolled to a thickness of Qm/ya at a vehicle weight of 87%, and then continuously annealed at a temperature of 850° C. for 230 seconds.

つぎにこれらの焼鈍板を、伸び車重〇、6%にて調質圧
延した後、JI35号引張試験片を採取し、その機械的
性質を測定した。
Next, these annealed plates were temper-rolled at an elongation car weight of 0.6%, and then JI No. 35 tensile test pieces were taken and their mechanical properties were measured.

この結果を第1表に示す。The results are shown in Table 1.

第   1   表 第1表に示されるように、鋼Aを使用する本発明方法に
よって製造された冷延鋼板は、鋼Bを使用、したものに
比べて、r値が高く、伸びも良好で、プレス成形性に優
れていることが明らかである。
Table 1 As shown in Table 1, cold-rolled steel sheets manufactured by the method of the present invention using steel A have a higher r value and better elongation than those using steel B. It is clear that the press formability is excellent.

実施例 3 第2表に示す成分組成の鋼を真空溶解し、厚さ:40m
/m、幅:zzom/m+長さ1440m / mの板
状鋳片とした後、直ちに室温まで冷却した。
Example 3 Steel having the composition shown in Table 2 was vacuum melted to a thickness of 40 m.
/m, width: zzom/m+length 1440 m/m, and immediately cooled to room temperature.

これらの鋳片について、スケールを切削除去後、同じく
第2表に示す種々の温度にて、4.0〜1.2m / 
m厚まで、圧下率ニア0%にて、温間圧延するとともに
5温度二800℃にて90秒保持の条件での連続焼鈍を
行うことによって、本発明方法1〜28による冷延鋼板
、および比較法29〜33による冷延鋼板をそれぞれ製
造した。
After cutting and removing the scale, these slabs were heated at 4.0 to 1.2 m/min at various temperatures shown in Table 2.
A cold-rolled steel sheet according to methods 1 to 28 of the present invention is produced by warm rolling at a rolling reduction of near 0% and continuous annealing at 2,800° C. for 90 seconds to a thickness of Cold-rolled steel sheets were manufactured by Comparative Methods 29 to 33, respectively.

なお比較法29〜33による冷延鋼板は、いずれも成分
組成あるいは、温間圧延温度がこの発明の範囲から外れ
たものであり、第2表には該当するものに※印を付して
いる。
In addition, the cold rolled steel sheets obtained by Comparative Methods 29 to 33 are all out of the scope of the present invention in terms of composition or warm rolling temperature, and the relevant ones are marked with * in Table 2. .

つぎに、この結果から得られた本発明方法1〜2日によ
る冷延鋼板および比較法29〜33による冷延鋼板につ
いても、引張特性およびr値を測定し、この結果を第2
表に併せて示した。
Next, the tensile properties and r-values of the cold-rolled steel sheets obtained by the method 1 to 2 of the present invention and the cold-rolled steel sheets obtained by the comparative methods 29-33 were measured, and these results were used in the second test.
It is also shown in the table.

第2表に示されるように、本発明方法1〜28による冷
延鋼板は、いずれも良好な伸びおよび高r値、すなわち
、良好なプレス成形性を有するのに対して、比較法29
および32による冷延鋼板は、(C当量) −’−(T
i当量)がそれぞれこの発明の範囲を越えて高いために
、製品の特性値は、r値と伸びが低く、プレス成形性に
劣ることを示している。
As shown in Table 2, the cold rolled steel sheets prepared by methods 1 to 28 of the present invention all have good elongation and high r value, that is, good press formability, whereas the cold rolled steel sheets obtained by the comparative method 29
The cold-rolled steel sheet according to
i equivalent) are respectively high beyond the scope of this invention, the characteristic values of the product are low r value and elongation, indicating poor press formability.

比較法31による冷延鋼板ではC量が、また比較法33
による冷延鋼板では温間圧延温度が、本発明の範囲より
も高いため、r値が劣っている。
In the cold-rolled steel sheet prepared by Comparative Method 31, the amount of C was increased by Comparative Method 33.
Since the warm rolling temperature of the cold-rolled steel sheet according to the invention is higher than the range of the present invention, the r value is inferior.

さらに比較法30による冷延鋼板は炭窒化物形成元素を
含有しない通常のAP、キルド鋼板であるため、製品の
r値が著しく低くなっている。
Furthermore, since the cold-rolled steel sheet produced by Comparative Method 30 is a normal AP, killed steel sheet that does not contain carbonitride-forming elements, the r value of the product is extremely low.

上述のように、本発明法によれば、良好なプレス成形性
をもった冷延鋼板を、エネルギー消費量を最小限に抑え
るとともに、熱間圧延設備を省略してコストを安く、高
能率で製造することができるなど、工業上有用な効果が
もたらされるものである。
As described above, according to the method of the present invention, cold-rolled steel sheets with good press formability can be produced at low cost and high efficiency by minimizing energy consumption and omitting hot rolling equipment. It brings about industrially useful effects such as being able to be manufactured.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、冷延鋼板中の(C当量) −−(Ti当量)
の値が、製品の伸び、並びにr値に及ぼす影響を示した
線図である。 出願人  住友金属工業株式会社
Figure 1 shows (C equivalent) -- (Ti equivalent) in cold rolled steel sheet.
FIG. 2 is a diagram showing the influence of the value on the elongation of the product and the r value. Applicant: Sumitomo Metal Industries, Ltd.

Claims (1)

【特許請求の範囲】 (1)C:0.001〜0.020%。 Si:2.0%以下。 Mn:1.20%以下。 N : 0.0080%以下。 を含むとともに、 Ti:0.20%以下。 Nb:0.20%以下。 Zr:0.20%以下。 のうちの1種以上を含有し、かつ、 上記(1)式で計算されるT1当量と、上記(2)式で
計算されるC当量との関係が上記(3)式を満足し、残
9が、Fe十不可避不純物から成る組成(以上重量%)
の鋼を、連続鋳造によって板状鋳片とし、ついでこれに
100〜450℃での温間圧延と、再結晶焼鈍とを施す
ことを特徴とするプレス成形用冷延鋼板の製造法。 (2) C:O,OO1〜0.020%。 Sに2.0%以下。 Mn:1.20%以下。 N:0.0080%以下。 を含むとともに、 Ti:0.20%以下。 Nb:0.20%以下。 Zr:0.20%以下。 のうちの1種以上を含有し、かつ、 48      48 T1当量−Ti(%)+−Nb(%) 十−Z r (
%)−=−(1)93      91 上記(1)式で計算されるT1当量と、上記(2)式で
計算されるC当量との関係が上記(3)式を満足し、さ
らにsob、AQ : 0.10%以下を含有し、残り
がF’e十不可避不純物からなる組成(以上重量%)の
鋼を、連続鋳造によって板状鋳片とし、ついでこれに1
00〜450℃での温間圧延と、再結晶焼鈍とを施すこ
とを特徴とするプレス成形用冷延鋼板の製造法。 (3)C:0.001〜0.020%。 Si:2.0%以下。 Mn:1.20%以下。 N:0.00080%以下。 を含むとともに、 Ti:0.20%以下。 Nl):0.20%以下。 Zr:0.20%以下。 のうちの1種以上を含有し、かつ、 上記(1)式で計算されるTi当量と、上記(2)式で
計算されるC当量との関係が上記(3)式を満足し、さ
らにP:0.12%以下を含有−し、残りが、Fe十不
可避不純物から成る組成(以上重量%)の鋼を、連続鋳
造によって板状鋳片とし、ついでこれに100〜j50
℃での温間圧延と。 再結晶焼鈍とを施すことを特徴とするプレス成形用冷延
鋼板の製造法。 (4)C:0.001〜0.20%。 Sに2.0%以下。 Mn:1.20%以下。 N:0.0080%以下。 を含むとともに、 Ti:0.20%以下。 Nb:0.20%以下。 Zr:0.20%以下。 のうちの1種以上を含有し、かつ、 」二記(1)式で計算されるTi当量と、上記(2)式
で計算されるC当量との関係が上記(3)式を満足し、
さらにREM:0.03〜0.20%。 B:O,0O03〜0.0050%。 のうちの1種以上を含有し、 残9が、Fe十不可避不純物からなる組成(以上重量%
)の鋼を連続鋳造によって板状鋳片とし、ついでこれに
100〜450℃での温間圧延と、再結晶焼鈍とを施す
ことを特徴とするプレス成形用冷延鋼板の製造法。 (5)  C: O,OO1〜0.020%。 Si:2.0%以下。 Mn:1.20%以下。 N:0.0080%以下。 を含むとともに、 Ti : 0.2.0%以下。 Nt):0.20%以下。 Zr:0.20%以下。 のうちの1種以上を含有し、かつ、 T1当量−Ti (%) + −Nb(%) + −Z
r(%) ・・・−(1)93     91 2 C当t−Ci%) + −N (%)  −・−・−(
2)4 (C当量) −−(Ti当量)≦0.0010 (%)
・・・・・・(3)上記(1)式で計算されるT1当量
と上記(2)式で計算されるC当量との関係が上記(3
)式を満足し、さらにP:0.12%以下。 sot、AA : 0.10 %以下を含有し、残りが
、Fe十不可避不純物からなる組成(以上重量%)の鋼
を連続鋳造によって、板状鋳片とし、ついでこれに10
0〜450℃での温間圧延と、再結晶焼鈍とを施すこと
を特徴とするプレス成形用冷延鋼板の製造法。 (6)C:0.001〜0.020%。 Si:2.0%以下。 Mn:1.20%以下。 N:0.0080%以下。 を含むとともに、 T’i二〇、20%以下。 Nb:0.20%以下。 Zr:0.20%以下。 のうちの1積場」二を含有し、がっ、 」1記(1)式で計算されるTii量と上記(2)式で
計算されるC当量との関係が上記(3)式を満足し、さ
らにRE M : 0.03〜0.20%。 B  :  0.0003〜0.0050係。 のうちの1種以上と、 P:0.12以下を含有し。 残りが、Fe十不可避不純物からなる組成(以上重量%
)の鋼を連続鋳造によって、板状鋳片とし、ついでこれ
に100〜450℃での温間圧延と、再結晶焼鈍とを施
すことを特徴とするプレス成形(7)  C: 0.0
01〜0.020%。 Si:2.0%以下。 Mn: 1.20%以丁。 N:0.0080%以下。 を含むとともに、 Ti:0.20%以下1 Nb:0.20%以下。 Zr:0.20%以下。 のうちの1積場九を含有し、がっ、 上記(1)式で計算されるT1当量と、上記(2)式で
計算されるC当量との関係が上記(3)式を満足し、さ
らにREM : 0.03〜0.20%。 B  :O,0O03〜0.00!50%。 のうちの1種以上と、 sot、 AM : 0.10%を含有し、残りが、F
e+不可避不純物から成る組成(以上重量%)の鋼を連
続鋳造によって板状鋳片とし、ついでこれに100〜4
50℃での温間圧延と、再結晶焼鈍とを施すことを特徴
とするプレス成形用冷延鋼板の製造法。 (8)  C: 0. OO1〜0020%。 Sl、260%以下。 Mn:1.20%以下。 N:0.0080%以下。 を含むとともに、 ’l’i:0.20%以下。 Nb:0.20%以下。 Zr:0.20%以下。 のうちの1種以上を含有し、かつ、 上記(1)式で計算されるT1当量と、」1記(2)式
で計算されるC当量との関係が上記(3)式を満足し、
さらにREM:0.03〜0.20%。 B:0.0O03〜O,OO50%。 のうちの1積場」二と、 P:0.12%以下。 sol、A(1: 0.10%以下。 を含有し、残りが、Fe十不可避不純物からなる組成(
以上重量%)の鋼を、連続鋳造によって板状鋳片とし、
ついでこれに]、OO〜450℃での温間圧延と、再結
晶焼鈍とを施すことを特徴とするプレス成形用冷延鋼板
の製造法。
[Claims] (1) C: 0.001 to 0.020%. Si: 2.0% or less. Mn: 1.20% or less. N: 0.0080% or less. Contains Ti: 0.20% or less. Nb: 0.20% or less. Zr: 0.20% or less. and the relationship between the T1 equivalent calculated by the above formula (1) and the C equivalent calculated by the above formula (2) satisfies the above formula (3), and the remaining 9 is a composition consisting of Fe and unavoidable impurities (more than % by weight)
1. A method for producing a cold-rolled steel sheet for press forming, characterized in that the steel is made into a plate-shaped slab by continuous casting, and then subjected to warm rolling at 100 to 450°C and recrystallization annealing. (2) C: O, OO 1-0.020%. 2.0% or less in S. Mn: 1.20% or less. N: 0.0080% or less. Contains Ti: 0.20% or less. Nb: 0.20% or less. Zr: 0.20% or less. Contains one or more of the following, and 48 48 T1 equivalent - Ti (%) + - Nb (%) 10 - Z r (
%)-=-(1)93 91 The relationship between the T1 equivalent calculated by the above formula (1) and the C equivalent calculated by the above formula (2) satisfies the above formula (3), and further, sob, AQ: A steel having a composition (more than 1% by weight) containing 0.10% or less of F'e and the remainder consisting of 10 unavoidable impurities is made into a plate slab by continuous casting, and then 1.
A method for producing a cold-rolled steel sheet for press forming, which comprises performing warm rolling at 00 to 450°C and recrystallization annealing. (3) C: 0.001-0.020%. Si: 2.0% or less. Mn: 1.20% or less. N: 0.00080% or less. Contains Ti: 0.20% or less. Nl): 0.20% or less. Zr: 0.20% or less. contains one or more of the following, and the relationship between the Ti equivalent calculated by the above formula (1) and the C equivalent calculated by the above formula (2) satisfies the above formula (3), and A steel containing 0.12% or less of P and the remainder consisting of Fe and unavoidable impurities (more than 10% by weight) is made into a plate slab by continuous casting, and then cast into a slab of 100 to 50% by weight.
With warm rolling at °C. A method for producing a cold-rolled steel sheet for press forming, characterized by subjecting it to recrystallization annealing. (4) C: 0.001-0.20%. 2.0% or less in S. Mn: 1.20% or less. N: 0.0080% or less. Contains Ti: 0.20% or less. Nb: 0.20% or less. Zr: 0.20% or less. contains one or more of the following, and the relationship between the Ti equivalent calculated by equation (1) and the C equivalent calculated by equation (2) above satisfies equation (3). ,
Furthermore, REM: 0.03-0.20%. B: O, 0O03 to 0.0050%. A composition containing one or more of the following, and the remainder consisting of Fe and inevitable impurities (more than
1.) A method for producing a cold-rolled steel sheet for press forming, characterized in that steel is continuously cast into a plate-shaped slab, which is then subjected to warm rolling at 100 to 450°C and recrystallization annealing. (5) C: O, OO1-0.020%. Si: 2.0% or less. Mn: 1.20% or less. N: 0.0080% or less. Contains Ti: 0.2.0% or less. Nt): 0.20% or less. Zr: 0.20% or less. Contains one or more of the following, and T1 equivalent -Ti (%) + -Nb (%) + -Z
r (%) ...-(1)93 91 2 C per t-Ci%) + -N (%) -・-・-(
2) 4 (C equivalent) --(Ti equivalent) ≦0.0010 (%)
......(3) The relationship between the T1 equivalent calculated by the above formula (1) and the C equivalent calculated by the above formula (2) is the above (3)
) formula, and P: 0.12% or less. sot, AA: 0.10% or less, with the remainder consisting of Fe and unavoidable impurities (more than 10% by weight) is made into a plate-shaped slab by continuous casting, and then 10%
A method for producing a cold-rolled steel sheet for press forming, which comprises performing warm rolling at 0 to 450°C and recrystallization annealing. (6) C: 0.001-0.020%. Si: 2.0% or less. Mn: 1.20% or less. N: 0.0080% or less. Contains T'i 20, 20% or less. Nb: 0.20% or less. Zr: 0.20% or less. The relationship between the amount of Tii calculated by formula (1) and the C equivalent calculated by formula (2) above is expressed by formula (3) above. Satisfied and further REM: 0.03-0.20%. B: 0.0003 to 0.0050. Contains one or more of the following, and P: 0.12 or less. The remainder consists of Fe and unavoidable impurities (more than 1% by weight)
Press forming (7) characterized in that the steel of ) is made into a plate-shaped slab by continuous casting, and then subjected to warm rolling at 100 to 450°C and recrystallization annealing (7) C: 0.0
01-0.020%. Si: 2.0% or less. Mn: 1.20%. N: 0.0080% or less. Contains Ti: 0.20% or less 1 Nb: 0.20% or less. Zr: 0.20% or less. The relationship between the T1 equivalent calculated by the above formula (1) and the C equivalent calculated by the above formula (2) satisfies the above formula (3). , and further REM: 0.03 to 0.20%. B: O,0O03~0.00!50%. Contains one or more of the following: sot, AM: 0.10%, and the remainder is F.
A steel with a composition (more than 1% by weight) consisting of e + unavoidable impurities is made into a plate slab by continuous casting, and then this is
A method for producing a cold-rolled steel sheet for press forming, which comprises performing warm rolling at 50°C and recrystallization annealing. (8) C: 0. OO1~0020%. Sl, 260% or less. Mn: 1.20% or less. N: 0.0080% or less. Contains 'l'i: 0.20% or less. Nb: 0.20% or less. Zr: 0.20% or less. contains one or more of the following, and the relationship between the T1 equivalent calculated by the above formula (1) and the C equivalent calculated by the above 1. (2) formula satisfies the above formula (3). ,
Furthermore, REM: 0.03-0.20%. B: 0.0O03~O, OO50%. 1 loading dock and 2, P: 0.12% or less. sol, A (1: 0.10% or less), with the remainder consisting of Fe and unavoidable impurities (
% by weight or more) into plate-shaped slabs by continuous casting,
A method for producing a cold-rolled steel sheet for press forming, which is then subjected to warm rolling at OO to 450°C and recrystallization annealing.
JP964983A 1983-01-24 1983-01-24 Preparation of cold rolled steel plate for press work Granted JPS59136425A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP964983A JPS59136425A (en) 1983-01-24 1983-01-24 Preparation of cold rolled steel plate for press work

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP964983A JPS59136425A (en) 1983-01-24 1983-01-24 Preparation of cold rolled steel plate for press work

Publications (2)

Publication Number Publication Date
JPS59136425A true JPS59136425A (en) 1984-08-06
JPH027374B2 JPH027374B2 (en) 1990-02-16

Family

ID=11726058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP964983A Granted JPS59136425A (en) 1983-01-24 1983-01-24 Preparation of cold rolled steel plate for press work

Country Status (1)

Country Link
JP (1) JPS59136425A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6187819A (en) * 1984-10-08 1986-05-06 Nippon Steel Corp Manufacture of thin steel sheet superior in formability
JPS61133323A (en) * 1984-11-30 1986-06-20 Nippon Steel Corp Production of thin steel sheet having excellent formability
JPS61133322A (en) * 1984-11-30 1986-06-20 Nippon Steel Corp Production of thin steel sheet having excellent formability
JP2008196021A (en) * 2007-02-14 2008-08-28 Sumitomo Metal Ind Ltd High tensile strength steel sheet and high tensile strength hot dip galvannealed steel sheet

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6187819A (en) * 1984-10-08 1986-05-06 Nippon Steel Corp Manufacture of thin steel sheet superior in formability
JPS61133323A (en) * 1984-11-30 1986-06-20 Nippon Steel Corp Production of thin steel sheet having excellent formability
JPS61133322A (en) * 1984-11-30 1986-06-20 Nippon Steel Corp Production of thin steel sheet having excellent formability
JP2008196021A (en) * 2007-02-14 2008-08-28 Sumitomo Metal Ind Ltd High tensile strength steel sheet and high tensile strength hot dip galvannealed steel sheet

Also Published As

Publication number Publication date
JPH027374B2 (en) 1990-02-16

Similar Documents

Publication Publication Date Title
EP0120976B1 (en) Process for manufacturing cold-rolled steel for deep drawing
JPH0125378B2 (en)
JPH0215609B2 (en)
JP3826442B2 (en) Manufacturing method of steel plate for can making with good workability and no rough skin
JPS59136425A (en) Preparation of cold rolled steel plate for press work
JP3915146B2 (en) Method for producing a steel plate for a two-piece can with excellent non-earring properties and rough skin resistance
JPS6325055B2 (en)
JPS6234804B2 (en)
JPS59129731A (en) Production of austenitic stainless steel plate or strip
JPS5913028A (en) Production of austenitic stainless steel plate or strip
JPH02166233A (en) Manufacture of cr-series stainless steel thin sheet using thin casting method
JPH02258931A (en) Production of cr stainless steel sheet by thin-wall casting method
JPH0452229A (en) Highly efficient production of cold rolled steel sheet extremely excellent in workability
JPH0257128B2 (en)
JPS5931829A (en) Production of al killd high strength cold rolled steel sheet having excellent deep drawability
JPS6024325A (en) Production of ferritic stainless steel plate having less ridging and excellent formability
JP3831057B2 (en) Manufacturing method of high-strength cold-rolled steel sheet with excellent workability
JPS6334209B2 (en)
JPH0257131B2 (en)
JPH0587563B2 (en)
JPS59177326A (en) Manufacture of cold rolled steel sheet with superior deep drawability
JPS6045692B2 (en) Method for producing cold-rolled steel sheet for press working with excellent deep drawability and surface quality
JPS5956528A (en) Manufacture of high-tension cold-rolled steel plate with superior formability
JPH0394021A (en) Production of cold rolled steel sheet excellent in deep drawability and resistance to secondary working brittleness
JPS63286522A (en) Production of steel sheet for di can