JPS59129731A - Production of austenitic stainless steel plate or strip - Google Patents

Production of austenitic stainless steel plate or strip

Info

Publication number
JPS59129731A
JPS59129731A JP350183A JP350183A JPS59129731A JP S59129731 A JPS59129731 A JP S59129731A JP 350183 A JP350183 A JP 350183A JP 350183 A JP350183 A JP 350183A JP S59129731 A JPS59129731 A JP S59129731A
Authority
JP
Japan
Prior art keywords
hot
rolling
stainless steel
less
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP350183A
Other languages
Japanese (ja)
Other versions
JPS6216251B2 (en
Inventor
Hidehiko Sumitomo
住友 秀彦
Hirobumi Yoshimura
博文 吉村
Masanori Ueda
上田 全紀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP350183A priority Critical patent/JPS59129731A/en
Publication of JPS59129731A publication Critical patent/JPS59129731A/en
Publication of JPS6216251B2 publication Critical patent/JPS6216251B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/08Iron or steel
    • C23G1/085Iron or steel solutions containing HNO3

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)

Abstract

PURPOSE:To enable production of a sheet of a stainless steel having excellent characteristics while omiting an annealing stage by regulating the content of C, N, Mn, Ni and P of an austenitic stainless steel to specific values and controlling the draft and gnawing temp. in the stage of hot rolling then cold rolling the steel. CONSTITUTION:An austenitic stainless steel slab contg. 0.005-0.07% C, <1.0% Si, <3.0% Mn, 16-20% Cr, 6-11.5% Ni, 0.005-0.2% N, <0.040% P, and <0.010% S, and having the compsn. of the 1st points A, BP, CP, D (where the values of BP, CP change respectively with the content of P) with respect to C, N, Mn, Ni, and P is subjected to hot rough rolling to a plate material. The hot finish rolling thereof is accomplished at the draft and gnawing temp. at least in the 2nd range enclosed by P, Q, R, ST and thereafter the plate material is pickled with the mixed solution of nitric acid and hydrochloric acid added with ferric salt and is finished by cold rolling without annealing to a steel strip which is then annealed. Even if the annealing after the hot rolling is omitted, the steel sheet having small in-plane anisotropy of mechanical properties and less surface roughnening is produced.

Description

【発明の詳細な説明】 本発明は、オーステナイト系ステンレス鋼板又は銅帯の
製造工程において、熱間圧延後の鋼板又は銅帯の焼鈍工
程を省略して、従来の焼鈍を行ったものと同等以上の加
工性と表面性状を有する薄板製品の製造方法に関するも
のである。
Detailed Description of the Invention The present invention eliminates the step of annealing the steel plate or copper strip after hot rolling in the manufacturing process of an austenitic stainless steel plate or copper strip, thereby producing an austenitic stainless steel plate or copper strip that is equivalent to or better than conventional annealing. The present invention relates to a method for manufacturing a thin plate product having processability and surface texture of .

一般に18%Cr −8%l’Ji系を中心としたオー
ステナイト系ステンレス鋼薄板の製造方法においては、
従来は電気炉もしくは転炉において溶製かつ成分調整を
行った後、熱間圧延を行って熱延鋼板又は銅帯(以下総
称して熱延板という)となし、その後熱延板を1010
℃以上の高温で熱処理し、ショットゲラスト等による機
械的デスケーリングと酸洗等による化学的デスケーリン
グを行った後、冷間圧延□、最終焼鈍を経て冷延鋼板又
は銅帯(以下総称して薄板製品という)を製造していた
In general, in the manufacturing method of austenitic stainless steel thin plate mainly based on 18%Cr -8%l'Ji system,
Conventionally, after melting and adjusting the composition in an electric furnace or converter, hot rolling is performed to make a hot rolled steel sheet or copper strip (hereinafter collectively referred to as hot rolled sheet), and then the hot rolled sheet is rolled into a 1010
After heat treatment at a high temperature of ℃ or higher, mechanical descaling using shot gelatin, etc., and chemical descaling using pickling, etc., cold rolling □ and final annealing are performed to produce cold rolled steel sheets or copper strips (hereinafter collectively referred to as copper strips). The company manufactured thin sheet products).

熱延板の熱処理の主な目的は、再結晶させ軟負化すると
ともに機械的性質の均一化を図ることと、熱延後の冷却
過程で生じた炭化物を固溶化し、後工稈の酸洗で粒界腐
食による肌荒れを防止して表面光沢に優れた薄板製品を
得ると七にある。
The main purposes of heat treatment of hot-rolled sheets are to recrystallize them to soften them and to homogenize their mechanical properties, as well as to dissolve the carbides produced during the cooling process after hot-rolling and reduce the acidity of the post-rolled culm. Washing prevents surface roughness due to intergranular corrosion and produces thin plate products with excellent surface gloss.

しかしながらオーステナイト系ステンレス鋼の再結晶温
度は普通鋼板に比べると著しく高温であり、熱延板焼鈍
工程では高温の熱処理が必要である。従って熱延板焼鈍
工程を省略できれば省エネルギーと生産性の著しい向上
が期待される。
However, the recrystallization temperature of austenitic stainless steel is significantly higher than that of ordinary steel sheets, and high-temperature heat treatment is required in the hot-rolled sheet annealing process. Therefore, if the hot-rolled plate annealing process can be omitted, significant improvements in energy savings and productivity can be expected.

冷間圧延技術の発達に伴い、熱延板を焼鈍しなくても、
薄板製品の板厚まで冷延することは可能  ゛となった
。しかし、単に焼鈍工程を省略しただけでは、つぎのよ
うな二つの問題点がある。第1の問題は、薄板製品の機
械的性質の面内異方性が増大することである。異方性が
大きいとは、圧延面内において、圧延方向、直角方向及
び圧延方向と45°方向での特性の差が大きいことをい
い、このような薄板製品を例えば、円筒深絞シをした場
合には、イヤリングが大きく発生し、材料歩留を低下さ
せる原因になる。第2の問題は、熱延板を焼鈍しないで
酸洗したときに表面に著しい肌荒れを生じ、それが薄板
製品にまで残存することである。
With the development of cold rolling technology, hot rolled sheets can be rolled without annealing.
It has become possible to cold-roll sheets to the thickness of thin sheet products. However, simply omitting the annealing step causes the following two problems. The first problem is that the in-plane anisotropy of the mechanical properties of sheet products increases. Large anisotropy refers to a large difference in properties in the rolling plane, in the rolling direction, in the perpendicular direction, and in the 45° direction from the rolling direction. In some cases, large earrings occur, causing a decrease in material yield. The second problem is that when a hot rolled sheet is pickled without being annealed, significant roughness occurs on the surface, which remains in the thin sheet product.

従来の方法で熱間圧延された熱延板は、熱延後の冷却過
程で粒界KCr炭化物が析出し、その周囲にCr含有量
の低い領域が存在しているため、これを酸洗したとき粒
界腐食を生じて肌荒れを呈する一従来の酸洗は、一般に
弗酸と硝酸の混酸が用いられているので、粒界腐食によ
る肌荒れは著しいものとなシ、引き続きこれを冷開圧延
したときは、冷延・焼鈍後もその痕跡を残すため良好な
表面光沢を有する薄板製品を得ることが出来ない。熱延
板の炭化物は仕上熱延後水冷を行い、例えば550℃以
下の低温巻取シを行えば防止できるが、冷却中に形状不
良を生じ易く、銅帯の場合は巻取シ時に疵を発生し易い
In hot-rolled sheets hot-rolled using the conventional method, grain boundary KCr carbides precipitate during the cooling process after hot rolling, and there are regions around them with low Cr content, so this was pickled. In conventional pickling, a mixed acid of hydrofluoric acid and nitric acid is generally used, so the roughening of the surface due to intergranular corrosion is significant. In this case, traces remain even after cold rolling and annealing, making it impossible to obtain a thin sheet product with good surface gloss. Carbides in hot-rolled sheets can be prevented by water-cooling after finishing hot-rolling, and by winding at a low temperature of 550°C or less, but it tends to cause shape defects during cooling, and in the case of copper strips, defects occur during winding. Easy to occur.

従来、熱延板焼鈍省略に関する報告例は多数あるがいず
れも薄板製品で面内異方性が増大する点が無視されてい
る。すなわち、特開昭51−77523号公報記載の発
明は、熱延後800〜500℃の温度範囲を急冷して粒
界腐食感受性をなくそうとするものであるが、薄板製品
の機械的性質は考慮されていない。特開昭52−284
24号公報には、熱延板焼鈍を省略して冷間圧延するこ
とにより圧延方向に対して45°方向のr値を向上させ
ることが開示されているが、角筒深絞シ材料用として、
製品板の面内異方性を太きくしようとするものである。
In the past, there have been many reports on the omission of hot-rolled sheet annealing, but all of them ignore the fact that in-plane anisotropy increases in thin sheet products. In other words, the invention described in JP-A-51-77523 attempts to eliminate susceptibility to intergranular corrosion by rapid cooling in the temperature range of 800 to 500°C after hot rolling, but the mechanical properties of the thin sheet product are Not considered. Japanese Patent Publication No. 52-284
Publication No. 24 discloses that the r value in the 45° direction with respect to the rolling direction can be improved by omitting hot-rolled plate annealing and performing cold rolling. ,
This is intended to increase the in-plane anisotropy of the product plate.

特開昭53−100124号公報記載の発明は熱延板焼
鈍を省略し、中間焼鈍を入れない1回の冷延で製品板厚
まで圧延することによってプレス加工性を向上させるも
のであるが、面内異方性は考慮されていない。特開昭5
5−70404号公報記載の発明は、熱延仕上圧延条件
と熱延後の冷却条件を限定して再結晶と固溶化処理を行
うものであシ、特開昭56−158819号公報には、
熱延板焼鈍を省略して塩酸単味で酸洗することが開示さ
れているが、いずれも薄板製品の機械的性質は考慮され
ていない。なお、特開昭56.=158819号公報記
載の方法におけるように塩酸単味で酸洗すれば粒界腐食
は発生しないが、酸洗に長時間を要し実用的でなく、ま
た酸洗時間短縮のため前処理としてのショットゲラスト
処理を強化すれば表面の肌荒れを増すことになる。
The invention described in JP-A-53-100124 improves press workability by omitting hot-rolled sheet annealing and rolling to the product sheet thickness in one cold rolling without intermediate annealing. In-plane anisotropy is not considered. Japanese Patent Application Publication No. 5
The invention described in JP-A No. 5-70404 performs recrystallization and solution treatment by limiting hot-rolling finish rolling conditions and post-hot-rolling cooling conditions.
Although it has been disclosed that hot-rolled sheet annealing is omitted and pickling is performed with only hydrochloric acid, the mechanical properties of the thin sheet product are not taken into consideration in any of these methods. In addition, Japanese Patent Application Publication No. 1983. = Grain boundary corrosion does not occur if pickling is carried out with only hydrochloric acid as in the method described in Publication No. 158819, but pickling takes a long time and is not practical. Increasing the shot gelatinization will increase the roughness of the surface.

本発明は、゛オーステナイト系ステンレス鋼板又は銅帯
の製造において、熱延板の焼鈍工程を省略し、従来の焼
鈍工程を経て製造した薄板製品と同等以上の表面性状な
らびに機械的性質、特にその面内異方性の小さい製品を
得るととを目的とする。
The present invention aims to omit the annealing process of hot-rolled sheets in the production of austenitic stainless steel sheets or copper strips, and to achieve surface properties and mechanical properties that are equal to or better than those of thin sheet products manufactured through the conventional annealing process, especially in terms of their surface properties. The purpose is to obtain a product with small internal anisotropy.

本発明法は、オーステナイト系ステンレス鋼の成分組成
を限定し、熱間仕上圧延における圧下率および噛込温度
を制御し、かつ熱延板を適正な成分組成の溶液を用いて
酸洗した後、冷延及び焼鈍する製造方法である。
The method of the present invention limits the composition of austenitic stainless steel, controls the rolling reduction rate and biting temperature in hot finish rolling, and pickles the hot rolled sheet using a solution with an appropriate composition. The manufacturing method involves cold rolling and annealing.

本発明法に用いるオーステナイト系ステンレス鋼の成分
組成は、重量・や−セントでco、oos〜0.07チ
、81:1.0%以下、Po、040チ以下、SO,0
10%以下、Mn3.0%以下、 Ni 6.’O〜1
1.5%Cr 16〜20 % 、 N O,005〜
0.2%とし、必要に応じてMo 4%以下、 Cu 
4 %以下の一方又は双方を含み、かつ2C十NをMn
 +Nl及びP含有量に応じて第1図の点A 、 B、
 、 C,、D (但しpはP含有量X10  q6を
示し、点B、 、 C,はそれぞれP含有量によって決
まる)で囲まれる範囲とし、残部Fe及び不可避的に混
入する不純物から成る。このような成分組成からなるオ
ーステナイト系ステンレス鋼のスラブを熱間粗圧延した
後、熱間仕上圧延において少くとも1パス以上、望まし
くは各パスを、第2図の点A、B、C,D、l13で囲
まれる範囲の圧下率、噛込温度で行って熱延鋼板又は銅
帯とする。
The composition of the austenitic stainless steel used in the method of the present invention is co, oos ~ 0.07 cm, 81: 1.0% or less, Po, 0.40 cm or less, SO, 0% by weight.
10% or less, Mn 3.0% or less, Ni 6. 'O~1
1.5%Cr 16~20%, NO,005~
0.2%, Mo 4% or less, Cu
4% or less of one or both, and 2C and N
+ Points A, B, in Figure 1 depending on Nl and P content
, C, and D (where p indicates the P content X10 q6, and points B, , C, are each determined by the P content), and the remainder consists of Fe and unavoidably mixed impurities. After hot rough rolling a slab of austenitic stainless steel having such a composition, at least one pass, preferably each pass, is performed at points A, B, C, and D in Fig. 2 in hot finishing rolling. , l13 at a rolling reduction rate and biting temperature to form a hot rolled steel sheet or copper strip.

との熱延鋼板又は銅帯を焼鈍することなく、必要に応じ
て機械的デスケーリングした後、)(N03として20
〜130 g/13の硝酸とHClとして50〜300
1//llの塩酸を含む硝酸塩水溶液゛にFeS+イオ
ンとして3〜90Veを含むように第2鉄塩を添加した
#液を用いて酸洗する。
without annealing the hot-rolled steel sheet or copper strip with (after mechanical descaling if necessary) (20 as N03)
~130 g/13 as nitric acid and HCl 50-300
Pickling is carried out using solution # in which a ferric salt is added to a nitrate aqueous solution containing 1 liter of hydrochloric acid so as to contain 3 to 90 Ve as FeS+ ions.

酸洗した熱延鋼板又は銅帯を公知の方法で冷間圧延及び
焼鈍して薄板製品とする。
The pickled hot rolled steel sheet or copper strip is cold rolled and annealed by a known method to produce a thin sheet product.

本発明者の研究によると第1の問題点であるオーステナ
イト系ステンレス鋼薄板製品の面内異方性の増大はステ
ンレス薄鋼板に特有の強い調合組織が発達するためであ
り、これを改善するための集合組織のランダム化には化
学成分、とくにC1N・Mn r Ni r Pの寄与
が大きい。これらに加えて熱延仕上圧延における圧下率
と噛込温度も異方性に大きな影響を与える。
According to the research of the present inventor, the first problem, the increase in in-plane anisotropy of austenitic stainless steel thin sheet products, is due to the development of a strong mixed structure unique to stainless steel thin sheet products. Chemical components, especially C1N・Mn r Ni r P, make a large contribution to the randomization of the texture. In addition to these, the rolling reduction and biting temperature during hot finish rolling also have a large effect on the anisotropy.

まず、オーステナイト系ステンレス鋼の成分組成の寄与
と本発明における限定理由について説明する。
First, the contribution of the composition of austenitic stainless steel and the reasons for limitations in the present invention will be explained.

C:Cは熱延板焼鈍省略を行ったオーステナイト系ステ
ンレス鋼薄板製品の異方性改善に対して最も大きな影響
を及ぼす因子であシ、その効果は007%以下において
発揮され低い方が望ましい。
C: C is the factor that has the greatest influence on the anisotropy improvement of austenitic stainless steel thin plate products for which hot rolled plate annealing is omitted, and its effect is exhibited at 0.07% or less, and lower values are desirable.

但し0.005%未満とすることは工業的に困難であυ
、あえて実施すると価格が高くなるので下限を0.00
5チとした。
However, it is industrially difficult to keep it below 0.005%.
, if you dare to implement it, the price will be high, so set the lower limit to 0.00
It was set as 5.

st : stは強力な脱酸剤で加工性に有害な酸素を
除去するのに有効であるが、あまり高くなると熱間加工
性を阻害するので1,0チ以下とした。
st: st is a strong deoxidizing agent and is effective in removing oxygen harmful to workability, but if it becomes too high, it inhibits hot workability, so it is set to 1.0 or less.

Mn : Mn Fi異方性に関してNiと同様の効果
を示し、低い方が 異方性を改善する。その効果は3.
0チ以下で顕著に現われるため上限を3.0%とした。
Mn: Mn Fi shows the same effect as Ni with respect to anisotropy, and the lower the value, the better the anisotropy. The effect is 3.
The upper limit was set at 3.0% because it becomes noticeable below 0%.

Cr : Crは異方性及び加工性に対してあまシ大き
な影響を示さないが、耐食性を維持するためには16チ
以上が必要である。しかし、20チを超えるとフェライ
トtが増加し熱間加工性を劣化させる。このためCrの
範囲を16〜20%に限定した。
Cr: Cr does not have a significant effect on anisotropy and workability, but 16 or more Cr is required to maintain corrosion resistance. However, when it exceeds 20 inches, ferrite t increases and hot workability deteriorates. For this reason, the range of Cr was limited to 16 to 20%.

Ni:Niは異方性に影響を及ぼす元素であり低い方が
異方性を改善するが、伸びに関しては高い方が望ましい
。従って低すぎると加工性を阻害し、高すぎると異方性
を増大させることになるが、とくに異方性はMn、2C
+N及びPとの関連において決定される。本発明では上
記成分との関連でみてN1は6.0〜11.5%とした
Ni: Ni is an element that affects anisotropy, and the lower the Ni, the better the anisotropy, but the higher the elongation, the better. Therefore, if it is too low, it will inhibit the workability, and if it is too high, it will increase the anisotropy.
+N and P. In the present invention, N1 is set to 6.0 to 11.5% in relation to the above components.

N:Nも異方性に対しては低い方が好ましく、0.2%
以下が良好で工業的、経済的には可能な限シ低い方が望
ましい。但し0.005%未満にすることは工業的に困
41GでありNの範囲を0.005〜0.2チとした。
N: N is also preferably lower for anisotropy, 0.2%
The following values are good, and from an industrial and economic point of view, it is desirable that it be as low as possible. However, it is industrially difficult to reduce the N content to less than 0.005%, so the range of N is set to 0.005 to 0.2%.

P:PもCr Mn r Ni + Nと同様低い方が
異方性を改善する。低P化による異方性の改善はMn十
Ni、2C十Nとの関連において第1図に示される範囲
でこれら成分の許容範囲を拡大し、更に伸ひ及びエリク
セン値の向上に有利に作用する。従って低い方が望まし
いが、工業的かつ経済的に低減しえる0040チ以下と
した。
P: Similarly to Cr Mn r Ni + N, the anisotropy is improved when P is lower. The improvement in anisotropy due to lower P expands the allowable range of these components within the range shown in Figure 1 in relation to Mn+Ni and 2C+N, and has an advantageous effect on elongation and improvement of the Erichsen value. do. Therefore, it is desirable to have a lower value, but it is set to 0,040 or less, which can be reduced industrially and economically.

S:Sを低くすることは熱延板焼鈍を省略した工程によ
シ製造した薄板製品の各種耐食性を向上させる。その効
果は0.010%以下て顕著に現われ、低い方が望葦し
い。
S: Reducing S improves various corrosion resistances of thin sheet products manufactured by a process that omits hot-rolled sheet annealing. The effect becomes noticeable at 0.010% or less, and the lower the content, the more desirable it is.

さらに本発明は数多くの試料について笑験検削した結果
、各成分は以上の添加範囲のほかとくにC+ N + 
Mn + Ni r Pについては第1図の点A。
Furthermore, in the present invention, as a result of experimental testing of a large number of samples, in addition to the above-mentioned addition range, each component is particularly C + N +
For Mn + Ni r P, point A in Figure 1.

B、 、 C,、、D (イ目しpはP含有量×10 
 %を示し、点B、 、 CpはぞれぞれP含有俸によ
りて決る)で囲まれる範囲にすることが、薄板製品の面
内異方性及び加工性を改善するうえで不■」欠な条、件
であることを確めた。
B, , C,,,D (I mark p is P content x 10
In order to improve the in-plane anisotropy and processability of thin sheet products, it is essential to set the range surrounded by the points B, , and Cp, each of which is determined by the P content salary. It was confirmed that the conditions and conditions were as follows.

第1図において線A B、 C,は異方性よシ規制され
る限界でこれより上側の範囲ではイヤリング率が急増し
fI4板製品の品質は劣化する。なお図において線Bo
 Co ’+B1 (4,’++B2C2+Bs、C3
+B4 C4はP景が夫々0%、0.01%、0.02
%、0.03%。
In FIG. 1, lines A, B, and C are the limits where anisotropy is restricted, and in the range above these, the earring rate increases rapidly and the quality of fI4 board products deteriorates. In the figure, the line Bo
Co'+B1 (4,'++B2C2+Bs,C3
+B4 C4 has P views of 0%, 0.01%, and 0.02 respectively.
%, 0.03%.

0.04%の場合の限界線である。This is the limit line for the case of 0.04%.

線ADはMn + Ni量の下限を示すものであるが、
Mn + Ni 邦がこれより低くなるとオーステナイ
ト相が不安定になりすぎ伸びが劣化する。線C,Dは2
C+N量の下限を示すもので、2C+N量がこれよシ低
くなると製造コストが急増し経済性に劣る。従ってCh
 N + Mn r Ni * Pについてはいず  
iれも第1図の点A 、 B、 、 C,、Dで囲まれ
る範囲を満足するものでなくては、ならない。
The line AD indicates the lower limit of the amount of Mn + Ni,
If the Mn + Ni ratio is lower than this, the austenite phase becomes too unstable and elongation deteriorates. Lines C and D are 2
This indicates the lower limit of the amount of C+N, and if the amount of 2C+N is lower than this, the manufacturing cost will increase rapidly and it will be less economical. Therefore, Ch
N + Mn r Ni * Let's not talk about P.
All of them must satisfy the range surrounded by points A, B, , C, and D in Figure 1.

更に以上の化学成分の11か必要に応じてMo4%以下
、 Cu 4%以下の一方又は双方を添加する。M o
 +Cuは通常0.2〜03%程度までは不純物として
含まれる場合があるが、本発明においては必要に応じて
これを超えて添加する。
Further, one or both of the above chemical components 11, Mo 4% or less and Cu 4% or less are added as necessary. Mo
+Cu is usually contained as an impurity in an amount of about 0.2 to 0.3%, but in the present invention, it is added in an amount exceeding this amount if necessary.

Mo:Moは耐食性向上に有効な成分であり、とくに熱
延板又は冷延板の耐食性を改善する必要のあるとき上限
を4%として添加する。
Mo: Mo is an effective component for improving corrosion resistance, and is added at an upper limit of 4% especially when it is necessary to improve the corrosion resistance of hot-rolled sheets or cold-rolled sheets.

Cu : Cuはオーステナイト形成元素としてNiと
同等の挙動を示す。従ってCu添加によりそれに相当す
る量のNiを下げることが可能であり製造コストを安価
にし得るので、このような必要のある場合に添加する。
Cu: Cu exhibits the same behavior as Ni as an austenite-forming element. Therefore, by adding Cu, it is possible to reduce the amount of Ni corresponding to the amount of Ni, and the manufacturing cost can be reduced, so it is added when necessary.

しかしCuは4%を超えると熱間加工性を著しく害し、
熱延時に耳割れを生じる。このためCuの上限は4%と
した。
However, when Cu exceeds 4%, hot workability is significantly impaired.
Edge cracking occurs during hot rolling. Therefore, the upper limit of Cu was set at 4%.

以上の化学成分のほか異方性の低減には熱延仕上圧延の
影響が大きく、上記成分の効果に加算的に作用する。
In addition to the above-mentioned chemical components, hot rolling and finish rolling have a large influence on the reduction of anisotropy, and act additively to the effects of the above-mentioned components.

通常熱間圧延は粗圧延と仕上圧延に分けられるが、粗圧
延は1050℃以上の高温で終了するため圧延後の組織
は再結晶を完了した相な結晶粒となる。しかし続いて数
パスの仕上圧延を行った場合、圧延中に再結晶がくシ返
して生じ、熱延板のIf4織は極めて小さな結晶粒を持
つ様になる。この様な細粒組織の熱延板を焼鈍するとと
々〈冷延し、最終焼鈍を行った場合には再結晶の起点と
なる粒界面積が多いため再結晶集合組織の優先成長を促
進しく211)<111〉成分が極度に増大して異方性
が顕著になる。他方粗圧延後の鋼板を、例えばランナウ
トテーブル上に数秒放置し、温度を下げてから仕上圧延
を開始した場合の熱延板組織は粗圧延で生じた粗な粒界
がそのまま圧延方向に伸びた状態、所謂、展伸粒化した
状態となり、上記条件に比べ結晶粒界の面積は著しく少
くなる。この様な熱延板は、焼鈍することなく冷延して
も最終焼鈍した時の薄板製品では集合組織がランダム化
し異方性が改善される。即ち熱延仕上圧延における噛込
温度を低温にし熱延板組織を展伸粒化すれば、熱延板の
焼鈍を省略しても薄板製品の異方性が改善されイヤリン
グ率が低下する。
Normally, hot rolling is divided into rough rolling and finish rolling, but since rough rolling is finished at a high temperature of 1050° C. or higher, the structure after rolling becomes phase crystal grains that have completed recrystallization. However, when several passes of finish rolling are subsequently performed, recrystallization occurs during rolling, and the If4 weave of the hot rolled sheet has extremely small crystal grains. When a hot-rolled sheet with such a fine-grained structure is annealed, it becomes difficult to annealing the sheet. 211) The <111> component increases extremely and the anisotropy becomes significant. On the other hand, when a steel plate after rough rolling is left on a runout table for a few seconds to lower the temperature and finish rolling is started, the structure of the hot rolled sheet is such that the coarse grain boundaries generated during rough rolling extend in the rolling direction. This results in a so-called elongated grain state, and the area of grain boundaries becomes significantly smaller than under the above conditions. Even if such a hot-rolled sheet is cold-rolled without annealing, the texture of the thin sheet product after final annealing becomes random and the anisotropy is improved. That is, if the biting temperature during hot-rolling finish rolling is lowered to make the hot-rolled sheet structure into elongated grains, the anisotropy of the thin sheet product will be improved and the earring ratio will be reduced even if annealing of the hot-rolled sheet is omitted.

本発明者らは数多くの実験を行なった結果、本発明の目
的達成のためには連続熱間圧延機により通常の粗圧延を
行った後、熱延仕上圧延は少くとも1パス以上、墾まし
くは各・ぞスを第2図に示すPQR8T Pの範囲の圧
下率と噛込温度で行う必要があることを確めた。
As a result of numerous experiments, the inventors of the present invention have found that in order to achieve the object of the present invention, after normal rough rolling is performed using a continuous hot rolling mill, hot finishing rolling is performed for at least one pass or more. It was confirmed that it was necessary to carry out each step at a reduction rate and a biting temperature within the range of PQR8T P shown in Fig. 2.

第2図PQR8TPの範囲の条件は再結晶が生じない、
即ち粗圧延後の結晶粒を単に展伸粒化し、粒界面積を最
小に保持できる圧延条件を示すものである。
The conditions in the range of PQR8TP in Figure 2 are such that recrystallization does not occur.
That is, the rolling conditions are such that the crystal grains after rough rolling are simply expanded into grains and the grain boundary area can be kept to a minimum.

第2図において噛込温度の上限は線PQ及び線QRで規
制されるが、これよシ高温で仕上圧延を開始した場合は
、仕上圧延中に再結晶が生じ、組織が微細粒となる。ま
た噛込温度が線sTJ、#)低下すると変形抵抗が増大
し、表面疵が急増して生産性を阻害する。圧下率が線R
8より大きい場合は表面疵が増すと同時に耳割れを発生
しだす。圧下率が線TPよシ低い場合は仕上板厚が極度
に厚くなるか、パス回数が増大し、圧延効率が低下する
In FIG. 2, the upper limit of the biting temperature is regulated by line PQ and line QR, but if finish rolling is started at a higher temperature than this, recrystallization will occur during finish rolling and the structure will become fine grained. Furthermore, when the biting temperature decreases (sTJ, #), the deformation resistance increases, and surface flaws rapidly increase, impeding productivity. The rolling reduction rate is line R
When it is larger than 8, surface flaws increase and at the same time, edge cracks begin to occur. If the rolling reduction rate is lower than the line TP, the finished plate thickness will become extremely thick or the number of passes will increase, resulting in a decrease in rolling efficiency.

従って仕上圧延の条件は第2図に示したPQR8TP、
の斜線範囲の圧下率及び噛込温度でなくてはならない。
Therefore, the finish rolling conditions are PQR8TP shown in Figure 2,
The rolling reduction rate and biting temperature must be within the shaded range.

つぎに、第2の問題点である表面性状については、熱延
板のデスケーリングを、第2鉄イオンを添加した硝塩酸
溶液を用いて行えば熱間圧延の巻取シ条件にかかわりな
く肌荒れのない良好な表面肌が短時間で得られる。熱延
板のデスケーリングにおいて、酸洗液として適正な濃度
に調整した前記溶液中ではデスケール性が著しく向上し
、短時間の浸漬でスケールの除去が可能となるのみなら
ず、熱延後の冷却速度が遅り、シたがって粒界に炭化物
が若干析出した状態の熱延板であっても、粒界腐食が生
じ難いので、デスケーリング後の表面肌が極めて美麗に
仕上ることを見い出した。
Next, regarding the second problem of surface quality, if the hot rolled sheet is descaled using a nitric acid solution containing ferric ions, the surface will become rough regardless of the winding conditions during hot rolling. A good surface skin with no blemishes can be obtained in a short time. When descaling hot-rolled sheets, using the pickling solution adjusted to an appropriate concentration significantly improves descaling properties, making it possible not only to remove scale with a short immersion, but also to improve cooling after hot-rolling. It has been found that even in a hot-rolled sheet where the descaling speed is slow and some carbides are precipitated at the grain boundaries, intergranular corrosion is less likely to occur, resulting in an extremely beautiful surface finish after descaling.

以下にデスケーリング溶液の成分組成限定理由を説明す
る。
The reasons for limiting the component composition of the descaling solution will be explained below.

HNO3はHCt及びFe5  イオンと共存して酸洗
作用を強めると共に粒界腐食を生じる電位域を外し  
 ゛て炭化物が粒界に析出していても酸洗肌荒れを起こ
させないよう作用する。この作用のためには201//
ll 〜1301//e 、望ましくは30 Vi 〜
1001//iが必要である。
HNO3 coexists with HCt and Fe5 ions to strengthen the pickling action and remove the potential range where intergranular corrosion occurs.
Therefore, even if carbides are precipitated at the grain boundaries, the pickling action prevents the skin from becoming rough. For this action, 201//
ll ~1301//e, preferably 30 Vi ~
1001//i is required.

HClは従来のHFに代わってHNO,及びFe5+イ
オンの共存下で酸洗作用を強めると共に、鼎03及びF
e3+イオンと共存して、粒界腐食の生じる電位域を外
して炭化物が粒界に析出していても酸洗肌荒れを起こさ
せない1oこの作用のためにはHCl、HNO3及びF
e  イオン鵞°のバランスが大切でHCtとしてハ5
0g/l〜300g/e望マシくハ1ooy/l〜2o
oVlが必要で6ある。Fe  イオンはステンレス鋼
のデスケーリングには極めて効果的でHNO,及びHC
tと共存して、そのデスケール作用を強め、かつ粒界腐
食を生じやすい電位域を外して炭化物が粒界に析出して
いても酸洗肌荒れを起こさせない。この作用のためには
Fe  イオノは3〜9011/13望ましくは10〜
70 f//eが必要である。Fe’+イオンを添加す
るには、FeCl31 pe2(so4)3. Pa(
No5)3等の第2鉄塩を用いることができる。
HCl strengthens the pickling action in place of conventional HF in the coexistence of HNO and Fe5+ ions, and
Coexists with e3+ ions, removes the potential range where intergranular corrosion occurs, and prevents pickling surface roughness even if carbides are precipitated at grain boundaries.1o For this action, HCl, HNO3, and F
e The balance of ions is important, and as HCt, Ha5
0g/l~300g/e hope 1oooy/l~2o
oVl is required and is 6. Fe ions are extremely effective for descaling stainless steel, and HNO and HC
It coexists with t, strengthens its descaling effect, and removes the potential range where intergranular corrosion tends to occur, so that even if carbides are precipitated at grain boundaries, pickling does not cause roughness. For this effect, Fe ion is 3~9011/13, preferably 10~
70 f//e is required. To add Fe'+ ions, FeCl31 pe2(so4)3. Pa(
Ferric salts such as No. 5) 3 can be used.

なお、熱延板のデスケーリングにおいて、酸洗の前に必
要に応じて機械的デスケーリングを行う。
In addition, in descaling the hot rolled sheet, mechanical descaling is performed as necessary before pickling.

本発明法においては、熱延板の焼鈍を行わず、その上熱
延仕上圧延の温度が従来より低いので、スケールが従来
法によるよシも薄い。したがって、従来一般に行われて
いるショットシラスト等の機械的デスケーリングを行わ
ず、前記条件の酸洗のみでもスケール除去が可能である
。しかし、機械的デスケーリングを行った方が酸洗の負
荷が軽減するので好ましい。
In the method of the present invention, the hot-rolled sheet is not annealed, and the hot-rolled finish rolling temperature is lower than that in the conventional method, so the scale is thinner than in the conventional method. Therefore, scale can be removed only by pickling under the above conditions without performing mechanical descaling such as shot shirasu, which has been conventionally generally performed. However, mechanical descaling is preferable because it reduces the load of pickling.

デスケーリングを行った熱延板は、公知の方法で冷延及
び焼鈍を行って薄板製品となる。冷延は、薄板製品の板
厚まで、中間に焼鈍工程を入れることなく1回で行って
も材質上の問題はない。製品の板厚が特に薄くて、1回
で冷延できない場合は、中間で焼鈍及び酸洗を行って冷
延してもよい。
The descaled hot-rolled sheet is cold-rolled and annealed by a known method to produce a thin sheet product. Cold rolling can be performed in one step up to the thickness of a thin sheet product without any intermediate annealing process without causing any material quality problems. If the thickness of the product is particularly thin and it cannot be cold-rolled in one step, it may be annealed and pickled in the middle and then cold-rolled.

以下本発明を実施例によって具体的に説明する。EXAMPLES The present invention will be specifically explained below using examples.

第1表に示すような成分のオーステナイト系ステンレス
鋼を電炉−AOD法で溶製し、160朋厚の連鋳鋳片と
した。その後加熱炉で1250℃に加熱し相熱延を行っ
た後、第2表に示す条件で仕上熱延を行った。仕上熱延
後のコイルは空冷状態で巻取った0 これらの熱延板は固溶化熱処理を行わず、ショツトブラ
ストによる機械的なデスケーリング後第3表に示す濃度
のHNO5−HCt−F’eCt3溶液中を50秒間浸
漬して酸洗を行った。冷間圧延はゼン・シミアミルを用
い最終板厚を0.7 mmにした。最終焼鈍は1100
℃在炉55秒急冷で行い酸洗をして製品板を得た。
Austenitic stainless steel having the components shown in Table 1 was melted using an electric furnace-AOD method to obtain a continuously cast slab with a thickness of 160 mm. After that, it was heated to 1250° C. in a heating furnace to perform phase hot rolling, and then finish hot rolling was performed under the conditions shown in Table 2. The coils after finish hot rolling were wound up in an air-cooled state.These hot rolled sheets were not subjected to solution heat treatment, and after mechanical descaling by shot blasting, HNO5-HCt-F'eCt3 with the concentration shown in Table 3 was obtained. Pickling was performed by immersing the sample in the solution for 50 seconds. Cold rolling was carried out using a Zen-shimia mill to give a final plate thickness of 0.7 mm. Final annealing is 1100
A product plate was obtained by quenching at 55 seconds in the oven and pickling.

製品板は表面光沢を観察した後、拐質試験を行った。材
質試験は0.2%耐力、引張強さ、伸び及びイヤリング
率に関して行った。
After observing the surface gloss of the product board, a scale test was conducted. Material tests were conducted for 0.2% yield strength, tensile strength, elongation, and earring percentage.

イヤリング率(he)の算出は次式の方法によった。The earring ratio (he) was calculated using the following formula.

ここでり、はカップの底から測定したカップ縁部の山の
頂点までの高さを示し、h2は底から谷部までの高さを
示す・ 尚比較材の熱延板デスケーリングは上記と同じ条件のシ
ョツトブラスト全行った後、)LNO,−)IF浴溶液
50秒間浸漬し、株洗後冷間圧延に供した。
Here, indicates the height from the bottom of the cup to the top of the peak at the edge of the cup, and h2 indicates the height from the bottom to the trough.The hot-rolled plate descaling of the comparative material is the same as above. After performing all shot blasting under the same conditions, the specimens were immersed in a )LNO,-)IF bath solution for 50 seconds, washed, and subjected to cold rolling.

第3表に冷延・焼鈍後の材質試、験結果を示す。Table 3 shows the material tests and test results after cold rolling and annealing.

化学成分と熱延条件がそれぞれ第1図及び第2図で示さ
れた条件を満足し、熱延コイルの酸洗をHNO−HCt
−Fe C1−5溶液で行う製造条件によシ生産された
オーステナイト系ステンレス銅板は熱延板焼鈍を省略し
ても表面品質に優れていると同時にイヤリング率が小さ
く、異方性が改善され、伸びも大きく、加工性に優れて
いることが判る。製品板の各種耐食性についても良好な
結果を得た。
The chemical composition and hot rolling conditions satisfy the conditions shown in Figures 1 and 2, respectively, and the pickling of the hot rolled coil is carried out using HNO-HCt.
The austenitic stainless steel copper plate produced under the manufacturing conditions of -Fe C1-5 solution has excellent surface quality even if hot-rolled plate annealing is omitted, and at the same time has a small earring ratio and improved anisotropy. It can be seen that the elongation is large and the workability is excellent. Good results were also obtained regarding various types of corrosion resistance of the product plate.

第2表 実施例の熱延条件 第4表 実施例の引張特性、イヤリング率と表面状況本
発明はオーステナイト系ステンレス鋼板又は銅帯の製造
において熱延板焼鈍が省略でき、製造コストの低減が図
れる。得られた薄板製品は従来の製造工程を経て製造さ
れた製品と同様表面品質が優れ、かつ深絞り加工により
発生するイヤリングが低い、従ってプレス加工T々の切
り捨て量の減少、あるいは深絞り前のブランクサイズの
縮小が可能でちり、多大の歩留向上が図れる。
Table 2 Hot rolling conditions of Examples Table 4 Tensile properties, earring ratio and surface conditions of Examples The present invention can omit hot rolled plate annealing in the production of austenitic stainless steel plates or copper strips, reducing production costs. . The obtained thin sheet products have excellent surface quality similar to products manufactured through conventional manufacturing processes, and have low earrings generated by deep drawing. It is possible to reduce the blank size, reduce dust, and greatly improve yield.

【図面の簡単な説明】[Brief explanation of the drawing]

〜IJ1図は本発明に従って限定される出発鋼スラブの
Mn+ Ni第一と2C十N量及びpg−との関係を示
す図である。 B 及びC9はP含有量によって決まり、各点の座標は
Bo(10,010,3)、Bl (9,5,0,3)
、B2 (9,0,0,3)。 B3 (&5+0.3)、R4(8,0,0,,3)及
びCo(13,5,0,02)。 C’+ (13,0、,0,02) 、 Cz (12
,5、0,02) 、C3(12,0、0,02)。 C4(11,5、0,02)によシ与えられる。 第2図は本発明法における熱延仕上圧延の噛込湯度とパ
ス当シの圧下率との関係を示す図である。
~IJ1 diagram is a diagram showing the relationship between Mn+Ni first, 2C+N amount, and pg- of the starting steel slab defined according to the present invention. B and C9 are determined by the P content, and the coordinates of each point are Bo (10,010,3), Bl (9,5,0,3)
, B2 (9,0,0,3). B3 (&5+0.3), R4 (8,0,0,,3) and Co (13,5,0,02). C'+ (13,0,,0,02), Cz (12
,5,0,02),C3(12,0,0,02). C4 (11,5,0,02). FIG. 2 is a diagram showing the relationship between the biting degree and the rolling reduction ratio of the pass during finishing hot rolling in the method of the present invention.

Claims (1)

【特許請求の範囲】 (リ 重量%にて、 C: 0.005〜007チ、Si:1.0%以下Mn
: 3.0%以下  、  Cr : 16〜20%N
i:6.0〜11.5チ j  N  : 0.005
〜0.2%P : 0.040%以下 、  S  :
 0.010チ以下とし、かつ2C十NをMn + N
i及びP含有量に応じて第1図の点A 、 Bp、 C
p、 D (但しpはP含有量×10 条を示し、点B
p、 C,はそれぞれP含有量によって決まる)で囲ま
れた範囲とし、残部Fe及び不可避的不純物から成るオ
ーステナ−f ト系ステンレス鋼のスラブを熱間粗圧延
した後、熱間仕上圧延において少なくとも1パス以上を
第2図の点P、Q、R,S、Tで囲まれた範囲の圧下率
及び噛込温度で行って製造した熱延鋼板又は銅帯を焼鈍
することなく、必要に応じて機械的デスケーリングした
後、HNO,として20〜130Ii/13の硝酸とH
Clとして50〜30011/lの塩酸を含む硝塩酸水
溶液にFe  イオンとして3〜901//l含むよう
に第2鉄塩を添加した溶液を用いて酸洗し、ついで冷間
圧延及び焼鈍を行うことを特徴とするオーステナイト系
ステンレス鋼板又は銅帯の製造方法。 (2)  重量係にて、 C: 0.005〜0.07% 、St:1.0チ以下
Mn:3.O%以下  、 Cr : 16〜201N
i:6.0〜11.5% 、N  : 0.005〜0
.2%P : 0.040%以下 、S:0.010%
以下とし、かつ2C+NをMn + Ni及びP含有量
に応じて第1図の点A 、 B、 、 C,、D (但
しpはP含有量4: X 10− ”′%を示し、点B
、 、 C,はそれぞれP含有量によって決まる)で囲
まれた範囲とし、更に、Mo : 496以下r Cu
 :4%以下の一方又は双方を含み、残部Fe及び不可
避的不純物から成るオーステナイト系ステンレス鋼のス
ラブを熱間粗圧延した後、熱間仕上圧延において少なく
とも1パス以上を第2図の点p、Q、R,S、Tで囲ま
れた範囲の圧下率及び噛込温度で行って製造した熱延鋼
板又は銅帯を焼鈍することなく、必要に応じて機械的デ
スケーリングした後、HNO3として20〜130g/
eの硝酸とHO2として50〜3001/(1の塩酸を
含む硝塩酸水溶液にFe  イオ/として3〜90 g
/l含むように第2鉄塩を添加した溶液を用いて酸洗し
、ついで冷間圧延及び焼鈍を行うことを特徴とするオー
ステナイト系ステンレス鋼板又は銅帯の製造方法。
[Claims] (In weight%, C: 0.005 to 007%, Si: 1.0% or less Mn
: 3.0% or less, Cr: 16-20%N
i: 6.0~11.5chi jN: 0.005
~0.2%P: 0.040% or less, S:
0.010 chi or less, and 2C0N is Mn + N
Points A, Bp, C in Figure 1 depending on i and P content
p, D (where p indicates P content x 10 pieces, and point B
p, C, are respectively determined by the P content), and after hot rough rolling a slab of austenitic stainless steel consisting of the remainder Fe and unavoidable impurities, at least Hot-rolled steel sheets or copper strips manufactured by performing one or more passes at the reduction rate and biting temperature in the ranges surrounded by points P, Q, R, S, and T in Figure 2 can be processed as needed without annealing. After mechanical descaling, 20-130Ii/13 of nitric acid and HNO,
Pickling is performed using a solution prepared by adding ferric salt to a nitric acid aqueous solution containing 50 to 30011/l of hydrochloric acid as Cl so as to contain 3 to 901/l of Fe ions, and then cold rolling and annealing. A method for producing an austenitic stainless steel plate or a copper strip, characterized by: (2) In terms of weight, C: 0.005 to 0.07%, St: 1.0 or less, Mn: 3. 0% or less, Cr: 16-201N
i: 6.0-11.5%, N: 0.005-0
.. 2%P: 0.040% or less, S: 0.010%
Points A, B, , C, D in Figure 1 (where p indicates the P content 4: X 10-''%, and point B
, , C, are respectively determined by the P content), and furthermore, Mo: 496 or less r Cu
: After hot rough rolling a slab of austenitic stainless steel containing 4% or less of one or both, the balance being Fe and unavoidable impurities, at least one pass or more is applied to point p in FIG. 2 in hot finishing rolling. After mechanical descaling as necessary without annealing the hot-rolled steel sheet or copper strip produced by rolling reduction and biting temperature in the ranges enclosed by Q, R, S, and T, 20% HNO3 ~130g/
50 to 3001/(1) as nitric acid and HO2 (3 to 90 g as Fe io/to a nitric acid aqueous solution containing 1)
1. A method for producing an austenitic stainless steel sheet or a copper strip, which comprises pickling using a solution containing a ferric salt such that the austenitic stainless steel sheet or copper strip contains 1/1, followed by cold rolling and annealing.
JP350183A 1983-01-14 1983-01-14 Production of austenitic stainless steel plate or strip Granted JPS59129731A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP350183A JPS59129731A (en) 1983-01-14 1983-01-14 Production of austenitic stainless steel plate or strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP350183A JPS59129731A (en) 1983-01-14 1983-01-14 Production of austenitic stainless steel plate or strip

Publications (2)

Publication Number Publication Date
JPS59129731A true JPS59129731A (en) 1984-07-26
JPS6216251B2 JPS6216251B2 (en) 1987-04-11

Family

ID=11559096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP350183A Granted JPS59129731A (en) 1983-01-14 1983-01-14 Production of austenitic stainless steel plate or strip

Country Status (1)

Country Link
JP (1) JPS59129731A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS609829A (en) * 1983-06-25 1985-01-18 Nippon Stainless Steel Co Ltd Production of austenitic stainless steel plate for road mirror
JPS60177168A (en) * 1984-02-24 1985-09-11 Nisshin Steel Co Ltd Weatherproof austenitic stainless steel
JPH02141556A (en) * 1988-11-21 1990-05-30 Nippon Kinzoku Kogyo Kk Nonmagnetic stainless steel having excellent cold workability
US5000797A (en) * 1986-08-30 1991-03-19 Aichi Steel Works, Limited Method for producing a stainless steel having a good corrosion resistance and a good resistance to corrosion in seawater
WO2017209142A1 (en) * 2016-06-01 2017-12-07 株式会社特殊金属エクセル Metastable austenitic stainless steel band or sheet and manufacturing method therefor
CN110669986A (en) * 2019-10-17 2020-01-10 浦项(张家港)不锈钢股份有限公司 310S stainless steel preparation method and 310S stainless steel

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS609829A (en) * 1983-06-25 1985-01-18 Nippon Stainless Steel Co Ltd Production of austenitic stainless steel plate for road mirror
JPS60177168A (en) * 1984-02-24 1985-09-11 Nisshin Steel Co Ltd Weatherproof austenitic stainless steel
JPH0536493B2 (en) * 1984-02-24 1993-05-31 Nisshin Steel Co Ltd
US5000797A (en) * 1986-08-30 1991-03-19 Aichi Steel Works, Limited Method for producing a stainless steel having a good corrosion resistance and a good resistance to corrosion in seawater
JPH02141556A (en) * 1988-11-21 1990-05-30 Nippon Kinzoku Kogyo Kk Nonmagnetic stainless steel having excellent cold workability
WO2017209142A1 (en) * 2016-06-01 2017-12-07 株式会社特殊金属エクセル Metastable austenitic stainless steel band or sheet and manufacturing method therefor
JP2017218671A (en) * 2016-06-01 2017-12-14 株式会社特殊金属エクセル Metastable austenitic stainless steel band or steel sheet and manufacturing method therefor
JP2017218666A (en) * 2016-06-01 2017-12-14 株式会社特殊金属エクセル Metastable austenitic stainless steel band or steel sheet and manufacturing method therefor
JP2017218670A (en) * 2016-06-01 2017-12-14 株式会社特殊金属エクセル Metastable austenitic stainless steel band or steel sheet and manufacturing method therefor
CN110669986A (en) * 2019-10-17 2020-01-10 浦项(张家港)不锈钢股份有限公司 310S stainless steel preparation method and 310S stainless steel

Also Published As

Publication number Publication date
JPS6216251B2 (en) 1987-04-11

Similar Documents

Publication Publication Date Title
JPH0158255B2 (en)
CN107177788B (en) A kind of secondary cold-rolling tin plate and its production method
JPS59177327A (en) Production of cold rolled steel sheet for pressing work
JPS59129731A (en) Production of austenitic stainless steel plate or strip
JPH0681036A (en) Production of ferritic stainless steel sheet excellent in ridging characteristic and workability
JP2001003143A (en) Ferritic stainless steel sheet excellent in workability and surface characteristics, and its manufacture
JPS6043431A (en) Manufacture of soft steel sheet for surface treatment with superior fluting resistance by continuous annealing
JPS60234920A (en) Manufacture of ultrahigh tensile maraging cold rolled steel plate
JPS6054375B2 (en) Manufacturing method of austenitic stainless steel plate or steel strip
CN111088458A (en) Medium-high carbon steel 65Mn hot-rolled pickled plate and production method thereof
JPH02290917A (en) Production of cold rolled ferritic stainless steel sheet
JPH0564212B2 (en)
JPS59136425A (en) Preparation of cold rolled steel plate for press work
JP3059376B2 (en) Austenitic stainless steel sheet excellent in gloss and corrosion resistance and method for producing the same
JPH0257128B2 (en)
JPS6024325A (en) Production of ferritic stainless steel plate having less ridging and excellent formability
JP2002212681A (en) Ferritic stainless steel sheet and production method therefor
JPS60204835A (en) Manufacture of weather-resistant cold-rolled steel sheet having superior roll formability
CN116024415A (en) Method for reducing anisotropy of r value of 439 cold-rolled sheet material
JPS58104124A (en) Production of cold-rolled steel plate for working by continuous annealing
JPS6053725B2 (en) Method for manufacturing austenitic stainless steel sheets and steel strips
JPS61204325A (en) Production of as-rolled thin steel sheet for working having excellent ridging resistance and strength-elongation balance
JP2022150255A (en) Ferritic stainless steel hot-rolled plate and method for manufacturing the same and ferritic stainless cold-rolled plate
JPS6362822A (en) Production of cold rolled steel sheet for deep drawing
JPS5942730B2 (en) Manufacturing method of high-strength steel plate with good press workability by continuous annealing