JP3489295B2 - Method of manufacturing cold-rolled steel strip for deep drawing by continuous annealing - Google Patents

Method of manufacturing cold-rolled steel strip for deep drawing by continuous annealing

Info

Publication number
JP3489295B2
JP3489295B2 JP28862895A JP28862895A JP3489295B2 JP 3489295 B2 JP3489295 B2 JP 3489295B2 JP 28862895 A JP28862895 A JP 28862895A JP 28862895 A JP28862895 A JP 28862895A JP 3489295 B2 JP3489295 B2 JP 3489295B2
Authority
JP
Japan
Prior art keywords
temperature
cooling
less
steel strip
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28862895A
Other languages
Japanese (ja)
Other versions
JPH09125161A (en
Inventor
嘉明 中澤
茂樹 野村
啓達 小嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP28862895A priority Critical patent/JP3489295B2/en
Publication of JPH09125161A publication Critical patent/JPH09125161A/en
Application granted granted Critical
Publication of JP3489295B2 publication Critical patent/JP3489295B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、連続焼鈍による深
絞り用冷延鋼帯の製造方法に関し、特にプレス等により
様々な形状に加工され、自動車の外装部品、家電成品、
厨房成品等の外観を重視される部位に使用される鋼帯を
表面疵を発生させることなく連続焼鈍によって製造する
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a cold-rolled steel strip for deep drawing by continuous annealing, and in particular, it is processed into various shapes by pressing or the like, and is used for automobile exterior parts, home electric appliance products,
The present invention relates to a method for producing a steel strip used in a portion of a kitchen product or the like where appearance is important by continuous annealing without causing surface flaws.

【0002】[0002]

【従来の技術】冷延鋼板をプレス成形した時に表面に線
状に凹凸が生じる疵が発生することがある。この疵は、
塗装を施しても消えないため自動車の外装材等の外観が
重視される部品においては致命的な欠陥となる。
2. Description of the Related Art When a cold-rolled steel sheet is press-formed, flaws may occur on the surface of which linear irregularities are formed. This flaw is
Since it does not disappear even after painting, it is a fatal defect in parts such as automobile exterior materials where appearance is important.

【0003】この欠陥は、リムド鋼またはコアキルド鋼
の場合にはゴーストバンドと呼ばれ、脱酸のために投入
したAlがリム層とコア層の境界に局所的に富化し、他の
部分と硬度差を生じるためと報告されている (鉄と鋼、
Vol.54, 1968, 455 および鉄と鋼、Vol.61, 1975, S17
0) 。
In the case of rimmed steel or core-killed steel, this defect is called a ghost band, and Al introduced for deoxidization is locally enriched at the boundary between the rim layer and the core layer and hardened with other portions. It is reported that it makes a difference (iron and steel,
Vol.54, 1968, 455 and Iron and Steel, Vol.61, 1975, S17
0).

【0004】このように鋼板中に硬度の不均一部分が存
在すると、プレス成形時に柔らかい部分が優先的に塑性
変形し板厚の凹凸のムラが発生すると考えられる。また
別の原因としてPの濃化偏析も考えられており、その解
決のためには、厚さ方向の凝固率80〜97%で分塊圧延す
ることが効果的であることが特開昭55−75807 号公報に
開示されている。
It is considered that when the steel sheet has a non-uniform hardness portion, the soft portion is preferentially plastically deformed during press forming to cause unevenness of the sheet thickness. As another cause, P segregation and segregation have been considered, and in order to solve it, it is effective to perform slabbing at a solidification rate of 80 to 97% in the thickness direction. -75807.

【0005】さらにアルミキルド鋼においてもこのよう
な疵は発生し、フェライトバンドと呼ばれている。その
原因は、焼鈍中に形成される加窒層の厚さの不均一に対
応した硬度の不均一が生じるためと報告されている (鉄
と鋼、Vol.61,1975, S168)。
Further, such a flaw occurs in aluminum-killed steel and is called a ferrite band. It is reported that the cause of this is that the hardness is nonuniform corresponding to the nonuniform thickness of the nitrification layer formed during annealing (iron and steel, Vol. 61, 1975, S168).

【0006】本発明者らは、連続焼鈍で製造した深絞り
用冷延鋼帯においてゴーストバンドやフェライトバンド
と類似した欠陥の発生を経験しているが、これまで連続
焼鈍中の冷却要因による欠陥の発生に関してはその原因
や解決策について何らの解決策も提案されていない。
The present inventors have experienced the occurrence of defects similar to ghost bands and ferrite bands in deep-drawn cold-rolled steel strips produced by continuous annealing, but until now, defects due to cooling factors during continuous annealing have been experienced. Regarding the occurrence of, no solution has been proposed for its cause and solution.

【0007】また、連続焼鈍で製造される深絞り用冷延
鋼板の機械的性質に影響を及ぼす因子は、主に粒成長度
を支配する均熱温度ならびにセメンタイトの分散、固溶
炭素量を支配する均熱後の冷却速度、過時効温度と時間
であり、詳細な研究がなされている。しかし、表面欠陥
の発生に及ぼす連続焼鈍条件の影響については、検討さ
れていない。
Factors affecting the mechanical properties of the cold-rolled steel sheet for deep drawing produced by continuous annealing are mainly the soaking temperature that governs the grain growth degree, the dispersion of cementite, and the amount of dissolved carbon. The cooling rate after soaking, the overaging temperature, and the time have been studied in detail. However, the effect of continuous annealing conditions on the occurrence of surface defects has not been examined.

【0008】一方、設備面からは、冷却速度を上げた方
が連続焼鈍ラインにおける冷却帯をコンパクトにできる
ので好ましい。したがって、急速冷却のための種々の冷
却技術が提案されている。例えば、特公昭60−58766 号
公報では冷媒を流通させたロールを用いて鋼帯を冷却す
る技術が開示されており、その技術と比較してガスジェ
ットクーラー、水スプレー、水浸漬冷却、およびそれら
の組み合わせによる冷却方法の長所、短所が述べられて
いる。しかし、鋼帯の材質面および表面欠陥に与える影
響については何も述べられていない。
On the other hand, from the viewpoint of equipment, it is preferable to increase the cooling rate because the cooling zone in the continuous annealing line can be made compact. Therefore, various cooling techniques for rapid cooling have been proposed. For example, Japanese Examined Patent Publication No. 60-58766 discloses a technology for cooling a steel strip by using a roll in which a refrigerant is circulated. Compared with that technology, a gas jet cooler, water spray, water immersion cooling, and those The advantages and disadvantages of the cooling method by the combination of are described. However, nothing is mentioned about the effect on the material surface and surface defects of the steel strip.

【0009】[0009]

【発明が解決しようとする課題】すでに述べたように、
深絞り用冷延鋼板を連続焼鈍で製造したとき、ゴースト
バンドやフェライトバンドと類似した疵が発生すること
がある。この疵は、鋼板をプレス成形した時に表面が線
状に凹凸になるものであり、塗装を施しても消えないた
め自動車の外装材等の外観が重視される部品においては
致命的な欠陥となる。
[Problems to be Solved by the Invention] As described above,
When a cold-rolled steel sheet for deep drawing is manufactured by continuous annealing, flaws similar to ghost bands and ferrite bands may occur. This flaw is a fatal defect in parts where the appearance is important, such as automobile exterior materials, because the surface becomes linear irregularity when press-forming a steel plate and it does not disappear even if painting is applied. .

【0010】この疵は、材料歩留を低下させるだけでな
く連続化されたプレスラインにおいては、不良品の選別
に多大の労力を要し生産性を著しく低下させる。さら
に、この種の疵は連続焼鈍後の目視検査では発見できな
いため需要家において問題が生じて初めて発見されるも
のであるから、根本的な解決策が望まれている。
This flaw not only lowers the material yield, but in a continuous press line, it requires a great deal of labor to sort defective products, resulting in a marked decrease in productivity. Further, since this kind of flaw cannot be found by visual inspection after continuous annealing, it is discovered only when a problem occurs in the customer, and therefore a fundamental solution is desired.

【0011】かくして、本発明の目的は、コイル全長に
わたって疵なしを保証できる深絞り用冷延鋼帯の製造方
法を提供することである。さらに具体的には、本発明の
目的は、材料歩留とプレス生産性の双方を高めることの
できる深絞り用冷延鋼帯の製造方法を提供することであ
る。
Therefore, an object of the present invention is to provide a method of manufacturing a cold-rolled steel strip for deep drawing which can guarantee no flaws over the entire length of the coil. More specifically, an object of the present invention is to provide a method for manufacturing a cold-rolled steel strip for deep drawing, which can improve both material yield and press productivity.

【0012】[0012]

【課題を解決するための手段】本発明者らは、連続焼鈍
した深絞り用冷延鋼板の疵の発生原因を鋭意調査した結
果、以下のことが明らかになった。
Means for Solving the Problems As a result of an intensive investigation on the cause of defects in the cold-rolled steel sheet for deep drawing that has been continuously annealed, the present inventors have revealed the following.

【0013】すなわち、疵の実体は、ゴーストバンドや
フェライトバンドと同じように硬度の局所的な上昇であ
り、硬度が高い部分はプレス時に変形し難く表面が凸の
欠陥となる。硬化の原因は、連続焼鈍ライン内で冷却中
に発生する熱応力によって局所的な塑性変形が発生し、
その箇所が歪時効硬化したためである。したがって、疵
防止のためには局所的な塑性変形とそれに引き続く歪時
効を抑制することが重要であることが明らかとなり、本
発明の完成に至った。
That is, the substance of the flaw is a local increase in hardness, like the ghost band and the ferrite band, and a portion having a high hardness is difficult to be deformed during pressing and becomes a defect having a convex surface. The cause of hardening is that local plastic deformation occurs due to the thermal stress generated during cooling in the continuous annealing line,
This is because that portion was strain age hardened. Therefore, it has become clear that it is important to suppress local plastic deformation and subsequent strain aging in order to prevent defects, and the present invention has been completed.

【0014】 よって、本発明は、重量%にて、 C:0.01〜0.035 %、Si:1.5 %以下、Mn:2.0 %以
下、 P:0.1 %以下、S:0.03%以下、sol.Al:0.005 〜0.
1 %、 N:0.005 %以下、 さらに所望によりB:0.0003 〜0.003 %、 残部Feおよび不可避的不純物 から成る鋼組成を有する鋼を熱間圧延、酸洗、冷間圧
延、連続焼鈍、調質圧延の各工程を経て冷延鋼帯を製造
するにあたり、連続焼鈍工程において再結晶温度以上、
Ac3 変態点以下の温度での均熱加熱後に、ΔT (℃) :
冷却開始温度−冷却終点温度として、ΔT (℃) <350
℃の冷却領域で水スプレー冷却を行う場合に、前記冷却
開始温度を下記式(2) によって定まる第2温度以下と
し、かつ、冷却速度100 ℃/s以下(ただし、 30 /s 以下
の場合を除く ) として冷却することを特徴とする深絞り
用冷延鋼帯の製造方法である。ただし、過時効処理の直
前に再加熱を行う場合を除く。 第2温度:Temp *2(℃) =200 +YS×YR・・・式(2) YS:室温における冷延鋼帯の降伏点 (N/mm2) YR:室温における降伏比<降伏点/引張強さ>
Therefore, in the present invention, in% by weight, C: 0.01 to 0.035%, Si: 1.5% or less, Mn: 2.0% or less, P: 0.1% or less, S: 0.03% or less, sol.Al: 0.005 ~ 0.
1%, N: 0.005% or less, optionally B: 0.0003 to 0.003%, steel having a steel composition consisting of balance Fe and inevitable impurities is hot-rolled, pickled, cold-rolled, continuously annealed, temper-rolled. In producing a cold-rolled steel strip through each step of, the recrystallization temperature or higher in the continuous annealing step,
After soaking and heating at a temperature below the Ac 3 transformation point, ΔT (° C):
As the cooling start temperature-cooling end temperature, ΔT (° C) <350
When water spray cooling is performed in the cooling region of ℃, the cooling start temperature is set to the second temperature or lower determined by the following formula (2), and the cooling rate is 100 ℃ / s or lower (however, 30 / s or lower.
(Except in the case of 1 )) . However, the case where reheating is performed immediately before overaging treatment is excluded. Second temperature: Temp * 2 (℃) = 200 + YS x YR (Equation (2) YS: Yield point of cold-rolled steel strip at room temperature (N / mm 2 ) YR: Yield ratio at room temperature <Yield point / Tensile Strength>

【0015】[0015]

【0016】[0016]

【発明の実施の形態】次に、本発明において鋼組成およ
び連続焼鈍処理条件を上記のように限定した理由につい
てその作用とともに詳述する。
BEST MODE FOR CARRYING OUT THE INVENTION Next, the reason why the steel composition and the conditions for continuous annealing treatment are limited as described above in the present invention will be explained in detail together with its action.

【0017】C:C量は、セメンタイト量を決める元素
であり0.035 %を越えると粗大析出するセメンタイト量
が増加するためにr値が低下し深絞り性が低下するので
その上限を0.035 %とする。また、0.01%未満では冷却
開始前のCの過飽和度が低いため安定した粒内セメンタ
イトを得ることができず時効性が低下するため下限を0.
01%とする。好ましくは、0.015 〜0.025 %である。
C: The amount of C is an element that determines the amount of cementite. If it exceeds 0.035%, the amount of coarsely precipitated cementite increases, so that the r value decreases and the deep drawability decreases, so its upper limit is made 0.035%. . On the other hand, if it is less than 0.01%, the supersaturation degree of C before the start of cooling is low, so that stable intragranular cementite cannot be obtained and the aging property is lowered, so the lower limit is set to 0.
01% Preferably, it is 0.015 to 0.025%.

【0018】Si:Siは、鋼板の強度を上げるために添加
してよい。しかし、1.5 %を越えて含有すると成形性が
劣化するので、その上限を1.5 %に限定する。好ましく
は 1.0%以下に制限する。
Si: Si may be added to increase the strength of the steel sheet. However, if the content exceeds 1.5%, the formability deteriorates, so the upper limit is limited to 1.5%. It is preferably limited to 1.0% or less.

【0019】Mn:Mnも、鋼板の強度を上げるために適宜
添加してよい。しかし、2%を越えて含有すると成形性
が劣化するので、その上限を2%に限定する。好ましく
は1.0 %以下に制限する。
Mn: Mn may also be added as appropriate to increase the strength of the steel sheet. However, if the content exceeds 2%, the formability deteriorates, so the upper limit is limited to 2%. It is preferably limited to 1.0% or less.

【0020】P:Pは、鋼中に不可避的に含有される不
純物である。鋼板の強度を上げるために適宜添加してよ
い。しかし、0.1 %を越えて添加すると成形性が低下
し、二次加工脆性を起こしやすくするので、その上限を
0.1 %に限定する。好ましくは0.05%以下に制限する。
P: P is an impurity which is unavoidably contained in steel. You may add suitably in order to raise the strength of a steel plate. However, if added in excess of 0.1%, the formability will decrease and secondary work embrittlement will easily occur.
Limit to 0.1%. It is preferably limited to 0.05% or less.

【0021】S:Sは、MnSとして析出固定されるが含
有量が増えるとSを固定するために不必要なMnの添加量
の増大を招くためにSの上限は0.03%とする。好ましく
は0.02%以下に制限する。
S: S is precipitated and fixed as MnS, but if the content increases, it causes an increase in the amount of Mn that is unnecessary for fixing S, so the upper limit of S is made 0.03%. It is preferably limited to 0.02% or less.

【0022】sol.Al:溶鋼の脱酸を十分行うためには、
sol.Alを0.005 %以上添加する必要がある。0.1 %以上
の添加では、鋼が硬質化すると同時に伸びが低下するの
で上限とする。好ましくは、0.03〜0.07%が好ましい。
Sol.Al: In order to sufficiently deoxidize molten steel,
It is necessary to add 0.005% or more of sol.Al. If 0.1% or more is added, the steel hardens and at the same time the elongation decreases, so the upper limit is made. Preferably, 0.03 to 0.07% is preferable.

【0023】N:Nは不可避的不純物として含有される
元素であるが、析出する窒化物量が増大し伸びの低下を
招くためにNの上限を0.005 %とする。好ましくは0.00
30%以下である。
N: N is an element contained as an unavoidable impurity, but the upper limit of N is set to 0.005% in order to increase the amount of nitrides that precipitate and to lower the elongation. Preferably 0.00
30% or less.

【0024】B:BはNを窒化物(BN)として析出固定
し、Nによる時効の抑制、セメンタイトの粗大凝集を促
進させるが、含有量が0.0003%未満においてはN時効の
排除およびセメンタイトの粗大凝集による効果がなく、
下限を0.0003%とする。
B: B precipitates and fixes N as a nitride (BN), suppresses aging due to N, and promotes coarse agglomeration of cementite, but when the content is less than 0.0003%, elimination of N aging and coarse cementite are observed. There is no effect due to aggregation,
The lower limit is 0.0003%.

【0025】また、0.003 %超ではB添加Alキルド鋼と
同様の効果となり、セメンタイトの粗大凝集が生じない
ためにその上限を0.003 %とする。好ましくは、0.0006
〜0.0020%である。
If it exceeds 0.003%, the same effect as that of the B-added Al-killed steel is obtained, and coarse agglomeration of cementite does not occur, so the upper limit is made 0.003%. Preferably 0.0006
~ 0.0020%.

【0026】熱間圧延:熱間圧延は、常法に従って行
う。成形性の高い鋼を得る観点から仕上げ温度はAr3
以上とすることが好ましい。
Hot rolling: Hot rolling is performed according to a conventional method. From the viewpoint of obtaining a steel having high formability, the finishing temperature is preferably set to 3 Ar or higher.

【0027】冷間圧延:冷間圧延およびそれに先立って
行う酸洗は、常法に従って行う。冷却圧延率が高いほど
r値は高くなって好ましい。圧下率が60%以下ではr値
が低くなり、一方、圧下率が95%を越えると熱延板板厚
が厚くなり、熱延板の製造が困難となるので冷延圧下率
は60〜95%とするのが好ましい。
Cold rolling: Cold rolling and pickling performed prior to it are carried out according to a conventional method. The higher the cold rolling rate, the higher the r value, which is preferable. When the rolling reduction is 60% or less, the r value is low. On the other hand, when the rolling reduction exceeds 95%, the thickness of the hot-rolled sheet becomes thick and it becomes difficult to manufacture the hot-rolled sheet. Therefore, the cold-rolling reduction rate is 60 to 95. % Is preferable.

【0028】連続焼鈍:本発明は、連続焼鈍ライン、も
しくは連続溶融亜鉛めっきライン、連続合金化溶融亜鉛
めっきライン等の連続溶融めっきラインを用いて焼鈍す
る場合に適用される。連続焼鈍ラインで焼鈍したのち
に、電気めっき、塗装等の表面処理を施される冷延鋼帯
の製造も含まれることは言うまでもない。
Continuous Annealing: The present invention is applied when annealing is performed using a continuous annealing line or a continuous hot-dip galvanizing line such as a continuous hot-dip galvanizing line or a continuous galvannealing line. It goes without saying that production of a cold rolled steel strip that is subjected to surface treatment such as electroplating and painting after annealing in a continuous annealing line is also included.

【0029】焼鈍温度:再結晶温度以下の焼鈍では、鋼
が硬質なままであり伸びが低い。Ac3 以上の温度で焼鈍
を行うと、高いr値を発現する集合組織がα→γ変態に
よって破壊されるため、r値が低くなってしまう。従っ
て焼鈍温度は、再結晶温度以上、Ac3 変態温度以下に限
定する。
Annealing temperature: In annealing below the recrystallization temperature, the steel remains hard and the elongation is low. When annealing is performed at a temperature of Ac 3 or higher, the texture that exhibits a high r value is destroyed by the α → γ transformation, so the r value becomes low. Therefore, the annealing temperature is limited to the recrystallization temperature or higher and the Ac 3 transformation temperature or lower.

【0030】冷却条件:連続焼鈍処理における冷却過程
は、均熱帯と過時効帯の間の冷却 (1次冷却という) 、
過時効帯につづいて空冷帯 (2次冷却) 、そして水スプ
レー冷却 (3次冷却) に区分される。
Cooling conditions: The cooling process in the continuous annealing treatment is the cooling between the soaking zone and the overaging zone (referred to as primary cooling),
The over-aging zone is followed by air cooling zone (secondary cooling) and water spray cooling (third cooling).

【0031】図1は本発明における連続冷却処理の温度
変化の一例を示すグラフであって、図中、ΔT1 、ΔT
2 はそれぞれ1次冷却、3次冷却における冷却開始温度
−冷却終点温度の温度差を示す。通常、ΔT1 ≧350 ℃
>ΔT2 である。なお空冷帯における温度差は通常温度
勾配も小さく発生する熱応力も小さいため問題となら
ず、本発明の後述する実施例においては特に考慮しな
い。
FIG. 1 is a graph showing an example of the temperature change in the continuous cooling process according to the present invention, in which ΔT 1 and ΔT are shown.
2 indicates the temperature difference between the cooling start temperature and the cooling end temperature in the primary cooling and the tertiary cooling, respectively. Usually ΔT 1 ≧ 350 ℃
> ΔT 2 . The temperature difference in the air-cooled zone is not a problem because the temperature gradient is usually small and the thermal stress generated is also small, and is not particularly considered in the examples of the present invention described later.

【0032】高温での鋼帯の降伏点、引張強さは、温度
の上昇に伴い低下する傾向にあり、室温での降伏点、引
張強さが低いものほど、高温での降伏点、引張強さが低
下する。また、固溶Cが存在する鋼帯は、塑性変形と同
時あるいは塑性変形後にC等の侵入型原子などの点欠陥
と転位との相互作用によって、歪時効を生じ硬化する。
The yield point and tensile strength of the steel strip at high temperature tend to decrease with increasing temperature. The lower the yield point and tensile strength at room temperature, the higher the yield point and tensile strength at high temperature. Is reduced. Further, the steel strip in which solute C is present is hardened by strain aging simultaneously with plastic deformation or after plastic deformation due to the interaction between dislocations such as interstitial atoms such as C and dislocations.

【0033】塑性変形と同時に起こる歪時効は、侵入型
原子の拡散速度とひずみ速度の影響を大きく受けるが、
ε=2.0 ×10-4・S-1場合、約100 〜350 ℃の範囲にて
生じ、局所的な硬度の上昇を招く。同一降伏点の場合、
降伏比の大きい鋼帯ほど塑性歪は大きくなり動的歪時効
発生温度域において未変形部と変形部において硬度差の
増大を招く。
Strain aging which occurs simultaneously with plastic deformation is greatly affected by the diffusion rate and strain rate of interstitial atoms.
In the case of ε = 2.0 × 10 −4 · S −1, it occurs in the range of about 100 to 350 ° C., which causes local increase in hardness. For the same yield point,
A steel strip with a higher yield ratio has a larger plastic strain, which causes an increase in hardness difference between the undeformed portion and the deformed portion in the dynamic strain aging temperature range.

【0034】従って、固溶Cが存在する鋼帯において局
所的な硬度上昇を防ぐためには、連続焼鈍ラインの冷却
中にて生じる熱応力をその温度域における鋼帯の降伏点
以下にし塑性変形を防ぐことが必要である。また、動的
歪時効の発生挙動 (発生のし易さ) は、温度域によって
異なる。
Therefore, in order to prevent a local increase in hardness in the steel strip in which solid solution C is present, the thermal stress generated during cooling of the continuous annealing line is set below the yield point of the steel strip in that temperature range to prevent plastic deformation. It is necessary to prevent it. Also, the behavior of dynamic strain aging (easiness of occurrence) varies depending on the temperature range.

【0035】高温域においては、Cの拡散が速いため動
的歪時効を生じる場合は非常に速い歪速度が必要とな
る。また低温域においてはCの拡散速度が遅いために遅
い歪速度でも動的歪時効が生じる。そのため本発明にお
いては高温、低温の領域に区分した。
In the high temperature region, the diffusion of C is fast, so that a very fast strain rate is required when dynamic strain aging occurs. Further, in the low temperature region, since the diffusion rate of C is slow, dynamic strain aging occurs even at a low strain rate. Therefore, in the present invention, it is divided into a high temperature region and a low temperature region.

【0036】すなわち、過時効を行わずに冷却温度差、
冷却速度が大きい第1次冷却帯 (ΔT≧350 ℃) の領域
においては、式(1) で示す第1温度( 以下、Temp* 1 と
いう) の温度以上の温度範囲まで150 ℃/s以下の冷却速
度での冷却を行い、または過時効を行うことで第1次冷
却帯よりも冷却温度、速度が低い第3次冷却帯 (ΔT≦
350 ℃) において式(2) で示す第2温度( 以下、Temp*
2 という) の温度以下の温度範囲を100 ℃/s以下の冷却
速度で冷却することにより、連続焼鈍ライン内の冷却中
における温度域において急冷により生じる熱応力が鋼帯
の降伏点を下回り、塑性変形が防止でき、それぞれこれ
より急冷すると、あるいは第1温度以下、第2温度以上
の温度領域を急冷すると急冷により生じる熱応力が鋼帯
の降伏点を上回り組成変形が発生する恐れがあり欠陥を
発生させる要因になる。
That is, the cooling temperature difference without overaging,
In the region of the primary cooling zone (ΔT ≥ 350 ℃) where the cooling rate is high, the temperature range above the first temperature (hereinafter referred to as Temp * 1) shown in equation (1) is below 150 ℃ / s. By cooling at the cooling rate or performing overaging, the cooling temperature and the cooling rate are lower than those in the primary cooling zone.
At 350 ℃), the second temperature shown in equation (2) (hereinafter Temp *
(2) below the temperature range of 100 ° C / s, the thermal stress caused by rapid cooling in the temperature range during cooling in the continuous annealing line falls below the yield point of the steel strip, and Deformation can be prevented, and if each is cooled more rapidly than this, or if the temperature region below the first temperature and above the second temperature is rapidly cooled, the thermal stress caused by the quenching may exceed the yield point of the steel strip and cause compositional deformation. It becomes a factor to generate.

【0037】 第1温度: Temp* 1(℃) =350 −YS×YR ・・・・(1) 第2温度: Temp* 2(℃) =200 +YS×YR ・・・・(2) YS: 室温における冷延鋼帯の降伏点 (N/mm2) YR:室温における降伏比<降伏点/引張強さ> (注) ΔT (℃) :冷却開始温度 (℃) −冷却終点温度
(℃) 好適冷却速度は第1温度以上では150 〜60℃/s、第2温
度以下では100 〜3℃/sである。従って、少なくともΔ
T≧350 ℃のときには、Temp* 1(℃) 以上での冷却の完
了、またはΔT<350 ℃のときにはTemp* 2(℃) 以下か
らの冷却を行えば、プレス後の凹凸欠陥は発生しない。
なお、上述の降伏点および引張強さはロット毎に予め求
めておいた値を用いればよい。
First temperature: Temp * 1 (° C) = 350 −YS × YR ··· (1) Second temperature: Temp * 2 (° C) = 200 + YS × YR · · · (2) YS: Yield point of cold-rolled steel strip at room temperature (N / mm 2 ) YR: Yield ratio at room temperature <Yield point / Tensile strength> (Note) ΔT (℃): Cooling start temperature (℃) -Cooling end temperature
(° C) A suitable cooling rate is 150 to 60 ° C / s at the first temperature or higher, and 100 to 3 ° C / s at the second temperature or lower. Therefore, at least Δ
When T ≧ 350 ° C., if cooling is completed at Temp * 1 (° C.) or higher, or if ΔT <350 ° C., if cooling is performed from Temp * 2 (° C.) or lower, uneven defects after pressing do not occur.
As the yield point and the tensile strength described above, the values obtained in advance for each lot may be used.

【0038】調質圧延:本発明の鋼は、焼鈍ままの状態
では降伏点伸びがあり、そのままではプレス成形時にス
トレッチャーストレインを引き起こすので、調質圧延を
行う。また、鋼板の平坦矯正、ダル付けを目的としても
調質圧延を行い。調質圧延伸び率が大きくなると、降伏
強度が上昇し、伸び、n値が低下するので、2.0 %以下
とすることが好ましい。次に、実施例によって本発明の
作用効果についてさらに具体的に説明する。
Temper rolling: The steel of the present invention has elongation at yield point in the as-annealed state and causes stretcher strain during press forming as it is, so temper rolling is performed. In addition, temper rolling is also performed for the purpose of flattening the steel sheet and dulling. If the temper rolling elongation increases, the yield strength increases, the elongation and the n value decrease, so 2.0% or less is preferable. Next, the working effects of the present invention will be described more specifically by way of examples.

【0039】[0039]

【実施例】表1に示す成分を有する板厚0.8 mmのフルハ
ード冷延鋼帯を過時効処理帯を備えた連続焼鈍ラインで
均熱温度820 ℃の焼鈍を行い、さらに伸び率1.2 %の調
質圧延を施した。
Example A 0.8 mm thick full-hard cold-rolled steel strip having the components shown in Table 1 was annealed at a soaking temperature of 820 ° C. in a continuous annealing line equipped with an overaged zone, and an elongation of 1.2% was applied. It was temper-rolled.

【0040】この焼鈍された冷延鋼板に5%の引張歪を
与えた後、鋼板表面に油砥石をかけて凹凸欠陥を目視で
検査した。また、焼鈍板の引張試験を行い、結果を表1
に合わせて示した。
After applying a tensile strain of 5% to the annealed cold-rolled steel sheet, an oil grindstone was applied to the surface of the steel sheet to visually inspect for irregularities and defects. Moreover, the tensile test of the annealed plate was conducted, and the results are shown in Table 1.
It is also shown.

【0041】 ( 参考例 ) 本例は図1に示す1次冷却に適用する例を示す。つま
り、ΔT=ΔT1 ≧350 ℃であって、気水冷却を用いた
一次冷却 (均熱帯と過時効帯の間) の終点温度を変更し
て凹凸疵発生に及ぼす影響を調べた。結果は図2にまと
めて示す。
[0041] (Reference Example) This example shows an example to apply the primary cooling shown in FIG. That is, ΔT = ΔT 1 ≧ 350 ° C., and the influence of the primary cooling using steam cooling (between the soaking zone and the overaging zone) on the occurrence of irregularities was investigated by changing the end temperature. The results are shown collectively in FIG.

【0042】 気水冷却の平均冷却速度は150 ℃/s、気
水冷却終了後は過時効帯に入るので冷却速度は0.3 ℃/s
であった。図2から明らかなように、本例に従ってTemp
* 1 の温度以上の温度領域で気水冷却を中止し、Temp*
1 の温度以下の温度領域を過時効帯で緩冷却した場合に
は疵が発生しない。
The average cooling rate of steam cooling is 150 ° C./s, and the cooling rate is 0.3 ° C./s since it enters the overaging zone after the completion of steam cooling.
Met. As is clear from FIG. 2, according to this example , Temp
* To stop the air-water cooling in one of a temperature equal to or higher than the temperature area, Temp *
No defects occur when the temperature range below the temperature of 1 is slowly cooled in the overaging zone.

【0043】 ( 実施例1 ) 本例では図1に示す3次冷却に本発明方法を適用する例
を示す。過時効処理帯を出た鋼帯は、空冷帯でガス冷却
(2次冷却) され、さらに水スプレー帯で水スプレー冷
却 (3次冷却) される。つまり図1においてΔT=ΔT
2 <350 ℃であって、この3次冷却を開始する鋼帯温度
を変更して凹凸疵発生に及ぼす影響を調べた。結果は図
3に示す。
[0043] (Embodiment 1) This embodiment shows an example of applying the present invention method to the tertiary cooling shown in FIG. The steel strip that has gone out of the overaging treatment zone is gas cooled with an air cooling zone.
(Secondary cooling), and then water spray cooling (third cooling) in the water spray zone. That is, in FIG. 1, ΔT = ΔT
When 2 <350 ° C, the temperature of the steel strip at which this third cooling is started was changed to examine the effect on the occurrence of irregularities. The results are shown in Figure 3.

【0044】ガス冷却の平均冷却速度は10℃/s、水スプ
レー冷却の平均冷却速度は80℃/sであった。図3から明
らかなように、本発明に従ってTemp* 2(℃) 温度以下の
温度域までガス冷却による緩冷却を行った場合には、疵
が発生しない。
The average cooling rate for gas cooling was 10 ° C./s, and the average cooling rate for water spray cooling was 80 ° C./s. As is clear from FIG. 3, no flaws are generated when the gas cooling is performed to a temperature range of the Temp * 2 (° C.) temperature or lower according to the present invention.

【0045】次いで表1の鋼B〜E鋼に発生した疵の程
度と1次冷却終点温度の関係および同じく鋼B〜E鋼に
発生した疵の程度と3次冷却終点温度の関係を調べ、そ
の結果をそれぞれ図4、図5にまとめて示す。
Then, the relationship between the degree of flaws generated in the steels B to E in Table 1 and the primary cooling end point temperature and the relation between the degree of flaws similarly generated in the steels B to E steel and the third cooling end point temperature were examined. The results are collectively shown in FIGS. 4 and 5.

【0046】[0046]

【表1】 [Table 1]

【0047】[0047]

【発明の効果】本発明の製造方法によれば、深絞用冷延
鋼板を連続焼鈍で製造したとき発生するプレス成形後の
表面の凹凸欠陥を完全に防止できる。本発明は、特定の
温度範囲における冷却速度を低下するだけで疵を防止で
きるものであり、鋼板の成分系の変更や設備改造を必要
としないので、工業的に非常に有効な技術である。
According to the manufacturing method of the present invention, it is possible to completely prevent the irregularities on the surface after press forming that occur when the cold-rolled steel sheet for deep drawing is manufactured by continuous annealing. INDUSTRIAL APPLICABILITY The present invention is a technology that is very effective industrially because it can prevent defects only by lowering the cooling rate in a specific temperature range and does not require changes in the component system of the steel sheet or equipment modification.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明における連続冷却処理の温度変化を示す
グラフである。
FIG. 1 is a graph showing a temperature change in a continuous cooling process according to the present invention.

【図2】鋼Aに発生した疵の程度と1次冷却終点温度の
関係を示すグラフである。
FIG. 2 is a graph showing the relationship between the degree of defects generated in Steel A and the primary cooling end point temperature.

【図3】鋼Aに発生した疵の程度と3次冷却終点温度の
関係を示すグラフである。
FIG. 3 is a graph showing the relationship between the degree of flaws generated in steel A and the temperature of the tertiary cooling end point.

【図4】鋼B〜E鋼に発生した疵の程度と1次冷却終点
温度の関係を示すグラフである。
FIG. 4 is a graph showing the relationship between the degree of defects generated in steels B to E and the primary cooling end point temperature.

【図5】鋼B〜E鋼に発生した疵の程度と3次冷却終点
温度の関係を示すグララである。
FIG. 5 is a glarler showing the relationship between the degree of flaws generated in steels B to E and the temperature of the tertiary cooling end point.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平7−3332(JP,A) 特開 平7−216459(JP,A) 特開 平7−228943(JP,A) 特公 平2−44890(JP,B2) 特公 平7−56050(JP,B2) (58)調査した分野(Int.Cl.7,DB名) C21D 9/52 - 9/66 C21D 9/46 - 9/48 C22C 38/00 - 38/60 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-7-3332 (JP, A) JP-A-7-216459 (JP, A) JP-A-7-228943 (JP, A) JP-B-2- 44890 (JP, B2) Japanese Patent Publication 7-56050 (JP, B2) (58) Fields investigated (Int.Cl. 7 , DB name) C21D 9/52-9/66 C21D 9/46-9/48 C22C 38/00-38/60

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量%にて、 C:0.01〜0.035 %、Si:1.5 %以下、Mn:2.0 %以
下、 P:0.1 %以下、S:0.03%以下、sol.Al:0.005 〜0.
1 %、 N:0.005 %以下、 残部Feおよび不可避的不純物 から成る鋼組成を有する鋼を熱間圧延、酸洗、冷間圧
延、連続焼鈍、調質圧延の各工程を経て冷延鋼帯を製造
するにあたり、連続焼鈍工程において再結晶温度以上、
Ac3 変態点以下の温度での均熱加熱後に、ΔT (℃) :
冷却開始温度−冷却終点温度として、ΔT (℃) <350
℃の水スプレー冷却を行う場合に、前記冷却開始温度を
下記式(2) によって定まる第2温度以下とし、かつ、冷
却速度100 ℃/s以下(ただし、 30 /s 以下の場合を除
) として冷却することを特徴とする深絞り用冷延鋼帯
の製造方法。 ただし、過時効処理の直前に再加熱を行う場合を除く。 第2温度:Temp *2(℃) =200 +YS×YR ・・・
式(2) YS:室温における冷延鋼帯の降伏点 (N/mm2) YR:室温における降伏比<降伏点/引張強さ>
1. In weight%, C: 0.01 to 0.035%, Si: 1.5% or less, Mn: 2.0% or less, P: 0.1% or less, S: 0.03% or less, sol.Al: 0.005 to 0.
1%, N: 0.005% or less, steel having a steel composition consisting of balance Fe and unavoidable impurities is subjected to hot rolling, pickling, cold rolling, continuous annealing, temper rolling, and cold rolled steel strip. In manufacturing, in the continuous annealing step, the recrystallization temperature or higher,
After soaking and heating at a temperature below the Ac 3 transformation point, ΔT (° C):
As the cooling start temperature-cooling end temperature, ΔT (° C) <350
In the case of water spray cooling at ℃, the cooling start temperature shall be below the second temperature determined by the following equation (2), and the cooling rate shall be 100 ℃ / s or less (excluding the case of 30 / s or less.
Manufacturing method of a cold rolled steel strip for deep drawing, characterized by cooling as Ku). However, the case where reheating is performed immediately before overaging treatment is excluded. Second temperature: Temp * 2 (℃) = 200 + YS x YR ...
Formula (2) YS: Yield point of cold-rolled steel strip at room temperature (N / mm 2 ) YR: Yield ratio at room temperature <Yield point / Tensile strength>
【請求項2】 前記鋼組成が、さらにB:0.0003〜0.00
3 %を含有する、請求項1記載の深絞り用冷延鋼帯の製
造方法。
2. The steel composition further comprises B: 0.0003 to 0.00.
The method for producing a cold-rolled steel strip for deep drawing according to claim 1, containing 3%.
JP28862895A 1995-11-07 1995-11-07 Method of manufacturing cold-rolled steel strip for deep drawing by continuous annealing Expired - Fee Related JP3489295B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28862895A JP3489295B2 (en) 1995-11-07 1995-11-07 Method of manufacturing cold-rolled steel strip for deep drawing by continuous annealing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28862895A JP3489295B2 (en) 1995-11-07 1995-11-07 Method of manufacturing cold-rolled steel strip for deep drawing by continuous annealing

Publications (2)

Publication Number Publication Date
JPH09125161A JPH09125161A (en) 1997-05-13
JP3489295B2 true JP3489295B2 (en) 2004-01-19

Family

ID=17732646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28862895A Expired - Fee Related JP3489295B2 (en) 1995-11-07 1995-11-07 Method of manufacturing cold-rolled steel strip for deep drawing by continuous annealing

Country Status (1)

Country Link
JP (1) JP3489295B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4639996B2 (en) 2004-07-06 2011-02-23 住友金属工業株式会社 Manufacturing method of high-tensile cold-rolled steel sheet
KR101757953B1 (en) * 2010-01-29 2017-07-26 타타 스틸 네덜란드 테크날러지 베.뷔. Process for the heat treatment of metal strip material, and strip material produced in that way
CN102172813B (en) * 2011-01-08 2012-12-19 中国科学院等离子体物理研究所 Method for manufacturing steel strip for central cooling tube and method for winding cooling tube
CN114807753A (en) * 2022-04-15 2022-07-29 唐山钢铁集团有限责任公司 Cold-rolled strip steel with high plastic strain ratio for deep drawing and production method thereof

Also Published As

Publication number Publication date
JPH09125161A (en) 1997-05-13

Similar Documents

Publication Publication Date Title
EP0101740B1 (en) Process for manufacturing cold-rolled steel having excellent press moldability
US20080202638A1 (en) High-strength cold-rolled steel sheet, high-strength plated steel sheet, and methods for their manufacture
US5405463A (en) Continuous annealing process of producing cold rolled mild steel sheet excellent in deep drawability and aging resistibility
JPS60262918A (en) Manufacture of surface treating raw sheet without causing stretcher strain
JPH024657B2 (en)
JPS59140333A (en) Manufacture of cold rolled steel sheet for deep drawing with superior secondary workability and surface treatability
JPS6116323B2 (en)
JP4062961B2 (en) High tensile hot-rolled steel sheet excellent in mold galling resistance and fatigue resistance and method for producing the same
JP2766693B2 (en) Manufacturing method of high ductility and high strength cold rolled steel sheet with small anisotropy
JP3489295B2 (en) Method of manufacturing cold-rolled steel strip for deep drawing by continuous annealing
JPH034607B2 (en)
JPH09194935A (en) Production of cold rolled steel sheet for gasket material, excellent in spring characteristic, and gasket material
JP3448454B2 (en) High-strength cold-rolled steel sheet with excellent surface properties and formability, and method for producing the same
JP3046146B2 (en) Manufacturing method of cold rolled steel sheet with excellent workability and shape
JPH0790488A (en) Ultrahigh strength cold rolled steel sheet excellent in hydrogen brittlement resistance and its production
JP4045602B2 (en) Manufacturing method of steel sheet for cans with excellent drawability
JPH1081919A (en) Production of steel sheet for two-piece can, excellent in non-earing characteristic and surface roughing resistance
JP5375001B2 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
JPH08188832A (en) Production of cold rolled steel sheet excellent in surface characteristic
JPH09227955A (en) Production of cold rolled extra low carbon steel sheet by continuous annealing
JP2807994B2 (en) Manufacturing method of cold rolled steel sheet for deep printing
JPH05171351A (en) Cold rolled steel sheet for deep drawing having non-aging characteristic and excellent in baking hardenability and its production
JPH07102341A (en) Ultrahigh strength cold rolled steel sheet excellent in hydrogen embrittlement resistance and its production
JPH0734923B2 (en) Method for manufacturing cold-rolled steel sheet having uniform BH property in the width direction
JPH0142329B2 (en)

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031007

LAPS Cancellation because of no payment of annual fees