JPH0142329B2 - - Google Patents

Info

Publication number
JPH0142329B2
JPH0142329B2 JP5863984A JP5863984A JPH0142329B2 JP H0142329 B2 JPH0142329 B2 JP H0142329B2 JP 5863984 A JP5863984 A JP 5863984A JP 5863984 A JP5863984 A JP 5863984A JP H0142329 B2 JPH0142329 B2 JP H0142329B2
Authority
JP
Japan
Prior art keywords
less
annealing
cold
pocket
rolled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5863984A
Other languages
Japanese (ja)
Other versions
JPS60204835A (en
Inventor
Takashi Obara
Kazunori Oosawa
Minoru Nishida
Hisao Yasunaga
Tsugio Sekine
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP5863984A priority Critical patent/JPS60204835A/en
Publication of JPS60204835A publication Critical patent/JPS60204835A/en
Publication of JPH0142329B2 publication Critical patent/JPH0142329B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は耐候性冷延鋼板の製造方法に関し、
特にロール成形されて使用されるに適した耐候性
冷延鋼板の製造方法に関するものである。 周知のように冷延鋼板は種々の用途に使用され
ているが、特に最近では建築材料等の用途におい
てロール成形して使用されることが多くなつてい
る。しかるに冷延薄鋼板を、ウエーブ幅/板厚の
比が300を越えるような広幅断面形状にロール成
形した場合、鋼板は幅方向の曲げ歪以外の付加的
歪を受けるために、例えば第1図に示す如く製品
ウエーブ部1にオイルキヤンあるいはポケツトウ
エーブと称される凹凸(以下これをポケツトウエ
ーブと記す)2が発生することがある。このポケ
ツトウエーブの欠陥が生じれば、外観を損なうの
みならず、組み立て作業などにおいて接合不良等
の不都合が生じるから、冷延鋼板のロール成形に
あたつては、ポケツトウエーブの発生を防止しな
ければならない。 ポケツトウエーブの発生を抑えるためには加工
方法や加工形状の変更が重要であるが、加工方法
や加工形状の改善だけでは充分にポケツトウエー
ブの発生を抑えられないことも多く、そのような
場合には鋼板自体の特性改善が必要となる。一般
に通常の工程で製造された冷延鋼板、すなわち連
続鋳造されたAlキルド鋼を熱延、冷延後、箱焼
鈍することによつて製造された冷延鋼板はポケツ
トウエーブが発生し易く、そこで従来から種々の
改善、すなわち化学成分の変更や連続焼鈍を含む
焼鈍条件の改善など種々試みられてきたが、いず
れの方法でも満足すべき結果が得られていないの
が実情である。特に、耐候性鋼板の如く焼付塗装
処理が施されない用途に用いられる場合には、焼
付けによるひずみ時効の効果が期待されないた
め、ポケツトウエーブの発生防止が極めて困難で
あつた。また例えば耐候性鋼板のようにP、Cu
等の硬化元素を多量に含有する鋼板では抗張力が
高くしかも焼付塗装処理が施されないためポケツ
トウエーブの発生防止がより困難となつている。 この発明は以上の事情を背景としてなされたも
のであつて、耐候性鋼板のように焼付塗装処理等
を行なわない場合でもロール成形時においてポケ
ツトウエーブの発生をほぼ完全に防止し得る冷延
鋼板を製造する方法を提供することを目的とする
ものである。 本発明者等は、上述の目的を達成するべく、冷
延鋼板の素材成分および製造工程条件について詳
細に実験・検討を重ねた結果、素材化学成分、特
にC量を適切に調整し、かつ熱延板巻取条件およ
び冷延後の焼鈍条件特に冷却条件を適切に設定す
ることにより固溶C、Nを残存させ、ポケツトウ
エーブの発生のないロール成形性に優れた冷延鋼
板を得ることができることを見出し、この発明を
なすに至つたものである。 すなわちこの発明の耐候性冷延鋼板製造方法
は、基本的には素材成分のC量を低い範囲に規制
し、かつ焼鈍後の冷却条件その他の製造条件を適
切に設定したものであつて、その要旨は、素材と
して、C 0.045%以下、Mn 1.0%以下、Si 1.0
%以下、P 0.120%以下、Cu 0.1〜0.60%、Ni
0.50%以下、Cr 1.0%以下、Al 0.010〜0.100%、
N 0.0025〜0.0100%、残部がFeおよび不可避的
不純物よりなる鋼を用い、その鋼素材を熱間圧延
後、580℃以下の温度で巻取り、続いて酸洗およ
び冷間圧延を施し、次いで連続焼鈍炉により再結
晶温度以上、800℃以下の温度範囲内で均熱時間
60秒以内で焼鈍し、かつその焼鈍後の冷却過程に
おける350〜150℃の温度域を10℃/sec以上、500
℃/sec以下の冷却速度で強制冷却することを特
徴とするものである。 以下この発明についてさらに詳細に説明する。 先ずこの発明をなすに至る基礎となつた実験に
ついて説明する。 C 0.005〜0.10%、Mn 0.40%、Si 0.03%、
P 0.050%、Cu 0.40%、Ni 0.30%、Cr 0.40
%、N 0.0060%、Al 0.040%を含有するAlキル
ド鋼連鋳スラブを熱延仕上温度800〜880℃で熱間
圧延して巻取温度450〜550℃で巻取り、板厚3.2
mmの熱延板とした。さらに酸洗後、板厚0.8mmに
冷間圧延し、第2図Aに示すような熱サイクルで
の連続焼鈍、もしくは670℃均熱時間5hrの箱焼鈍
を行なつた後、圧下率1%で調質圧延を行なつ
た。得られた冷延鋼板に対しロール成形加工を施
して、第1図に示すような形状とし、ロール成形
後のポケツトウエーブ高さを調べた。なおここで
ポケツトウエーブ高さは、そのポケツトウエーブ
の凹凸の波高さの成形方向1mあたりの総和で測
定した。そのポケツトウエーブ高さをC量、焼鈍
方法および熱延板巻取温度に対応して第3図に示
す。 第3図に示すように箱焼鈍の場合には、C量に
よらず常にポケツトウエーブが発生した。一方連
続焼鈍の場合には、C量が0.05%程度以上ではポ
ケツトウエーブ高さが2mm以上と可成のポケツト
ウエーブが発生したが、C量が0.045%以下にな
れば熱延板巻取温度が500〜550℃ではポケツトウ
エーブ高さが0.5mm以下となり、実用上全く支障
ない程度までポケツトウエーブの発生が軽減され
た。但し連続焼鈍を採用しかつC量が0.045%以
下の場合でも、熱延板巻取温度が670℃と高い場
合には2mm程度の高さのポケツトウエーブが発生
した。このような実験結果から、ポケツトウエー
ブの発生を防止するためには、連続焼鈍を採用し
てC量を0.045%以下とし、かつ熱延板巻取温度
が低いことが必要であることが判る。 ポケツトウエーブの発生に関与する因子は多数
考えられるから、上述のような結果が得られた理
由は必ずしも明確ではないが、次のように考えら
れる。すなわち、本発明者等の経験によれば、ポ
ケツトウエーブの発生防止には、鋼板の降伏応
力、抗張力、および降伏応力と抗張力との比など
の制御が重要であると推定され、また一般に連続
焼鈍による場合には箱焼鈍による場合と比較して
降伏応力が高く、降伏伸びが大きいことが知られ
ており、これらの点がポケツトウエーブ発生防止
に有利に作用したものと考えられる。特に連続焼
鈍の場合でもC量が低い場合に良好な結果が得ら
れた理由は、C量が低くなると結晶粒径が大きく
なるとともにセメンタイトの分散が粗になつたこ
とが考えられる。 したがつて以上の実験結果から、この発明の方
法においては冷延後の焼鈍方法として連続焼鈍を
採用し、素材中のC含有量を0.045%以下に限定
した。また熱延板巻取温度が高くなると前述のよ
うにポケツトウエーブが発生するのみならず、脱
スケールのためのコストも上昇するから、巻取温
度の上限は580℃とした。 さらに本発明者等は冷間圧延後の連続焼鈍のヒ
ートサイクルについての適切な条件を見出すべ
く、次のような実験を行なつた。 C 0.075%または0.038%、Mn 0.45%、Si 0.20
%、P 0.060%、Cu 0.20%、Ni 0.20%、Cr
0.15%、Al 0.045%、N 0.0058%を含む連続鋳
造スラブを素材とし、仕上温度800℃で熱間圧延
して520℃で巻取り、次いで常法に従つて酸洗お
よび冷間圧延を施して板厚1.0mmとした。その冷
延板を実験室において種々のヒートサイクルで熱
処理した後、1.0%のスキンパスを行ない、小型
成形試験用ロールでロール成形して、形状欠陥の
有無、すなわちポケツトウエーブの発生状況と腰
折れ発生状況を調べた。第2図Aに示されるヒー
トサイクルに準じて、そのヒートサイクル中の
400℃×60秒の過時効処理後の最終冷却速度を0.5
℃/sec〜水冷(≒3000℃/sec)までの範囲で
種々変化させた場合のポケツトウエーブ発生状
況、腰折れ発生状況をその最終冷却速度に対応し
て第4図に示す。但しここで腰折れとは、例えば
第1図中の符号3で示すように、ロール成形時に
鋼板側面に生じた折れ模様を意味し、第4図にお
いてはロール成形方向1mあたりの腰折れ発生数
を示した。またポケツトウエーブ高さは第3図の
場合と同様である。 第4図に示すように、C量が0.075%の場合に
は、冷却速度の増大に伴つてポケツトウエーブ高
さが低くなる傾向は認められるものの、冷却速度
が1000℃/secを越えてもポケツトウエーブの発
生が皆無となるには至らなかつた。また同じくC
量が0.075%の場合、冷却速度が10〜50℃/sec程
度以上で冷却速度の増加に伴つて腰折れが顕著に
発生するようになつた。したがつてC量が0.075
%の場合には、これら2つの欠陥、すなわちポケ
ツトウエーブと腰折れの双方を同時に解決するこ
とは困難であることが伴明した。 一方C量が0.038%と低い場合には、冷却速度
が10℃/sec程度以上となればポケツトウエーブ
の発生が皆無となることが認められた。但しC量
が0.038%の鋼でも、冷却速度が水スプレーある
いは水冷によつて達成される500℃/sec以上の極
めて速い速度となれば、腰折れが発生してしまう
ことが判明した。 そしてこれらの実験結果から、C量が0.045%
以下と低い鋼を、10〜500℃/secの範囲内の冷却
速度で冷却すれば、ポケツトウエーブの発生を防
止でき、しかも腰折れの発生も防止できることが
判明した。 このような冷却条件を適用することによつてポ
ケツトウエーブと腰折れの発生を防止できる理由
は必ずしも明確ではないが、冷却条件による降伏
応力、抗張力、および降伏応力と抗張力の比、さ
らに伸び等の変化が微妙に影響しているものと推
定される。 そしてさらに冷却条件について詳細に検討した
結果、前述のように10〜500℃/secの範囲内の冷
却速度に設定する必要があるのは、350〜150℃の
温度域であることが判明した。すなわち、350℃
を越える温度域、あるいは150℃より低い温度域
では、ポケツトウエーブや腰折れの発生状況が冷
却速度にほとんど依存しないことが判明した。そ
の理由は明確ではないが、固溶Cの挙動に関係し
ているものと推定される。すなわち350℃を越え
る温度域ではCの拡散速度が著しく速く、ほぼ瞬
間的にCはその温度での平衡値に達してしまい、
そのため350℃を越える温度域では工業的に実用
化されている冷却速度範囲で材質がほとんど冷却
速度に依存せず、一方150℃より低くなればCの
拡散速度が著しく遅くなり、そのため前記同様に
材質が冷却速度に依存しなくなることにあると思
われる。したがつて、焼鈍後の冷却は、350〜150
℃の温度域を10〜500℃/secの冷却速度で行なう
ものとした。 なお冷間圧延後の焼鈍において過時効処理を行
なわない場合、例えば第2図Bに示すようなヒー
トサイクルの焼鈍の場合でも、700℃の焼鈍温度
からの冷却過程における350〜150℃の温度域の冷
却速度を10〜500℃/secとすることによつて前記
同様の効果が得られることが判明している。した
がつてこの発明の方法は過時効処理の有無は問わ
ないこととする。 さらにこの発明の方法における上記以外の条件
について説明すると、焼鈍温度が800℃となれば
セメンタイトが粗大化して抗張力が高くなり、好
ましくないので焼鈍温度は再結晶温度以上、800
℃以下とした。また焼鈍温度での均熱時間が長く
なれば、ポケツトウエーブが発生し易くなる。そ
の理由は、均熱時間が長くなればAlNの析出が
進行して固溶Nが減少するためと考えられ、本発
明者等の実験によれば均熱時間が60秒を越えれば
ポケツトウエーブ発生傾向が強まることが判明し
ており、したがつて連続焼鈍における再結晶温度
以上800℃以下の温度範囲内での均熱時間は60秒
以内とした。 次にC以外の素材鋼成分の限定利用を説明す
る。 Mn:MnはSによる割れ防止および鋼の強化に
有効な元素であるが、多量に添加されれば表面
性状の劣化や鋼コストの上昇を招くから、1.0
%を上限とした。 Si:SiはMnと同様に強化元素として有効である
が、多量に含有されれば表面性状の劣化を招く
から、1.0%を上限とした。 P:Pも強化元素として有効であるが、多量に含
有されれば脆化の原因となるから上限を0.12%
とした。 Cu:Cuは耐候性を増すのに有効な元素であり、
0.1%以上必要であるが、多量に含まれると各
種欠陥の原因となるから、上限を0.60%とし
た。 Ni:Niはやはり耐候性を向上させるのに有効な
元素であるが、多量の添加はコストアツプの要
因となるので、上限を0.50%とした。 Cr:Crは耐候性を向上させるのに有効な元素で
あるが、多量の添加はコストアツプの要因及び
各種欠陥の原因となるから、上径を1.0%とし
た。 Al:Alは通常の製鋼過程において脱酸元素とし
て少くとも0.01%で必要であるが、多過ぎれば
コスト上昇の原因となるから、上限を0.100%
とした。 N:Nは通常の製造工程での下限が0.0025%であ
り、また0.01%以上とするためには特別な処理
を行なう必要があるから、Nは0.0025〜0.0100
%の範囲とした。 以下実施例を記す。 第1表に示す化学成分を有する鋼スラブを、第
1表中に示す条件で板厚2.8mmに熱間圧延した後、
常法にしたがつて酸洗、冷間圧延して、板厚0.8
mmの冷延板とした。その冷延板に対し、第1表中
に示す条件で連続焼鈍(No.1〜8)もしくは箱焼
鈍(No.9)した。さらに圧下率1.0%でスキンパ
ス圧延後、圧延方向に平行な方向にJIS5号引張試
験片を採取し、引張試験を行なつた。さらに鋼板
をロール成形し、成形後のポケツトウエーブ発生
状況および腰折れ発生状況を調べた。それらの結
果を第2表に示す。なお第2表においてポケツト
ウエーブ高さおよび腰折れ発生数の定義は第2
図、第3図の場合と同じである。
This invention relates to a method for manufacturing weather-resistant cold-rolled steel sheets,
In particular, the present invention relates to a method for producing a weather-resistant cold-rolled steel sheet suitable for roll forming. As is well known, cold-rolled steel sheets are used for various purposes, and recently they have been increasingly used in roll-forming applications, such as building materials. However, when a cold-rolled thin steel plate is roll-formed into a wide cross-sectional shape with a wave width/plate thickness ratio of over 300, the steel plate receives additional strain other than the bending strain in the width direction. As shown in FIG. 1, irregularities called oil cans or pocket waves (hereinafter referred to as pocket waves) 2 may occur in the product wave portion 1. If this pocket wave defect occurs, it not only impairs the appearance but also causes inconveniences such as poor joints during assembly work, etc. Therefore, it is necessary to prevent the occurrence of pocket waves when roll forming cold rolled steel sheets. Must be. In order to suppress the occurrence of pocket waves, it is important to change the machining method and machining shape, but in many cases, improving the machining method and machining shape alone is not sufficient to suppress the occurrence of pocket waves. requires improvement of the properties of the steel sheet itself. In general, cold-rolled steel sheets manufactured through normal processes, that is, cold-rolled steel sheets manufactured by continuously casting Al-killed steel, hot-rolling, cold-rolling, and box annealing, are prone to pocket waves. Although various improvements have been attempted in the past, such as changing the chemical composition and improving the annealing conditions including continuous annealing, the reality is that no satisfactory result has been obtained with any of the methods. In particular, when used in applications such as weathering steel sheets that are not subjected to baking coating, the effect of strain aging due to baking cannot be expected, and it has been extremely difficult to prevent the occurrence of pocket waves. Also, for example, P, Cu, like weather-resistant steel sheets.
Steel plates containing large amounts of hardening elements such as steel sheets have high tensile strength and are not subjected to baking coating, making it more difficult to prevent pocket waves from occurring. The present invention was made against the background of the above circumstances, and it provides a cold-rolled steel sheet that can almost completely prevent the occurrence of pocket waves during roll forming even if it is not subjected to a baking treatment like weather-resistant steel sheets. The object of the present invention is to provide a manufacturing method. In order to achieve the above-mentioned purpose, the present inventors conducted detailed experiments and studies on the material composition and manufacturing process conditions of cold-rolled steel sheets, and as a result, they determined that the chemical composition of the material, especially the amount of C, was appropriately adjusted, and the heat By appropriately setting the sheet winding conditions and the annealing conditions after cold rolling, especially the cooling conditions, it is possible to leave solid solution C and N and obtain a cold rolled steel sheet with excellent roll formability without the generation of pocket waves. This discovery led to the creation of this invention. In other words, the method for producing weather-resistant cold-rolled steel sheets of the present invention basically regulates the amount of C in the material component to a low range, and appropriately sets the cooling conditions after annealing and other manufacturing conditions. The summary is that the materials are: C 0.045% or less, Mn 1.0% or less, Si 1.0
% or less, P 0.120% or less, Cu 0.1-0.60%, Ni
0.50% or less, Cr 1.0% or less, Al 0.010~0.100%,
Using steel consisting of N 0.0025 to 0.0100%, the balance being Fe and unavoidable impurities, the steel material is hot-rolled and then coiled at a temperature of 580°C or less, followed by pickling and cold rolling, and then continuous rolling. Soaking time within the temperature range of above the recrystallization temperature and below 800℃ using an annealing furnace
Annealed within 60 seconds, and in the cooling process after annealing, the temperature range of 350 to 150℃ is 10℃/sec or more, 500
It is characterized by forced cooling at a cooling rate of ℃/sec or less. This invention will be explained in more detail below. First, the experiments that formed the basis of this invention will be explained. C 0.005-0.10%, Mn 0.40%, Si 0.03%,
P 0.050%, Cu 0.40%, Ni 0.30%, Cr 0.40
%, N 0.0060%, and Al 0.040% are hot rolled at a finishing temperature of 800 to 880°C and coiled at a coiling temperature of 450 to 550°C, with a thickness of 3.2
It was made into a hot rolled sheet of mm. After pickling, the plate is cold-rolled to a thickness of 0.8 mm and subjected to continuous annealing in a thermal cycle as shown in Figure 2A, or box annealing at 670°C for 5 hours, with a rolling reduction of 1%. Temper rolling was carried out. The resulting cold-rolled steel sheet was roll-formed into a shape as shown in FIG. 1, and the height of the pocket wave after roll-forming was examined. Here, the pocket wave height was measured as the sum of the wave heights of the unevenness of the pocket wave per 1 m in the forming direction. The pocket wave height is shown in FIG. 3 in response to the C amount, annealing method, and hot rolled sheet winding temperature. As shown in FIG. 3, in the case of box annealing, pocket waves were always generated regardless of the C content. On the other hand, in the case of continuous annealing, when the C content was about 0.05% or more, pocket waves with a height of 2 mm or more were generated, but when the C content was less than 0.045%, the hot-rolled sheet winding temperature decreased. At 500 to 550°C, the pocket wave height was 0.5 mm or less, and the occurrence of pocket waves was reduced to the extent that there was no practical problem. However, even when continuous annealing was used and the C content was 0.045% or less, pocket waves with a height of about 2 mm were generated when the hot-rolled sheet winding temperature was as high as 670°C. From these experimental results, it is clear that in order to prevent the occurrence of pocket waves, it is necessary to employ continuous annealing, keep the C content to 0.045% or less, and to keep the hot-rolled sheet winding temperature low. Since many factors can be considered to be involved in the generation of pocket waves, the reason for the above results is not necessarily clear, but it is thought to be as follows. In other words, according to the experience of the present inventors, it is estimated that control of the yield stress, tensile strength, and ratio of yield stress to tensile strength of the steel sheet is important to prevent the occurrence of pocket waves. It is known that in the case of box annealing, the yield stress and yield elongation are higher than in the case of box annealing, and these points are considered to have an advantageous effect on preventing the occurrence of pocket waves. Particularly, the reason why good results were obtained when the C content was low even in the case of continuous annealing is considered to be that as the C content becomes low, the crystal grain size increases and the cementite becomes coarsely dispersed. Therefore, based on the above experimental results, in the method of the present invention, continuous annealing was adopted as the annealing method after cold rolling, and the C content in the material was limited to 0.045% or less. Furthermore, if the hot-rolled sheet winding temperature increases, not only pocket waves occur as described above, but also the cost for descaling increases, so the upper limit of the winding temperature was set at 580°C. Further, the present inventors conducted the following experiments in order to find appropriate conditions for the heat cycle of continuous annealing after cold rolling. C 0.075% or 0.038%, Mn 0.45%, Si 0.20
%, P 0.060%, Cu 0.20%, Ni 0.20%, Cr
The raw material is a continuously cast slab containing 0.15% Al, 0.045% Al, and 0.0058% N. It is hot-rolled at a finishing temperature of 800℃, coiled at 520℃, and then pickled and cold-rolled according to the conventional method. The plate thickness was 1.0mm. After heat-treating the cold-rolled sheet in the laboratory through various heat cycles, it was subjected to a 1.0% skin pass and then roll-formed using a small forming test roll to determine the presence or absence of shape defects, that is, the occurrence of pocket waves and the occurrence of buckling. I looked into it. According to the heat cycle shown in Figure 2A, during the heat cycle
The final cooling rate after overaging treatment at 400℃ x 60 seconds was set to 0.5
FIG. 4 shows the occurrence of pocket waves and buckling when various changes are made in the range from °C/sec to water cooling (≈3000 °C/sec), corresponding to the final cooling rate. However, here, the bending means a folding pattern that occurs on the side surface of the steel plate during roll forming, for example, as shown by reference numeral 3 in Fig. 1, and Fig. 4 shows the number of bendings occurring per 1 m in the roll forming direction. Ta. Also, the pocket wave height is the same as in the case of FIG. As shown in Figure 4, when the C content is 0.075%, there is a tendency for the pocket wave height to decrease as the cooling rate increases; However, the generation of waves could not be completely eliminated. Also, C
When the amount was 0.075%, bending became noticeable as the cooling rate increased at a cooling rate of about 10 to 50°C/sec or more. Therefore, the amount of C is 0.075
%, it has been found that it is difficult to simultaneously solve these two defects, ie, pocket waves and buckling. On the other hand, when the C content was as low as 0.038%, it was found that no pocket waves were generated if the cooling rate was about 10° C./sec or higher. However, it has been found that even in steel with a C content of 0.038%, bending occurs if the cooling rate is extremely high, such as 500° C./sec or more, achieved by water spray or water cooling. From these experimental results, the amount of C is 0.045%.
It has been found that by cooling steel with a cooling rate of 10 to 500°C/sec, it is possible to prevent the occurrence of pocket waves and also to prevent the occurrence of buckling. The reason why pocket waves and buckling can be prevented by applying such cooling conditions is not necessarily clear, but changes in yield stress, tensile strength, ratio of yield stress to tensile strength, elongation, etc. due to cooling conditions It is assumed that this has a subtle influence. Further, as a result of a detailed study of the cooling conditions, it was found that the temperature range of 350 to 150°C required the cooling rate to be set within the range of 10 to 500°C/sec as described above. i.e. 350℃
It was found that in the temperature range exceeding 150°C or below 150°C, the occurrence of pocket waves and buckling hardly depended on the cooling rate. The reason for this is not clear, but it is presumed to be related to the behavior of solid solution C. In other words, in the temperature range exceeding 350°C, the diffusion rate of C is extremely fast, and C almost instantaneously reaches its equilibrium value at that temperature.
Therefore, in the temperature range exceeding 350°C, the quality of the material is almost independent of the cooling rate within the cooling rate range that is commercially available, while at temperatures below 150°C, the diffusion rate of C becomes extremely slow, so as mentioned above, This seems to be due to the fact that the material no longer depends on the cooling rate. Therefore, the cooling after annealing is 350 to 150
The cooling rate was 10 to 500°C/sec in the temperature range of 10°C to 500°C/sec. Note that if no overaging treatment is performed during annealing after cold rolling, for example, even in the case of heat cycle annealing as shown in Figure 2B, the temperature range of 350 to 150°C during the cooling process from the annealing temperature of 700°C. It has been found that the same effect as described above can be obtained by setting the cooling rate to 10 to 500°C/sec. Therefore, the method of this invention does not matter whether or not overaging treatment is performed. Furthermore, to explain the conditions other than the above in the method of this invention, if the annealing temperature is 800°C, the cementite will become coarse and the tensile strength will increase, which is not preferable, so the annealing temperature should be higher than the recrystallization temperature,
The temperature was below ℃. Furthermore, if the soaking time at the annealing temperature becomes longer, pocket waves are more likely to occur. The reason for this is thought to be that the longer the soaking time is, the more precipitation of AlN progresses and the decrease in solid solution N.According to experiments conducted by the present inventors, pocket waves occur when the soaking time exceeds 60 seconds. Therefore, the soaking time in the temperature range from the recrystallization temperature to 800°C during continuous annealing was set to within 60 seconds. Next, limited use of raw steel components other than C will be explained. Mn: Mn is an element that is effective in preventing cracking caused by S and strengthening steel, but if added in large amounts it will cause deterioration of surface quality and increase in steel cost, so 1.0
The upper limit was %. Si: Like Mn, Si is effective as a reinforcing element, but if it is contained in a large amount it causes deterioration of the surface quality, so the upper limit was set at 1.0%. P: P is also effective as a reinforcing element, but if contained in large amounts it causes embrittlement, so the upper limit should be set at 0.12%.
And so. Cu: Cu is an effective element for increasing weather resistance.
0.1% or more is required, but since a large amount can cause various defects, the upper limit was set at 0.60%. Ni: Ni is still an effective element for improving weather resistance, but adding a large amount increases costs, so the upper limit was set at 0.50%. Cr: Cr is an effective element for improving weather resistance, but adding a large amount can increase costs and cause various defects, so the upper diameter was set at 1.0%. Al: Al is required at least 0.01% as a deoxidizing element in the normal steelmaking process, but too much will cause cost increases, so the upper limit is set at 0.100%.
And so. N: The lower limit of N in the normal manufacturing process is 0.0025%, and special treatment is required to increase it to 0.01% or more, so N is 0.0025 to 0.0100.
% range. Examples will be described below. After hot rolling a steel slab having the chemical composition shown in Table 1 to a thickness of 2.8 mm under the conditions shown in Table 1,
Pickled and cold rolled according to the usual method to obtain a plate with a thickness of 0.8
It was made into a cold-rolled sheet of mm. The cold-rolled sheets were subjected to continuous annealing (Nos. 1 to 8) or box annealing (No. 9) under the conditions shown in Table 1. Further, after skin pass rolling at a reduction rate of 1.0%, JIS No. 5 tensile test pieces were taken in a direction parallel to the rolling direction, and a tensile test was conducted. Furthermore, the steel plate was roll-formed, and the occurrence of pocket waves and buckling after forming was investigated. The results are shown in Table 2. In addition, in Table 2, the definitions of pocket wave height and number of occurrences of hip bends are as follows.
This is the same as in FIG.

【表】【table】

【表】 註:表中の下線は本発明範囲外の条件を示す。
[Table] Note: Underlines in the table indicate conditions outside the scope of the present invention.

【表】 第2表から明らかなように、この発明の素材成
分範囲、熱延、焼鈍条件を満足して得られた本発
明例(No.1、2、5、7、9)の冷延鋼板の場合
にはいずれもポケツトウエーブの発生が著しく少
なく、しかも腰折れの発生も見られず、極めて優
れたロール成形性を有することが確認された。一
方、No.3の冷延鋼板の場合、焼鈍後の最終冷却速
度が3℃/secと遅いため、相当程度のポケツト
ウエーブが発生した。またNo.4の冷延鋼板の場
合、焼鈍後の最終冷却速度が8℃/secと若干遅
いことに加えて、焼鈍均熱温度が830℃と高いた
め著しいポケツトウエーブの発生が認められた。
さらにNo.6の冷延鋼板では、C量が0.081%と高
いため、著しいポケツトウエーブが発生すると同
時に腰折れの発生が認められた。そしてまたNo.9
の冷延鋼板では、焼鈍に箱焼鈍を利用して長時間
の均熱を行ない、その後の冷却速度も極めて遅い
ため、かなりの程度のポケツトウエーブの発生が
認められた。これらの結果から、ロール成形時に
おけるポケツトウエーブの発生を実用上支障ない
程度まで軽減し、しかも腰折れの発生を防止する
ためには、この発明のすべての条件を満足する必
要があることがわかる。 以上のようにこの発明の冷延鋼板製造方法によ
れば、素材のC量を0.045%以下に低減すると同
時に、熱延板巻取温度条件、冷延後の焼鈍条件
(特に最終冷却条件)を適切に設定することによ
つてロール成形加工時にポケツトウエーブや腰折
れが発生するおそれが極めて少ない、ロール成形
性の著しく優れた冷延鋼板を得ることができる顕
著な効果が得られる。そしてこの発明によれば、
特に焼付塗装処理が施されない用途の耐候性冷延
鋼板の如く、従来はロール成形時におけるポケツ
トウエーブの発生防止が困難とされていた冷延鋼
板でもポケツトウエーブの発生を実用上支障ない
程度まで抑えることができるため、この種の用途
に特に有用である。
[Table] As is clear from Table 2, the cold rolled examples of the present invention (Nos. 1, 2, 5, 7, and 9) were obtained satisfying the material composition range, hot rolling, and annealing conditions of the present invention. In the case of steel plates, the occurrence of pocket waves was extremely small, and no bending was observed, and it was confirmed that the steel plates had extremely excellent roll formability. On the other hand, in the case of No. 3 cold-rolled steel sheet, the final cooling rate after annealing was as slow as 3° C./sec, so a considerable amount of pocket waves were generated. In addition, in the case of No. 4 cold-rolled steel sheet, the final cooling rate after annealing was slightly slow at 8°C/sec, and the annealing soaking temperature was as high as 830°C, so significant pocket waves were observed to occur.
Furthermore, in the cold-rolled steel sheet No. 6, since the C content was as high as 0.081%, significant pocket waves and buckling were observed at the same time. And again No.9
In the case of the cold-rolled steel sheet, box annealing was used for long-time soaking, and the subsequent cooling rate was extremely slow, so a considerable amount of pocket waves were observed. These results show that it is necessary to satisfy all the conditions of the present invention in order to reduce the occurrence of pocket waves during roll forming to a practically acceptable level and to prevent the occurrence of buckling. As described above, according to the cold rolled steel sheet manufacturing method of the present invention, the C content of the material is reduced to 0.045% or less, and at the same time, the hot rolled sheet coiling temperature conditions and the annealing conditions after cold rolling (especially the final cooling conditions) can be reduced. By setting it appropriately, it is possible to obtain a remarkable effect of obtaining a cold-rolled steel sheet with extremely excellent roll formability, which is extremely unlikely to cause pocket waves or buckling during roll forming. According to this invention,
In particular, even in cold-rolled steel sheets for which it has been difficult to prevent pocket waves from forming during roll forming, such as weather-resistant cold-rolled steel sheets for applications that are not subjected to baking coating, the occurrence of pocket waves is suppressed to a level that does not pose a practical problem. This makes it particularly useful for this type of application.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はロール成形加工された冷延鋼板のポケ
ツトウエーブおよび腰折れ発生状況の一例を示す
斜視図、第2図A,Bはそれぞれこの発明の方法
における焼鈍熱サイクルの一例を示す線図、第3
図は冷延鋼板の素材C量とロール成形時のポケツ
トウエーブ高さとの関係を示す相関図、第4図は
焼鈍後の冷却速度とロール成形時のポケツトウエ
ーブ高さおよび腰折れ発生数との関係を示す相関
図である。
FIG. 1 is a perspective view showing an example of pocket waves and buckling occurring in a roll-formed cold-rolled steel sheet, and FIGS. 3
The figure is a correlation diagram showing the relationship between the amount of raw material C in a cold-rolled steel sheet and the pocket wave height during roll forming. Figure 4 is the relationship between the cooling rate after annealing, the pocket wave height during roll forming, and the number of hip bends. FIG.

Claims (1)

【特許請求の範囲】[Claims] 1 C 0.045%(重量%、以下同じ)以下、Mn
1.0%以下、Si 1.0%以下、P 0.120%以下、Cu
0.1〜0.60%、Ni 0.50%以下、Cr 1.0%以下、N
0.0025〜0.0100%、Al 0.010〜0.100%、残部が
Feおよび不可避的不純物よりなる鋼を素材とし、
その鋼素材を熱間圧延後580℃以下の温度で巻取
り、続いて酸洗および冷間圧延を施し、次いで連
続焼鈍炉により再結晶温度以上、800℃以下の温
度範囲内での均熱時間60秒以内で焼鈍し、かつそ
の焼鈍後の冷却過程における350〜150℃の温度域
を10℃/sec以上500℃/sec以下の冷却速度で強
制冷却することを特徴とするロール成形性に優れ
た冷延鋼板の製造方法。
1 C 0.045% (weight%, same below) or less, Mn
1.0% or less, Si 1.0% or less, P 0.120% or less, Cu
0.1-0.60%, Ni 0.50% or less, Cr 1.0% or less, N
0.0025~0.0100%, Al 0.010~0.100%, balance
Made of steel made of Fe and unavoidable impurities,
After hot rolling, the steel material is rolled up at a temperature of 580°C or less, followed by pickling and cold rolling, and then soaked in a continuous annealing furnace within a temperature range of above the recrystallization temperature and 800°C or less. Excellent roll formability characterized by annealing within 60 seconds and forced cooling in the temperature range of 350 to 150°C during the cooling process after annealing at a cooling rate of 10°C/sec to 500°C/sec. A method for producing cold-rolled steel sheets.
JP5863984A 1984-03-27 1984-03-27 Manufacture of weather-resistant cold-rolled steel sheet having superior roll formability Granted JPS60204835A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5863984A JPS60204835A (en) 1984-03-27 1984-03-27 Manufacture of weather-resistant cold-rolled steel sheet having superior roll formability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5863984A JPS60204835A (en) 1984-03-27 1984-03-27 Manufacture of weather-resistant cold-rolled steel sheet having superior roll formability

Publications (2)

Publication Number Publication Date
JPS60204835A JPS60204835A (en) 1985-10-16
JPH0142329B2 true JPH0142329B2 (en) 1989-09-12

Family

ID=13090149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5863984A Granted JPS60204835A (en) 1984-03-27 1984-03-27 Manufacture of weather-resistant cold-rolled steel sheet having superior roll formability

Country Status (1)

Country Link
JP (1) JPS60204835A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2795742B1 (en) * 1999-07-01 2001-08-03 Lorraine Laminage CALM ALUMINUM CARBON STEEL SHEET FOR PACKAGING
CN102230138B (en) * 2011-06-04 2012-11-21 首钢总公司 Method for manufacturing SPA-H high-strength atmospheric corrosion resistance steel by using continuous annealing machine set
CN104962705A (en) * 2015-07-29 2015-10-07 山东伊莱特重工有限公司 Isothermal normalizing treatment technique of wind power flange

Also Published As

Publication number Publication date
JPS60204835A (en) 1985-10-16

Similar Documents

Publication Publication Date Title
WO1984001585A1 (en) Process for manufacturing cold-rolled steel for deep drawing
JPS6112009B2 (en)
JPS59140333A (en) Manufacture of cold rolled steel sheet for deep drawing with superior secondary workability and surface treatability
JPH024657B2 (en)
US20010007280A1 (en) Method of production of cold-rolled metal coated steel products, and the products obtained, having a low yield ratio
JPS6111296B2 (en)
JP2759517B2 (en) Method for producing high tension bath galvanized steel sheet with excellent bending workability
JPH03202421A (en) Production of cold-rolled steel sheet having high ductility and high strength and reduced in anisotropy
JPS631374B2 (en)
JPH0142329B2 (en)
JPS61272321A (en) Manufacture of ultra high-strength cold rolled steel sheet
KR100478091B1 (en) Method for Manufacturing Galvanized Steel Sheet
JP2001089814A (en) Method of manufacturing ferritic stainless steel sheet excellent in ductility, workability and ridging resistance
KR20210079720A (en) Alloyed hot dip galvanized steel sheet and manufacturing method thereof
JP3489295B2 (en) Method of manufacturing cold-rolled steel strip for deep drawing by continuous annealing
JPS6115929B2 (en)
JPS6046167B2 (en) Method for manufacturing high-strength cold-rolled steel sheets for deep scratching that are non-aging and have excellent paint-baking hardenability through continuous annealing
JP3911075B2 (en) Manufacturing method of steel sheet for ultra deep drawing with excellent bake hardenability
JP2004131771A (en) Method for manufacturing cold rolled steel sheet having excellent shape fixability
JP2001152255A (en) Method of manufacturing high strength thin steel sheet excellent in surface characteristic and workability
JPH0441620A (en) Production of high strength hot-dip galvanized steel sheet
JP2001107149A (en) Method for producing ferritic stainless steel sheet excellent in ductility, workability and ridging resistance
JP3134919B2 (en) Method for producing hot-dip coated steel sheet with excellent roll formability
JPH0250940A (en) Cold rolled steel plate for deep drawing having excellent corrosion resistance
JP2719910B2 (en) Method for producing soft hot rolled steel sheet with excellent press formability

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees