JPS60204835A - Manufacture of weather-resistant cold-rolled steel sheet having superior roll formability - Google Patents

Manufacture of weather-resistant cold-rolled steel sheet having superior roll formability

Info

Publication number
JPS60204835A
JPS60204835A JP5863984A JP5863984A JPS60204835A JP S60204835 A JPS60204835 A JP S60204835A JP 5863984 A JP5863984 A JP 5863984A JP 5863984 A JP5863984 A JP 5863984A JP S60204835 A JPS60204835 A JP S60204835A
Authority
JP
Japan
Prior art keywords
cold
less
annealing
pocket
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5863984A
Other languages
Japanese (ja)
Other versions
JPH0142329B2 (en
Inventor
Takashi Obara
隆史 小原
Kazunori Osawa
一典 大澤
Minoru Nishida
稔 西田
Hisao Yasunaga
安永 久雄
Tsugio Sekine
関根 次男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP5863984A priority Critical patent/JPS60204835A/en
Publication of JPS60204835A publication Critical patent/JPS60204835A/en
Publication of JPH0142329B2 publication Critical patent/JPH0142329B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

PURPOSE:To improve the roll formability by reducing the C content of a steel blank contg. prescribed percentages of Mn, Si, P, Cu, Ni, etc., hot rolling the blank, coiling the hot rolled plate, cold rolling it, and annealing the resulting sheet under prescribed conditions. CONSTITUTION:A steel contg., by weight, <=0.045% C, <=1% Si, <=0.12% P, 0.1- 0.6% Cu, <=0.5% Ni, <=1% Cu, 0.0025-0.01% N and 0.01-0.1% Al is refined. A blank of the steel is hot rolled, and the hot rolled plate is coiled at <=580 deg.C, pickled, and cold rolled. The resulting sheet is annealed at the recrystallization temp. -800 deg.C for <=60sec soaking in time in a continuous annealing furnace, and the annealed sheet is forced to be cooled at 10-500 deg.C/sec cooling rate in the temp. range of 350-150 deg.C in a cooling stage.

Description

【発明の詳細な説明】 この発明は耐候性冷延鋼板の製造方法に関し、特にロー
ル成形されて使用されるに適した耐候性冷延鋼板の製造
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a weather-resistant cold-rolled steel sheet, and more particularly to a method for manufacturing a weather-resistant cold-rolled steel sheet suitable for use after being roll-formed.

周知のように冷延鋼板は種々の用途に使用されているが
、特に最近では建築材料等の用途においてロール成形し
て使用されることが多くなっている。しかるに冷延薄鋼
板を、ウェーブ幅/板厚の比が300を越えるような広
幅断面形状にロール成形した場合、鋼板は幅方向の曲げ
歪取外の付加的歪を受けるだめに、例えば第1図に示す
如く製品ウェーブ部1にオイルキャンあるいはポケット
ウェーブと称される凹凸(以下これをポケットウェーブ
と記す)2が発生することがある。このポケットウェー
ブの欠陥が生じれば、外観を損なうのみならず、組み立
て作業などにおいて接合不良等の不都合が生じるから、
冷延鋼板のロール成形にあたっては、ポケットウェーブ
の発生を防止しなければならない。
As is well known, cold-rolled steel sheets are used for various purposes, and recently they have been increasingly used in roll-forming applications, such as building materials. However, when a cold-rolled thin steel sheet is roll-formed into a wide cross-sectional shape with a wave width/thickness ratio exceeding 300, the steel sheet is subjected to additional strain in addition to removing bending strain in the width direction. As shown in the figure, unevenness called oil can or pocket wave (hereinafter referred to as pocket wave) 2 may occur in the product wave portion 1. If this pocket wave defect occurs, it will not only damage the appearance, but also cause problems such as poor joints during assembly work, etc.
When roll forming cold-rolled steel sheets, it is necessary to prevent the generation of pocket waves.

ポケットウェーブの発生を抑えるためには加工方法や加
工形状の変更が重要であるが、加工方法や加工形状の改
善だけでは充分にポケットウェーブの発生を抑えられな
いことも多く、そのような場合には鋼板自体の特性改善
が必要となる。一般に通常の工程で製造された冷延鋼板
、すなわち連続鋳造されたA7キルド鋼を熱延、冷延後
、箱焼鈍することによって製造された冷延鋼板はポケッ
トウェーブが発生し易く、そこで従来から種々の改善、
すなわち化学成分の変更や連続焼鈍を含む焼鈍条件の改
善など種々試みられてきたが、いずれの方法でも満足す
べき結果が得られていないのが実情である。特に1耐候
性鋼板の如く焼付塗装処理が施されない用途に用いられ
る場合には、焼付けKよるひずみ時効の効果が期待され
ないため、ポケットウェーブの発生防止が極めて困難で
あった。また例えば耐候性鋼板のようにP 、 Cu等
の硬化元素を多量に含有する鋼板では抗張カが高くしか
も焼付塗装処理が施されないためポケットウェーブの発
生防止がよシ困難となっている。
In order to suppress the occurrence of pocket waves, it is important to change the machining method and machining shape, but in many cases, improving the machining method and machining shape alone is not sufficient to suppress the occurrence of pocket waves. requires improvement of the properties of the steel sheet itself. In general, cold-rolled steel sheets manufactured by a normal process, that is, continuously cast A7 killed steel, hot-rolled, cold-rolled, and then box-annealed, are prone to pocket waves, so conventional various improvements,
That is, various attempts have been made to change the chemical composition and improve the annealing conditions including continuous annealing, but the reality is that no satisfactory result has been obtained with any of the methods. In particular, when used in applications such as No. 1 weathering steel sheets that are not subjected to baking coating treatment, the effect of strain aging due to baking K is not expected, so it has been extremely difficult to prevent the generation of pocket waves. Further, for example, steel plates containing large amounts of hardening elements such as P and Cu, such as weathering steel plates, have high tensile strength and are not subjected to baking coating treatment, making it difficult to prevent pocket waves from occurring.

この発明は以上の事情を背景としてなされたものであっ
て、耐候性鋼板のように焼付塗装処理等を行なわない場
合でもロール成形時におりてポケットウェーブの発生を
ほぼ完全に防止し得る冷延鋼板を製造する方法を提供す
ることを目的とするものである。
This invention was made against the background of the above-mentioned circumstances, and is a cold-rolled steel sheet that can almost completely prevent the occurrence of pocket waves during roll forming, even if it is not subjected to a baking coating treatment like a weather-resistant steel sheet. The purpose of this invention is to provide a method for manufacturing.

本発明者等は、上述の目的を達成するべく、冷延鋼板の
素材成分および製造工程条件について詳細に実験・検討
を重ねた結果、素材化学成分、特にCtを適切に調整し
、かつ熱延板巻取条件および冷延後の焼鈍条件特に冷却
条件を適切に設定することKより固溶C,Nを残存させ
、ポケットウェーブの発生のないロール成形性に優れた
冷延鋼板を得ることができることを見出し、この発明を
なすに至ったものである。
In order to achieve the above-mentioned object, the present inventors conducted detailed experiments and studies on the material composition and manufacturing process conditions of cold-rolled steel sheets, and found that the material chemical composition, particularly Ct, was appropriately adjusted and the hot-rolled steel sheet Appropriately setting the sheet winding conditions and the annealing conditions after cold rolling, especially the cooling conditions, allows solid solution C and N to remain and obtains a cold rolled steel sheet with excellent roll formability without the generation of pocket waves. This discovery led to the creation of this invention.

すなわちこの発明の耐候性冷延鋼板製造方法は、基本的
には素材成分のCiを低i範囲に規制し、かつ焼鈍後の
冷却条件その他の製造条件を適切に設定したものであっ
て、その要旨は、素材として、C0,045%以丁、M
n 1. O%以丁、s+1.0%以下、Po、120
%以下、Cu U、 1−0.60 %、Ni 0.5
0 %以下、Cr 1.0 %以下、AA’0.010
〜0100%、NO,0025〜0.0100チ、残部
がFeおよび不可避的不純物よりなる鋼を用い、その鋼
素材を熱間圧延後、580℃以下の温度で巻取り、続い
て酸洗および冷間圧延を施し、次いで連続焼鈍炉によシ
再結晶温度以上、800℃以下の温度範囲内で均熱時間
60秒以内で焼鈍し、かつその焼鈍後の冷却過程におけ
る350〜150℃の温度域を10 ’c/sec以上
、500°Vsee以下の冷却速度で強制冷却すること
を特徴とするものである。
In other words, the method for producing weather-resistant cold-rolled steel sheets of the present invention basically regulates the material component Ci to a low i range, and appropriately sets the cooling conditions after annealing and other production conditions. The summary is that the material is C0,045% or more, M
n1. O% more than s+1.0%, Po, 120
% or less, Cu U, 1-0.60%, Ni 0.5
0% or less, Cr 1.0% or less, AA'0.010
~0100%, NO,0025~0.0100%, and the balance is Fe and unavoidable impurities. After hot rolling, the steel material is coiled at a temperature of 580°C or less, and then pickled and cooled. Inter-rolling, then annealing in a continuous annealing furnace within a temperature range of above the recrystallization temperature and below 800°C for a soaking time of 60 seconds or less, and in a temperature range of 350 to 150°C during the cooling process after the annealing. is characterized by forced cooling at a cooling rate of 10'c/sec or more and 500°Vsee or less.

以下この発明についてさらに詳細に説明する。This invention will be explained in more detail below.

先ずこの発明をなすに至る基礎となった実験について説
明する。
First, the experiments that formed the basis of this invention will be explained.

00005〜O1O%、Mn 0.40 %、5iO0
03チ、Po、050%、Cu O,40%、Ni03
0チ、Cr 0.40チ、NO,0060チ、AlO,
040%を含有するAlキルド鋼連鋳スラブを熱延仕上
温度800〜880℃で熱間圧延して巻重温度450〜
550℃で巻取シ、板厚32Illllの熱延板とした
。さらに酸洗後、板厚0.8 mに冷間圧延し、第2図
(ト)に示すような熱サイクルでの連続焼鈍、もしくは
670℃均熱時間5 hrの箱焼鈍を行なった後、圧F
率1%で調質圧延を行なった。
00005~O1O%, Mn 0.40%, 5iO0
03 Chi, Po, 050%, Cu O, 40%, Ni03
0chi, Cr 0.40chi, NO, 0060chi, AlO,
A continuous cast Al killed steel slab containing 0.040% is hot rolled at a finishing temperature of 800 to 880°C and rolled at a rolling temperature of 450 to 880°C.
It was rolled up at 550° C. to form a hot rolled sheet with a thickness of 32 mm. After pickling, the material was cold-rolled to a thickness of 0.8 m, and subjected to continuous annealing in a thermal cycle as shown in Figure 2 (g) or box annealing at 670°C for 5 hours. Pressure F
Temper rolling was performed at a rolling rate of 1%.

得られた冷延鋼板に対しロール成形加工を施して、第1
図に示すような形状とし、ロール成形後のポケットウェ
ーブ高さを調べた。なおここでポケットウェーブ高さは
、そのポケットウェーブの凹凸の波高さの成形方向1m
あたりの総和で測定した。
The obtained cold-rolled steel sheet is subjected to roll forming processing, and the first
The shape shown in the figure was prepared, and the height of pocket waves after roll forming was examined. Note that the pocket wave height here is 1 m in the forming direction of the wave height of the unevenness of the pocket wave.
It was measured by the total amount per unit.

そのポケットウェーブ高さをC′t1焼鈍方法および熱
延板巻取温度に対応して第3図に示す。
The pocket wave height is shown in FIG. 3 in correspondence with the C't1 annealing method and the hot-rolled sheet winding temperature.

第3図に示すように箱焼鈍の場合には、Ctによらず常
にポケットウェーブが発生した。一方連続焼鈍の場合に
は、Ctが005チ程度以上ではポケットウェーブ高さ
が2朋以上と可成のポケットウェーブが発生したが、C
tが0045%以丁になれば熱延板巻取温度が500〜
550℃ではポケットウェーブ高さが05請以下となシ
、実用上全く支障ない程度までポケットウェーブの発生
が軽減された。但し連続焼鈍を採用しかつCtが0.0
45チ以下の場合でも、熱延板巻取温度が670℃と高
い場合には211IK程度の高さのポケットウェーブが
発生した。このような実験結果から、ポケットウェーブ
の発生を防止するためKは、連続焼鈍を採用してC量を
0.045%以下とし、かつ熱延板巻取温度が低いこと
が必要であることが判る。
As shown in FIG. 3, in the case of box annealing, pocket waves always occurred regardless of Ct. On the other hand, in the case of continuous annealing, pocket waves with a height of 2 mm or more were generated when Ct was about 0.05 mm or higher, but C
If t becomes 0.045%, the hot rolled sheet winding temperature will be 500~
At 550°C, the pocket wave height was 0.5 cm or less, and the occurrence of pocket waves was reduced to the extent that there was no practical problem at all. However, continuous annealing is used and Ct is 0.0.
Even in the case of 45 inches or less, pocket waves with a height of about 211 IK were generated when the hot-rolled sheet winding temperature was as high as 670 degrees Celsius. From these experimental results, in order to prevent the occurrence of pocket waves, it is necessary to adopt continuous annealing, keep the C amount to 0.045% or less, and keep the hot-rolled sheet winding temperature low. I understand.

ポケットウェーブの発生に関与する因子は多数考えられ
るから、上述のような結果が得られた理由は必ずしも明
確ではないが、次のように考えられる。すなわち、本発
明者等の経験によれば、ポケットウェーブの発生防止に
は、鋼板の降伏応力、抗張力、および降伏応力と抗張力
との比などの制御が重要であると推定され、また一般に
連続焼鈍による場合には箱焼鈍による場合と比較して降
伏応力が高く、降伏伸びが大きいことが知られてお)、
これらの点がポケットウェーブ発生防止に有利に作用し
たものと考えられる。特に連続焼鈍の場合でもC11が
低い場合に良好な結果が得られた理由は、C量が低くな
ると結晶粒径が大きくなるとともにセメンタイトの分散
が粗になったことが考えられる。
Since there are many factors involved in the generation of pocket waves, the reason for the above results is not necessarily clear, but it is thought to be as follows. In other words, according to the experience of the present inventors, it is estimated that controlling the yield stress, tensile strength, and ratio of yield stress to tensile strength of the steel sheet is important to prevent the occurrence of pocket waves. It is known that the yield stress and yield elongation are higher when using box annealing than when using box annealing).
It is thought that these points worked advantageously to prevent the occurrence of pocket waves. Particularly, the reason why good results were obtained when C11 was low even in the case of continuous annealing is considered to be that as the C content became lower, the crystal grain size became larger and the dispersion of cementite became coarser.

したがって以上の実験結果から、この発明の方〜 法においては冷延後の焼鈍方法として連続焼鈍を採用し
、素材中のC含有量を0.045%以丁に限定した。ま
た熱延板巻取温度が高くなると前述のようにポケットウ
ェーブが発生するのみならず、脱スケールのためのコス
トも上昇するから、巻取温度の上限は580℃とした。
Therefore, based on the above experimental results, in the method of the present invention, continuous annealing was adopted as the annealing method after cold rolling, and the C content in the material was limited to 0.045% or less. Further, when the hot-rolled sheet winding temperature becomes high, not only pocket waves occur as described above, but also the cost for descaling increases, so the upper limit of the winding temperature was set at 580°C.

さらに本発明者等は冷間圧延後の連続焼鈍のヒートサイ
クルについての適切な条件を見出すべく、次のような実
験を行なった。
Furthermore, the present inventors conducted the following experiment in order to find appropriate conditions for the heat cycle of continuous annealing after cold rolling.

C0,075%または0.038%、Mn 0.45%
、Si0.20%、Po、060%、CuO,20%、
NiO,20%、Cr O,15%、AIo、045%
、No、0058%を含む連続鋳造スラブを素材とし、
仕上温度800℃で熱間圧延して520℃で巻取り、次
いで常法に従って酸洗および冷間圧延を施して板厚1.
01111とした。その冷延板を実験室において種々の
ヒートサイクルで熱処理した後、1.0チのスキンバス
を行ない、小型成形試験用ロールでロール成形して、形
状欠陥の有無、すなわちポケットウェーブの発生状況と
腰折れ発生状況を調べた。第2図囚に示されるヒートサ
イクルに準じて、そのヒートサイクル甲の400℃×6
0秒の過時効処理後の最終冷却速度を0.5 Vsec
〜水冷(ζ3000″c/5ec)までの範囲で種々変
化させた場合のポケットウェーブ発生状況、腰折れ発生
状況をその最終冷却速度に対応して第4図に示す。
C0,075% or 0.038%, Mn 0.45%
, Si0.20%, Po, 060%, CuO, 20%,
NiO, 20%, CrO, 15%, AIo, 045%
, No. 0058% is used as the raw material,
It is hot-rolled at a finishing temperature of 800°C and coiled at 520°C, and then pickled and cold-rolled according to a conventional method to obtain a plate with a thickness of 1.
01111. The cold-rolled sheets were heat-treated in the laboratory through various heat cycles, then subjected to a 1.0-inch skin bath, and then roll-formed using a small forming test roll to determine the presence or absence of shape defects, that is, the occurrence of pocket waves. We investigated the occurrence of hip fractures. According to the heat cycle shown in Figure 2, the temperature of the heat cycle A is 400℃ x 6
The final cooling rate after 0 seconds of overaging treatment was set to 0.5 Vsec.
FIG. 4 shows the occurrence of pocket waves and the occurrence of buckling when various changes are made in the range from - water cooling (ζ 3000''c/5ec), corresponding to the final cooling rate.

但しここで腰折れとは、例えば第1図中の符号3で示す
ように、ロール成形時に鋼板側面に生じた折れ模様を意
味し、第4図においてはロール成形方向1mあたりの腰
折れ発生数を示した。またポケットウェーブ高さは第3
図の場合と同様である。
However, here, the bending means a folding pattern that occurs on the side surface of the steel plate during roll forming, for example, as shown by reference numeral 3 in Fig. 1, and Fig. 4 shows the number of bendings occurring per 1 m in the roll forming direction. Ta. Also, the pocket wave height is 3rd.
This is the same as the case shown in the figure.

第4図に示すように、C量が0.075 %の場合には
、冷却速度の増大に伴ってポケットウェーブ高さが低く
なる傾向は認められるものの、冷却速度が1000 ’
Q/secを越えてもポケットウェーブの発生が皆無と
なるには至らなかった。また同じ<citが0075チ
の場合、冷却速度が10〜50 Vsec程度以上で冷
却速度の増加に伴って腰折れが顕著に発生するようにな
った。したがってC量が0.075%の場合には、これ
ら2つの欠陥、すなわちポケットウェーブと腰折れの双
方を同時に解決することは困難であることが判明した。
As shown in Figure 4, when the C content is 0.075%, there is a tendency for the pocket wave height to decrease as the cooling rate increases;
Even if Q/sec was exceeded, the occurrence of pocket waves did not completely disappear. In addition, when the same <cit was 0075 cm, buckling became noticeable as the cooling rate increased when the cooling rate was about 10 to 50 Vsec or more. Therefore, it has been found that when the C content is 0.075%, it is difficult to solve these two defects, that is, pocket waves and buckling at the same time.

一方C4iが0.038チと低い場合には、冷却速度が
10 Vsec程度以上となればポケットウェーブの発
生が皆無となることが認められた。但しC量が0.03
8 %の鋼でも、冷却速度が水スプレーあるいは水冷に
よって達成される5000C/sec以上の極めて速い
速度となれば、腰折れが発生してしまうことが判明した
On the other hand, when C4i was as low as 0.038 inches, it was found that no pocket waves were generated if the cooling rate was about 10 Vsec or more. However, the amount of C is 0.03
It has been found that even with 8% steel, buckling can occur if the cooling rate is extremely high, such as 5000 C/sec or more, achieved by water spray or water cooling.

そしてこれらの実験結果から、C量が0.045チ以下
と低い鋼を、10〜500°c/seeの範囲内の冷却
速度で冷却すれば、ポケットウェーブの発生を防止でき
、しかも腰折れの発生も防止できることが判明した。
These experimental results show that if steel with a low C content of 0.045 cm or less is cooled at a cooling rate within the range of 10 to 500 °C/see, it is possible to prevent the occurrence of pocket waves and also to prevent the occurrence of buckling. It turns out that it can also be prevented.

このような冷却条件を適用することによってポケットウ
ェーブと腰折れの発生を防止できる理由は必ずしも明確
ではないが、冷却条件による降伏応力、抗張力、および
降伏応力と抗張力の比、さらに降伏伸び等の変化が微妙
に影響しているものと推定される。
The reason why pocket waves and buckling can be prevented by applying such cooling conditions is not necessarily clear, but it is important to note that changes in yield stress, tensile strength, the ratio of yield stress to tensile strength, and yield elongation due to cooling conditions are It is assumed that there is a subtle influence.

セしてさらに冷却条件について詳細に検討した結果、前
述のようKIO〜500″C/s ecの範囲内の冷却
速度に設定する゛必要があるのは、350〜150℃の
温度域であることが判明した。すなわち、350℃を越
える温度域、あるいFil 50℃より低い温度域では
、ポケットウェーブや腰折れの発生状況が冷却速度にt
1!とんと依存しないことが判明した。その理由は明確
ではないが、固溶Cの皐動に関係しているものと推定さ
れる。すなわち350℃を越える温度域ではCの拡散速
度が著しく速く、はぼ瞬間的にCはその温度での平衡値
に達してしまい、そのため350′Cを越える温度域で
は工業的に実用化されている冷却速度範囲で材質がほと
んど冷却速度に依存せず、一方150℃よシ低くなれば
Cの拡散速度が著しく遅くなり、そのため前記同様に材
質が冷却速度に依存しなくなることにあると思われる。
As a result of further detailed consideration of the cooling conditions, we found that the temperature range of 350 to 150 degrees Celsius is where it is necessary to set the cooling rate within the range of KIO to 500"C/sec, as mentioned above. In other words, in the temperature range exceeding 350°C or lower than Fil 50°C, the occurrence of pocket waves and waist bends has a significant impact on the cooling rate.
1! It turns out that it's not really addictive. The reason for this is not clear, but it is presumed to be related to the oscillation of solid solution C. In other words, in a temperature range exceeding 350'C, the diffusion rate of C is extremely fast, and C almost instantaneously reaches an equilibrium value at that temperature.Therefore, in a temperature range exceeding 350'C, it has not been put to practical use industrially. This seems to be because the quality of the material is almost independent of the cooling rate within the cooling rate range of .

したがって、焼鈍後の冷却は、350〜150℃の温度
域を10〜500 ’Cy’*ecの冷却速度で行なう
ものとした。
Therefore, cooling after annealing was performed in a temperature range of 350 to 150°C at a cooling rate of 10 to 500'Cy'*ec.

なお冷間圧延後の焼鈍において過時効処理を行なわない
場合、例えば第2図(6)に示すようなヒートサイクル
の焼鈍の場合でも、700℃の焼鈍温度からの冷却過程
における350〜150℃の温度域の冷却速度を10〜
500°Q/secとすることによって前記同様の効果
が得られることが判明している。したがってこの発明の
方法は過時効処理の有無は問わないこととする。
In addition, when no overaging treatment is performed during annealing after cold rolling, for example, even in the case of heat cycle annealing as shown in Figure 2 (6), the temperature of 350 to 150 °C during the cooling process from the annealing temperature of 700 °C Cooling rate in temperature range from 10 to
It has been found that the same effect as described above can be obtained by setting the speed to 500°Q/sec. Therefore, the method of this invention does not matter whether or not overage treatment is performed.

さらにこの発明の方法における上記以外の条件について
説明すると、焼鈍温度が800℃となれはセメンタイト
が粗大化して抗張力が高くなり、好ましくないので焼鈍
温度は再結晶温度以上、800℃以丁とした。また焼鈍
温度での均熱時間が長くなれば、ポケットウェーブが発
生し易くなる。その理由は、均熱時間が長くなればAI
Nの析出が進行して固溶Nが減少するためと考えられ、
本発明者等の実験によれば均熱時間が60秒を越えれば
ポケットウェーブ発生傾向が強まることが判明してお〕
、シたがって連続焼鈍における再結晶温度以上800℃
以丁の温度範囲内での均熱時間は60秒以内とした。
Further, to explain the conditions other than the above in the method of the present invention, an annealing temperature of 800°C is not preferable because the cementite becomes coarse and the tensile strength increases, so the annealing temperature was set to be higher than the recrystallization temperature and less than 800°C. Furthermore, if the soaking time at the annealing temperature becomes longer, pocket waves are more likely to occur. The reason is that the longer the soaking time, the more
This is thought to be due to the progress of N precipitation and the decrease in solid solution N.
According to experiments conducted by the present inventors, it has been found that if the soaking time exceeds 60 seconds, the tendency to generate pocket waves increases.
Therefore, the recrystallization temperature in continuous annealing is 800°C or higher.
The soaking time within the specified temperature range was 60 seconds or less.

次にC以外の素材鋼成分の限定理由を説明する。Next, the reason for limiting the raw material steel components other than C will be explained.

Mn : MnはSKよる割れ防止および鋼の強化に有
効な元素であるが、多値に添加されれば表面性状の劣化
や鋼コストの上昇を招くから、1.01を上限とした。
Mn: Mn is an effective element for preventing cracking caused by SK and for strengthening steel, but if added in multiple values it will cause deterioration of surface properties and increase in steel cost, so the upper limit was set at 1.01.

Si:SiはMnと同様に強化元素として有効であるが
、多量に含有されれば表面性状の劣化を招くから、1.
0チを上限とした。
Si: Like Mn, Si is effective as a reinforcing element, but if it is contained in a large amount, it causes deterioration of the surface quality.
The upper limit was 0.

P: Pも強化元素として有効であるが、多値に富有さ
れれば脆化の原因となるから上限を0.12チとした。
P: P is also effective as a reinforcing element, but if enriched in many values it causes embrittlement, so the upper limit was set at 0.12.

Cu : Cuは耐候性を増すのに有効な元素であシ、
0.1−以上必要であるが、多量に含まれると各種欠陥
の原因となるから、上限を0.60 %とした。
Cu: Cu is an effective element for increasing weather resistance.
0.1% or more is necessary, but since a large amount can cause various defects, the upper limit was set at 0.60%.

hJ+ : N+はやはり耐候性を向上させるのに有効
な元素であるが、多量の添加はコストアップの要因とな
るので、上限を0.50 %とした。
hJ+: N+ is still an effective element for improving weather resistance, but adding a large amount causes an increase in cost, so the upper limit was set at 0.50%.

Cr:Crは耐候性を向上させるのに有効な元素で6る
が、多量の添加はコストアップの要因及び各種欠陥の原
因となるから、上限を1.0チとした。
Cr: Cr is an effective element for improving weather resistance, but since adding a large amount increases cost and causes various defects, the upper limit was set at 1.0.

Al:Alは通常の製鋼過程において脱酸元素として少
くとも0.01チは必要であるが、多過ぎればコスト上
昇の原因となるから、上限をo、 t o 。
Al: Al is required as a deoxidizing element in the normal steelmaking process in an amount of at least 0.01 h, but too much will cause an increase in costs, so the upper limit is set to o, t o.

チとした。It was hot.

N: Nは通常の製造工程での下限が0.0025チで
あり、また0、Olチ以上とするためには特別な処理を
行なう必要があるから、Nは0.0025〜o、oto
oチの範囲とした。
N: The lower limit of N in the normal manufacturing process is 0.0025 inches, and special treatment is required to make it more than 0.
The range was set at ochi.

以下に実施例を記す。Examples are described below.

第1表に示す化学成分を有する鋼スラブを、第1表中に
示す条件で板厚2.8118に熱間圧延した後、常法に
したがって酸洗、谷間圧延して、板厚0.8篩の冷延板
とした。その冷延板に対し、第1表中に示す条件で連続
焼鈍(41〜8)もしくは箱焼鈍(/%9)した。さら
に圧下率1.0%でスキンノくス圧延後、圧延方向に平
行な方向にJIS S号引張試験片を採取し、引張試験
を行なった。さらに鋼板をロール成形し、成形後のポケ
ットウェーブ発生状況および腰折れ発生状況を調べた。
A steel slab having the chemical composition shown in Table 1 was hot rolled to a thickness of 2.8118 mm under the conditions shown in Table 1, and then pickled and valley rolled to a thickness of 0.8 mm according to a conventional method. It was made into a cold-rolled screen plate. The cold-rolled sheets were subjected to continuous annealing (41 to 8) or box annealing (/%9) under the conditions shown in Table 1. Further, after skin scrap rolling at a reduction rate of 1.0%, JIS No. S tensile test pieces were taken in a direction parallel to the rolling direction, and a tensile test was conducted. Furthermore, the steel plate was roll-formed, and the occurrence of pocket waves and buckling after forming was investigated.

それらの結果を第2表に示す。なお第2表においてポケ
ットウェーブ高さおよび腰折れ発生数の定義は第2図、
第3図の場合と同じである。
The results are shown in Table 2. In addition, in Table 2, the definitions of pocket wave height and number of waist breaks are shown in Figure 2.
This is the same as in the case of FIG.

第2表 第2表から明らかなように1この発明の素材成分範囲、
熱延、焼鈍条件を満足して得られた本発明例(zf61
,2,5,7.9)の冷延鋼板の場合にはいずれもポケ
ットウェーブの発生が著しく少なく、シかも腰折れの発
生も見られず、極めて優れたロール成形性を有すること
が確認された。一方、/f63の冷延鋼板の場合、焼鈍
後の最終冷却速度が3 C/secと遅いため、相当程
度のポケットウェーブが発生した。また/164の冷延
鋼板の場合、焼鈍後の最終冷却速度が8T7secと若
干遅いことに加えて、焼鈍均熱温度が830℃と高いた
め、著しいポケットウェーブの発生が認められた。さら
に屑6の冷延鋼板では、Ctがo、ostチと高いため
、著しいポケットウェーブが発生すると同時に腰折れの
発生が認められた。そしてまた/I69の冷延鋼板では
、焼鈍に箱焼鈍を採用して長時間の均熱を行ない、その
後の冷却速度も極めて遅いため、かなりの程度のポケッ
トウェーブの発生が認められた。これらの結果から、ロ
ール成形時におけるポケットウェーブの発生を実用上支
障ない程度まで軽減し、しかも腰折れの発生を防止する
ためには、この発明のすべての条件を満足する必要があ
ることがわかる。
Table 2 As is clear from Table 2, 1. Range of material components of this invention;
Example of the present invention (zf61) obtained by satisfying hot rolling and annealing conditions
, 2, 5, and 7.9), the occurrence of pocket waves was extremely small, and no cracking or bending was observed, and it was confirmed that the cold-rolled steel sheets had extremely excellent roll formability. . On the other hand, in the case of the /f63 cold-rolled steel sheet, the final cooling rate after annealing was as slow as 3 C/sec, so a considerable amount of pocket waves occurred. In addition, in the case of the /164 cold-rolled steel sheet, the final cooling rate after annealing was slightly slow at 8T7sec, and the annealing soaking temperature was as high as 830°C, so significant pocket waves were observed to occur. Furthermore, in the cold-rolled steel sheet of Scrap 6, since the Ct was as high as o and ost, significant pocket waves and buckling were observed at the same time. In addition, in the case of /I69 cold rolled steel sheet, box annealing was adopted for annealing, soaking was carried out for a long time, and the subsequent cooling rate was also extremely slow, so a considerable amount of pocket waves were observed to occur. These results show that it is necessary to satisfy all the conditions of the present invention in order to reduce the occurrence of pocket waves during roll forming to a level that does not cause any practical problems and to prevent the occurrence of buckling.

以上のようにこの発明の冷延鋼板製造方法によれば、素
材のC−1lを0.045%以下に低減すると同時に、
熱延板巻取温度条件、冷延後の焼鈍条件(特に最終冷却
条件)を適切に設定することKよって、ロール成形加工
時にポケットウェーブや腰折れが発生するおそれが極め
て少ない、ロール成形性の著しく優れた冷延鋼板を得る
ことができる顕著な効果が得られる。そしてこの発明に
よれば、特に焼付塗装処理が施されなめ用途の耐候性冷
延鋼板の如く、従来はロール成形時におけるポケットウ
ェーブの発生防止が困難とされていた冷延鋼板でもポケ
ットウェーブの発生を実用上支障ない程度まで抑えるこ
とができるため、この種の用途に特に有用である。
As described above, according to the cold rolled steel sheet manufacturing method of the present invention, C-1l of the material can be reduced to 0.045% or less, and at the same time,
By appropriately setting the hot-rolled sheet winding temperature conditions and the annealing conditions after cold rolling (especially the final cooling conditions), there is extremely little risk of pocket waves or buckling occurring during roll forming, and the roll formability is extremely high. A remarkable effect is obtained in that an excellent cold-rolled steel sheet can be obtained. According to this invention, pocket waves can occur even in cold rolled steel sheets where it has been difficult to prevent the generation of pocket waves during roll forming, such as weather-resistant cold rolled steel sheets that have been subjected to a baking coating treatment and are used for tanning purposes. It is particularly useful for this type of application because it can suppress the amount of damage to a level that does not cause any practical problems.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はロール成形加工された冷延鋼板のポケットウェ
ーブおよび腰折れ発生状況の一例を示す斜視図、第2図
(4)、(B)はそれぞれこの発明の方法における焼鈍
熱サイクルの一例を示す線図、第3図は冷延鋼板の素材
C量とロール成形時のポケットウェーブ高さとの関係を
示す相関図、第4図は焼鈍後の冷却速度とロール成形時
のポケットウェーブ高さおよび腰折れ発生数との関係を
示す相関図である。 第3図 c−t (%) 第4図 躊卯JIL友 (’C/S)
Fig. 1 is a perspective view showing an example of the occurrence of pocket waves and buckling in a roll-formed cold-rolled steel sheet, and Figs. 2 (4) and (B) each show an example of the annealing heat cycle in the method of the present invention. Figure 3 is a correlation diagram showing the relationship between the amount of raw material C in a cold rolled steel sheet and the pocket wave height during roll forming, and Figure 4 is a correlation diagram showing the relationship between the cooling rate after annealing and the pocket wave height and waist bending during roll forming. It is a correlation diagram showing the relationship with the number of occurrences. Figure 3 c-t (%) Figure 4 Kabu JIL friend ('C/S)

Claims (1)

【特許請求の範囲】[Claims] co、o4s%(重量%、以下同じ)以下、Mni、o
s以下、Si1.0%以下、Po、120%以丁、Cu
 O,1〜0.60%、Ni0.50%以下、Cr1.
0−以下、NO,0025〜0.0100%、Alo、
oto 〜o、toos、残部がFeおよび不可避的不
純物よりなる鋼を素材とし、その鋼素材を熱間圧延後5
80℃以下の温度で巻取勺、続いて酸洗および冷間圧延
を施し、次いで連続焼鈍炉によシ再結晶温度以上、80
0℃以下の温度範囲内での均熱時間60秒以内で焼鈍し
、かつその焼鈍後の冷却過程における350〜150℃
の温度域を100c/sec以上500 Vsec以下
の冷却速度で強制冷却することを特徴とするロール成形
性に優れた冷延鋼板の製造方法。
co, o4s% (weight %, same below) or less, Mni, o
s or less, Si 1.0% or less, Po, 120% or less, Cu
O, 1 to 0.60%, Ni 0.50% or less, Cr1.
0- or less, NO, 0025-0.0100%, Alo,
oto ~o, toos, the balance is made of steel consisting of Fe and unavoidable impurities, and after hot rolling the steel material
Coiling at a temperature below 80°C, followed by pickling and cold rolling, followed by continuous annealing at a temperature above the recrystallization temperature at 80°C.
Annealed within a temperature range of 0°C or less for a soaking time of 60 seconds, and 350 to 150°C during the cooling process after annealing.
A method for producing a cold-rolled steel sheet with excellent roll formability, characterized in that forced cooling is performed in a temperature range of 100 c/sec or more and 500 Vsec or less.
JP5863984A 1984-03-27 1984-03-27 Manufacture of weather-resistant cold-rolled steel sheet having superior roll formability Granted JPS60204835A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5863984A JPS60204835A (en) 1984-03-27 1984-03-27 Manufacture of weather-resistant cold-rolled steel sheet having superior roll formability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5863984A JPS60204835A (en) 1984-03-27 1984-03-27 Manufacture of weather-resistant cold-rolled steel sheet having superior roll formability

Publications (2)

Publication Number Publication Date
JPS60204835A true JPS60204835A (en) 1985-10-16
JPH0142329B2 JPH0142329B2 (en) 1989-09-12

Family

ID=13090149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5863984A Granted JPS60204835A (en) 1984-03-27 1984-03-27 Manufacture of weather-resistant cold-rolled steel sheet having superior roll formability

Country Status (1)

Country Link
JP (1) JPS60204835A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7169243B2 (en) * 1999-07-01 2007-01-30 Sollac Aluminum-killed medium-carbon steel sheet for containers and process for its preparation
CN102230138A (en) * 2011-06-04 2011-11-02 首钢总公司 Method for manufacturing SPA-H high-strength atmospheric corrosion resistance steel by using continuous annealing machine set
CN104962705A (en) * 2015-07-29 2015-10-07 山东伊莱特重工有限公司 Isothermal normalizing treatment technique of wind power flange

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7169243B2 (en) * 1999-07-01 2007-01-30 Sollac Aluminum-killed medium-carbon steel sheet for containers and process for its preparation
CN102230138A (en) * 2011-06-04 2011-11-02 首钢总公司 Method for manufacturing SPA-H high-strength atmospheric corrosion resistance steel by using continuous annealing machine set
CN104962705A (en) * 2015-07-29 2015-10-07 山东伊莱特重工有限公司 Isothermal normalizing treatment technique of wind power flange

Also Published As

Publication number Publication date
JPH0142329B2 (en) 1989-09-12

Similar Documents

Publication Publication Date Title
JPS5967322A (en) Manufacture of cold rolled steel plate for deep drawing
JP2759517B2 (en) Method for producing high tension bath galvanized steel sheet with excellent bending workability
JPH03202421A (en) Production of cold-rolled steel sheet having high ductility and high strength and reduced in anisotropy
JP2005120453A (en) Cold rolled steel sheet having developed {100}&lt;011&gt; orientation and excellent shape freezing property, and its manufacturing method
JPS631374B2 (en)
JPS60204835A (en) Manufacture of weather-resistant cold-rolled steel sheet having superior roll formability
JPH055887B2 (en)
JPS61272321A (en) Manufacture of ultra high-strength cold rolled steel sheet
JPH0215612B2 (en)
JPS6216251B2 (en)
JP3046145B2 (en) Manufacturing method of cold-rolled steel sheet for deep drawing
JPS6115929B2 (en)
JPH10130734A (en) Production of austenitic stainless steel sheet for roll forming
JPS5952207B2 (en) Manufacturing method of low yield ratio, high toughness, high tensile strength steel plate
JP3422549B2 (en) Cold-rolled steel sheet for enamel having high strength after enamel firing and method for producing the same
JPH0441620A (en) Production of high strength hot-dip galvanized steel sheet
JPH0257128B2 (en)
JP4332960B2 (en) Manufacturing method of high workability soft cold-rolled steel sheet
JPS63103026A (en) Manufacture of cold rolled steel sheet for deep drawing causing slight earing
JPS62185833A (en) Manufacture of cold rolled steel strip or steel sheet of austenitic stainless steel
JPS59173223A (en) Preparation of grade cold rolled steel plate for processing
JPH0257131B2 (en)
JPS5828329B2 (en) Manufacturing method of thick-walled high-toughness steel plate
JPS6067627A (en) Preparation of steel plate for soft surface treatment excellent in fluting resistance by continuous annealing
JPH01177321A (en) Manufacture of cold rolled steel sheet excellent in deep drawability

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees